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Vorwort 
Die fortschreitende Digitalisierung in nahezu allen Lebensbereichen tangiert in be-
sonderer Weise auch den Bildungsbereich. So hat Schule die Aufgabe auf das Le-
ben in einer digitalen Welt vorzubereiten (digitale Bildung als Lehr-Lerninhalt) 
und gleichzeitig eröffnen sich durch den Einsatz digitaler Medien auch neue Mög-
lichkeiten, mathematische Lernprozesse zu unterstützen. Das Thema Digitalisie-
rung hat dabei insbesondere auch durch die Corona-Pandemie noch einmal ganz 
erheblich an Bedeutung gewonnen. Es gilt mehr denn je, die Chancen digitaler 
Medien für mathematische Lehr-Lernprozesse zu identifizieren und gezielt zu nut-
zen. Gleichzeitig stellt die Digitalisierung jedoch alle beteiligten Akteure, insbe-
sondere Lehrer*innen und Schüler*innen vor große Herausforderungen. Um die-
sen Herausforderungen zu begegnen und die Chancen der Digitalisierung im Ma-
thematikunterricht bestmöglich zu realisieren, ist ein intensiver Austausch und 
eine konstruktive Zusammenarbeit zwischen allen beteiligten Akteuren wie z.B. 
Mathematikdidaktiker*innen, Lehrer*innen, Schüler*innen, Akteuren der Schul-
politik und Eltern notwendig. 
 
Wir freuen uns daher besonders Ihnen den Tagungsband der „Vernetzungstagung 
2022 - Mathematikunterricht mit digitalen Medien und Werkzeugen in Schule und 
Forschung“ präsentieren zu dürfen. Die Tagung, die von der Mathematikdidaktik 
der Universität Siegen vom 6.-7. Mai 2022 im Rahmen des Projekts Digi-
Math4Edu (www.digimath4edu.de) ausgerichtet wurde, war unsere erste Vernet-
zungsveranstaltung in Präsenz nach der Corona-Pandemie und zielte darauf ab, 
eine Plattform für den Austausch von Ideen und Erfahrungen zu bieten. Fokus der 
Tagung war dabei ganz im Sinne des Tagungstitels die Zusammenführung und 
Vernetzung verschiedener Akteure aus Forschung und Schulpraxis. Dabei wurden 
konkrete Ideen für den Mathematikunterricht sowie spannende übergeordnete Fra-
gestellungen diskutiert und verschiedene Perspektiven auf die Digitalisierung im 
Mathematikunterricht eingenommen. Das Programm umfasste neben Vorträgen, 
Workshops und Postervorstellungen auch zwei Podiumsdiskussionen sowie 
Hauptvorträge zu den Themen Digitalisierung als Lehrmethode vs. Lerngegen-
stand und SocialMedia im Mathematikunterricht. 
 
Die Breite der Beiträge in diesem Tagungsband zeigt, dass das Thema Digitalisie-
rung im Mathematikunterricht ein sehr aktives Forschungsfeld in Deutschland ist. 
Die verschiedenen Beiträge reichen von konkreten Unterrichtsideen über theoreti-
sche Beiträge bis hin zu empirischen Forschungsarbeiten. Ebenso lässt sich eine 
große Vielfalt von unterschiedlichen Medienarten identifizieren, die in den Beiträ-
gen betrachtet werden (z.B. 3D-Drucker, Lernvideos, Audio-Podcast, Apps). In 
seiner Gesamtheit bildet der Tagungsband somit eine hervorragende Basis für die 
weitere Entwicklung des Themas. 
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Wir möchten uns bei allen Teilnehmer*innen, Referent*innen sowie den Organi-
sator*innen für ihre wertvollen Beiträge und ihr Engagement bedanken. Ohne ihre 
Unterstützung wäre diese Tagung nicht möglich gewesen. Wir hoffen, dass dieser 
Tagungsband dazu beiträgt, den Austausch und die Zusammenarbeit auf diesem 
wichtigen Gebiet weiter zu fördern und freuen uns schon auf die nächste Vernet-
zungstagung. 
 
Wir wünschen viel Freude beim Lesen,  
Die Herausgeber des Tagungsbandes.  
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Reinhard Oldenburg 
Universität Augsburg, reinhard.oldenburg@math.uni-augsburg.de 

Digitalisierung und Digitalität – Lehrmethode oder 
Lerngegenstand? 
Digitalisierung kann im Mathematikunterricht methodisch und inhaltlich umge-
setzt werden. Der Beitrag plädiert dafür, neben methodischen Innovationen der 
Digitalisierung mittels digitaler Medien auch die inhaltlichen Impulse didaktisch 
zu bearbeiten. Zentral dafür ist ein Verständnis, wie Mathematik und ihre Anwen-
dungen durch die Digitalisierung verändert werden und welche gesellschaftlichen 
Auswirkungen das hat.  

1. Die Pole der Digitalisierung 
Es gibt zwei Pole der Digitalisierung des Mathematikunterrichts, nämlich einer-
seits den medienpädagogischen Pol, der vor allem den Einsatz von Medien zum 
Lernen zum Gegenstand hat, und zum anderen den (stoffdidaktischen) mathema-
tisch-informatischen Pol, der auf die Wechselwirkung der Digitalisierung mit ma-
thematischen Inhalten fokussiert. Wie das Bild der Pole suggerieren soll, gibt es 
dazwischen ein Kontinuum von Mischformen und Überlagerungen. These des Bei-
trags ist, dass der mathematisch-informative Pol noch deutliches Entwicklungspo-
tenzial hat. Das Bild der Pole kann unterschied Bewusst machen, aber es überdeckt 
möglicherweise, dass beide Pole einander bedingen, erst wenn beide angemessen 
bedacht sind, kann der Bildungsauftrag umfassend erfüllt werden. Insbesondere 
soll nicht gesagt werden, dass der medienpädagogische Pol unwichtig ist – im Ge-
genteil, gerade die Pandemiesituation hat gezeigt, wie wichtig digitale Methoden 
der Kommunikation sind, und dass digitale Lernformen keineswegs nur ein Not-
behelf sind, sondern interessante Perspektiven aufzeigen. Beispielsweise können 
Erklärvideos eine Bereicherung des Unterrichts sein, insbesondere wenn sie medi-
enpädagogischen und mathematikdidaktischen Qualitätskriterien genügen und der 
Versuchung widerstehen, Mathematik als Fertigprodukt zu verkaufen, das nur in 
Form fertiger Wissensbestandteile bei den Lernenden abgeladen wird, sondern 
Möglichkeiten der aktiven Erarbeitung anregen. Dieses weite Feld soll im vorlie-
genden Beitrag aber nicht diskutiert werden, sondern es soll um den zweiten Pol 
gehen. Dazu folgt zunächst eine Begriffsklärung, bevor einige wichtige Aspekte 
behandelt werden.  

1.1 Medien und Werkzeuge: Eine Begriffsklärung 
Es ist üblich geworden, den Medienbegriff sehr weit zu verwenden. Beispielsweise 
subsumieren auch die Bildungsstandards der KMK (2022) digitale Werkzeuge wie 
Tabellenkalkulation oder Geometriesoftware unter dem Oberbegriff der digitalen 
Medien. Die Tendenz, den Medienbegriff sehr weit zu fassen, wird auch in der 
Medienwissenschaft kritisch gesehen (Hickethier, 2010, Seite 19) und erscheint 
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mir insbesondere für die Mathematikdidaktik nur angemessen, wenn man auch ei-
nen engeren Medienbegriff in Abgrenzung zu den Werkzeugen verwendet. In die-
sem Beitrag wird der Begriff Medien generell als Medien im engeren Sinne ver-
wendet, nämlich solche Medien, die primär dem Transport von Information die-
nen, wobei das Medium selbst dann von hoher Qualität ist, wenn es die Informa-
tion möglichst wenig verändert. Im Gegensatz dazu wird von Werkzeugen gespro-
chen, wenn von mathematischen Medien im weiteren Sinne die Rede ist, deren 
Qualität sich gerade darin zeigt, dass sie Informationen in einem bestimmten ge-
wünschten Sinn verändern. Übertragen auf die Musik wäre eine CD oder eine 
MP3-Datei ein musikalisches Medium im engeren Sinne, ein Klavier dagegen ein 
musikalisches Werkzeug. Im üblichen weiteren Sinne ist auch ein Klavier ein mu-
sikalisches Medium. Abbildung 1 fasst die charakteristischen Unterschiede dieser 
beiden Arten von Artefakten graphisch zusammen, nämlich den Medien im enge-
ren Sinne oben und Medien im weiteren, Werkzeuge einschließenden Sinne der 
KMK, unten. Mathematische Objekte werden in den digitalen Artefakten in einer 
nicht menschenlesbaren Form repräsentiert. Deswegen sind für die Kommunika-
tion zwischen Mensch und Maschine pro-menschliche (also für Menschen lesbare) 
mediale Darstellungsformen notwendig. Charakteristisch für ein digitales Mathe-
matikwerkzeug ist, dass die im Computer repräsentierten mathematischen Objekte 
auch transformiert werden können. Im Grunde können alle von Kieran (2004) für 
die Algebra beschriebenen Prozesse auch digital umgesetzt werden. 

 
Abbildung 1: Graphische Darstellung der Prozesse, wenn ein Individuum mit einem Medium im 
engen Sinne mathematisch arbeitet (oben) und wenn es mit einem digitalen Werkzeug mathema-
tisch arbeitet. 
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Der Grund, diese Medienarten sorgfältig auseinander zu halten, liegt in der Beson-
derheit der Mathematik, dass die digitalen Artefakte viel Mathematik in sich tragen 
und das Potenzial haben, Mathematik zu verändern (siehe z.B. Elschenbroich, 
Gawlick & Henn, 2001). Deswegen gibt es im Bereich der mathematischen Werk-
zeuge viel mehr didaktische Fragen zu erörtern und zu erforschen als im Bereich 
der allgemeinen Medien, über deren Einsatz viel mehr aus der allgemeinen Medi-
enforschung und Medienpädagogik entnommen werden kann. 

1.2 Die Pole im Kontext der didaktischen Diskussion 
In diesem Abschnitt werden die oben kurz charakterisierten Pole der Digitalisie-
rung eingebettet in die allgemeine didaktische Theorie der Digitalisierung. Eine 
einflussreiche pädagogische Klassifikation der Nutzung digitaler Artefakte ist das 
SAMR-Modell von Puentedura (siehe z. B. Hamilton et al., 2016), das die Stufen 
Substitution, Augmentation, Modification und Redefinition postuliert. Diese Stu-
fen können bezogen auf den Mathematikunterricht sowohl methodisch als auch 
inhaltlich gedacht werden. Tabelle 1 gibt ein Beispiel anhand der Problemstellung, 
zu einer Menge von Datenpunkten eine Regressionsgeraden zu finden. Das Bei-
spiel illustriert u.a., dass eine inhaltliche Modifikation es ermöglicht von reinen 
Rechenformeln wegzukommen und hin zu konzeptuell relevanten Formeln. 
 
Stufe Methodisch Inhaltlich/Informatisch 

S Wertetabelle in Excel statt auf Pa-
pier 

Werte in Datenstrukturen wie Listen 

A Datenpunkte erscheinen automa-
tisch in Diagramm, Fehler einzeich-
nen 

Fehlerfunktion wird automatisch be-
rechnet; Explorative Ideen werden um-
gesetzt5 

M Regressionsgerade wird automa-
tisch gezeichnet, Koeffizienten aus 
Formel automatisch berechnet 

Formeln für Koeffizienten werden er-
setzt durch  
min
𝑎𝑎,𝑏𝑏

∑ �𝑦𝑦𝑖𝑖 − (𝑎𝑎 + 𝑏𝑏 ⋅ 𝑥𝑥𝑖𝑖)�
2𝑛𝑛

𝑖𝑖=1   
und numerische Optimierung 

R Experimentelle Suche nach einem 
weiteren Datenpunkt, der das Ergeb-
nis wesentlich ändert 

Nicht lineare Regression ergibt sich 
einfach durch Verwendung eines ande-
ren Modells 

Tabelle 1: Die SAMR-Stufen medial/methodisch und inhaltlich gedeutet am Beispiel des Erstel-
lens einer Regressionsgeraden 

Gut einordnen lassen sich die beiden Pole auch in die Konzeption von Heinrich 
Winter (1992) zu den didaktischen Funktionen des Sachrechnens. Unter dem 
Schlagwort „Sachrechnen als Lernprinzip“ beschreibt er, dass man die Sache als 

 
5 Neben der naheliegenden Idee, Abweichungen zu minimieren, lassen sich auch alternative Ideen algorith-
misch leicht umsetzen, etwa jeweils Paare von Datenpunkten zu betrachten und den Mittelwert der durch 
je ein solches Paar definierten Steigung zu berechnen. 



158 
 

Mittel nutzt, um Mathematik zu lernen. Dies ist die Sichtweise der Medienpäda-
gogik: die Artefakte der digitalen Welt werden genutzt, um (traditionelle) Mathe-
matik zu vermitteln. Darüber hinaus hat Winter aber auch „Sachrechnen als Lern-
stoff“ betrachtet. In Übertragung dieser Perspektive geht es also darum, etwas über 
die digitalen Artefakte zu lernen, darüber welche Rolle Mathematik darin spielt 
und wie diese auf die Mathematik verändernd einwirken. Eine ähnliche Gegen-
überstellung findet sich bei Hischer (2002), der einerseits von Mediendidaktik 
spricht (also der Nutzung als Lehrmittel), andererseits von Medienkunde, in der es 
darum geht, etwas über die Medien und Werkzeuge, ihre Funktions- und Wir-
kungsweise zu erlernen. Offensichtlich kann man diese Medienkunde sehr unter-
schiedlich weit denken: minimal bedeutet es, dass man die Bedienfähigkeiten er-
wirbt, um mit digitalen Artefakten etwas zu machen und die Resultate richtig zu 
interpretieren. Vertieft interpretiert bedeutet es, dass man die Arbeitsweise ver-
steht, das Potenzial einschätzen kann, und gegebenenfalls eigene Veränderungen 
vornehmen kann. 
Sowohl Winter als auch Hischer ergänzen die bipolare Sicht um eine Synthese, bei 
Winter heißt sie „Sachrechnen als Lernziel“, bei Hischer „Medienerziehung“. In 
beiden Fällen geht es um das, was generelles Ziel der Kompetenzorientierung ist, 
nämlich die Dinge kritisch und kompetent einsetzen, bewerten und gestalten zu 
können.  

2. Computer modellieren Mathematik 
Die Idee einer reinen medienpädagogischen Nutzung von digitalen Fakten im Ma-
thematikunterricht kommt recht schnell an ihre Grenzen: wäre ein dynamisches 
Geometrieprogramm etwa allein ein neutrales Medium, das den Umgang mit geo-
metrischen Objekten erleichtert und flexibler macht als das Medium Papier, 
müsste man keinerlei neue Konzepte lernen. Dem ist aber nicht so, es wurde schon 
früh darauf hingewiesen (Elschenbroich et al., 2001), dass sich die Geometrie der 
dynamischen Geometrieprogramme von der euklidischen Geometrie unterschei-
det. Auf elementarer Benutzerebene bedeutet das, dass zwischen Basispunkten, 
halb-freien Punkten und abhängigen Punkten unterschieden werden muss, und 
dass ein optisch sichtbarer Schnittpunkt noch nicht ein Schnittpunkt im Sinne des 
DGS ist. Dies hat unterrichtspraktische Konsequenzen, wie schon die Arbeiten von 
Hölz (1994, 1995) gezeigt haben. Jenseits der elementaren Benutzerschulung sind 
gegebenenfalls Einsichten hilfreich, die erklären, warum der Zugmodus sich 
manchmal unstetig verhält, also Punkte springen können. Dass es solche Unter-
schiede zwischen der Mathematik und der im Computer repräsentierten Mathema-
tik gibt, ist kein Zufall, sondern prinzipbedingt: mathematische Objekte müssen 
mit Mitteln der Informatik modelliert werden, um im Computer aktiv werden zu 
können. Abbildung 2 illustriert dies anhand eines Modellbildungskreislaufs, der 
sich auf die Modellierung geometrischer Objekte bezieht. Beispiele der Modellbe-
ziehung werden weiter unten ausführlich diskutiert. Es lohnt sich aber an dieser 
Stelle zu bemerken, dass auch die axiomatisch charakterisierten mathematischen 
Objekte oft als Ergebnis einer Modellierung von intuitiven Konzepten verstanden 



159 
 

werden können. Beispielweise gibt es verschiedene mathematische Modellierun-
gen des intuitiven Begriffs der Geraden.  
Eines der ältesten Werke, das den Gesichtspunkt betont, dass mathematische Kon-
zepte durch den Computer modelliert werden, ist das Buch von Bundy (1986), in 
dem insbesondere Fragen der Termumformung und das Lösen von Gleichungen 
betrachtet werden. Die Sichtweise ist aber weit darüberhinausgehend tragend und 
relevant. Jedes mathematische Objekt, das in mathematischer Werkzeugsoftware 
repräsentiert und manipuliert werden soll, muss mit den Mitteln der Informatik 
modelliert werden. Schon für die natürlichen Zahlen ist diese Repräsentation kei-
neswegs trivial. Die Modellierer*in (also die Programmierer*in der mathemati-
schen Werkzeugsoftware) muss sich überlegen, ob eine Modellierung mit einer 
festen Anzahl von Bits ausreicht (was impliziert, dass es eine größte repräsentier-
bare natürliche Zahl gibt), oder ob eine Modellierung beliebig großer natürlicher 
Zahlen notwendig ist. Noch gravierender ist die Frage, wie reelle Zahlen model-
liert werden sollen: Da die Menge der reellen Zahlen überabzählbar ist, muss man 
ohnehin immer mit einem speziellen Modell arbeiten, die meisten einfachen Ma-
thematik- Programme ersetzen die reellen Zahlen durch eine endliche (!) Menge 
von Fließpunktzahlen. In aller Regel stören die damit einhergehenden Modellie-
rungsfehler (und die durch sie implizierten Rundungsfehler) nicht. Man kann aber 
relativ leicht Beispiele konstruieren, bei denen die Artefakte der Modellierung 
doch zum Tragen kommen. In Oldenburg (2022) habe ich dazu die Rekursions-
gleichung 𝑥𝑥1 ≔ 0.2; 𝑥𝑥𝑛𝑛+1 ≔ 11𝑥𝑥𝑛𝑛 − 2 genutzt. Die Zahl 0,2 ist ein Fixpunkt die-
ser Folge. In Excel umgesetzt zeigen sich aber schon etwa nach 20 Berechnungs-
schritten gravierende Abweichungen: der Fehler wächst in jedem Rechenschritt 
etwa um den Faktor zehn, so dass schon 𝑥𝑥20 > 10000. Dies ist eine Folge davon, 
dass die Zahlen im Dualsystem modelliert sind und 0.2 = 1

5
 im Dualsystem eine 

nicht abbrechende, periodische Darstellung besitzt, die notwendig gerundet wer-
den muss. Tabellenkalkulationsprogramme wie GNU Gnumeric oder Apple Num-
bers modellieren Fließpunktzahlen als Dezimalzahlen, sind also von diesem Run-
dungsfehler nicht betroffen, aber wie man aus jeder Didaktik der Arithmetik weiß, 
sind auch nicht alle rationalen Zahlen im Dezimalsystem mit endlich vielen Stellen 
exakt darstellbar, d.h. diese Programme zeigen bei anderen Beispielen entspre-
chende Fehlervergrößerungen. Dies zeigt, dass die Modellierung von rationalen 
Zahlen durch Brüche große Vorteile hat: sie ermöglicht das effektive und exakte 
Rechnen mit rationalen Zahlen und deswegen wird dieser Weg von allen Compu-
teralgebrasystemen gewählt. Das ist eine technologische Motivation der Bruch-
rechnung, die Lernenden in der Schule in der Regel verborgen bleibt. 
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Abbildung 2: Ein Modell-Bildungskreislauf für die Modellierung von Mathematik im Computer-
system. 
 

Die Darstellung von Funktionsgrafen erzeugt wegen der notwendigen Diskretisie-
rung (Pixelgrafik) und der Berechnung der Funktionswerte an (nur) endlich vielen 
Stützstellen notwendig ebenfalls Artefakte, die bereits von Hischer (2002) aus-
führlich untersucht worden sind. Weniger ausführlich wurde bisher in der Didaktik 
diskutiert, dass auch die Darstellung von Termen in jedem Computeralgebrasys-
tem nicht triviale Modellierungsentscheidungen erfordert (dies betrifft z.B. die 
Frage, ob Terme schulnah als Binärbäume gespeichert werden (z.B. TI-CAS-
Rechner) oder effizienter als allgemeine Bäume (z.B. GeogebraCAS) oder gar 
Graphen, die keine Bäume sind (z.B. Maple)) und je nach Modellierung das Ver-
halten der Systeme unterschiedlich ist. Um kompetent mit einem Computeral-
gebrasystem umgehen zu können, braucht man also auch etwas Wissen über Fra-
gen der Implementierung. Exemplarisch sei das erläutert an der Termrepräsenta-
tion im CAS von Geogebra. Zu den grundlegenden Operationen mit Termen ge-
hört das Substituieren. Das CAS in Geogebra besitzt dazu die Funktion Er-
setze(term,teilterm,neu), mit der ein Teilterm durch einen anderen 
Term ersetzt werden kann. Abbildung 3 (links) zeigt zwei Anwendungen des Be-
fehls. Schon die erste Anwendung oben mag Lernende verwirren, die als Antwort 
Systems 𝑥𝑥2 + 𝑢𝑢 + 𝑧𝑧2 erwartet hätten. Computeralgebrasysteme ordnen in der Re-
gel aber Summanden und Faktoren nach bestimmten Regeln (welche, das variiert 
von System zu System und kann bei einigen Systemen auch verändert werden – in 
der algebraischen Geometrie ist die Untersuchung von Termordnungen sogar Ge-
genstand der Mathematik). Noch gravierender ist, dass die Terme intern anders 
repräsentiert werden als das der schulische Umgang mit Termen nahelegt: fast alle 
Computeralgebrasysteme eliminieren Subtraktion und Division und drücken diese 
aus durch die Beziehungen 𝑎𝑎 − 𝑏𝑏 = 𝑎𝑎 + (−1) ⋅ 𝑏𝑏, 𝑎𝑎

𝑏𝑏
= 𝑎𝑎 ⋅ 𝑏𝑏−1. Des Weiteren wird 

intern nicht mit binären Operatoren gearbeitet, sondern ein Operator wie die Ad-
dition kann beliebig viele Operanten haben. Dies erleichtert und beschleunigt ge-
rade auch im Zusammenspiel mit der eben angesprochenen Termordnung die au-
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tomatische Termumformung ungemein. Eine Folge davon ist, dass im unteren Bei-
spiel von Abbildung 3 (links) der Ersetze-Befehl keinerlei Wirkung zeigt. Das liegt 
daran, dass der Term 𝑥𝑥2 + 𝑦𝑦2 kein echter Teilterm von 𝑥𝑥2 + 𝑦𝑦2 + 𝑧𝑧2 ist. Im CAS 
Mathematica (Wolfram Research, 2022) kann die Termstruktur leicht als Baum 
dargestellt werden (Abb. 3 recht) und das zeigt, dass 𝑥𝑥2 + 𝑦𝑦2 kein Teilbaum ist. 

 
Abbildung 3: Der Ersetze-Befehl in Geogebra (links) und die Termrepräsentation in Mathematica. 

 
Die interne Modellierung von Termen hat also Auswirkungen, die an der Benut-
zeroberfläche spürbar sind. Dieses Wissen kann im Unterricht nützlich sein, wenn 
Lernende vom Verhalten eines Computeralgebraystems überrascht sind, es kann 
aber auch ganz grundlegend genutzt werden, um über Terme und ihre Struktur 
nachzudenken. Fundamental für Terme ist ihre rekursive Struktur, die beliebiges 
Substituieren ermöglicht. Malle (1993) empfiehlt die Strukturierung von Termen 
zu üben, etwa indem Teilterme eingezeichnet werden wie in Abbildung 4. Die 
gleiche Einsicht in die Strukturierung und noch darüber hinaus die Erkenntnis, dass 
es verschiedene Termstrukturen gibt, wird durch digitale Werkzeuge nahegelegt. 
Abbildung 4 zeigt dazu rechts einen im Programmiersystem Scratch aufgebauten 
Term.  

    
Abbildung 4: Termstrukturierung nach Malle (1993, S. 255) und in Scratch 
(https://scratch.mit.edu/) 
 

Zu den Eigenschaften von Modellen im Allgemeinen (Stachowiak, 1973) gehört 
nicht nur, dass sie ein Abbildungs- und Verkürzungsmerkmal besitzen, sondern 
auch ihre pragmatische Dimension: je nach Ziel des Modells sind andere Model-
lierungsentscheidungen sinnvoll. Darüber nachzudenken, warum welche Entschei-
dungen von den Entwicklern von Programmen getroffen worden sind, kann auch 
helfen, die mathematisch motivierten Objekte genauer zu verstehen. Zur Illustra-
tion sollen Gleichungen betrachtet werden: Was ist die angemessene Antwort ei-
nes CAS, wenn man die Gleichung 1=1 eingibt? GeogebraCAS reagiert gar nicht, 

https://scratch.mit.edu/
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Mathematica antwortet True und Maxima gibt 1=1 unverändert zurück (es gibt 
aber in Maxima noch die Funktion is, und is(1=1) liefert true). Noch diver-
ser ist die Antwort auf die Eingabe solve(1=1): Maxima liefert all, Mathe-
matica {{}} und Geogebra {x=x}. Es soll an dieser Stelle nicht diskutiert wer-
den, was die jeweiligen Vor- und Nachteile dieser Designentscheidungen sind, es 
soll aber vor Augen geführt werden, dass es nicht trivial ist, was das jeweils beste 
Modell ist, und dass es sehr viele Modellierungsentscheidungen gibt. Ein Unter-
richt, der die Existenz von Computeralgebrasystemen nicht ignoriert, sollte meines 
Erachtens auch solche Reflektionsanlässe nutzen, um die digitalisierte Mathematik 
aus der Metaperspektive zu betrachten. Dies kann dazu beitragen, die Ergebnisse 
der Maschinen mit der nötigen kritischen Distanz zu bewerten. Ob es notwendig 
ist, ein mentales Modell der Arbeitsweise des CAS zu entwickeln, mit dessen Hilfe 
man solche Ergebnisse vorhersagen kann, ist eine offene didaktische Frage. Nicht 
auf Schulniveau, aber für die Lehramtsausbildung durchaus interessant mag die 
Reflektion der unterschiedlichen Antwortstrukturen von Geogebra und Mathema-
tica bei der Lösung der gleichen polynomiellen Gleichung sein, die in Abbildung 
5 dargestellt wird. Die Lösungen in Mathematica sind algebraische Zahlen, die 
zum Zwecke der Lesbarkeit durch approximative komplexe Zahlen dargestellt 
werden, man kann sich aber bei Bedarf auch die symbolische Darstellung anzeigen 
lassen und mit dieser kann exakt gerechnet werden. Das Beispiel zeigt erneut, dass 
es einen Unterschied zwischen Zahlen und Zahlrepräsentationen gibt, und dass 
diese Unterscheidung nicht nur philosophisch spitzfindig ist, sondern Auswirkun-
gen auf die Arbeit mit mathematischer Werkzeugsoftware hat. 
Es könnten jetzt noch ganz viele weitere Beispiele angeführt werden, wie Mathe-
matik in Computern modelliert wird und welche Auswirkung das hat. An dieser 
Stelle sollen die gezeigten Beispiele aber ausreichen, um zu begründen, dass für 
eine kompetente Benutzung der Werkzeuge (nicht immer aber zumindest gelegent-
lich) ein vertieftes Verständnis dieser Modelle hilfreich sein kann. Des weiteren 
können diese Modellierungen Reflektionsanlass für das Erlernen der Mathematik 
sein. Jedenfalls scheint es so, dass hier mehr didaktische Herausforderungen liegen 
als nur eine reine Benutzerschulung: Computermathematik ist etwas anderes als 
Mathematik und die Beziehungen dazwischen sollten verstanden werden, um die 
Resultate kompetent interpretieren zu können. Digitalisierung als Lernstoff sollte 
also mehr sein als elementare Benutzerschulung. 

 
Abbildung 5: Zwei Verschiedene CAS lösen die gleiche Gleichung. 
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3. Mathematische Bildung für die digitale Welt 
Der vorhergehende Abschnitt hat sich der digitalen Umsetzung von Mathematik 
gewidmet gewidmet (Digitalisierung als Lernstoff) soweit dieser Lernstoff sich an 
die Benutzung von digitalen Werkzeugen direkt anschließt. Darüberhinausgehend 
werden aber durch die Digitalisierung der Lebenswelt neue Fragen aufgeworfen 
und es muss geklärt werden, welche davon in einem allgemeinbildenden Mathe-
matikunterricht sinnvollerweise behandelt werden. Unter den Kriterien für allge-
meinbildenden Unterricht, die Heymann (1996) aufgestellt hat, gibt es eine Reihe, 
die direkt in Bezug dazu stehen: Lebensvorbereitung, Stiftung kultureller Kohä-
renz, Weltorientierung, kritische Vernunftgebrauch. Angesichts des Umstandes, 
dass die Transformation der Gesellschaft und der Wissenschaften durch die Digi-
talisierung fast alle Lebensbereiche durchdringt, ist es eine Herausforderung für 
alle Schulfächer, angemessene Antworten zu finden. Es wäre eine Verkürzung, 
wenn man dies allein dem Informatikunterricht zur Aufgabe machen würde. Die 
Auswirkungen von Telearbeit etwa auf den Arbeitsmarkt oder die Auswirkungen 
von Kryptowährungen auf die Wirtschaft sollten im Gesellschaftskundeunterricht 
besprochen werden. Was aber bleibt für den Mathematikunterricht? Es ist offen-
sichtlich, dass es auf eine solche Frage keine einfache Antwort gibt. Rahwan et al. 
(2019) haben eine Reihe von Herausforderungen der Bildung für die digitale Welt 
formuliert, beispielsweise ein Verständnis dafür, wie Algorithmen Informationen 
in sozialen Netzwerken steuern, wie algorithmische Gerechtigkeit funktionieren 
könnte, wie autonome Fahrzeuge und Waffen arbeiten, wie automatisierte Ge-
schäftsabläufe (zum Beispiel automatischer Aktienhandel) die Wirtschaftswelt be-
einflussen und so weiter. In all diesen Themengebieten stecken mathematische 
Theorien drin, oft sogar als fundamentale Blöcke. Künstliche Intelligenz sowohl 
in der symbolischen Form als auch in der numerischen Form des maschinellen 
Lernens ist im Wesentlichen Mathematik und vieles davon kann zumindest bis 
zum Abitur einigermaßen authentisch unterrichtet werden. Die geeignete Auswahl 
stellt aber eine große Herausforderung dar. Es scheint aber in jedem Falle sehr 
wichtig, zumindest exemplarisch die Bedeutung von Mathematik in der modernen 
Welt aufzuzeigen, weil es vielen Lernenden nicht klar ist, wie groß die Bedeutung 
mathematischer Methoden in der Welt sind. Während der Informatikunterricht bei-
spielsweise Motivation der Lernenden daraus gewinnen kann, dass Fragen des Da-
tamining oder der künstlichen Intelligenz ständig in den Nachrichten präsent sind, 
verzichtet der Mathematikunterricht bisher auf diese Motivationsquelle.  
Eine zentrale Frage bei der unterrichtlichen Betrachtung solcher neuen und kom-
plexer Inhalte ist dabei, auf welcher Auflösungsstufe die Dinge verstanden werden 
sollen. Rahwan et al. (2019) sehen diese Frage als zentral an und betrachten die 
Biologie als eine Wissenschaft, die paradigmatisch darauf eine Antwort geben 
kann: ein Verständnis des Lebens muss die Phänomene auf unterschiedlichen Auf-
lösungsstufen verstehen, von der molekularen Ebene der Biochemie über die 
Funktionen des einzelnen Organismus bis hin zu populationsbiologischen und 
ökologischen Fragen. In der Informatik liegen die Dinge ähnlich mit einer Spann-
breite von einzelnen Bits und ihrer Verarbeitung in Gattern und Flipflops, über 
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einzelne sequentielle Algorithmen zu komplexen Netzwerken mit hochgradig pa-
rallelen Abläufen. Eine ähnliche Breite kann man auch für die Mathematik fest-
halten: Man kann grundlegend verstehen, warum überhaupt Maschinen in der Lage 
sind zu rechnen, wie Computer Zahlen repräsentieren, multiplizieren oder Loga-
rithmus berechnen, wie interaktive Verfahren Probleme der Analysis, etwa Diffe-
renzialgleichungen, lösen oder wie neuronale Netze trainiert werden. Es ist dabei 
keineswegs notwendig, jeweils die optimalen Verfahren zu verstehen. Schon bei 
den Grundrechenarten gibt es optimale Varianten, die nicht mehr viel mit den Her-
angehensweisen der Schule zu tun haben. Die Art, wie in modernen Prozessoren 
Multiplikationen gerechnet werden, ist eben nicht mehr analog zu den schriftlichen 
Rechenverfahren, die in der Schule gelernt werden, trotzdem kann man auf Basis 
des schulischen Multiplikationsverfahrens verstehen, dass Systeme aus einfachen 
logischen Schaltungen Multiplikation berechnen können – und welche Grenzen 
solche Systeme haben. Mit dem Wissen über die Welt kann außerdem das Wissen 
über die mathematischen Konzepte wachsen, etwa in dem man algorithmische 
Grundvorstellungen zu den Rechenoperationen aufbaut (Weber, 2016).  
Wesentliche politische Entscheidungen hängen heutzutage von den Vorhersagen 
von Klimamodellen ab. Wie solche Modelle im Detail funktionieren, entzieht sich 
der allgemeinbildenden Mathematik. Was aber an der Schule vermittelt werden 
kann, ist die Einsicht darin, dass physikalische Systeme diskretisiert und durch 
numerisches Rechnen vorhergesagt werden können. Unterschiede von Modellfeh-
lern und Approximationsfehlern können verstanden werden und so Grundlage für 
die Kommunikation mit Experten bilden. Wesentlich elementarer sind viele Arte-
fakte der digitalen Lebenswelt: das Verhalten der automatischen Rechtschreibkor-
rektur lässt sich mit bedingten Wahrscheinlichkeiten besser verstehen, und damit 
lassen sich viele Fehlbedienungen antizipieren und vermeiden. Die Grundlagen 
von Bild- und Videoverarbeitung lassen sich mit Mathematik der Sekundarstufe I 
verstehen und bieten damit gleichzeitig ein Betätigungsfeld für elementares algeb-
raisches Arbeiten (https://myweb.rz.uni-augsburg.de/~oldenbre/webBV/in-
dex.html). Komplexe Systeme zu strukturieren ist mit mathematischen Methoden 
möglich. Die Bedeutung des Systemischen Denkens wurde schon von Ossimitz 
(2000) erkannt. Neue fachliche Entwicklungen, etwa die Theorie kausaler Zusam-
menhänge (Pearl & Mackkenzie, 2018), lassen sich elementar darstellen und er-
klären viele Phänomene der Welt. Das Gleiche gilt für viele der Methoden des 
Datamining. Häufig sind es relativ einfache Algorithmen, die es ermöglichen, Si-
mulationen von Sachverhalten zu erstellen, um diese besser zu verstehen. Die nö-
tigen Grundkenntnisse aus der Informatik sind überschaubar. Insbesondere kann 
man sich einer Gerüstdidaktik (Kutzler, 1995) bedienen: In Oldenburg (2011) wur-
den für eine Reihe von mathematischen Verfahren elementare Implementationen 
gezeigt, die nur einen minimalen Satz von Kenntnissen einer Programmiersprache 
voraussetzen. Zu den Algorithmen, die dort behandelt werden, gehören beispiels-
weise multivariate numerische Optimierung. Durch solche einfachen Implementa-
tionen können Lernende Grundvorstellungen dazu aufbauen, was es bedeutet, ein 

https://myweb.rz.uni-augsburg.de/%7Eoldenbre/webBV/index.html
https://myweb.rz.uni-augsburg.de/%7Eoldenbre/webBV/index.html
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Optimierungsproblem numerisch zu lösen. Beispielsweise, dass man prinzipbe-
dingt nur eine Lösung finden wird, auch wenn es mehrere Minima gibt, dass die 
Lösung ggfs. von einem Startwert abhängt und dass die erhaltenen Werte nicht 
exakt sind. Wenn dies alles verstanden ist, kann man problemlos einen schnelleren 
Algorithmus als Blackbox benutzen und damit komplexe Fragestellungen bearbei-
ten. Da sich sehr viele naturwissenschaftliche Fragestellungen als Optimierungs-
problem formulieren lassen, erschließt sich damit ein riesiges Feld von Gegenstän-
den, die modelliert werden können. 
Fragestellungen der diskreten Mathematik, etwa der kombinatorischen Optimie-
rung sind in der digitalen Lebenswelt von größter Bedeutung und es wurden bereits 
umfangreiche didaktische Arbeiten dazu gemacht (zum Beispiel Hußmann & 
Lutz-Westphal, 2007). 

4. Fazit 
In den obigen Abschnitten wurde eine ganze Reihe von Themen angesprochen, die 
im Mathematikunterricht behandelt werden könnten, um sowohl den Blick auf die 
Mathematik als auch auf ihre Bedeutung in der modernen digitalen Welt zu schär-
fen. Im Gegensatz zu einem Einsatz digitaler Medien, zur Verbesserung des Ler-
nens der traditionellen Inhalte der Mathematik, der ohnehin an Grenzen stößt, 
wenn die in den mathematischen Medien versteckten Modellierungen an die Ober-
fläche treten, würde das also eine deutliche Neuausrichtung des Curriculums be-
deuten. Für eine solche Neuausrichtung ist es sinnvoll, wenn auch der Mathema-
tikunterricht sich an der Umsetzung der großen Idee des Computational Thinking 
(Wing, 2008) beteiligt, Ein Aspekt davon ist das algorithmische Denken, das durch 
elementares Programmieren geschult wird. In dem Maße, in den Informatik als 
Pflichtfach etabliert wird, steht dem Mathematikunterricht dies zur Verfügung und 
sollte entsprechend genutzt werden. Die Zeit, die für das Erlernen einer Program-
miersprache nötig ist, wird dann also nicht mehr vom Mathematikunterricht auf-
zubringen sein, dies sollte eine Umgestaltung erleichtern. Des Weiteren kann man 
darüber nachdenken, ob man noch alle alten Inhalte im gleichen Umfang unter-
richten will. Conrad Wolfram (2020) hat darauf hingewiesen, dass viele der aktu-
ellen Bemühungen der Didaktik darauf hinauslaufen, mit Computerhilfe (also me-
dienpädagogisch) den Kindern beizubringen, wie man Probleme gelöst hat, als es 
noch keine Computer als Hilfsmittel gab. Natürlich sind historische Ausflüge von 
Interesse. Ich denke man kann kaum überschätzen, wie viel man über menschliche 
Erkenntnisprozesse und Argumentationsweisen lernen kann, wenn man sich klar-
macht, mit welch elementaren Argumenten Eratosthenes den Erdumfang bestimmt 
hat. Aber wozu man jenseits der elementaren Begriffsbildung mit Zirkel und Li-
neal konstruieren sollte, ist in der modernen digitalen Welt unklar. Sicher ist, dass 
man Lernende mit DGS nicht auf CAD Programme in der heutigen Berufswelt 
vorbereitet, weil diese eine ganz andere Bedienlogik haben.  
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Es ist klar, dass die hier angedachte Neujustierung der inhaltlichen Ausrichtung 
des Mathematikunterrichts nur in einem langen Aushandlungsprozess aller Betei-
ligten gelingen kann. Es scheint mir aber wichtig, dies in Angriff zu nehmen, weil 
der Mathematikunterricht sowohl gegenüber Lernenden als auch gegenüber Eltern 
und Bildungspolitikern seine Existenzberechtigung legitimieren muss, in dem er 
nachweist, dass er die Bildung vermittelt, die nötig ist, um sich in unserer Welt 
orientieren zu können.  
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