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Vorwort

Die fortschreitende Digitalisierung in nahezu allen Lebensbereichen tangiert in be-
sonderer Weise auch den Bildungsbereich. So hat Schule die Aufgabe auf das Le-
ben in einer digitalen Welt vorzubereiten (digitale Bildung als Lehr-Lerninhalt)
und gleichzeitig er6ffnen sich durch den Einsatz digitaler Medien auch neue Mog-
lichkeiten, mathematische Lernprozesse zu unterstiitzen. Das Thema Digitalisie-
rung hat dabei insbesondere auch durch die Corona-Pandemie noch einmal ganz
erheblich an Bedeutung gewonnen. Es gilt mehr denn je, die Chancen digitaler
Medien fiir mathematische Lehr-Lernprozesse zu identifizieren und gezielt zu nut-
zen. Gleichzeitig stellt die Digitalisierung jedoch alle beteiligten Akteure, insbe-
sondere Lehrer*innen und Schiiler*innen vor groe Herausforderungen. Um die-
sen Herausforderungen zu begegnen und die Chancen der Digitalisierung im Ma-
thematikunterricht bestmoglich zu realisieren, ist ein intensiver Austausch und
eine konstruktive Zusammenarbeit zwischen allen beteiligten Akteuren wie z.B.
Mathematikdidaktiker*innen, Lehrer*innen, Schiiler*innen, Akteuren der Schul-
politik und Eltern notwendig.

Wir freuen uns daher besonders Thnen den Tagungsband der ,,Vernetzungstagung
2022 - Mathematikunterricht mit digitalen Medien und Werkzeugen in Schule und
Forschung® priasentieren zu diirfen. Die Tagung, die von der Mathematikdidaktik
der Universitit Siegen vom 6.-7. Mai 2022 im Rahmen des Projekts Digi-
Math4Edu (www.digimath4edu.de) ausgerichtet wurde, war unsere erste Vernet-
zungsveranstaltung in Prdsenz nach der Corona-Pandemie und zielte darauf ab,
eine Plattform fiir den Austausch von Ideen und Erfahrungen zu bieten. Fokus der
Tagung war dabei ganz im Sinne des Tagungstitels die Zusammenfiihrung und
Vernetzung verschiedener Akteure aus Forschung und Schulpraxis. Dabei wurden
konkrete Ideen fiir den Mathematikunterricht sowie spannende iibergeordnete Fra-
gestellungen diskutiert und verschiedene Perspektiven auf die Digitalisierung im
Mathematikunterricht eingenommen. Das Programm umfasste neben Vortragen,
Workshops und Postervorstellungen auch zwei Podiumsdiskussionen sowie
Hauptvortrdge zu den Themen Digitalisierung als Lehrmethode vs. Lerngegen-
stand und SocialMedia im Mathematikunterricht.

Die Breite der Beitrdge in diesem Tagungsband zeigt, dass das Thema Digitalisie-
rung im Mathematikunterricht ein sehr aktives Forschungsfeld in Deutschland ist.
Die verschiedenen Beitrdge reichen von konkreten Unterrichtsideen iiber theoreti-
sche Beitrdge bis hin zu empirischen Forschungsarbeiten. Ebenso lasst sich eine
grofe Vielfalt von unterschiedlichen Medienarten identifizieren, die in den Beitra-
gen betrachtet werden (z.B. 3D-Drucker, Lernvideos, Audio-Podcast, Apps). In
seiner Gesamtheit bildet der Tagungsband somit eine hervorragende Basis fiir die
weitere Entwicklung des Themas.



Wir mochten uns bei allen Teilnehmer*innen, Referent*innen sowie den Organi-
sator*innen fiir ihre wertvollen Beitrdge und ihr Engagement bedanken. Ohne ihre
Unterstiitzung wire diese Tagung nicht moglich gewesen. Wir hoffen, dass dieser
Tagungsband dazu beitrégt, den Austausch und die Zusammenarbeit auf diesem
wichtigen Gebiet weiter zu fordern und freuen uns schon auf die néchste Vernet-
zungstagung.

Wir wiinschen viel Freude beim Lesen,

Die Herausgeber des Tagungsbandes.
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Reinhard Oldenburg
Universitit Augsburg, reinhard.oldenburg@math.uni-augsburg.de

Digitalisierung und Digitalitit — Lehrmethode oder
Lerngegenstand?

Digitalisierung kann im Mathematikunterricht methodisch und inhaltlich umge-
setzt werden. Der Beitrag plddiert dafiir, neben methodischen Innovationen der
Digitalisierung mittels digitaler Medien auch die inhaltlichen Impulse didaktisch
zu bearbeiten. Zentral dafiir ist ein Verstdindnis, wie Mathematik und ihre Anwen-
dungen durch die Digitalisierung verdndert werden und welche gesellschaftlichen
Auswirkungen das hat.

1. Die Pole der Digitalisierung

Es gibt zwei Pole der Digitalisierung des Mathematikunterrichts, namlich einer-
seits den medienpddagogischen Pol, der vor allem den Einsatz von Medien zum
Lernen zum Gegenstand hat, und zum anderen den (stoffdidaktischen) mathema-
tisch-informatischen Pol, der auf die Wechselwirkung der Digitalisierung mit ma-
thematischen Inhalten fokussiert. Wie das Bild der Pole suggerieren soll, gibt es
dazwischen ein Kontinuum von Mischformen und Uberlagerungen. These des Bei-
trags ist, dass der mathematisch-informative Pol noch deutliches Entwicklungspo-
tenzial hat. Das Bild der Pole kann unterschied Bewusst machen, aber es iiberdeckt
moglicherweise, dass beide Pole einander bedingen, erst wenn beide angemessen
bedacht sind, kann der Bildungsauftrag umfassend erfiillt werden. Insbesondere
soll nicht gesagt werden, dass der medienpiddagogische Pol unwichtig ist — im Ge-
genteil, gerade die Pandemiesituation hat gezeigt, wie wichtig digitale Methoden
der Kommunikation sind, und dass digitale Lernformen keineswegs nur ein Not-
behelf sind, sondern interessante Perspektiven aufzeigen. Beispielsweise konnen
Erklarvideos eine Bereicherung des Unterrichts sein, insbesondere wenn sie medi-
enpadagogischen und mathematikdidaktischen Qualitétskriterien gentigen und der
Versuchung widerstehen, Mathematik als Fertigprodukt zu verkaufen, das nur in
Form fertiger Wissensbestandteile bei den Lernenden abgeladen wird, sondern
Moglichkeiten der aktiven Erarbeitung anregen. Dieses weite Feld soll im vorlie-
genden Beitrag aber nicht diskutiert werden, sondern es soll um den zweiten Pol
gehen. Dazu folgt zunéchst eine Begriffsklarung, bevor einige wichtige Aspekte
behandelt werden.

1.1 Medien und Werkzeuge: Eine Begriffsklirung

Es ist iiblich geworden, den Medienbegriff sehr weit zu verwenden. Beispielsweise
subsumieren auch die Bildungsstandards der KMK (2022) digitale Werkzeuge wie
Tabellenkalkulation oder Geometriesoftware unter dem Oberbegriff der digitalen
Medien. Die Tendenz, den Medienbegriff sehr weit zu fassen, wird auch in der
Medienwissenschaft kritisch gesehen (Hickethier, 2010, Seite 19) und erscheint
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mir insbesondere fiir die Mathematikdidaktik nur angemessen, wenn man auch ei-
nen engeren Medienbegriff in Abgrenzung zu den Werkzeugen verwendet. In die-
sem Beitrag wird der Begriff Medien generell als Medien im engeren Sinne ver-
wendet, ndmlich solche Medien, die primédr dem Transport von Information die-
nen, wobei das Medium selbst dann von hoher Qualitit ist, wenn es die Informa-
tion moglichst wenig verdndert. Im Gegensatz dazu wird von Werkzeugen gespro-
chen, wenn von mathematischen Medien im weiteren Sinne die Rede ist, deren
Qualitét sich gerade darin zeigt, dass sie Informationen in einem bestimmten ge-
wiinschten Sinn verdndern. Ubertragen auf die Musik wire eine CD oder eine
MP3-Datei ein musikalisches Medium im engeren Sinne, ein Klavier dagegen ein
musikalisches Werkzeug. Im iiblichen weiteren Sinne ist auch ein Klavier ein mu-
sikalisches Medium. Abbildung 1 fasst die charakteristischen Unterschiede dieser
beiden Arten von Artefakten graphisch zusammen, ndmlich den Medien im enge-
ren Sinne oben und Medien im weiteren, Werkzeuge einschlieBenden Sinne der
KMK, unten. Mathematische Objekte werden in den digitalen Artefakten in einer
nicht menschenlesbaren Form reprisentiert. Deswegen sind fiir die Kommunika-
tion zwischen Mensch und Maschine pro-menschliche (also fiir Menschen lesbare)
mediale Darstellungsformen notwendig. Charakteristisch fiir ein digitales Mathe-
matikwerkzeug ist, dass die im Computer reprisentierten mathematischen Objekte
auch transformiert werden konnen. Im Grunde konnen alle von Kieran (2004) fiir
die Algebra beschriebenen Prozesse auch digital umgesetzt werden.

Individuum

Math. Objekte

(O

Individuum Pro-menschliche ~ Computer- Math. Obickt
Darstellung Représentation ath. Objekte
math. Objekte
atb Generieren
11911111111809119118181 .
i I 2 Transformieren
Seemlemeti ’ Reflektieren
11111111111PAPEABA1 18000 H
L (Kieran 2004)
a 4 b
2 2

Abbildung 1: Graphische Darstellung der Prozesse, wenn ein Individuum mit einem Medium im
engen Sinne mathematisch arbeitet (oben) und wenn es mit einem digitalen Werkzeug mathema-
tisch arbeitet.
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Der Grund, diese Medienarten sorgfaltig auseinander zu halten, liegt in der Beson-
derheit der Mathematik, dass die digitalen Artefakte viel Mathematik in sich tragen
und das Potenzial haben, Mathematik zu verdndern (siehe z.B. Elschenbroich,
Gawlick & Henn, 2001). Deswegen gibt es im Bereich der mathematischen Werk-
zeuge viel mehr didaktische Fragen zu erortern und zu erforschen als im Bereich
der allgemeinen Medien, tiber deren Einsatz viel mehr aus der allgemeinen Medi-
enforschung und Medienpddagogik entnommen werden kann.

1.2 Die Pole im Kontext der didaktischen Diskussion

In diesem Abschnitt werden die oben kurz charakterisierten Pole der Digitalisie-
rung eingebettet in die allgemeine didaktische Theorie der Digitalisierung. Eine
einflussreiche padagogische Klassifikation der Nutzung digitaler Artefakte ist das
SAMR-Modell von Puentedura (siehe z. B. Hamilton et al., 2016), das die Stufen
Substitution, Augmentation, Modification und Redefinition postuliert. Diese Stu-
fen konnen bezogen auf den Mathematikunterricht sowohl methodisch als auch
inhaltlich gedacht werden. Tabelle 1 gibt ein Beispiel anhand der Problemstellung,
zu einer Menge von Datenpunkten eine Regressionsgeraden zu finden. Das Bei-
spiel illustriert u.a., dass eine inhaltliche Modifikation es ermdglicht von reinen
Rechenformeln wegzukommen und hin zu konzeptuell relevanten Formeln.

Stufe | Methodisch Inhaltlich/Informatisch
S Wertetabelle in Excel statt auf Pa- | Werte in Datenstrukturen wie Listen
pier
A Datenpunkte erscheinen automa- | Fehlerfunktion wird automatisch be-
tisch in Diagramm, Fehler einzeich- | rechnet; Explorative Ideen werden um-
nen gesetzt’
M Regressionsgerade wird automa- | Formeln fiir Koeffizienten werden er-
tisch gezeichnet, Koeffizienten aus | setzt durch
) ) 2
Formel automatisch berechnet min Z?:l(yi —(a+b- xi))
und numerische Optimierung
R Experimentelle Suche nach einem | Nicht lineare Regression ergibt sich
weiteren Datenpunkt, der das Ergeb- | einfach durch Verwendung eines ande-
nis wesentlich dndert ren Modells

Tabelle 1: Die SAMR-Stufen medial/methodisch und inhaltlich gedeutet am Beispiel des Erstel-
lens einer Regressionsgeraden

Gut einordnen lassen sich die beiden Pole auch in die Konzeption von Heinrich
Winter (1992) zu den didaktischen Funktionen des Sachrechnens. Unter dem
Schlagwort ,,Sachrechnen als Lernprinzip* beschreibt er, dass man die Sache als

5 Neben der naheliegenden Idee, Abweichungen zu minimieren, lassen sich auch alternative Ideen algorith-
misch leicht umsetzen, etwa jeweils Paare von Datenpunkten zu betrachten und den Mittelwert der durch
je ein solches Paar definierten Steigung zu berechnen.

157



Mittel nutzt, um Mathematik zu lernen. Dies ist die Sichtweise der Medienpéda-
gogik: die Artefakte der digitalen Welt werden genutzt, um (traditionelle) Mathe-
matik zu vermitteln. Dariiber hinaus hat Winter aber auch ,,Sachrechnen als Lern-
stoff* betrachtet. In Ubertragung dieser Perspektive geht es also darum, etwas iiber
die digitalen Artefakte zu lernen, dariiber welche Rolle Mathematik darin spielt
und wie diese auf die Mathematik verdndernd einwirken. Eine dhnliche Gegen-
tiberstellung findet sich bei Hischer (2002), der einerseits von Mediendidaktik
spricht (also der Nutzung als Lehrmittel), andererseits von Medienkunde, in der es
darum geht, etwas liber die Medien und Werkzeuge, ihre Funktions- und Wir-
kungsweise zu erlernen. Offensichtlich kann man diese Medienkunde sehr unter-
schiedlich weit denken: minimal bedeutet es, dass man die Bedienfdhigkeiten er-
wirbt, um mit digitalen Artefakten etwas zu machen und die Resultate richtig zu
interpretieren. Vertieft interpretiert bedeutet es, dass man die Arbeitsweise ver-
steht, das Potenzial einschitzen kann, und gegebenenfalls eigene Verdnderungen
vornehmen kann.

Sowohl Winter als auch Hischer ergénzen die bipolare Sicht um eine Synthese, bei
Winter heif3t sie ,,Sachrechnen als Lernziel®, bei Hischer ,,Medienerziehung®. In
beiden Féllen geht es um das, was generelles Ziel der Kompetenzorientierung ist,
namlich die Dinge kritisch und kompetent einsetzen, bewerten und gestalten zu
konnen.

2. Computer modellieren Mathematik

Die Idee einer reinen medienpédagogischen Nutzung von digitalen Fakten im Ma-
thematikunterricht kommt recht schnell an ihre Grenzen: wére ein dynamisches
Geometrieprogramm etwa allein ein neutrales Medium, das den Umgang mit geo-
metrischen Objekten erleichtert und flexibler macht als das Medium Papier,
miisste man keinerlei neue Konzepte lernen. Dem ist aber nicht so, es wurde schon
frith darauf hingewiesen (Elschenbroich et al., 2001), dass sich die Geometrie der
dynamischen Geometrieprogramme von der euklidischen Geometrie unterschei-
det. Auf elementarer Benutzerebene bedeutet das, dass zwischen Basispunkten,
halb-freien Punkten und abhdngigen Punkten unterschieden werden muss, und
dass ein optisch sichtbarer Schnittpunkt noch nicht ein Schnittpunkt im Sinne des
DGS ist. Dies hat unterrichtspraktische Konsequenzen, wie schon die Arbeiten von
Holz (1994, 1995) gezeigt haben. Jenseits der elementaren Benutzerschulung sind
gegebenenfalls Einsichten hilfreich, die erkldaren, warum der Zugmodus sich
manchmal unstetig verhilt, also Punkte springen konnen. Dass es solche Unter-
schiede zwischen der Mathematik und der im Computer reprasentierten Mathema-
tik gibt, ist kein Zufall, sondern prinzipbedingt: mathematische Objekte miissen
mit Mitteln der Informatik modelliert werden, um im Computer aktiv werden zu
konnen. Abbildung 2 illustriert dies anhand eines Modellbildungskreislaufs, der
sich auf die Modellierung geometrischer Objekte bezieht. Beispiele der Modellbe-
ziehung werden weiter unten ausfiihrlich diskutiert. Es lohnt sich aber an dieser
Stelle zu bemerken, dass auch die axiomatisch charakterisierten mathematischen
Objekte oft als Ergebnis einer Modellierung von intuitiven Konzepten verstanden
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werden konnen. Beispielweise gibt es verschiedene mathematische Modellierun-
gen des intuitiven Begriffs der Geraden.

Eines der dltesten Werke, das den Gesichtspunkt betont, dass mathematische Kon-
zepte durch den Computer modelliert werden, ist das Buch von Bundy (1986), in
dem insbesondere Fragen der Termumformung und das Losen von Gleichungen
betrachtet werden. Die Sichtweise ist aber weit darliberhinausgehend tragend und
relevant. Jedes mathematische Objekt, das in mathematischer Werkzeugsoftware
reprasentiert und manipuliert werden soll, muss mit den Mitteln der Informatik
modelliert werden. Schon fiir die natiirlichen Zahlen ist diese Reprisentation kei-
neswegs trivial. Die Modellierer*in (also die Programmierer*in der mathemati-
schen Werkzeugsoftware) muss sich iiberlegen, ob eine Modellierung mit einer
festen Anzahl von Bits ausreicht (was impliziert, dass es eine grofite reprasentier-
bare natiirliche Zahl gibt), oder ob eine Modellierung beliebig grofer natiirlicher
Zahlen notwendig ist. Noch gravierender ist die Frage, wie reelle Zahlen model-
liert werden sollen: Da die Menge der reellen Zahlen {iberabzédhlbar ist, muss man
ohnehin immer mit einem speziellen Modell arbeiten, die meisten einfachen Ma-
thematik- Programme ersetzen die reellen Zahlen durch eine endliche (!) Menge
von FlieBpunktzahlen. In aller Regel stéren die damit einhergehenden Modellie-
rungsfehler (und die durch sie implizierten Rundungsfehler) nicht. Man kann aber
relativ leicht Beispiele konstruieren, bei denen die Artefakte der Modellierung
doch zum Tragen kommen. In Oldenburg (2022) habe ich dazu die Rekursions-
gleichung x; := 0.2; x,,,1 == 11x,, — 2 genutzt. Die Zahl 0,2 ist ein Fixpunkt die-
ser Folge. In Excel umgesetzt zeigen sich aber schon etwa nach 20 Berechnungs-
schritten gravierende Abweichungen: der Fehler wéchst in jedem Rechenschritt
etwa um den Faktor zehn, so dass schon x,, > 10000. Dies ist eine Folge davon,

dass die Zahlen im Dualsystem modelliert sind und 0.2 = § im Dualsystem eine

nicht abbrechende, periodische Darstellung besitzt, die notwendig gerundet wer-
den muss. Tabellenkalkulationsprogramme wie GNU Gnumeric oder Apple Num-
bers modellieren FlieBpunktzahlen als Dezimalzahlen, sind also von diesem Run-
dungsfehler nicht betroffen, aber wie man aus jeder Didaktik der Arithmetik weil3,
sind auch nicht alle rationalen Zahlen im Dezimalsystem mit endlich vielen Stellen
exakt darstellbar, d.h. diese Programme zeigen bei anderen Beispielen entspre-
chende Fehlervergroerungen. Dies zeigt, dass die Modellierung von rationalen
Zahlen durch Briiche grofle Vorteile hat: sie ermdglicht das effektive und exakte
Rechnen mit rationalen Zahlen und deswegen wird dieser Weg von allen Compu-
teralgebrasystemen gewdhlt. Das ist eine technologische Motivation der Bruch-
rechnung, die Lernenden in der Schule in der Regel verborgen bleibt.
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Abbildung 2: Ein Modell-Bildungskreislauf fiir die Modellierung von Mathematik im Computer-
system.

Die Darstellung von Funktionsgrafen erzeugt wegen der notwendigen Diskretisie-
rung (Pixelgrafik) und der Berechnung der Funktionswerte an (nur) endlich vielen
Stiitzstellen notwendig ebenfalls Artefakte, die bereits von Hischer (2002) aus-
fiihrlich untersucht worden sind. Weniger ausfiihrlich wurde bisher in der Didaktik
diskutiert, dass auch die Darstellung von Termen in jedem Computeralgebrasys-
tem nicht triviale Modellierungsentscheidungen erfordert (dies betrifft z.B. die
Frage, ob Terme schulnah als Bindrbdume gespeichert werden (z.B. TI-CAS-
Rechner) oder effizienter als allgemeine Bédume (z.B. GeogebraCAS) oder gar
Graphen, die keine Bdume sind (z.B. Maple)) und je nach Modellierung das Ver-
halten der Systeme unterschiedlich ist. Um kompetent mit einem Computeral-
gebrasystem umgehen zu konnen, braucht man also auch etwas Wissen tiber Fra-
gen der Implementierung. Exemplarisch sei das erldutert an der Termreprisenta-
tion im CAS von Geogebra. Zu den grundlegenden Operationen mit Termen ge-
hort das Substituieren. Das CAS in Geogebra besitzt dazu die Funktion Exr-
setze (term, teilterm, neu), mit der ein Teilterm durch einen anderen
Term ersetzt werden kann. Abbildung 3 (links) zeigt zwei Anwendungen des Be-
fehls. Schon die erste Anwendung oben mag Lernende verwirren, die als Antwort
Systems x2 + u + z? erwartet hétten. Computeralgebrasysteme ordnen in der Re-
gel aber Summanden und Faktoren nach bestimmten Regeln (welche, das variiert
von System zu System und kann bei einigen Systemen auch verdndert werden — in
der algebraischen Geometrie ist die Untersuchung von Termordnungen sogar Ge-
genstand der Mathematik). Noch gravierender ist, dass die Terme intern anders
reprisentiert werden als das der schulische Umgang mit Termen nahelegt: fast alle
Computeralgebrasysteme eliminieren Subtraktion und Division und driicken diese
aus durch die Bezichungena — b = a + (—1) - b,% = a - b~. Des Weiteren wird

intern nicht mit bindren Operatoren gearbeitet, sondern ein Operator wie die Ad-
dition kann beliebig viele Operanten haben. Dies erleichtert und beschleunigt ge-
rade auch im Zusammenspiel mit der eben angesprochenen Termordnung die au-
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tomatische Termumformung ungemein. Eine Folge davon ist, dass im unteren Bei-
spiel von Abbildung 3 (links) der Ersetze-Befehl keinerlei Wirkung zeigt. Das liegt
daran, dass der Term x? + y? kein echter Teilterm von x% + y? + z2 ist. Im CAS
Mathematica (Wolfram Research, 2022) kann die Termstruktur leicht als Baum
dargestellt werden (Abb. 3 recht) und das zeigt, dass x* + y? kein Teilbaum ist.
inf153)= TreeForm[x*2+y”*r2 +zA2]
Out[153)//TreeForms=

Plus

‘ Power ‘ ‘ Power ‘ ‘ Power ‘

i

Abbildung 3: Der Ersetze-Befehl in Geogebra (links) und die Termreprasentation in Mathematica.

Die interne Modellierung von Termen hat also Auswirkungen, die an der Benut-
zeroberflache spiirbar sind. Dieses Wissen kann im Unterricht niitzlich sein, wenn
Lernende vom Verhalten eines Computeralgebraystems iiberrascht sind, es kann
aber auch ganz grundlegend genutzt werden, um iiber Terme und ihre Struktur
nachzudenken. Fundamental fiir Terme ist ihre rekursive Struktur, die beliebiges
Substituieren ermdoglicht. Malle (1993) empfiehlt die Strukturierung von Termen
zu iiben, etwa indem Teilterme eingezeichnet werden wie in Abbildung 4. Die
gleiche Einsicht in die Strukturierung und noch dariiber hinaus die Erkenntnis, dass
es verschiedene Termstrukturen gibt, wird durch digitale Werkzeuge nahegelegt.
Abbildung 4 zeigt dazu rechts einen im Programmiersystem Scratch aufgebauten

' © 0 O

8

Abbildung 4: Termstrukturierung nach Malle (1993, S. 255) und in Scratch
(https://scratch.mit.edu/)

Zu den Eigenschaften von Modellen im Allgemeinen (Stachowiak, 1973) gehort
nicht nur, dass sie ein Abbildungs- und Verkiirzungsmerkmal besitzen, sondern
auch ihre pragmatische Dimension: je nach Ziel des Modells sind andere Model-
lierungsentscheidungen sinnvoll. Dariiber nachzudenken, warum welche Entschei-
dungen von den Entwicklern von Programmen getroffen worden sind, kann auch
helfen, die mathematisch motivierten Objekte genauer zu verstehen. Zur Illustra-
tion sollen Gleichungen betrachtet werden: Was ist die angemessene Antwort ei-
nes CAS, wenn man die Gleichung 1=1 eingibt? GeogebraCAS reagiert gar nicht,
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Mathematica antwortet True und Maxima gibt 1=1 unverdndert zuriick (es gibt
aber in Maxima noch die Funktion is,und is (1=1) liefert t rue). Noch diver-
ser ist die Antwort auf die Eingabe solve (1=1): Maxima liefert al1, Mathe-
matica { { } } und Geogebra {x=x}. Es soll an dieser Stelle nicht diskutiert wer-
den, was die jeweiligen Vor- und Nachteile dieser Designentscheidungen sind, es
soll aber vor Augen gefiihrt werden, dass es nicht trivial ist, was das jeweils beste
Modell ist, und dass es sehr viele Modellierungsentscheidungen gibt. Ein Unter-
richt, der die Existenz von Computeralgebrasystemen nicht ignoriert, sollte meines
Erachtens auch solche Reflektionsanlidsse nutzen, um die digitalisierte Mathematik
aus der Metaperspektive zu betrachten. Dies kann dazu beitragen, die Ergebnisse
der Maschinen mit der notigen kritischen Distanz zu bewerten. Ob es notwendig
1st, ein mentales Modell der Arbeitsweise des CAS zu entwickeln, mit dessen Hilfe
man solche Ergebnisse vorhersagen kann, ist eine offene didaktische Frage. Nicht
auf Schulniveau, aber fiir die Lehramtsausbildung durchaus interessant mag die
Reflektion der unterschiedlichen Antwortstrukturen von Geogebra und Mathema-
tica bei der Losung der gleichen polynomiellen Gleichung sein, die in Abbildung
5 dargestellt wird. Die Losungen in Mathematica sind algebraische Zahlen, die
zum Zwecke der Lesbarkeit durch approximative komplexe Zahlen dargestellt
werden, man kann sich aber bei Bedarf auch die symbolische Darstellung anzeigen
lassen und mit dieser kann exakt gerechnet werden. Das Beispiel zeigt erneut, dass
es einen Unterschied zwischen Zahlen und Zahlreprédsentationen gibt, und dass
diese Unterscheidung nicht nur philosophisch spitzfindig ist, sondern Auswirkun-
gen auf die Arbeit mit mathematischer Werkzeugsoftware hat.

Es konnten jetzt noch ganz viele weitere Beispiele angefiihrt werden, wie Mathe-
matik in Computern modelliert wird und welche Auswirkung das hat. An dieser
Stelle sollen die gezeigten Beispiele aber ausreichen, um zu begriinden, dass fiir
eine kompetente Benutzung der Werkzeuge (nicht immer aber zumindest gelegent-
lich) ein vertieftes Verstindnis dieser Modelle hilfreich sein kann. Des weiteren
konnen diese Modellierungen Reflektionsanlass flir das Erlernen der Mathematik
sein. Jedenfalls scheint es so, dass hier mehr didaktische Herausforderungen liegen
als nur eine reine Benutzerschulung: Computermathematik ist etwas anderes als
Mathematik und die Beziehungen dazwischen sollten verstanden werden, um die
Resultate kompetent interpretieren zu konnen. Digitalisierung als Lernstoft sollte
also mehr sein als elementare Benutzerschulung.

1
- 7 6 4 2
19 Lose(x 4+ 5x° + x' 4+ 7x “Tioig. = O)

—+ {x=-5.05,x=—-0,x=0}
inf7):= SOlve[XA7+5x"6+xMr44+7xM2-1/10000==0, x]

Out[7)= {{x—) ¥ -5.05... }, {x—> ) -3.78...x1072 }, {x—> ©3.78...x1073 }, {x -|©-0.713...-0.863... i },

{X—) ©-0.713... +0.863... 1 }, {X—> 0.738...-0.749... 1 }, {X—> v)0.738...+0.749... i }}

Abbildung 5: Zwei Verschiedene CAS 16sen die gleiche Gleichung.
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3. Mathematische Bildung fiir die digitale Welt

Der vorhergehende Abschnitt hat sich der digitalen Umsetzung von Mathematik
gewidmet gewidmet (Digitalisierung als Lernstoff) soweit dieser Lernstoft sich an
die Benutzung von digitalen Werkzeugen direkt anschlieBt. Dariiberhinausgehend
werden aber durch die Digitalisierung der Lebenswelt neue Fragen aufgeworfen
und es muss geklirt werden, welche davon in einem allgemeinbildenden Mathe-
matikunterricht sinnvollerweise behandelt werden. Unter den Kriterien fiir allge-
meinbildenden Unterricht, die Heymann (1996) aufgestellt hat, gibt es eine Reihe,
die direkt in Bezug dazu stehen: Lebensvorbereitung, Stiftung kultureller Kohé-
renz, Weltorientierung, kritische Vernunftgebrauch. Angesichts des Umstandes,
dass die Transformation der Gesellschaft und der Wissenschaften durch die Digi-
talisierung fast alle Lebensbereiche durchdringt, ist es eine Herausforderung fiir
alle Schulfdcher, angemessene Antworten zu finden. Es wére eine Verkiirzung,
wenn man dies allein dem Informatikunterricht zur Aufgabe machen wiirde. Die
Auswirkungen von Telearbeit etwa auf den Arbeitsmarkt oder die Auswirkungen
von Kryptowdhrungen auf die Wirtschaft sollten im Gesellschaftskundeunterricht
besprochen werden. Was aber bleibt fiir den Mathematikunterricht? Es ist offen-
sichtlich, dass es auf eine solche Frage keine einfache Antwort gibt. Rahwan et al.
(2019) haben eine Reihe von Herausforderungen der Bildung fiir die digitale Welt
formuliert, beispielsweise ein Verstdndnis dafiir, wie Algorithmen Informationen
in sozialen Netzwerken steuern, wie algorithmische Gerechtigkeit funktionieren
konnte, wie autonome Fahrzeuge und Waffen arbeiten, wie automatisierte Ge-
schiftsabldufe (zum Beispiel automatischer Aktienhandel) die Wirtschaftswelt be-
einflussen und so weiter. In all diesen Themengebieten stecken mathematische
Theorien drin, oft sogar als fundamentale Blocke. Kiinstliche Intelligenz sowohl
in der symbolischen Form als auch in der numerischen Form des maschinellen
Lernens ist im Wesentlichen Mathematik und vieles davon kann zumindest bis
zum Abitur einigermallen authentisch unterrichtet werden. Die geeignete Auswahl
stellt aber eine grofBe Herausforderung dar. Es scheint aber in jedem Falle sehr
wichtig, zumindest exemplarisch die Bedeutung von Mathematik in der modernen
Welt aufzuzeigen, weil es vielen Lernenden nicht klar ist, wie groB3 die Bedeutung
mathematischer Methoden in der Welt sind. Wéhrend der Informatikunterricht bei-
spielsweise Motivation der Lernenden daraus gewinnen kann, dass Fragen des Da-
tamining oder der kiinstlichen Intelligenz stéindig in den Nachrichten présent sind,
verzichtet der Mathematikunterricht bisher auf diese Motivationsquelle.

Eine zentrale Frage bei der unterrichtlichen Betrachtung solcher neuen und kom-
plexer Inhalte ist dabei, auf welcher Auflésungsstufe die Dinge verstanden werden
sollen. Rahwan et al. (2019) sehen diese Frage als zentral an und betrachten die
Biologie als eine Wissenschaft, die paradigmatisch darauf eine Antwort geben
kann: ein Verstindnis des Lebens muss die Phinomene auf unterschiedlichen Auf-
16sungsstufen verstehen, von der molekularen Ebene der Biochemie iiber die
Funktionen des einzelnen Organismus bis hin zu populationsbiologischen und
okologischen Fragen. In der Informatik liegen die Dinge dhnlich mit einer Spann-
breite von einzelnen Bits und ihrer Verarbeitung in Gattern und Flipflops, tiber
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einzelne sequentielle Algorithmen zu komplexen Netzwerken mit hochgradig pa-
rallelen Ablaufen. Eine dhnliche Breite kann man auch fiir die Mathematik fest-
halten: Man kann grundlegend verstehen, warum iiberhaupt Maschinen in der Lage
sind zu rechnen, wie Computer Zahlen représentieren, multiplizieren oder Loga-
rithmus berechnen, wie interaktive Verfahren Probleme der Analysis, etwa Diffe-
renzialgleichungen, 16sen oder wie neuronale Netze trainiert werden. Es ist dabei
keineswegs notwendig, jeweils die optimalen Verfahren zu verstehen. Schon bei
den Grundrechenarten gibt es optimale Varianten, die nicht mehr viel mit den Her-
angehensweisen der Schule zu tun haben. Die Art, wie in modernen Prozessoren
Multiplikationen gerechnet werden, ist eben nicht mehr analog zu den schriftlichen
Rechenverfahren, die in der Schule gelernt werden, trotzdem kann man auf Basis
des schulischen Multiplikationsverfahrens verstehen, dass Systeme aus einfachen
logischen Schaltungen Multiplikation berechnen konnen — und welche Grenzen
solche Systeme haben. Mit dem Wissen liber die Welt kann auflerdem das Wissen
tiber die mathematischen Konzepte wachsen, etwa in dem man algorithmische
Grundvorstellungen zu den Rechenoperationen autbaut (Weber, 2016).

Wesentliche politische Entscheidungen hingen heutzutage von den Vorhersagen
von Klimamodellen ab. Wie solche Modelle im Detail funktionieren, entzieht sich
der allgemeinbildenden Mathematik. Was aber an der Schule vermittelt werden
kann, ist die Einsicht darin, dass physikalische Systeme diskretisiert und durch
numerisches Rechnen vorhergesagt werden konnen. Unterschiede von Modellfeh-
lern und Approximationsfehlern konnen verstanden werden und so Grundlage fiir
die Kommunikation mit Experten bilden. Wesentlich elementarer sind viele Arte-
fakte der digitalen Lebenswelt: das Verhalten der automatischen Rechtschreibkor-
rektur 1dsst sich mit bedingten Wahrscheinlichkeiten besser verstehen, und damit
lassen sich viele Fehlbedienungen antizipieren und vermeiden. Die Grundlagen
von Bild- und Videoverarbeitung lassen sich mit Mathematik der Sekundarstufe I
verstehen und bieten damit gleichzeitig ein Betdtigungsfeld fiir elementares algeb-
raisches Arbeiten (https://myweb.rz.uni-augsburg.de/~oldenbre/webBV/in-
dex.html). Komplexe Systeme zu strukturieren ist mit mathematischen Methoden
moglich. Die Bedeutung des Systemischen Denkens wurde schon von Ossimitz
(2000) erkannt. Neue fachliche Entwicklungen, etwa die Theorie kausaler Zusam-
menhédnge (Pearl & Mackkenzie, 2018), lassen sich elementar darstellen und er-
klaren viele Phanomene der Welt. Das Gleiche gilt fiir viele der Methoden des
Datamining. Haufig sind es relativ einfache Algorithmen, die es ermoglichen, Si-
mulationen von Sachverhalten zu erstellen, um diese besser zu verstehen. Die no-
tigen Grundkenntnisse aus der Informatik sind {iberschaubar. Insbesondere kann
man sich einer Gertistdidaktik (Kutzler, 1995) bedienen: In Oldenburg (2011) wur-
den fiir eine Reihe von mathematischen Verfahren elementare Implementationen
gezeigt, die nur einen minimalen Satz von Kenntnissen einer Programmiersprache
voraussetzen. Zu den Algorithmen, die dort behandelt werden, gehoren beispiels-
weise multivariate numerische Optimierung. Durch solche einfachen Implementa-
tionen konnen Lernende Grundvorstellungen dazu aufbauen, was es bedeutet, ein
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Optimierungsproblem numerisch zu 16sen. Beispielsweise, dass man prinzipbe-
dingt nur eine Losung finden wird, auch wenn es mehrere Minima gibt, dass die
Losung ggfs. von einem Startwert abhdngt und dass die erhaltenen Werte nicht
exakt sind. Wenn dies alles verstanden ist, kann man problemlos einen schnelleren
Algorithmus als Blackbox benutzen und damit komplexe Fragestellungen bearbei-
ten. Da sich sehr viele naturwissenschaftliche Fragestellungen als Optimierungs-
problem formulieren lassen, erschlieBt sich damit ein riesiges Feld von Gegenstén-
den, die modelliert werden konnen.

Fragestellungen der diskreten Mathematik, etwa der kombinatorischen Optimie-
rung sind in der digitalen Lebenswelt von grofter Bedeutung und es wurden bereits
umfangreiche didaktische Arbeiten dazu gemacht (zum Beispiel HuBmann &
Lutz-Westphal, 2007).

4. Fazit

In den obigen Abschnitten wurde eine ganze Reihe von Themen angesprochen, die
1im Mathematikunterricht behandelt werden konnten, um sowohl den Blick auf die
Mathematik als auch auf ihre Bedeutung in der modernen digitalen Welt zu schar-
fen. Im Gegensatz zu einem Einsatz digitaler Medien, zur Verbesserung des Ler-
nens der traditionellen Inhalte der Mathematik, der ohnehin an Grenzen stoft,
wenn die in den mathematischen Medien versteckten Modellierungen an die Ober-
fliche treten, wiirde das also eine deutliche Neuausrichtung des Curriculums be-
deuten. Fiir eine solche Neuausrichtung ist es sinnvoll, wenn auch der Mathema-
tikunterricht sich an der Umsetzung der grofen Idee des Computational Thinking
(Wing, 2008) beteiligt, Ein Aspekt davon ist das algorithmische Denken, das durch
elementares Programmieren geschult wird. In dem Malle, in den Informatik als
Pflichtfach etabliert wird, steht dem Mathematikunterricht dies zur Verfiigung und
sollte entsprechend genutzt werden. Die Zeit, die fiir das Erlernen einer Program-
miersprache notig ist, wird dann also nicht mehr vom Mathematikunterricht auf-
zubringen sein, dies sollte eine Umgestaltung erleichtern. Des Weiteren kann man
dariiber nachdenken, ob man noch alle alten Inhalte im gleichen Umfang unter-
richten will. Conrad Wolfram (2020) hat darauf hingewiesen, dass viele der aktu-
ellen Bemithungen der Didaktik darauf hinauslaufen, mit Computerhilfe (also me-
dienpiddagogisch) den Kindern beizubringen, wie man Probleme geldst hat, als es
noch keine Computer als Hilfsmittel gab. Natiirlich sind historische Ausfliige von
Interesse. Ich denke man kann kaum iiberschétzen, wie viel man iiber menschliche
Erkenntnisprozesse und Argumentationsweisen lernen kann, wenn man sich klar-
macht, mit welch elementaren Argumenten Eratosthenes den Erdumfang bestimmt
hat. Aber wozu man jenseits der elementaren Begriffsbildung mit Zirkel und Li-
neal konstruieren sollte, ist in der modernen digitalen Welt unklar. Sicher ist, dass
man Lernende mit DGS nicht auf CAD Programme in der heutigen Berufswelt
vorbereitet, weil diese eine ganz andere Bedienlogik haben.
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Es ist klar, dass die hier angedachte Neujustierung der inhaltlichen Ausrichtung
des Mathematikunterrichts nur in einem langen Aushandlungsprozess aller Betei-
ligten gelingen kann. Es scheint mir aber wichtig, dies in Angriff zu nehmen, weil
der Mathematikunterricht sowohl gegeniiber Lernenden als auch gegeniiber Eltern
und Bildungspolitikern seine Existenzberechtigung legitimieren muss, in dem er
nachweist, dass er die Bildung vermittelt, die ndtig ist, um sich in unserer Welt
orientieren zu konnen.
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