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1. Introduction

Solid-state physics rests upon the close link and fruitful interplay between theory
and experiment. One task of experimentalists is finding crystalline materials that
realize theoretical models, for example models of interacting spins. To this end,
insulating magnets are studied in this experimental work.
The dissertation presents the complete way from the synthesis over the structural

characterization to the thermodynamic properties of two compounds based on Ru,
Na2RuO3 and Na3RuO4, and of two compounds based on Co, Na2BaCo(PO4)2 and
Na2SrCo(PO4)2.

Concerning the first leg there is no general rule how a compound can be synthe-
sized and sometimes trial and error processes are not uncommon. Additionally, due
to different conditions in the lab the direct transfer of recipes found in the literature
is not always possible but reactants, temperature, atmosphere or time need to be
modified. Powder samples of the Ru-based compounds and single crystals of the
Co-based compounds could be successfully synthesized.

The analysis of crystal structures makes up the second large part of this work.
The crystallographic structures are described by symmetry elements and that is how
the description with symmetry concepts first entered the field of physics. A crystal
is built up from identical blocks which fill up the space completely. This can be
compared to honeycombs in a beehive. Experts in packing space most effectively
are bees. The honeycombs are halved rhombic dodecahedra filling the space without
gaps and requiring the least possible amount of beeswax. The only about 0.15% bet-
ter ratio of surface to volume given by the truncated octahedra does not outweigh
the larger complexity. The concept of truncated octahedra as room filling units with
the slightly improved ratio was figured out by Lord Kelvin after whom the temper-
ature unit kelvin was named [1]. We will come across this unit quite often since
the measured properties herein are investigated in dependence of the temperature.
Without specific requirements on the surface to volume ratio the three-dimensional
space can be filled by various polyhedra. In a crystal the smallest block builds up
the whole crystal by translation. The translational symmetry is a crystallographic
restriction which reduces the number of possible polyhedra and allows only 1, 2, 3,
4, and 6-fold rotations.
In Na2RuO3, the first compound investigated, the Ru ions form a honeycomb lat-

tice and the honeycomb planes are stacked on top of each other. In contrast to the
honeycombs in beehives the honeycomb cells in Na2RuO3 lack 6-fold symmetry and
also defects in form of stacking faults are present. In the other three compounds

1



1. Introduction

triangles tile up the plane. In Na3RuO4 triangular features are found on two differ-
ent length scales and a secondary triangular lattice is formed. Na2BaCo(PO4)2 and
Na2SrCo(PO4)2 have a simple triangular lattice.

The triangle is the simplest motif for geometrical frustration. If spins on the
corners of the triangle are coupled antiferromagnetically the three spins can not be
simultaneously aligned antiparallel. Frustration is the key ingredient for the realiza-
tion of a quantum spin-liquid (QSL) state. A QSL is characterized by the absence
of long-range magnetic order and persistent spin dynamics down to 0K with long-
range entangled spins. Theoretically, a QSL state is predicted in triangular lattice
antiferromagnets (TLAFs) for specific balances of certain exchange interactions [2,
3]. Since real materials are more complex and differ from any idealized model the
existence of a QSL state in any material remains heavily debated in the literature.
An experimental report proposed Na2BaCo(PO4)2 as QSL candidate and this com-
pound is one of the topics of this study [4].
Given the fact that only the non-magnetic buffer ions between the magnetic slabs

are exchanged, it is rather surprising that the structure of Na2SrCo(PO4)2 shows sig-
nificant differences leading to a lower monoclinic symmetry compared to the trigonal
Na2BaCo(PO4)2 compound. By comparing Na2BaCo(PO4)2 and Na2SrCo(PO4)2
the effect of structural details on the magnetic properties are studied.
Frustration often leads to spin arrangements which can be seen as compromise to

satisfy all the competing exchange interactions. Na3RuO4 for example shows long-
range magnetic order and the magnetic structure is incommensurate because the
exchange interactions acting between the sites of the secondary triangular lattice
are frustrated.
Na2RuO3 does not show long-range magnetic order but this can not be traced

back to frustration but to the effect of spin-orbit coupling (SOC). Despite Ru4+

having both spin and orbital momenta SOC leads to a zero total momentum.
The characterization of the properties makes up the third large part of this thesis.

Measurements and analyses of the thermodynamic properties such as heat capacity
and magnetization in dependence of the temperature complete the investigation of
the four compounds studied.

This thesis is structured as follows. In Chap. 2 the necessary crystallography and
magnetism basics are given. Chap. 3 presents the experimental methods. Synthesis
procedures and measurement setups are described. The results and discussion for
each compound are given in Chap. 4 and Na2BaCo(PO4)2 and Na2SrCo(PO4)2 are
compared before the summary is given.

2



2. Magnetism in Condensed Matter

Even before diffraction experiments were performed on crystals the regular habit
of a crystal made clear that symmetric blocks build up the crystal leading to the
regularities on a macroscopic scale. Until the discovery of aperiodic crystals the
crystal was defined as periodic arrangement of atoms. Today a crystal is defined as
material exhibiting a sharp diffraction pattern. In this work x-ray diffraction was
the first method of choice to characterize the crystal structure. An introduction to
diffraction is given in Sec. 2.3. In Sec. 2.1 the categorization of crystal structures into
space groups according to their symmetries is described. The classification is not
only made for the sake of organization. The exact determination of the symmetry
elements is essential because the structure of a crystal is connected to its physical
properties. The symmetry of the physical property must follow the symmetry ele-
ments of the point group of the crystal. This is the so called Neumann’s principle.
Magnetism in compounds arises if magnetic atoms are placed on lattice sites of

the crystal. Atoms with partially filled electron shells carry a magnetic moment.
Since in this work Co2+, Ru4+, and Ru5+ compounds are investigated, d-transition
metal compounds are described in Sec. 2.4. In this context SOC in an atom, the
electrical field effect due to the local environment in a crystal, and Hund’s rules
dictating the way the orbitals are filled are addressed. Symmetry arguments lead to
Kramers’ theorem.
Experimentally, the magnetic properties are captured by measuring the macro-

scopic magnetization M as response to an external magnetic field H. The magnetic
susceptibility χ connects M⃗ and H⃗ in the form χ = dM⃗/dH⃗. In general, χ is a
tensor. For a paramagnet an external magnetic field causes the magnetic moments
to align parallel to the field and the magnetization is proportional to the external
magnetic field. Hence, the susceptibility reduces to a scalar and χ = M/H. This
last definition of the susceptibility is often used, also throughout this thesis, even if
M and H are not proportional. The description of the paramagnetic susceptibility
is given by the Van Vleck formalism from which the Brillouin function and Curie’s
law can be derived (see Sec. 2.5). In paramagnets the magnetization is lost when
the applied magnetic field is removed because the single magnetic moments are in-
dependent and do not interact.
Magnetic ions in a crystal can communicate via exchange interactions (see Sec. 2.6).

Symmetry considerations will show that bonds with inversion symmetry forbid cer-
tain magnetic exchange interactions. At low temperatures, the exchange interactions
will typically stabilize a long-range order of magnetic moments (see Sec. 2.5), the
so-called magnetic structure. Neutron diffraction as tool to determine magnetic
structures is presented in Sec. 2.3.

3



2. Magnetism in Condensed Matter

Competing exchange interactions can suppress magnetic ordering. The concept of
frustration relevant for Na3RuO4, Na2BaCo(PO4)2, and Na2SrCo(PO4)2 and an in-
troduction to QSLs in triangular lattice compounds relevant for Na2BaCo(PO4)2 and
Na2SrCo(PO4)2 are given under the heading ”Exotic Magnetism”. In this Sec. 2.7
also the excitonic magnetism is discussed in the context of Na2RuO3.

4



2.1. Crystal Structures

2.1. Crystal Structures

The concept

translation lattice + motif = crystal structure

can be used to describe a crystal geometrically. To create the translation lattice
in three dimensions three basis vectors or translation vectors are chosen. All the
points obtained through linear combination of these basis vectors with integer coef-
ficients form the translation lattice. The parallelepiped spanned by the three basis
vectors is called the unit cell. Mostly the basis vectors are chosen such that the unit
cell has the smallest possible volume. Larger unit cells which clearly display the
symmetry elements of the crystal may be chosen. Translation of the unit cell must
lead to a compact three-dimensional arrangement which fills the space completely.
This condition restricts the number of translation lattices and the so-called Bra-
vais translation lattices can be organized in seven lattice systems: cubic, hexagonal,
rhombohedral, tetragonal, orthorhombic, monoclinic, and triclinic. The 14 Bravais
lattices are shown in Fig. 2.1. Each category contains one primitive lattice. The
other seven lattices are obtained if additional constraints are imposed on the lattice
parameters of the primitive cells. For example, if the angles in the rhombohedral
case are all restricted to 60 ◦ the resulting lattice can also be described with the

Figure 2.1.: The 14 Bravais translation lattices can be organized into seven cate-
gories. Seven primitive lattices exist. The additional seven lattices are obtained if
further constraints are imposed on the lattice parameters of the primitive cells. The
corresponding primitive cells are indicated by the open circles. The figure was adapted
from Ref. [5].

5



2. Magnetism in Condensed Matter

face centered cubic lattice. Similar, if the angles are restricted to 109.5 ◦ the body
centered cubic lattice results [5]. The primitive lattice points are indicated as well
in Fig. 2.1.
The translation lattice is not yet the crystal structure. To completely describe a

crystal a motif has to be added. The positions of the atoms forming the motif are
given by dimensionless fractional coordinates. The basis vectors of the translation
lattice defined earlier span also the coordinate system.
On the way to the description of the symmetry of the crystal structure the concept

of point groups is necessary. A point group is a mathematical group of symmetry
elements pertaining to a body which pass at least through one common point and
leave this point fixed. The translational symmetry conditions in crystals allow only
a limited number of symmetry elements because the image points of lattice points
must fall again onto lattice points. Possible symmetry operators are the inversion
i and n = 1, 2, 3, 4, 6-fold rotation axes. Combination of the rotation and inversion
lead to the rotoinversion. With the restricted number of symmetry elements 32
crystallographic point groups can be formed in three dimensional space.
If now the 32 crystallographic point groups are brought together with the 14

translational Bravais lattices all possible combinations of symmetry elements are
obtained. The combination of the translational and point group symmetries lead
to two further symmetry elements, the glide plane and the screw axis. In total 230
space groups can be created. Since the motif is unconstrained an infinite number of
crystal structures exists. Every possible crystal structure can be described in one of
these space groups. The space groups can be assigned to one of the seven crystal
systems:

(1) Cubic a = b = c, α = β = γ = 90◦

(2) Tetragonal a = b, α = β = γ = 90◦

(3) Orthorhombic α = β = γ = 90◦

(4) Hexagonal a = b, γ = 120◦

(5) Trigonal a = b = c, α = β = γ
or a = b, γ = 120◦

(6) Monoclinic α = γ = 90◦

(7) Triclinic No restrictions

It is important to note that the translation lattice can have a higher symmetry
than the crystal structure. The symmetry of the atomic arrangement causes the
constraints on the lattice parameters and determines the assignment to one of the
crystal systems.

6



2.2. Magnetic Structures

2.2. Magnetic Structures

Instead of describing a magnetic structure as periodic arrangement of magnetic unit
cells in analogy to the nuclear structure the description of the magnetic structure is
based on the nuclear structure. Magnetic order creates an additional periodicity on
top of the periodicity of the crystal lattice and additional reflections appear in the
diffraction pattern. The satellite reflections are found at positions

G⃗ = G⃗0 ± k⃗ (2.1)

with the reciprocal vector G⃗0 of the lattice and the vector of the magnetic structure
k⃗ called the propagation vector. The moment distribution m⃗j for atom j is

m⃗j =
∑
k⃗

Ψ⃗
(k⃗)
j e−2πik⃗t⃗ (2.2)

with the lattice translation vector t⃗ and Ψ⃗j is the linear combination of the basis

vectors ψ⃗ν with the mixing coefficients Cν : Ψ⃗
(k⃗)
j =

∑
ν Cνψ⃗

(k⃗)
ν [6].

The magnetic structure is commensurate if the components of k⃗ are integer frac-
tions and incommensurate if the components are irrational, i.e. the periodicity of
the magnetic structure is not a simple fraction or integer multiple of the periodicity
of the crystal lattice.
From equation 2.2 it is apparent that a magnetic structure is fully described if

the k⃗ vectors, the basis vectors, and the mixing coefficients are known. The general
procedure to determine the magnetic structure from experimental diffraction data
is briefly introduced in the following.
The list of symmetry groups can be extended by introducing the operation 1′.

This leads to the Shubnikov groups which can be used to describe magnetic struc-
tures if the magnetic moments are treated as axial vectors and 1′ is the time reversal
symmetry operator flipping the spin. The description with the concept of magnetic
space groups is suited for commensurate structures. In the case of Na3RuO4 pre-
sented in here we will encounter an incommensurate structure and the more general
representation analysis is needed.
The crystallographic groups are groups in a mathematical sense. For finding pos-

sible descriptions for the magnetic structure the subgroup called the Little Group
which contains all the symmetry elements which leave k⃗ invariant is considered [6].
The symmetry elements forming the group can be represented as matrices which have
the same multiplication table. If there is a unitary transformation which transforms
all matrices in the group into the same block-diagonal form the representation is
called reducible. The reducible representation Γmag can be written as linear combi-
nation (coefficients mi ∈ N) of irreducible representations Γi (i = 1, 2, ..., n), shortly
irreps, which can not be reduced further [7]

Γmag = m1Γ1 ⊕m2Γ2 ⊕ ...⊕mnΓn. (2.3)

7



2. Magnetism in Condensed Matter

The number of irreps n of a group equals the number of classes in that group. To
deduce the irreps it is not necessary to find that unitary transformation. Unitary
transformations leave the trace of the matrices invariant and hence irrespective of
the basis vectors the traces of the matrices characterize the representation [8]. With
the concept of character tables built up by the traces the irreps can be found. The
procedure is explained elsewhere [7].
Landau theory states that for a second order phase transition the symmetry of

the low-temperature phase is described by one of the irreps. In case of a first order
transition more than one irrep or more than one propagation vector are involved [6,
9].

In the next step basis vectors Ψ⃗ν for each irrep are introduced (see Ref. [6]) and
the mixing coefficients Cν are used as refinable parameters. To find the optimal set
of basis vectors describing the magnetic structure (see equation 2.2) all the possible
irreps need to be tested [6].

2.3. Diffraction

The periodic arrangement of the atoms in a crystal entails periodic quantities n (r⃗)
such as the nuclear, electron, and spin densities. Diffraction captures that period-
icity and the diffraction pattern is a Fourier transform of the direct lattice. The
periodicity calls for a Fourier transform and n (r⃗) can be expressed as

n(r⃗) =
∑
G⃗

nG⃗ exp(iG⃗r⃗) (2.4)

with the Fourier coefficients nG⃗. Translational invariance demands that the vectors

G⃗ are reciprocal lattice vectors of the structure.
The scattering amplitude F is

F =

∫
dV n(r⃗) exp

[
i
(
k⃗inital − k⃗final

)
r⃗
]

=

∫
dV n(r⃗) exp

(
−i∆k⃗r⃗

) (2.5)

with the scattering vector ∆k⃗ = k⃗final− k⃗inital. Combining equations 2.4 and 2.5 lead
to

F =
∑
G⃗

∫
dV nG⃗ exp

[
i
(
G⃗−∆k⃗

)
r⃗
]
. (2.6)

The scattering amplitude is only non vanishing if the scattering vector is a reciprocal
lattice vector

∆k⃗ = G⃗. (2.7)

When the diffraction condition holds, the scattering amplitude from equation 2.5
can be written as

F = N

∫
cell

dV n (r⃗) exp
(
−iG⃗r⃗

)
(2.8)

8



2.3. Diffraction

Figure 2.2.: In the case of neutron nuclear scattering the form factor is constant with
∆k. The form factor in the case of magnetic scattering decreases even faster with ∆k
than the atomic form factor in the case of x-ray scattering.

The integral sums over all N cells of the crystal. The integral is the so-called
structure factor S. The scattered intensity is proportional to |S|2. For further
considerations it is helpful to consider the contribution of each individual atom at
position r⃗j in a cell to the total electron density. It follows for the structure factor

S =
∑
j

∫
dV nj (r⃗ − r⃗j) exp

(
−iG⃗r⃗

)
=
∑
j

exp
(
−iG⃗r⃗j

)∫
dV nj (r⃗ − r⃗j) exp

(
−iG⃗ (r⃗ − r⃗j)

)
=
∑
j

fj exp
(
−iG⃗r⃗j

)
.

(2.9)

In the last step the integral is summarized in the form factor fj which is an atomic
property

fj =

∫
dV nj (ρ⃗) exp

(
−iG⃗ρ⃗

)
(2.10)

with ρ⃗ ≡ r⃗ − r⃗j. Ref. [10] was used as reference.
The form factors for the cases of x-ray, neutron nuclear and magnetic scattering

in dependence of ∆k are shown in Fig. 2.2. In the case of neutron nuclear scattering
nj(ρ⃗) is the nuclear density and the neutral neutrons are scattered by the point like
nuclei. The Fourier transform of a delta function is a constant. In the case of x-ray
scattering nj(ρ⃗) is the electron density and the photons are scattered by the electron
clouds and the form factor decreases with increasing ∆k. In the case of magnetic
scattering nj(ρ⃗) is the magnetization density. The magnetic form factor decreases
even faster since only the electrons in the outer shell responsible for the magnetic
moment are involved [11]. The magnetization density can by approximated by the
spin density nj,spin(ρ⃗) times the local magnetic moment µ. In the case of magnetic

9



2. Magnetism in Condensed Matter

scattering it is important to note that the neutrons probe only the component of
the magnetization perpendicular to the scattering vector. With the form factor

fj = µ⊥

∫
dV nj,spin(ρ⃗) exp

(
−iG⃗ρ⃗

)
= µ⊥fmagn (2.11)

the structure factor becomes

S = fmagn

∑
n

µ⊥(ρ⃗n) exp
(
−iG⃗r⃗n

)
. (2.12)

Here one atom per unit cell was assumed and the sum runs over the lattice sites
n because the periodicity of the nuclear and magnetic structure may be different.
The structure factor is the Fourier transform of the spin density distribution. The
magnetic reflections mirror the periodicity of the magnetic structure and their in-
tensity is proportional to µ2

⊥. The phase shifts between the magnetic components
enter the structure factor in the form eiϕ and the phase information gets lost in the
experiment which records the scattered intensity. For example, it is not possible
with unpolarized neutrons to distinguish between collinear spin-density waves and
helical structures with the phase shift as only distinctive feature. Refs. [11] and [9]
were used as references.

2.4. Transition Metal Compounds

2.4.1. Crystal Field

In a crystal the magnetic atom is surrounded by neighboring atoms creating an
electrical field which affects the energy levels of the atom. In the following only
the octahedral environment is considered. In many transition metal compounds the
magnetic atom is surrounded by oxygen and the electrons in the p orbitals create
the electrical field. The five d orbitals of the central atom can be separated into
two categories, the dxy, dxz, dyz orbitals pointing between the x, y, and z axes and
the dz2 , dx2−y2 orbitals pointing along the axes. As illustrated in Fig. 2.3 for one d
orbital of each category the orbital overlap with the p orbitals oriented along the
axes is different. The d orbitals pointing along the axes have a higher electrostatic
energy and are raised in energy whereas the other three orbitals are lowered in
energy. The threefold t2g orbitals are separated by the crystal field splitting ∆cryst

from the twofold eg orbitals.

2.4.2. Spin-orbit Coupling

The spin and orbital angular momenta couple through the spin-orbit interaction
which is briefly introduced in the following. In the electron frame of reference the
nucleus is orbiting the electron. The nuclear current creates a magnetic field with
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2.4. Transition Metal Compounds

Figure 2.3.: Crystal field effect in an (a) octahedral environment. (b) The lobes of
the dxy orbital point between the p orbitals of the ligands. (c) The lobes of the dx2−y2

orbital point in the direction of the ligands. (d) The three d orbitals with a lower
overlap with the p orbitals are lowered in energy whereas the two orbitals with higher
overlap are raised in energy. The figure was adapted from Ref. [12].

flux density B⃗ that interacts with the magnetic moment µ⃗ which arises due to the
spin of the electron and the Hamiltonian is given as

ĤSO = −1

2
µ⃗ · B⃗. (2.13)

The factor 1/2 is a relativistic correction. The magnetic field arises from the elec-

trical field E⃗ which is given through the spherical potential energy V (r). With the
velocity v⃗n of the nucleus and the speed of light c

B⃗ =
E⃗ × v⃗n
c2

= −dV (r)

dr

1

rc2
r⃗ × v⃗n. (2.14)

With equation 2.14, the magnetic moment µ⃗ = (geℏ/2me)S⃗ with the electron-spin

Landé factor g ≈ 2, and ℏL⃗ = mer⃗ × v⃗ equation 2.13 can be transformed into

ĤSO =
eℏ2

2m2
ec

2r

dV (r)

dr
S⃗ · L⃗ = λS⃗ · L⃗ (2.15)

with the SOC constant λ. The total angular momentum J⃗ = L⃗+S⃗ is conserved. The
new quantum number J takes values from |L−S| to L+S. With J⃗2 = L⃗2+S⃗2+2L⃗·S⃗
the expectation value of the energy is

⟨λL⃗ · S⃗⟩ = λ

2
[J(J + 1)− L(L+ 1)− S(S + 1)]. (2.16)

The splitting energy of adjacent J levels is given by the Landé interval rule

E(J)− E(J − 1) =
λ

2
[J(J + 1)− L(L+ 1)− S(S + 1)]

− λ

2
[(J − 1)J − L(L+ 1)− S(S + 1)]

= λJ.

(2.17)
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2. Magnetism in Condensed Matter

The SOC model considered here is the L−S coupling or Russell-Saunders coupling
and adequate for the magnetic ions of the compounds presented herein. Since the
spin-orbit interaction energy increases with increasing atomic number the j − j
coupling scheme is used for heavier elements. Ref. [13] was used as reference.

2.4.3. Hund’s Rules

The three Hund’s rules are an empirical guide to determine the angular momentum
quantum numbers of the ground state configuration [14].

1. Maximize S
The Pauli exclusion principle forbids two electrons with parallel spins to occupy
the same orbital and hence, by maximizing S the electron-electron Coulomb
repulsion is reduced.

2. Maximize L
Also this rule ensures the reduction of Coulomb repulsion between the elec-
trons. Electrons orbiting in the same direction can avoid each other better.

3. J = |L− S| for less than half filling
J = L+ S for more than half filling
This rule considers the minimization of the spin-orbit energy.

The higher the energy minimization the stronger the rule. The rules are listed in
decreasing order of their importance and it is found that the last rule is sometimes
violated for transition metal ions because effects such as crystal field splitting become
significant. Also maximizing S is not favorable if the crystal field splitting exceeds
the pairing energy. In the next section some examples relevant for this work will be
given.
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2.4. Transition Metal Compounds

Figure 2.4.: Energy level schemes relevant for the Ru-based compounds. (a)
Na3RuO4 has the electron configuration 4d3 and in the presence of an octahedral
crystal field the lowest lying t2g levels are single occupied and S = 3/2 and L = 0.
The red arrow was added to illustrate the case of 4d4 as for Na2RuO3. If the crys-
tal field energy exceeds the pairing energy a low-spin complex forms and S = 1 and
L = 1. (b) The SOC leads to the splitting of the 3T1g levels and a J = 0 ground state
emerges. (b) was adapted from Ref. [15].

2.4.4. Examples: Ru4+, Ru5+, and Co2+

The crystal field effect, the SOC, and the Hund’s rules will be illustrated for the
electronic configurations relevant in this work. First, the compound with the lowest
number of electrons in the d shell will be looked at. In Na3RuO4 Ru has an oxidation
state of +5 and three electrons occupy the 4d orbitals. The octahedral crystal field
splits the five degenerate d orbitals. The three t2g levels are occupied each by one
electron and the e2g levels at a higher energy are empty [see Fig. 2.4(a)]. Therefore,
S = 3/2 and for a half-filled sub-shell L = 0. Indeed, the spin-only character was
shown experimentally (see Subsec. 4.2.2).
Adding a further electron to the d shell leads to a more complex situation. The

additional electron is indicated in red in Fig. 2.4(a). The configuration 4d4 is realized
in Na2RuO3 with Ru having the oxidation state +4. One of the lower lying t2g
orbitals is now double occupied and S = 1 and L = 1. In contrast to the case of
Na3RuO4 an orbital momentum exists to which the spin momentum can couple.
The SOC leads to the splitting of the 3T1g level into J = 0, J = 1, and J = 2
levels. The J = 0 ground state is still debated in the literature (see Introduction of
Sec. 4.1) but the experimental results in this work suggest a J = 0 ground state.
In the latter case a low-spin configuration is realized because the spin-pairing

energy is lower than the crystal field splitting. The size of the crystal field splitting
depends on the central cation and the ligands. Often the trend can be observed that
the field splitting is larger for cations with higher oxidation number.

Whereas for Ru4+ the formation of a low-spin complex is observed, a high-spin
configuration forms in the case of Na2BaCo(PO4)2 and Na2SrCo(PO4)2 with Co2+

as central metal ion. The case of a 3d7 configuration is depicted in Fig. 2.5(a).
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2. Magnetism in Condensed Matter

Figure 2.5.: Energy level schemes relevant for the Co-based compounds. (a) Co2+

compounds have the configuration 3d7. Following Hund’s rules leads to t52g and e2g.

(b) The 4T1g dodecet splits in the presence of SOC into levels with effective spin 1/2,
3/2, and 5/2. (b) was adapted from Ref. [16].

In this case, the Hund’s rules can be strictly followed. The octahedral crystal field
splitting leads to the configuration t52g e

2
g. The

4T1g level with spin multiplicity 4 and
triple degeneracy with respect to orbital state splits in the presence of SOC into a
doublet with effective spin 1/2 and into the four-fold degenerate level with effective
spin 3/2 and the six-fold degenerate level with effective spin 5/2 at higher energies
[see Fig. 2.5(b)]. At low temperatures Na2BaCo(PO4)2 and Na2SrCo(PO4)2 can be
treated as spin-1/2 systems (see Subsecs. 4.3.3 and 4.4.4).

2.4.5. Kramers’ Theorem

Theorem. If a system has half-integer total spin and its Hamiltonian is time-
reversal invariant there is for every eigenstate at least one more eigenstate which
has the same energy. In other words, in a time-reversal symmetric system all energy
levels of an odd-number electron system are at least two-fold degenerate.

This applies to the examples 4d3 and 3d7 with an odd number of electrons de-
scribed previously (see Figs. 2.4 and 2.5). The proof is given in what follows.
If the Hamiltonian commutes with the time-reversal symmetry operator [T̂ , Ĥ] =

0 and |ψ⟩ is an eigenstate with energy E then T̂ |ψ⟩ is also an eigenstate with the
same energy:

Ĥ |ψ⟩ = E |ψ⟩
ĤT̂ |ψ⟩ = ET̂ |ψ⟩ .

(2.18)

Now it remains to be shown that |ψ⟩ and T̂ |ψ⟩ are two different states.
Usually the operator T̂ which reverses the direction of the spin is given as

T̂ = e−iπŜyK̂ = e−iπσy/2K̂ = ÛK̂ (2.19)
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2.5. Basic Forms of Magnetism

with the spin operator in y direction Ŝy, which can be represented for spin-1/2
particles by the Pauli matrix σy, and the complex conjugation K̂. The first factor
is unitary and K̂ is antiunitary. Unitary operators preserve a scalar product and
hence

⟨T̂ ψ|T̂ ϕ⟩ = ⟨Û †K̂ψ|ÛK̂ϕ⟩ = ⟨ψ∗|ϕ∗⟩ = ⟨ϕ|ψ⟩ . (2.20)

This relation will become useful later on.
For an n electron system T̂ has the form

T̂ = e−iπσy
1/2 · e−iπσy

2/2 · ... · e−iπσy
n/2K̂ (2.21)

and
T̂ 2 = (−1)n. (2.22)

This minus sign also appears if a spin state of a spin-1/2 particle is rotated by 2π.
Finally, the scalar product of the eigenstates |ψ⟩ and T̂ |ψ⟩ can be written as

⟨T̂ ψ|ψ⟩ = ⟨T̂ ψ|T̂ 2ψ⟩ = (−1)n ⟨T̂ ψ|ψ⟩ . (2.23)

The first equals sign uses equation 2.20 and the second equals sign uses equation 2.22.
For an odd number n

⟨T̂ ψ|ψ⟩ = 0 (2.24)

and the two states with the same energy are orthogonal. Ref. [17] was used as
reference.

2.5. Basic Forms of Magnetism

2.5.1. Van Vleck Formalism of Paramagnetism

The macroscopic magnetization arises from the magnetic moments of the atoms.
The moment depends on the occupation of the levels n with energy En. In analogy
to the macroscopic magnetizationM = −dE/dH the microscopic magnetization for
an atom is given by mn = −dEn/dH. The magnetization is the sum of mn weighed
by the Boltzmann factor

M =
NA

∑
n (−dEn/dH) e−En/(kBT )∑

n e
−En/(kBT )

. (2.25)

The energy values can be expressed as a power series

En = E(0)
n + E(1)

n H + E(2)
n H2 + ... (2.26)

with the first and second order Zeeman coefficients E
(1)
n and E

(2)
n . E

(0)
n is the energy

of level n when no magnetic field is applied. For small H/ (kBT )

e−En/(kBT ) = e−E
(0)
n /(kBT )

(
1− E(1)

n H/ (kBT )
)

(2.27)
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2. Magnetism in Condensed Matter

and equation 2.25 becomes

M =
NA

∑
n

(
−E(1)

n − 2E
(2)
n H

)(
1− E

(1)
n H/(kBT )

)
e−E

(0)
n /(kBT )∑

n

(
1− E

(1)
n H/(kBT )

)
e−E

(0)
n /(kBT )

. (2.28)

For a paramagnet the magnetization is zero if no magnetic field is applied M(H =

0) = 0 and hence
∑

nE
(1)
n e−E

(0)
n /(kBT ) = 0, which can be used to simplify equa-

tion 2.28 and the final form of the susceptibility is obtained

χ =
NA

∑
n

(
E

(1)2
n / (kBT )− 2E

(2)
n

)
e−E

(0)
n /(kBT )∑

n e
−E

(0)
n /(kBT )

. (2.29)

This is the Van Vleck formalism of the magnetic susceptibility named after John H.
Van Vleck who as first considered second order perturbation terms. The Zeeman
coefficients are obtained through perturbation theory

E(1)
n = ⟨n|ĤZeeman|n⟩

E(2)
n =

∑
m̸=n

⟨n|ĤZeeman|m⟩
2

E
(0)
n − E

(0)
m

.
(2.30)

First, the case of the total spin being zero J = 0 is considered. Intuitively, χ = 0 is
expected. The energy of the unperturbed ground level E

(0)
0 is set as energy origin

and E
(1)
0 is zero. However, the second order Zeeman coefficient is non-zero and the

susceptibility obtained is

χ = −2NA

∑
m ̸=0

⟨0|ĤZeeman|m⟩
2

E
(0)
n − E

(0)
m

. (2.31)

The ground state mixes with the higher energy levels and the ground state features a
finite magnetic moment despite J being zero. Note that the Van Vleck susceptibility
given by equation 2.31 is often said to be temperature independent. This is only
true if E

(0)
n − E

(0)
m >> kBT . There is no simple dependence on the temperature if

the energy difference E
(0)
n −E(0)

m is comparable to the thermal energy kBT . Refs. [18]
and [19] were used as references.

For the calculation of the susceptibility only the eigenenergies E
(0)
n and the eigen-

states |n⟩ in zero magnetic field are necessary. The magnetic susceptibilities for
the d-transition metal compounds were calculated by Kotani [15]. Kotani took the
Hamiltonian for the central magnetic ion

Ĥ = Ĥ0 + Vcubic + ĤSOC + ĤZeeman (2.32)

in which the Ĥ0+ĤSOC is the Hamiltonian of the free ion and ĤSOC considers SOC.
The crystalline electric field due to six surrounding ligands is assumed to have cubic

16



2.5. Basic Forms of Magnetism

symmetry and the electrostatic energy is considered with Vcubic. Moreover, the large
splitting is expected to favor low-spin complexes. The d4 case treated by Kotani up
to the second order of the magnetic field perfectly applies to Na2RuO3 with J = 0
(see Fig. 2.4) and equation (12) from Ref. [15] was used to describe the susceptibility
(see Subsec. 4.1.2) of Na2RuO3. The SOC constant is the only free parameter.

2.5.2. Brillouin Function and Curie’s Law

If the ground state carries a magnetic moment the resulting paramagnetism is
stronger than the Van Vleck paramagnetism and second order perturbation terms
can be neglected. E

(0)
0 is again set to zero. A magnetic field leads to the splitting

of the degenerate J level and the energy of the split levels with the magnetic quan-
tum numbers mJ (mJ = −J , −J + 1,..., J − 1, J) is EmJ

= −gµBmJH with the
magnetic moment µ = gµBmJ. g is the Landé factor. When inserting the energy
in equation 2.25 the sum runs over mJ. Equation 2.25 can be simplified and the
magnetization is given by the Brillouin function BJ(y)

M =MSBJ(y) (2.33)

with the saturation magnetization MS = NAgµBJ . The Brillouin function is given
by

BJ(y) =
2J + 1

2J
coth

(
2J + 1

2J
y

)
− 1

2J
coth

y

2J
(2.34)

with y = gµBJB/kBT . The derivation can be found elsewhere [20]. The variable y
sets two competing energies in relation. The Zeeman energy which tends to align
the moments and the thermal energy which tends to disorder the moments. For
high temperatures and low magnetic fields y ≪ 1. With the Taylor expansion at 0
coth(x) = 1/x+ x/3 +O(x3) the magnetic susceptibility simplifies to

χ =
M

H
≈ µ0M

B
=
NAµ0g

2µ2
BJ(J + 1)

3kBT
=
NAµ0µ

2
eff

3kBT
=
C

T
. (2.35)

This is Curie’s law with the Curie constant C. Curie’s law was already discovered
experimentally and allows to determine the effective moment µeff = gµB

√
J(J + 1)

from the temperature dependence of the magnetic susceptibility. This law is only
valid if the magnetic moments do not interact.

2.5.3. Antiferromagnetism

If the magnetic moments interact the Weiss temperature θCW must be added to
Curie’s law to account for the exchange interactions and the Curie-Weiss law is
obtained:

χ = χ0 +
C

T − θCW

. (2.36)
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2. Magnetism in Condensed Matter

Figure 2.6.: Direction dependence of the magnetic susceptibility in antiferromagnets.
(a) Application of the magnetic field perpendicular to the sublattice magnetization.
(b) Application of the magnetic field parallel to the sublattice magnetization. (c) The
perpendicular susceptibility stays constant below TN whereas the parallel susceptibility
decreases to zero.

χ0 accounts for temperature independent contributions to the susceptibility such
as diamagnetism or Van Vleck paramagnetism. θCW is a measure for the exchange
interactions and positive for a ferromagnet and negative for an antiferromagnet. As
only relevant in this work antiferromagnetism will be discussed in the following.
An antiferromagnet can be seen as two interpenetrating sublattices. The magnetic

moments on one sublattice (A) point up and the magnetic moments on the other
sublattice (B) point down. The magnetization of each sublattice creates a molecular
or mean field acting on the other sublattice

H⃗A = −|α|M⃗B

H⃗B = −|α|M⃗A

(2.37)

with the negative molecular field constant α. |M⃗A| = |M⃗B|, and the net magnetiza-
tion is zero. Above the Néel temperature the magnetic order is destroyed and the
material becomes paramagnetic and the susceptibility follows equation 2.36.
If a magnetic field is applied the susceptibility depends on the direction of the

external field H0. First, the susceptibility for small magnetic fields perpendicular to
the axis of spontaneous magnetization, here the z axis, is considered. The scenario
is illustrated in Fig. 2.6(a). The magnetization of both sublattices tilts leading to a
magnetization along H0. The susceptibility is

χ⊥ =
M

H0

=
2MAϕ

H0

(2.38)

with the angle ϕ between the z axis and the direction of magnetization. Next, ϕ
leading to a minimum in the total energy has to be determined. The three contri-
butions to Etot are
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2.5. Basic Forms of Magnetism

1. the mean field energy Emf trying to align the sublattice magnetization antipar-
allel

Emf = −µ0M⃗A|α|M⃗B

= −µ0|α|M2
A cos(2ϕ)

≈ −µ0|α|M2
A(1− 2ϕ2)

(2.39)

2. the Zeeman energy EH0 trying to align the moments parallel to the external
magnetic field

EH0 = −µ0(M⃗A · H⃗0 + M⃗B · H⃗0)

= −2µ0MAH0 sinϕ

≈ −2µ0MAH0ϕ

(2.40)

3. the energy Eaniso accounting for the fact that the magnetization prefers to ori-
ent along a specific crystallographic axis (the easy axis is here z)

Eaniso = κ sin2 ϕ ≈ κϕ2 (2.41)

with the constant κ.

Minimizing Etot = Emf + EH0 + Eaniso with respect to ϕ leads to

ϕmin =
µ0MAH0

2µ0|α|M2
A + κ

(2.42)

and the susceptibility from equation 2.38 becomes

χ⊥ =
1

|α|
(
1 + κ

2|α|µ0M2
A

) ≈ 1

|α|
. (2.43)

The last approximation is valid if the anisotropy is weak compared to the mean field.
Thermal fluctuations reduce the sublattice magnetization equally and the suscepti-
bility stays constant up to TN.

Next, the case of a small magnetic field parallel to the axis of magnetization
is considered. The scenario is illustrated in Fig. 2.6(b). The local field of one
sublattice is increased while the local field on the other sublattice is reduced and
the susceptibility is given as

χ∥ =
M∥

H0

(2.44)

withM∥ = 2δM where δM is the change of the magnetization of one sublattice. The
net magnetization can also be expressed through the Brillouin function introduced
earlier with equation 2.34

M∥ =Msat(BJ(yA)− BJ(yB)). (2.45)
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In contrast to the paramagnetic case not only the external field but additionally the
mean field contribution has to be considered. With HA,eff = H⃗0 + |α|M⃗0 − |α|δM
and HB,eff = −H⃗0 + |α|M⃗0 + |α|δM the variables yA and yB are given by

yA =
µ0µBgJ

kBT
(|α|M0 +H0 − |α|δM) (2.46)

yB =
µ0µBgJ

kBT
(|α|M0 −H0 + |α|δM). (2.47)

For |α|M0 ≫ H0, |α|δM the Brillouin function can be expanded in the following
way:

BJ(yA,B) ≈ BJ(yA,B,H=0)±
µ0µBgJ

kBT
(H0 − |α|δM)

dBJ

dyA,B

∣∣∣∣
yA,B,H=0

. (2.48)

Inserting equation 2.48 into equation 2.45 leads with δM = M∥/2 and Msat =
NAµBgJ/2 to

M∥ = (2H0 − |α|M∥) ·
NAg

2µ2
BJ

2

2kBT

dBJ

dy

∣∣∣∣
y,H=0

. (2.49)

With the Curie constant C the susceptibility can be written as

χ∥ =
3J
J+1

· C · B′
J(y,H = 0)

T + |α|
2
· C · 3J

J+1
B′
J(y,H = 0)

. (2.50)

For T → TN the sublattice magnetization is nearly lost and yH=0 → 0. With the
Taylor series expansion for coth(y) B′

J(yH=0 → 0) = J+1
3J

is obtained and

χ∥(TN) =
C

TN + |α|
2
C

=
1

|α|
. (2.51)

In the last step TN = |α|
2
C was used.

For T → 0 B′
J(yH=0 → ∞) = 0 and hence

χ∥(T → 0) = 0. (2.52)

The results for the susceptibilities are summarized in Fig. 2.6(c). If the external
magnetic field parallel to the magnetization axis is increased further the system un-
dergoes a spin-flop transition at a critical field.
For the calculation of the susceptibilities the following assumptions were made.

The external magnetic fields are small compared to the mean fields. The inter-
actions within a sublattice were neglected for simplicity. The mean field approach
assumes that all regions within the sample are identical and correlations and fluctua-
tions which become increasingly important near the critical temperature are ignored,
which makes the mean field approach unsuited for the accurate description of critical
regions. Ref. [21] was used as reference.
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2.6. Exchange Interactions

Figure 2.7.: Sketch of the hydrogen molecule to illustrate the labels referred to in
the text.

2.6. Exchange Interactions

For the introduction of the exchange interaction the case of the H2 molecule is
considered. Nuclei A is located at R⃗A with the electron e−1 at r⃗1 and nuclei B is

located at R⃗B with the electron e−2 at r⃗2 (see Fig. 2.7). The total Hamiltonian

Ĥ = ĤA + ĤB + Ĥint (2.53)

contains the one-electron atomic Hamiltonians ĤA and ĤB and the Coulomb repul-
sion and attraction are considered in the interaction Hamiltonian Ĥint

Ĥint =
e2

4πϵ0

(
1

|r⃗1 − r⃗2|
+

1

|R⃗A − R⃗B|
− 1

|R⃗A − r⃗2|
− 1

|R⃗B − r⃗1|

)
(2.54)

which can be treated as perturbation. The total wave function can be separated
into a spatial part φ (r⃗) and a spin part with α denoting spin-up and β spin down.
The eigenstates are

|↑↑⟩ = 1√
2 (1− L2)

α1α2 [φA (r⃗1)φB (r⃗2)− φA (r⃗2)φB (r⃗1)]

|↓↓⟩ = 1√
2 (1− L2)

β1β2 [φA (r⃗1)φB (r⃗2)− φA (r⃗2)φB (r⃗1)]

1√
2
(|↑↓⟩+ |↓↑⟩) = 1

2
√

(1− L2)
(α1β2 + β1α2) [φA (r⃗1)φB (r⃗2)− φA (r⃗2)φB (r⃗1)]

1√
2
(|↑↓⟩ − |↓↑⟩) = 1

2
√

(1− L2)
(α1β2 − β1α2) [φA (r⃗1)φB (r⃗2) + φA (r⃗2)φB (r⃗1)] .

(2.55)
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The first three states are triplets and the last state is a singlet with the energies

Et = 2E0 +
CAB − IAB

1− L2

Es = 2E0 +
CAB + IAB

1 + L2
,

(2.56)

respectively. E0 is the eigenenergy of the isolated hydrogen atom, CAB is the
Coulomb integral, IAB is the exchange integral, and L is the overlap integral

Cab =

∫∫
d3r1d

3r2φ
∗
A(r⃗1)φ

∗
B(r⃗2)ĤintφA(r⃗1)φB(r⃗2)

Iab =

∫∫
d3r1d

3r2φ
∗
A(r⃗2)φ

∗
B(r⃗1)ĤintφA(r⃗1)φB(r⃗2)

L =

∫
d3rφ∗

A(r⃗)φ
∗
B(r⃗).

The singlet-triplet splitting is

Et − Es = 2
L2CAB − IAB

1− L4
= 2JAB (2.57)

with the exchange coupling JAB. For a sizeable overlap L JAB > 0 is antiferro-
magnetic and the spin-singlet is the ground state of the hydrogen molecule. The
antisymmetric spin part is connected to a symmetric spatial part of the wave func-
tion and the electron density between the nuclei A and B is non-zero in contrast to
the antisymmetric spatial part. Ref. [22] was used as reference.
It should be noted that in insulating d-transition metal compounds the exchange

is not carried by the direct exchange mechanism presented above because the mag-
netic ions are well separated by non-magnetic ions. Instead an indirect exchange
between magnetic ions is mediated by non-magnetic ions.
For a many-body system the spin-spin Hamiltonian in a more general form is

Ĥ =
∑
⟨ij⟩

ŜiJijŜj (2.58)

with the exchange matrix Jij coupling the spins on sites i and j. The exchange
matrix can often be simplified and some examples relevant for this work are given
in the following.
In the Heisenberg model the exchange matrix Jij reduces to a single value Jij

ĤHeisenberg = −
∑
⟨ij⟩

JijŜiŜj = −J
∑
⟨ij⟩

ŜiŜj. (2.59)

J can be written outside the sum if only nearest-neighbor (nn) interactions are
considered.
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2.7. Exotic Magnetism

The XXZ model is obtained from the Heisenberg model if an anisotropy parameter
∆aniso is introduced

ĤXXZ = J
∑
⟨ij⟩

(
Ŝx
i Ŝ

x
j + Ŝy

i Ŝ
y
j +∆anisoŜ

z
i Ŝ

z
j

)
. (2.60)

SOC can introduce Dzyaloshinsky-Moriya (DM) interaction between two spins

ĤDM = D⃗ij ·
(
S⃗i × S⃗j

)
. (2.61)

The vector D⃗ij lies perpendicular to the plane spanned by the otherwise parallel or
antiparallel spins. It becomes energetically favorable for spins to cant and for the
case of Na2SrCo(PO4)2 considered herein DM interactions introduce weak ferromag-
netism in the antiferromagnet.
The symmetries of the lattice impose restrictions on the exchange matrix. Since

needed later on it is noted that DM interactions are not allowed between spins
connected via a bond with inversion symmetry I

I
[
D⃗ij

(
S⃗i × S⃗j

)]
= D⃗ij

(
S⃗j × S⃗i

)
= −D⃗ij

(
S⃗i × S⃗j

)
. (2.62)

If the bond has inversion symmetry D⃗ij must be zero. D⃗ij is non-zero if the inversion
is broken for the bond. This is a necessary but not sufficient condition for DM
interactions. The necessity for the absence of inversion is also easily seen when ĤDM

from equation 2.61 is written in the form of equation 2.58 with

Jij =

 0 Dz −Dy

−Dz 0 Dx

Dy −Dx 0

 and Jji = −Jij =

 0 −Dz Dy

Dz 0 −Dx

−Dy Dx 0

 . (2.63)

Bond inversion symmetry allows only symmetric exchange and hence the antisym-
metric DM interaction is forbidden.

2.7. Exotic Magnetism

2.7.1. Frustration

Two types of frustration can be distinguished. Geometrical and exchange frustration
both illustrated in Fig. 2.8. For geometrical frustration to occur the lattice must
meet the condition of connected triangular features such as found in the triangular,
Kagome, and pyrochlore lattices. If the spins couple antiferromagnetically the ex-
change interactions can not be satisfied simultaniously. Exchange frustration can be
found for example in honeycomb lattice compounds. Each lattice site is connected
to three nearest neighbors. The Ising-type interactions depend on the specific bond
and along each different bond one of the three different spin components couple.
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2. Magnetism in Condensed Matter

Figure 2.8.: Different types of frustration. (a) Geometrical frustration occurs if spins
on a lattice with triangular features couple antiferromagnetically. The spins can not
be arranged such that all the interactions are satisfied. (b) Exchange frustration arises
if Ising-type interactions are bond dependent. Different spin components couple along
different bonds. Figure redrawn from Ref. [23].

Commonly observed in frustrated systems are incommensurate magnetic struc-
tures. In this context the anisotropic triangular lattice is introduced and the results
will be needed later for Na3RuO4. The study of frustrated magnets was largely
motivated by the search for a QSL, but its existence in any material remains heavily
debated in the community. The concept of QSLs will be given with focus on trian-
gular lattice compounds, which will be taken up later in the light of the discussion
of the spin-1/2 TLAFs Na2BaCo(PO4)2 and Na2SrCo(PO4)2.

2.7.2. Anisotropic Triangular Lattice

When exchange interactions compete often non-collinear and even incommensurate
spin arrangements are formed as a compromise. The energetically most favorable
spin arrangement can be often calculated analytically if classical spins S⃗ are consid-
ered. In the following the case of the anisotropic triangular lattice is illustrated. It
will be needed later in the context of Na3RuO4. The situation is depicted in Fig. 2.9.
The triangular lattice is spanned by a⃗1 and a⃗2 and nn interactions between the sites
ni, nj are considered only. To create frustration J1 is set to be antiferromagnetic
(J1 > 0) while J2 can be ferromagnetic (J2 < 0) or antiferromagnetic (J2 > 0).
To find the ground state spin configuration which is defined by the propagation

vector k⃗, the energy minimum has to be found. The total energy is obtained by
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2.7. Exotic Magnetism

Figure 2.9.: The antiferromagnetic exchange interaction J1 between nearest neigh-
bors along a⃗1 and the exchange interaction J2 between nearest neighbors along a⃗2 and
a⃗2 − a⃗1 compete on the triangular lattice.

summing over all nearest neighbors:

E =
N∑

ni,nj

[
J1S⃗ni,nj

S⃗ni+1,nj
+ J2

(
S⃗ni,nj

S⃗ni,nj+1
+ S⃗ni,nj

S⃗ni−1,nj+1

)]
= NS2

0

{
J1 cos

(
a⃗1k⃗
)
+ J2

[
cos
(
a⃗2k⃗
)
+ cos

(
(⃗a2 − a⃗1) k⃗

)]}
= NS2

0

{
J1 cos (akx) + J2

[
cos

(
akx
2

√
3aky
2

)
+ cos

(
−akx

2
+

√
3aky
2

)]}
.

(2.64)

The equation can be simplified with cosα + cos β = 2 cos
(
α+β
2

)
cos
(
α−β
2

)
to

E = NS2
0

[
J1 cos (akx) + 2J2 cos

(a
2
kx

)
cos

(√
3a

2
ky

)]
. (2.65)

By solving ∇E (kx, ky) = 0 the propagation vector minimizing the energy is found
to be:

k⃗

2π/a
=



(
0

0

)
for J2

J1
≤ −2(

1
π
arccos

(
− J2

2J1

)
0

)
for |J2

J1
| < 2(

1

0

)
for J2

J1
≥ 2.

(2.66)
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2. Magnetism in Condensed Matter

Figure 2.10.: Resonating valence bond model. (a) The resonating valence bond
state is a superposition of all possible configurations of the spin singlets. (b) A spin-1
excitation can fractionalize into two spinons with spin 1/2.

An incommensurate order develops if the competing interactions are similar in size.
If J2 becomes the leading interaction the magnetic order is commensurate and the
spins along the J1 bond are oriented parallel.

2.7.3. Quantum Spin Liquids in Triangular Lattice Compounds

Even if the spins are strongly interacting frustration can lead to the absence of
long-range magnetic order down to 0K. This quantum state is called a QSL with a
large degeneracy of the classical ground state and with long-range entangled spins.
In contrast to a classical spin liquid in which the spins freeze at finite tempera-
ture because thermal fluctuations are necessary to switch between the different spin
configurations, the QSL state realized in spin-1/2 systems is driven by quantum
fluctuations and is a superposition of all possible configurations. Persistent spin
dynamics can be found down to 0K.
The QSL state was first introduced by Anderson as ground state for spin-1/2 tri-

angular Heisenberg antiferromagnets. The resonating valence bond model based (see
Fig. 2.10) on Pauling’s model of benzene was used to describe the QSL state [24].
Any two spins that are antiparallel are arranged in pairs and form a S = 0 singlet
state. The resonating valence bond state is a superposition of all possible pairing
configurations. A spin-1 excitation in form of a spin flip can fractionalize into two
so-called spinons with spin 1/2. The two unpaired spins can move independently
through the crystal at no energy cost since all possible valence bond configurations
share the same energy. Fractionalized excitations are key features in QSLs.

Now it is known that the nn isotropic Heisenberg antiferromagnet on a triangular
lattice does not host a QSL state but develops long-range magnetic order. Theo-
retically and experimentally a non collinear 120 ◦ spin configuration was found [25,
26]. The same is true for the XXZ model presented in Sec. 2.6 [27]. Considering the
symmetries of the isotropic triangular lattice the most general form of the exchange
Hamiltonian from equation 2.58 can be re-written to [28]

Ĥ =
∑
m

[
ĤXXZ

m + Ĥ±±
m + Ĥz±

m

]
. (2.67)

m larger than one accounts for interactions beyond nn interactions, the bond-
independent XXZ part ĤXXZ

m was already introduced in Sec. 2.6, and the remaining
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2.7. Exotic Magnetism

Figure 2.11.: Phase diagram of a TLAF in the parameter space J2-J
±±-Jz±. A

spin-liquid phase can be realized in the presence of nnn interaction J2 or off-diagonal
anisotropy Jz±. The third exchange interaction J±± accounts for the diagonal
anisotropy. The ground state of the isotropic TLAF is the canted 120◦ spin structure.
Figure taken from Ref. [2].

anisotropic bond dependent part contains diagonal components

Ĥ±±
m =

∑
⟨ij⟩

2J±±
m

[(
Sx
i S

x
j − Sy

i S
y
j

)
cosϕα −

(
Sx
i S

y
j + Sy

i S
x
j

)
sinϕα

]
(2.68)

and off-diagonal components

Ĥz±
m =

∑
⟨ij⟩

Jz±
m

[(
Sy
i S

z
j + Sz

i S
y
j

)
cosϕα −

(
Sx
i S

z
j + Sz

i S
x
j

)
sinϕα

]
. (2.69)

ϕα = {0, 2π/3,−2π/3} accounts for the bond dependency in a lattice with three-fold
symmetry.
A delicate interplay between bond-directional exchange interactions and next

nearest neighbor (nnn) interactions J2 can push the system into a QSL state as
illustrated in the phase diagram in Fig. 2.11 [2, 3, 28–30]. Only 6% nnn interac-
tions with respect to the isotropic nn interaction are sufficient to stabilize a QSL
phase. It is still under debate whether a QSL can be realized by bond-dependent
interactions without the presence of nnn interactions [31, 32]. Concerning the bond-
independent exchange interactions, an isotropic regime with ∆aniso = 1 is desirable
because increasing XXZ anisotropy leads to the shrinking of the QSL window in the
J2-J

±±-Jz± parameter space.
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2. Magnetism in Condensed Matter

2.7.4. Excitonic Magnetism

SOC is a key factor that leads to novel exotic states in 4d and 5d transition metal
systems. Widely studied is the spin-orbit Mott insulating state, which is found
in numerous compounds [33–35]. d5 systems with spin-orbit entangled J = 1/2
pseudospins on a honeycomb lattice with edge-shared octahedra are extensively in-
vestigated in the context of Kitaev physics. Frustration induced by bond-dependent
Ising interactions (see Fig. 2.8) leads to a QSL ground state [36–39].
In d4 systems (Re3+, Ru4+, Os4+, Ir5+) with octahedrally coordinated ions, four

electrons reside on the t2g level if the crystal field splitting exceeds the Hund’s cou-
pling and a low-spin (S = 1, L = 1) configuration is realized. SOC leads to the
formation of a |J = 0⟩ ground state singlet and the system is non-magnetic (see
Fig. 2.4). However, novel magnetism referred to as excitonic magnetism is induced
through the condensation of the excited |J = 1⟩ states [40, 41]. The formation of the
spin-orbit entangled excitons is only possible, if the exchange interactions overcome
the energy gap between the |J = 0⟩ and |J = 1⟩ states of a single d4 ion [41]. Since
the energy gap is proportional to the SOC strength, 4d systems are more promising
candidates than 5d systems to host excitonic magnetism. Ca2RuO4 is a compound
which fulfills the prerequisites, also because trigonal distortions of the RuO6 octa-
hedra split the |J = 1⟩ levels and thus decrease the gap size. Indeed, in Ca2RuO4

condensation of |J = 1⟩ excitons was reported [42–44].
Due to the inherited orbital contribution, excitonic interactions are anisotropic.

This property can be exploited by appropriately choosing the crystal structure and
thus adding frustration to the system. Especially 90 ◦M-O-M exchange geometry
as found in honeycomb lattices with edge-shared octahedra is suited to combine
quantum criticality and frustration. To describe this system, the J = 1 excitations
are introduced as bosons called triplons which come in three different flavors. In
the extreme case, the three different bond-types are connected each with a different
flavor of the interaction. This can be regarded as bosonic analogue of the spin-1/2
Kitaev model. One similarity is the suppression of magnetic condensation. [41, 45]
This rather new physics has not been studied in detail in real materials. Due to

dimerization, Li2RuO3 is not suited as model compound [46]. Na2RuO3 reportedly
avoids dimerization [47, 48] but its ground state is highly debated [49–51].
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3. Experimental Details

In this chapter the experimental procedures are presented in the same order as
carried out in the lab. Unarguably the first step is the powder or single crystal
synthesis. Recipes found in the literature are often not reproducible right away and
have to be adapted. This is due to sometimes rough descriptions or simply differ-
ent conditions in the labs. In both cases an unambiguous account facilitates the
reproducibility and detailed instructions are given in Subsec. 3.1.3. A list of the
conducted experiments on each compound is given in Table 3.1. In the following
sections the theoretical basics, and the measurement principles and devices are in-
troduced before the sample preparation is described. Since the theoretical basics of
diffraction and magnetization were already given in Chap. 2, only the measurement
setup will be described in the Secs. 3.2 and 3.5.

Table 3.1.: Overview of the conducted experiments on the four investigated com-
pounds.

Na2RuO3 Na3RuO4 Na2BaCo(PO4)2 Na2SrCo(PO4)2

X-ray powder
diffraction (XRPD)

✓ ✓ ✓ ✓

Synchrotron XRPD ✓ ✓

Neutron powder
diffraction (NPD)

✓

Nuclear magnetic
resonance (NMR)

✓

Magnetization (4He) ✓ ✓ ✓ ✓

Magnetization (3He) ✓ ✓

Heat capacity (4He) ✓ ✓ ✓

Heat capacity (3He) ✓ ✓

Heat capacity
dilution refrigerator

✓

Resonant inelastic
x-ray scattering (RIXS)

✓
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3.1. Synthesis

3.1.1. Horizontal Furnace

Often, chemical reactions at higher temperatures have to be carried out in an in-
ert atmosphere to prevent the educts and products from oxidization. One way is
to seal the crucible with the chemicals into a quartz ampule which can be either
evacuated or filled with an inert gas [see Fig. 3.1(a)]. If gaseous by-products form
during the synthesis, a sealed ampule cannot be used. In this case, the synthesis
can be performed in a horizontal tube furnace as shown in Fig. 3.1(b). An alumina
combustion boat containing the educts is placed in the middle of the quartz tube
(Aachener Quarzglas, RQ200 and HSQ100, ∅32±0.5mm × 2±0.2mm × 1000mm)
at the heater. Customized gas flows through the pipe can be set with a flow me-
ter. Except for the intercalation of Li2RuO3 every synthesis was carried out in the
horizontal tube furnace.

3.1.2. Flux Growth and Solid State Reaction

Polycrystalline Na2RuO3, Na3RuO4, and Li2RuO3 samples were synthesized via
solid state reaction. The powders used as starting materials are mixed and ground
thoroughly to ensure good homogeneity and a large surface area. The mixture is
heated in a controlled way to higher temperatures and held there, since the reaction
is carried by solid state diffusion. After the reaction is completed the compound is
cooled to room temperature.
Na2BaCo(PO4)2 and Na2SrCo(PO4)2 single crystals were grown with the flux

method. All educts are dissolved in a flux media at sufficiently high temperatures.
When the solution is slowly cooled down, nucleation points will form out of a su-
persaturated solution. To reach supersaturation again the solution has to be cooled
down further and continuous cooling leads to the growth of the precipitates. The
growth procedure will eventually stop, when the temperature falls below the melting
point.

Figure 3.1.: Synthesis in controlled atmospheres. (a) Alumina crucible with lid in a
quartz ampule filled with Ar. (b) Different gas flows can be realized in a horizontal
furnace.
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3.1. Synthesis

3.1.3. Synthesis Procedure

Na2RuO3

Refs. [49] and [50] propose the self-flux method as direct way to synthesize powder
and single crystals. Na2CO3 and RuO2 were mixed in a slightly off-stoichiometric
ratio (1.1:1) and heated in steps up to 1100 ◦C. This direct synthesis route in air and
in an inert Ar atmosphere and its variations with lowered temperatures to prevent
evaporation failed. Indeed, the single crystals in Ref. [49] seem to be miscategorized
as Na2RuO3 and the described properties strongly resemble those of Na3RuO4. Here,
powder samples of Na2RuO3 were obtained in a two-step synthesis as suggested in
Ref. [47]. In a first step, the precursor powder compound Na2RuO4 was synthesized
by solid state reaction. Following the steps described in Ref. [52], stoichiometric
amounts of Na2O2 (96% Arcos Organics) and RuO2 (99.9% Alfa Aesar) were mixed
and ground together in an agate mortar in an Ar glove box. The mixture was
placed in an alumina combustion boat and heated in the following way in an O2

flow (20 sccm). In 10 hours the mixture was first heated to 450 ◦C and held there
for 5 hours, and was next heated in 2 hours to 530 ◦C and held there for 10 hours.
Finally the sample was heated in 3 hours to 630 ◦C and held there for 15 to 20 hours.
After intermediate grinding, the mixture was again loaded in the horizontal furnace
and heated in 3 hours to 630 ◦C in an O2 flow (20 sccm). After 50 hours at 630 ◦C
black-green Na2RuO4 powder was obtained. The Na2RuO4 powder was ground in a
glove box and reduced in the second step to Na2RuO3 by heating the compound in
3 hours to 850 ◦C in a reducing Ar flow (20 sccm). After 48 hours black Na2RuO3

powder was obtained. The powder is mildly air-sensitive and was finally ground in
a glove box and always stored in Ar atmosphere.
For all measurements powder samples were prepared. Plastic capsules filled with

about 6mg of the powder were prepared for magnetization measurements up to
400K. For measurements at higher temperatures a 5mm pellet was glued to the
sample holder. For heat capacity measurements a 4.7mg piece of a pressed pellet
and for RIXS measurements a 3mm pellet was used.
So far, no single crystals of this compound have been synthesized and their syn-

thesis was beyond the scope of this work. The two-step method described above
is rather unsuited on the way to single crystals and a direct method would be ad-
vantageous. Growing single crystals directly from the pure powder is also unlikely.
In the case of Na2IrO3 the powder is heated 150 ◦C above the maximum tempera-
ture during the powder synthesis and is then slowly cooled down to obtain single
crystals [35]. Na2RuO3 is thermally not stable enough and oxidizes to Na3RuO4 if
hold too long (approximately four days) at 850 ◦C even in an Ar flow. The addi-
tional heat treatment was originally intended to reduce stacking faults and improve
crystallinity, but due to the formation of Na3RuO4 further heat treatments were re-
nounced. Na3RuO4 often formed as by-product during the synthesis attempts and
the targeted synthesis is described in the next paragraph.

Finally, a small excursion into interlayer tuning of Li2RuO3 will be given as
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3. Experimental Details

Figure 3.2.: Room temperature XRPD patterns of Cu intercalated Li2RuO3 syn-
thesized at temperatures between 330 and 450 ◦C. The open circles mark the peak
originating from the parent Li2RuO3 compound and the asterisks mark the peak
stemming from the decomposition product RuO2. Both Li2RuO3 and RuO2 can be
detected in the sample synthesized at 362 ◦C.

different route to new layered ruthenates. Starting material is Li2RuO3 which was
synthesized in a straightforward manner by mixing stoichiometric amounts of Li2CO3

(99.998% Alfa Aesar) and RuO2. The mixture was loaded in an alumina crucible
and heated in air in 4 hours to 1000 ◦C and held at 1000 ◦C for 24 hours [53]. In
the next step, the Li+ ions separating the Ru honeycomb slabs were exchanged with
Ag+ ions. The Ru layers contain Li+ ions as well but those Li+ ions were not re-
placed. An excess of AgNO3 powder (99.9995% Thermo Fisher) was added to the
Li2RuO3 powder in an alumina crucible. The crucible with lid was sealed in a quartz
ampule with Ar atmosphere [see Fig. 3.1(a)]. The ampule was placed in a preheated
muffle furnace and was left for 3 days at 250 ◦C. Afterwards, the AgNO3 excess was
removed by washing the sample several times with distilled water and finally with
acetone. The growth method was adapted from Ref. [54], who reported phase pure
powder samples of Ag3LiRu2O6 before.
For Cu intercalated Li2RuO3 the procedure was slightly adapted. Instead of

AgNO3 CuCl (99.995% Carl Roth) was used and the excess had to be removed with
diluted hydrochloric acid. Main difference and resulting problem is the temperature
during the intercalation. This is illustrated in Fig. 3.2 showing the room tempera-
ture diffraction data for samples synthesized at different temperatures. At the lower
intercalation temperatures (330 to 362 ◦C) the ion exchange is not complete and
Li2RuO3 is still present (open circles in Fig. 3.2). Above 360 ◦C the compound de-
composes and RuO2 is formed (see asterisks in Fig. 3.2). In the samples synthesized
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3.1. Synthesis

at 362 ◦C the parent compound Li2RuO3 and the decomposition product RuO2 can
both be detected and completely Cu intercalated Li2RuO3 is not possible because
the compound decomposes before all Li2RuO3 is intercalated.

Na3RuO4

Na3RuO4 powder was synthesized by following a slightly modified version of the
recipe from Ref. [55]. RuO2 was pre-dried for 2 hours at 700 ◦C and mixed with
NaOH (99.99% Alfa Aesar) in a small off-stoichiometric molar ratio 1 : 3.1. The
small excess of NaOH was chosen to avoid RuO2 impurities in the sample. RuO2

impurities form easily during syntheses of Ru based compounds and are difficult
to remove afterwards. The educts were ground together in an Ar glove box and
loaded in an alumina combustion boat. In the horizontal furnace the mixture was
heated in an O2 flow (20 sccm) in 2 h to 500 ◦C and held at this temperature for
18 h. After grinding the powder in the glove box the sample was again heated in the
horizontal furnace. In this second step, the powder was heated in a mixed Ar + O2

flow (3 : 1, 20 sccm) in 2 h to 650 ◦C and held there for 18 h. The Na3RuO4 powder
was finally ground in the glove box. To improve the crystallinity a tempering step
was added. Similar to the second step, the sample was heated to 650 ◦C in the mixed
Ar + O2 flow but with slower heating and cooling rates. The sample was heated to
650 ◦C in two days, held there for three days, and was finally cooled down to room
temperature within three days.
All measurements were conducted on powder. For magnetization measurements

7.9(2)mg powder was filled in a plastic capsule. For heat capacity measurements a
pellet was pressed and tempered. A 5.41(7)mg piece was mounted on the platform.
For NPD measurements the powder from seven different batches were tempered,
mixed, and ground together in an Ar glove box. The vanadium container was loaded
with 3.45 g of the powder and sealed in a glove box to avoid decomposition of the
hygroscopic powder.

Na2BaCo(PO4)2

The flux growth synthesis of Na2BaCo(PO4)2 single crystals was first reported in
Ref. [4] and described as follows. Stoichiometric amounts of the reactants Na2CO3,
BaCO3, CoO, and (NH4)2HPO4 were ground together with the flux media NaCl.
The mixture was heated in air to 950 ◦C. Pink single crystals formed during the
cooling to 750 ◦C. Reproducing single crystal growth with these instructions was
not possible in our lab. Some crucial parts of the synthesis had to be adjusted
to obtain single crystals. The temperature was lowered to 850 ◦C, the more active
Co(NO3)2 was used as Co source and the atmosphere was changed from air to N2

to prevent the oxidization of cobalt. The procedure was as follows. In an Ar glove
box the educts Na2CO3 (99.999% Sigma-Aldrich), BaCO3 (99.997% Alfa Aesar),
Co(NO3)2·6H2O (99.999% Sigma-Aldrich), and (NH4)2HPO4 (99% Grüssing GmbH)
were mixed in stoichiometric amounts and ground together in an agate mortar with
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Figure 3.3.: Single crystals. (a) Single crystals of Na2BaCo(PO4)2 from approxi-
mately four different batches. (b) Largest Na2BaCo(PO4)2 single crystal in terms of
area. The crystal has a weight of around 0.26mg and was used for 3He heat capacity
measurements. (c) The thickness of Na2BaCo(PO4)2 single crystals is usually around
200µm. (d) Laue diffraction pattern of a Na2BaCo(PO4)2 single crystal. The pattern
can be indexed with a trigonal space group. (e) Single crystals of Na2SrCo(PO4)2.

the flux medium NaCl (99.99% Alfa Aesar) (Co :Cl 1 : 25). In the horizontal furnace
the mixture in the alumina combustion boat was heated from room temperature in
2 hours to 850 ◦C and cooled to 750 ◦C with a rate of 3K/h. A lower cooling rate
of 1K/h had no impact on the crystal size. The reaction was conducted in a N2

flow (20 sccm). The pink crystals, which grew in the end regions of the combustion
boat, were detached mechanically with spatula and tweezers and/or the crucible
was immersed in distilled water. Afterwards, the crystals were cleaned with distilled
water in an ultrasonic bath to remove residuals from the growth. Finally, the crystals
were manually sorted out under a microscope. The crystals are thin platelets with
an average size of 1 mm2 and a thickness usually of around 200µm [Fig. 3.3(a)-(d)].
Magnetization, heat capacity, thermal expansion, magnetostriction, magnetocaloric,
and NMR were measured on single crystals with a weight below 1mg. A 6.13(1)mg
single crystal was used for 4He heat capacity measurements because larger sample
masses are required. Powder for high-resolution synchrotron XRPD measurements
were prepared by grinding single crystals from seven different batches. The powder
was filled in a quartz capillary with a radius of 0.5mm and sealed with grease.

Na2SrCo(PO4)2

The single crystal growth of Na2SrCo(PO4)2 is analogous to Na2BaCo(PO4)2. Dif-
ferent Sr sources (SrCl2, SrCO3, and Sr(NO3)2) were tested in combination with
different Co sources (Co2C2O4 and Co(NO3)2·6H2O). Clean crystals were only ob-
tained with the educts SrCl2 (anhydrous, 99.5% Alfa Aesar) and Co(NO3)2·6H2O
and a cooling rate of 1.5K/h. In contrast to Na2BaCo(PO4)2, the crystals did not
form in the end regions of the combustion boat but in the center together with
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other phases. The purity, amount, and size of the crystals varied from one batch to
another and the growth procedure was not always successful. The yield was always
lower compared to the Na2BaCo(PO4)2 synthesis. Pink crystals also formed on the
quartz tube suggesting that the growth is not exclusively carried by flux growth but
also by vapor transport. The Na2SrCo(PO4)2 crystals are comparable in size to the
Na2BaCo(PO4)2 crystals but show a lower thickness [see Fig. 3.3(e)]. Magnetization
and heat capacity were measured on single crystals. Due to the light weight of the
sample, the heat capacity measurements were limited to temperatures up to 10K.
For synchrotron XRPD the single crystals obtained from nine batches were ground.
To allow for a proper mounting, the quartz capillary has to be filled approximately
up to 2 cm. A crushed quartz capillary was used as filler material and the quartz
powder was carefully placed on top of the Na2SrCo(PO4)2 powder.

3.2. Diffraction

3.2.1. X-ray Powder Diffraction

The used educts were first checked with the benchtop diffractometer MiniFlex600
from Rigaku equipped with a fixed x-ray tube operated at 40 kV and 15mA. The
diffraction data were collected in Bragg-Brentano geometry and with CuKα radiation
(λKα = 1.5418 Å). A 5.0 ◦ Soller slit in the incoming beam path limited the axial
divergence. A 10mm mask limited the beam height and a 1.250 ◦ divergence slit
limited the angular divergence. A 5.0 ◦ Soller slit and a 13mm anti-scatter slit
to reduce beam scatter were placed in front of the D/teX Ultra2 detector. The
powder was attached with grease onto a Si single crystal sample holder with zero
background.
The control of the sample quality and a first structural characterization were

performed in-house using the x-ray diffractometer EMPYREAN from Panalytical. The
samples were as well measured with CuKα radiation in Bragg-Brentano geometry
but in this setup, the position of the spinning sample holder was fixed and tube
and detector moved in θ − θ geometry. The x-ray tube was operated at 40 kV and
40mA. The incident beam optic module contained a 1/8 ◦ divergence slit, a 10mm
fixed mask, a focusing mirror, a 0.04 rad Soller slit, and a 1/2 ◦ anti-scatter slit. The
optic module in front of the 1D-line detector (PIXcel3D) contained a 7.5 or 8mm
anti-scatter slit, and a 0.04 rad Soller slit. An obliquely cut silicon crystal with zero
background was used as sample holder. Small amounts of powder are sufficient and
were sprinkled onto the sample holder with a drop of isopropanol.
In general, the program JANA2006 [56] was used to refine structural models. To

quantify the amount of stacking faults in Na2RuO3, the diffraction pattern was
simulated with GSAS-II [57] using the DIFFaX routine [58, 59]. Since for the DIFFaX
routine a unit cell with α, β = 90 ◦ is necessary, the monoclinic unit cell had to be
transformed into a cartesian coordinate system first. In a second step, the faulted
stacking vector and the ratio of ideal and faulted stacking had to be chosen [59].
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The powder diffraction pattern was then simulated in recursive mode under the
assumption of an infinite number of layers.

3.2.2. Synchrotron X-ray Powder Diffraction

To go beyond the resolution obtained with the laboratory x-ray diffraction, the
wavelength has to be further decreased. At the ID22 beamline of the European Syn-
chrotron Radiation Facility (Grenoble, France) high-resolution synchrotron XRPD
measurements were performed with a wavelength of 0.35423 Å. The experiments
were performed with Alexander A. Tsirlin and the beamline scientists Andy Fitch,
Catherine Dejoie, and Ola Grendal. The data for Na2BaCo(PO4)2 were collected at
ALBA (Barcelona, Spain) with a wavelength of 0.35405 Å by Aleksandr Zubtsovskii
and Alexander A. Tsirlin.
The electrons for the synchrotron are produced with an electron gun and are pre-

accelerated in a linear accelerator. Before entering the storage ring, the electrons
are accelerated in a booster synchrotron. In the storage ring the electrons are kept
close to the speed of light by synchronizing the frequency of the electric field to
the orbital period of the electrons which becomes larger due to relativistic mass
increase. Additionally, the magnetic field strength has to be increased to maintain
the orbital path. Tangential to the direction of movement the accelerated charged
particles emit electromagnetic radiation in form of synchrotron radiation which is
guided to the beamlines.
For the measurements, quartz capillaries were filled with fine powder obtained

from grinding single crystals. Based on the calculation of x-ray absorption for dif-
ferent diameters of the capillaries, a suited capillary was chosen to ensure a good
balance between the amount of sample and the level of absorption. The beam-
line is equipped with different options to set various temperature windows. For
the Na2BaCo(PO4)2 sample the temperatures between 10 and 225K were set with
a He flow cryostat and the temperatures between 150 and 300K with a N2 flow
cryostream. For the Na2SrCo(PO4)2 sample the He flow cryostat was used for tem-
peratures between 10 and 220K, the N2 flow cryostream for temperatures between
150 and 450K, and the hot-air blower was used to cover the temperatures between
450 and 1025K. Structural models were refined with JANA2006 [56].

3.2.3. Neutron Powder Diffraction

At the Institut Laue-Langevin (Grenoble, France) neutrons are created by fission.
NPD experiments on Na3RuO4 were performed under supervision of the local con-
tact Clemens Ritter. The measurements were conducted at the two-axis diffrac-
tometers D2B and D20 sketched in Fig. 3.4. The high resolution of the instrument
D2B is achieved by the large take-off angle of 135 ◦ of the Ge monochromator and
two collimators. The first one collimates the polychromatic beam and the second
radial collimator is located in front of the detector. The 2D-detector consists of 128
3He detector tubes which are spaced in 1.25 ◦ intervals. The diffraction pattern is
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Figure 3.4.: NPD beamlines at which the data were collected. (a) Instrument D2B is
a high-resolution diffractometer with large take-off angle of the monochromator and
two collimators. (b) High-intensity instrument D20 with a static detector. The figures
were adapted from Ref. [61].

recorded by moving the detector and the intensity is summed over several detectors.
A cryostat as sample environment offers a base temperature of 1.5K. Due to the
high resolution, the first experiments were performed at D2B to characterize the crys-
tal structure in dependence of the temperature and to seek for possible structural
phase transitions. At a wavelength of 1.594 Å five shorter scans at 300, 250, 200,
150, and 100K and three longer scans of 4.5 h at 40, 27, and 1.5K were recorded.
The experimental setup is always a trade-off between resolution and intensity but
magnetic Bragg peaks could already be observed with the instrument D2B.
To study the magnetic structure, measurements were performed at the beamline

D20 with the wavelength 2.415 Å. The collimators are omitted and a static detector
allows to collect high intensity data. First, a thermodiffractogram (117 measure-
ments, 10 minutes each) was recorded by ramping the temperature from 5 to 40K
(0.03K/min). The magnetic thermodiffractogram was obtained by subtracting the
nuclear background measured at 40K. After this first overview, 2 h measurements at
the selected temperatures 1.5, 10, 15, 20, 23, 25, 27, 29, 31, and 40K were performed
for future refinement of the magnetic structure. Instead of the 40K data, the 31K
data were used as nuclear background for a better subtraction of the nuclear Bragg
peaks. The structural models were refined with FullProf [60].
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3.3. Spectroscopy

3.3.1. Nuclear Magnetic Resonance

In NMR spectroscopy, nuclei with non-zero nuclear spin I act as probes for local
fields. One of the probe nucleus looked at later is 31P with I = 1/2. In a static
magnetic field with flux density B0, Zeeman splitting lifts the degeneracy of the
ms = ±1/2 levels with the energy difference ∆E = γℏB0 = ℏωL between the Zee-
man levels. The gyromagnetic ratio of a nuclei γ is of the order of several MHz/T
and with laboratory fields of a few Tesla, pulses in the radio frequency range lead
to resonance [62]. For resonance, the radio frequency has to match the Larmor fre-
quency ωL with which the nuclear spins precess around the axis of B0.
Beside the external magnetic field, internal fields are probed and lead to a shift

of the resonance frequency. The surrounding environment of the nuclei can have
shielding or de-shielding effects, leading to a chemical shift constant with temper-
ature. The nuclear spins can also couple to the electron spin of the magnetic ion.
This coupling is expressed in the most general case via the hyperfine coupling ten-
sor ¯̄A.
The associated temperature-dependent shift is also referred to as Knight shift and
is connected to the local spin susceptibility χs in the paramagnetic state as follows
[65]

K(T ) = ¯̄A ¯̄χs(T ). (3.1)

Nuclei with spins larger than 1/2, like 23Na with I = 3/2, have a non-spherically
symmetric electric quadrupolar moment which interacts with the surrounding elec-
tric field gradients [see Fig. 3.5(a)]. Instead of one resonance line, satellites form in
accordance with first-order perturbation theory. Second-order quadrupolar interac-
tions affect all level splittings including the central transition, which causes unequal
shifts of the satellites with respect to the central transition [63].
In general, the interactions are anisotropic. This results in a line broadening in

the case of polycrystalline samples and a loss of spectral resolution. To overcome
this problem, the powder samples are spun rapidly around an axis which is tilted
by 54.74 ◦ from the external magnetic field axis. This method is called magic an-
gle spinning (MAS). The angular dependence of the dipolar coupling, the chemical
shift, and the first-order quadrupolar coupling are given, inter alia, by a second-order
Legendre polynominal P2(cos θ) = 0.5 · (3 cos θ2 − 1), with the angle θ between the
vector connecting two spins and the magnetic field axis. Fast spinning around the
magic angle axis leads to an averaging of the interaction components perpendicular
to that axis and thus a complete annihilation in the case of interactions described
with the second-order Legendre polynominal. [66]
NMR measures additionally the dynamics in the system. At resonance, the nu-

clear spins become phase coherent and a π/2 pulse rotates the spins into the plane
perpendicular to B0. The transverse magnetization induces a current in a coil. The
signal decays with time because the transverse magnetization is lost due to dephas-
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Figure 3.5.: Some NMR basics. (a) Energy level splitting in the case of a nucleus
with spin I = 3/2. Due to first-order quadrupolar interactions, satellite lines will
emerge in the NMR spectra. Second-order quadrupolar interaction affects also the
central transition, leading to different shifts of the satellites with respect to the cen-
tral transition. The figure is adapted from Ref. [63]. (b) Illustration of the spin echo
pulse technique. The phase coherent spins are rotated into the plane perpendicular
to the static magnetic field by a π/2 pulse. The nuclear spins start to dephase due to
inhomogeneities of the magnetic field. After a π pulse, a spin echo can be recorded.
The diagrammatic concepts are taken from Ref. [64]. (c) The precession of the net
magnetization induces a signal, called the free induction decay, in a coil. The signal
oscillates with the Larmor frequency and is damped due to spin-spin relaxation pro-
cesses.
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ing [see Fig. 3.5(b) top row]. The induced signal in the coil is called free induction
decay and has the form of a damped sine wave (sinωLt) e

−t/T2 [67] [see Fig. 3.5(c)].
Fourier transformation leads to the NMR spectra and the exponentially decaying en-
velop is governed by T2, the spin-spin relaxation time. Direct spin-spin interactions
and field inhomogeneities are responsible for the dephasing. By applying a π pulse
after the π/2 pulse (spin echo pulse sequence), the spins are turned by 180 ◦ [64].
Thus, dephasing due to inhomogeneities of static magnetic fields is prevented and
only the interactions between the spins contribute [see Fig. 3.5(b)]. The spin-spin
relaxation process has no effect on the energy of the spin system. The exponen-
tial relaxation back to the Boltzmann equilibrium, that is, the restoration of the
equilibrium magnetizationM0, is quantified by the decoupled spin-lattice relaxation
time T1. In the relaxation process, energy is exchanged with the surrounding lattice
[64]. For a magnetic field along z, the evolution of the macroscopic magnetization
(Mx,My,Mz) is given by the Bloch equations [68]

dMx

dt
= γMy(t)B0 −

Mx(t)

T2
(3.2)

dMy

dt
= −γMx(t)B0 −

My(t)

T2
(3.3)

dMz

dt
=
M0 −Mz(t)

T1
. (3.4)

The first term in equations 3.2 and 3.3 describe the Larmor precession, and the
remaining terms represent the relaxation.

The 31P and 23Na spin echo NMR measurements at a static magnetic field of
4.7T were performed by Ivo Heinmaa and Raivo Stern at the National Institute
of Chemical Physics and Biophysics (Tallinn, Estonia). The spectrometer Bruker
AVANCE-II was used. For powder measurements 38mg of the powder obtained by
grinding the crystals of ten batches were filled in a Si3N4 rotor with a diameter
of 1.8mm. A first MAS NMR spectrum at room temperature was recorded. All
other measurements were carried out on a static sample. Measurements were also
performed on one single crystal. A He flow cryostat allowed measurements down to
10K. For 31P the resonance of H3PO4 at 80.971MHz and for 23Na the resonance of
NaCl dissolved in water at 52.912MHz were used as reference.

3.3.2. Resonant Inelastic X-ray Scattering

RIXS is a technique used to probe the electronic structure, in this work of Na2RuO3.
To perform experiments in resonance at the L2,3 absorption edge of 4d elements, an
intermediate x-ray energy is required [69]. Intermediate x-ray energy RIXS (IRIXS)
measurements were performed at the Ru L3-edge of 2840 eV. IRIXS is a two-step
process of absorption and spontaneous emission. An incoming photon excites a core
electron (here 2p) to an unoccupied state (here 4d) [44]. The excited state decays
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when an electron fills the core hole and consequently a photon is emitted in a ran-
dom direction. The emitted photons are detected at a fixed angle. Number of the
scattered photons and the energy loss between the incident and emitted photons,
corresponding to the low-energy excitations, are recorded [70, 71].

The IRIXS measurements were carried out by Hakuto Suzuki under the super-
vision of Bernhard Keimer at Deutsches Elektronen-Synchrotron (Hamburg, Ger-
many) at the beamline P01 of PETRAIII [69]. The photons hit the 3mm pellet of
pressed Na2RuO3 powder and the scattered photons were detected at an angle of
90 ◦ with respect to the incident beam. At 300K the spectra were recorded for the
incident x-ray energies 2838.9 eV and 2839.4 eV. An additional spectrum was mea-
sured at the incident energy of 2838.9 eV at 25K. The non-resonant spectrum of
silver was used to calibrate the zero energy loss.

3.4. Cooling Techniques

With 4He bath cryostats temperatures down to the boiling point of 4.2K are directly
accessible. Further cooling is realized with 4He evaporation cryostats. The slope of
the vapor pressure curve is given by the Clausius-Clapeyron equation

dp

dT
=

L

T∆V
(3.5)

with the evaporation or latent heat L. Under the assumption of an ideal gas equa-
tion 3.5 transforms into the Arrhenius form

p = p0 exp

[
−L

R

(
1

T
− 1

T0

)]
(3.6)

with p0 = 1013mbar and T0 = 4.2K for 4He. When the vapor above the liquid
helium is pumped, the temperature can be reduced down to 1.8K because latent
heat is needed for the evaporation of helium. Due to the lower latent heat com-
pared to 4He, 3He has a higher vapor pressure [see Fig. 3.6(a)] [72]. With modest
pumping, temperatures of 400mK can be reached if 3He is used as cryogenic liq-
uid. Additionally, no disturbing superfluid films acting as possible thermal links
occur. The lower millikelvin regime can be reached by adiabatic demagnetization
or dilution refrigerators. Within the framework of this work, temperatures down
to 40mK were accessed with a dilution refrigerator, which uses a 3He/4He-mixture.
Below 0.87K a miscibility gap opens [see Fig. 3.6(b)] [73]. Close to 0K a nearly
pure 3He phase and a 4He-rich phase containing around 6.5% 3He coexist [74, 75].
The finite solubility of 3He in 4He is due to a stronger 4He-3He bonding compared to
a 3He-3He bonding as a consequence of the lower zero-point energy of 4He, and due
to a reduced Fermi energy which scales with the number density of fermions [76].
In a dilution refrigerator, 3He is removed from the 4He-rich phase, which leads to
an osmotic pressure and to the transfer of 3He across the phase boundary from the
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Figure 3.6.: Low-temperature properties of helium. (a) 3He has a higher vapor
pressure than 4He. The data were taken from Ref. [72]. (b) The 4He-3He phase
diagram shows a miscibility gap below 0.87K. The phase diagram was adapted from
Ref. [76].

nearly pure 3He-phase to the 4He-rich phase. In analogy to the role of the latent heat
in the evaporative cooling, the required mixing enthalpy leads to further cooling of
the mixture. 3He is used in a circuit and is finally led back into the mixing chamber.

3.5. Magnetization

The superconducting quantum interference device (SQUID) is sensitive to changes
of the magnetic flux Φ on the order of a flux quantum Φ0 = h/2e = 2.0678·10−15Wb
(1Wb = 1Tm2). The experimental setup is sketched in Fig. 3.7. To reduce noise, the
SQUID is shielded and spatially separated from the sample. The magnetic sample
oscillates within a magnetic field and induces an electrical current in the supercon-
ducting pickup coils. To minimize the effect of the outside environment, the pickup
coils are built as second derivative axial gradiometer. The coil set of the experiment
is coupled to the SQUID into which the input coil induces a magnetic flux ∆Φ. The
SQUID comprises a superconducting loop with two non-superconducting barriers,
the so-called Josephson junctions (JJ). The physical phenomenon the SQUID takes
advantage of is the quantization of the magnetic flux within a superconducting loop,
which can only be an integer multiple n of Φ0. The induction of the magnetic flux
∆Φ leads to screening currents Is within the superconducting loop to compensate
that flux. Increasing the magnetic flux leads to higher screening currents until the
highest screening currents are reached for ∆Φ = Φ0/2. Further increase of the flux
leads to the reverse of the screening currents to raise Φ to the next integer value
(n + 1)Φ0. To detect the currents, two JJ are integrated into the superconducting
ring. Up to a critical value Ic, the current can tunnel through the junction without
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Figure 3.7.: Sketch of the setup for magnetization measurements. The oscillating
sample induces a current in the pickup coils. The input coil induces the measurement
signal as magnetic flux ∆Φ in the SQUID. The SQUID is a superconducting loop
with two Josephson junctions (JJ). Increase or decrease of the magnetic flux leads to
a periodically changing output voltage with the period of the flux quantum Φ0. The
figure was adapted from Refs. [77] and [78].

voltage drop. The total current through one JJ is given by Itot = Ibias−Is (Itot < Ic),
and the current through the other JJ is given by Itot = Ibias + Is (Itot > Ic). Ibias
is the DC bias current at which the JJ is operated. Since one JJ is now operated
above Ic, a voltage drop across the JJ can be measured. The voltage as a function
of the external magnetic flux changes periodically with the period of Φ0. A feed-
back current locks a specific V −Φ point and quantifies the external magnetic flux.
The signal as a function of sample position is fitted by the software with a dipole
response function under the assumption of a point source with constant magnetic
moment during the measurement. [77, 78]
Measurements in DC mode determine the size of the magnetic moment in equi-

librium. AC measurements allow to probe the magnetization dynamics. Therefore,
an AC drive magnetic field with a given frequency and amplitude is applied in ad-
dition to the DC field and the time dependent variation of the magnetic moment
is recorded. The measured AC susceptibility has a magnitude χ and a phase shift
ϕ with respect to the drive signal. The real component of the susceptibility can be
written as χ′ = χ cosϕ and corresponds to the in-phase response of the magnetic
moment. The imaginary component χ′′ = χ sinϕ is the out-of-phase response re-
lated to dissipative processes.

Magnetization was measured with the MPMS3 from Quantum Design. In the
MPMS3 magnetic fields up to 7T can be generated. For powder measurements with
the DC, VSM, or AC option, plastic capsules were filled and closed in an Ar glove
box. The capsule was then clamped into a brass sample holder [see Fig. 3.8(a)].
With this setup measurements between 2 and 400K can be performed.
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Figure 3.8.: MPMS3 sample mounting. (a) Filled powder capsule in a brass sample
holder for measurements between 2 and 400K. (b) Sample holder with cement glue
for the oven option covering temperatures between 300 and 900K. The copper foil is
wrapped around the sample for thermal isolation. (c) Na2BaCo(PO4)2 single crystal
glued with varnish onto a quartz sample holder for measurements between 2 and 400K.
In this case B is parallel to c during the measurement. (d) Na2BaCo(PO4)2 single
crystal glued with varnish in a plastic straw for measurements with the 3He option
down to 400mK. The magnetization is measured for B parallel to c.
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For temperature dependent magnetization measurements to higher temperatures,
the oven option was used. The standard setup described above is operated between
1 and 10Torr. In contrast, the oven option requires a vacuum with pressures below
50mTorr, which may lead to the out gassing of the sample upon heating and affects
the chemical stability.
For powder measurements in DC mode up to 900K a pellet was glued with ce-

ment onto a high-temperature sample holder [see Fig. 3.8(b)]. After the cement
has dried a Cu foil was wrapped around the sample to specifically heat the sample
without heating the environment. The temperature was swept up and down in loops
to check for possible sample degradation during the measurement. For Na2RuO3

measurements up to 500K could be performed. At higher temperatures a difference
was observed between the up sweep and the down sweep indicating decomposition
of the sample.
For DC-mode measurements of single crystals between 2 and 400K a quartz sam-

ple holder was used. A small amount of GE varnish was used to attach the crystal
to the sample holder. The Na2BaCo(PO4)2 crystal in Fig. 3.8(c) was glued in such
a way that the magnetic field was oriented parallel to the c axis during the mea-
surement. For measurements with the magnetic field oriented perpendicular to the
c axis, the platelet was glued planar onto the sample holder.
By using the 3He inset from Quantum Design, DC-mode measurements down to

400mK could be performed. The single crystals were glued with GE varnish into a
plastic straw [see Fig. 3.8(d)]. The sample centering was performed at room tem-
perature and again at 400mK to account for possible changes of the center during
cooling.

3.6. Heat Capacity

The heat capacity C is defined as the amount of heat dQ which is needed to increase
the temperature by dT

C =
dQ

dT
. (3.7)

The heat capacity is referred to as specific heat Cmol if normalized to the molar
number.
The absorption of heat leads to excitations in the system. The total heat capacity

is a sum of the heat capacity of the lattice Clat, the heat capacity due to magnetic
excitations Cmag, the heat capacity due to conduction electrons Ce-, and a nuclear
contribution Cnuc

C = Clat + Cmag + Ce- + Cnuc. (3.8)

Cnuc will be briefly covered in the context of Schottky anomalies (see Subsec. 3.6.1).
Clat and Cmag will be shortly reviewed below (Subsecs. 3.6.2 and 3.6.3). Ce- is not
discussed any further as this contribution does not play a role in the insulating
systems of this work.
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Figure 3.9.: Heat capacity of a two-level system. The Schottky anomaly shows an
exponential behavior for T ≪ ∆E/kB and a power-law behavior for T ≫ ∆E/kB.

Measurements of the heat capacity are usually performed at constant pressure,
whereas theoretical considerations take advantage of the relation

CV =

(
dQ

dT

)
V

=

(
dU

dT

)
V

, (3.9)

which only holds for a constant volume. U is the internal energy. In contrast to
gases, thanks to a small thermal expansion in solids, the distinction between CV and
Cp is not necessarily required [79].

3.6.1. Schottky Anomaly

Statistical thermodynamics postulates that the internal energy U of a system with
N particles is given by

U = N⟨E⟩, (3.10)

with the expectation value for the energy of a particle ⟨E⟩. The expectation value
is given by ⟨E⟩ =

∑n
i=1 piEi. The sum extends over all energy levels i (1 ≤ i ≤ n)

and pi is the probability to find the particle in state i. Now the simplest system that
can be thermally excited, two levels separated by the energy ∆E, will be consid-
ered. In thermal equilibrium, the occupation probability is given by the Boltzmann
distribution. With the assumption E1 = 0

⟨E⟩ = ∆E e−∆E/kBT

1 + e−∆E/kBT
(3.11)
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is obtained. With the equations 3.9 to 3.11 the heat capacity can be expressed as

CV = NkB

(
∆E

kBT

)2
e∆E/kBT

[e∆E/kBT + 1]
2 . (3.12)

The temperature dependence of the so called Schottky anomaly is visualized in
Fig. 3.9. At low temperatures (T ≪ ∆E/kB) the energy gap cannot be overcome
and the thermally activated process leads to an exponential behavior of the heat
capacity. At high temperatures (T ≫ ∆E/kB) the system cannot absorb more
heat because the two levels are equally populated and the heat capacity vanishes
following a power-law behavior.
Internal or external magnetic or electric fields can lift the degeneracies of spin

states and create Schottky systems with splittings at different energy scales. The
splitting of the nuclear levels of magnetic nuclei is in the radio-frequency range.
This results in a Schottky anomaly at temperatures below 10mK [80]. The ∝
1/T 2 tail can still be observed at higher temperatures and may lead to an upturn
of the specific heat at the lowest temperatures accessed with the dilution fridge.
Schottky anomalies are also observed in multilevel systems, although mathematically
expressed differently [80].

3.6.2. Lattice Heat Capacity

The lattice vibrations can be treated as quantum mechanical oscillators with discrete
energy levels which are separated by ℏω. ω is the angular frequency of the oscilla-
tor. The bosonic quasiparticles, the phonons, follow the Bose-Einstein distribution
fBE(ω, T ) and hence, the thermal energy of one oscillator is given as

⟨E⟩ = fBE(ω, T )ℏω. (3.13)

Debye introduced a density of states D(ω) into which enters the assumption of a
linear dispersion relation ω = vk with the sound velocity v and the wave vector k.
The expression for D(ω) can be found in solid state textbooks [81]. Equation 3.10
can now be written as

U =

∫ ωD

0

D(ω)fBE(ω, T )ℏωdω. (3.14)

The normalization of the density of states yields the cut-off frequency ωD. With
equation 3.9 the heat capacity can be derived

CV = 9NkB

(
T

ΘD

)3 ∫ xD

0

x4ex

(ex − 1)2
dx, (3.15)

with x = ℏω/kBT and xD = ℏωD/kBT ≡ θ/T . θ is the Debye temperature and
depends on the material. For T ≫ θ the molar heat capacity becomes

CV,mol = 3R, (3.16)
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which is the classical Dulong-Petit law. For T ≪ θ, the specific heat follows a cubic
temperature dependence

CV,mol ∝
(
T

ΘD

)3

. (3.17)

3.6.3. Magnetic Heat Capacity

The precessions of coupled spins in magnetically ordered systems are collective exci-
tations which add a magnetic contribution to the heat capacity. The quantized spin
waves are also called magnons due to the close analogy to phonons. Magnons are
bosonic quasiparticles and equation 3.13 holds true as well. The temperature depen-
dence of the heat capacity depends now on the dispersion relation which enters the
density of states. For small wave vectors, magnons in 3D Heisenberg antiferromag-
nets have the same dispersion relation ω ∝ k as phonons. In analogy to the Debye
law for phonons, the magnetic heat capacity shows a cubic temperature dependence,
Cmag ∝ T 3. 2D antiferromagnets show a Cmag ∝ T 2 behavior and ferromagnets a
Cmag ∝ T 3/2 behavior. Power-law dependencies are characteristic for gapless excita-
tions. The magnetic heat capacity due to gapped excitations follows an exponential
behavior (like the low-temperature behavior of a gapped two-level system described
in Subsec. 3.6.1).
Spin wave theory does not apply for QSLs, which feature spin excitations with

fractional quantum numbers. Any non-T 3 behavior may be indicative of exotic
excitations, especially when no long-range order is observed. There is no generic be-
havior of the low-temperature heat capacity for QSLs which can again be classified
into those with gapped excitations following an Arrhenius law and those with gap-
less excitations showing a Cmag ∝ Tα dependency. For example, spin liquids with
a Fermi surface of spinons show, in analogy to Fermi metals, a linear temperature
dependency (α = 1) or even a sublinear dependency (α = 2/3) [82], and α = 2 for
Dirac QSLs [83].

3.6.4. Entropy

As is clearly apparent from dQ = TdS, the entropy S can be obtained from the
measured heat capacity

S(T ) =

∫ T

0

C

T ′dT
′. (3.18)

In the following, the high-temperature limit of the entropy which carries information
about the ground state will be looked at. The Helmholtz free energy is given as
F = −kBT lnZ. Z is the partition function which equals the normalization constant
of the Boltzmann distribution introduced with equation 3.11 and is expressed as a
sum extending over all states Z =

∑n
i=1 e

−Ei/(kBT ). The entropy can now be written
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as

S = −dF
dT

= kB lnZ + kBT
d lnZ

dT

= kB ln
n∑

i=1

e−Ei/(kBT ) +
1

T

∑n
i=1Ei e

−Ei/(kBT )∑n
i=1 e

−Ei/(kBT )
.

(3.19)

For high temperatures, the last term ⟨E⟩/T becomes vanishingly small and the
high-temperature molar entropy is dominated by

lim
T→∞

Smol = R ln(n). (3.20)

Hence, the high-temperature limit of the entropy gives immediate access to the
multiplicity of the ground state. Considering magnetic entropy n is given as 2J +1.

3.6.5. Measurement Technique

Thermal relaxation calorimetry was used to determine the heat capacity [84–86].
The simplest case is illustrated in Fig. 3.10(a). The sample with the heat capacity
CS is thermally linked to a bath with constant bath temperature TB. The link has
the thermal conductance kSB. The sample is directly subjected to a heat pulse with
power P (t). This is mathematically described in analogy to an electrical circuit with

P (t) = kSB∆T + CS
d∆T

dt
. (3.21)

This linear first order differential equation describes the evolution of the temperature
difference ∆T between sample and bath with time. Rearranging leads to

P (t)

CS

=
kSB
CS

∆T +
d∆T

dt
. (3.22)

The heating power is well defined and indicated in Fig. 3.10(b). The sample is first
heated with constant power P0 and when the power is turned off at time t0 the
sample relaxes back to the bath temperature. With the boundary conditions that
sample and bath are in thermal equilibrium at t = 0 and that the temperature
difference is continuous at t0, the solution is given as

∆T (t) =

{
(P0/kSB)

[
1− e−(kSB/CS) t

]
, 0 ≤ t ≤ t0

(P0/kSB)
(
1− e−(kSB/CS) t0

) [
e−(kSB/CS) (t−t0)

]
, t ≥ t0.

(3.23)

During heating (0 ≤ t ≤ t0) the rising exponential and during cooling (t > t0) the
falling exponential are governed by CS and kSB. The two quantities can be combined
in the time constant τ = CS/kSB leading to

∆T (t) =

{
(τP0/CS)

[
1− e−t/τ

]
, 0 ≤ t ≤ t0

(τP0/CS)
(
1− et0/τ

) [
e−(t−t0)/τ

]
, t ≥ t0.

(3.24)
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Figure 3.10.: Heat capacity measurements by the thermal relaxation method. (a)
In the simple relaxation model the sample is thermally linked to a bath with constant
temperature. The sample is then subjected to a heat pulse P (t). The response is
given in (b) During the heating the temperature difference between sample and bath
grows exponentially. When the heater power is turned off the temperature difference
decreases exponentially. The figure was adapted from Ref. [84]. (c) In the experiment
the sample is attached to a platform containing heater and thermometer. The second
thermal link between platform and sample is considered in the two-tau model. (d)
Na2BaCo(PO4)2 single crystal attached with N-grease to the platform.

The time constant is determined experimentally by fitting the exemplary data
shown in Fig. 3.10(b) and with known kSB the heat capacity is accessible.
In the experiment it is impracticable to link every single sample directly to a

bath and to attach heater and thermometer. Instead, the sample is heated indi-
rectly by placing it onto a platform. The schematic in Fig. 3.10(a) is augmented
to Fig. 3.10(c). The platform is directly linked with wires to the bath and contains
the heater and thermometer. To ensure a good thermal contact between sample
and platform, the sample is attached with vacuum grease suited for low tempera-
tures (N grease). A Na2BaCo(PO4)2 single crystal attached to the platform for 4He
measurements is shown in Fig. 3.10(d). The additional link kPS between platform
and sample is taken into account in the 2τ model. The temperature difference over
time is now described with two exponential functions, one governed by the relax-
ation time between platform and bath τPB and one governed by the simultaneous
relaxation time between platform and sample τPS:

∆T (t) = −
(
A1e

−t/τPB + A2e
−t/τPS

)
. (3.25)

A1 and A2 are constants. τPS is usually much faster which leads to a small drop in
the raw data when the heater is turned off. If the sample is coupled ideally to the
platform, the model reduces to the simple τ model. For a further description of the
2τ model the reader is referred to Ref. [85].

From the measured total heat capacity, the contribution of platform and grease has
to be subtracted to obtain the heat capacity of the sample. Therefore, an addenda
measurement of platform and grease was conducted at the same temperatures and
magnetic fields at which the later measurements were performed.
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The 4He and 3He heat capacity measurements were performed in the PPMS from
Quantum Design. In the case of powder measurements a pellet was mounted on the
platform. For a good internal thermal contact the pellet should be tempered. The
sample coupling was always larger than 90% and the data could always be described
with the 2τ model. In the case of Na2SrCo(PO4)2 single crystals,

4He measurements
were not possible due to sample masses well below 1mg. Mounting several crystals
onto the platform could not help solving the problem since too many different time
constants did not allow for a fitting of the raw data. Na2SrCo(PO4)2 single crystals
could only be analyzed with the 3He option because of the smaller background of
the setup.

3.6.6. Heat Capacity Measurements in the Dilution Refrigerator

For Na2BaCo(PO4)2 heat capacity measurements were performed in a dilution re-
frigerator by Noah Winterhalter-Stocker. Like in the PPMS the heat capacity was
measured with the relaxation method. The principle of the relaxation method was
already described in Subsec. 3.6.5, albeit the setup in the dilution refrigerator is
slightly different. The sample is mounted onto a sapphire platform, which is due
to the suspension design thermally decoupled from the environment. The resistive
heater is attached to the platform below the sample. In contrast to the measurement
in the PPMS, the thermal link to the bath and the RuO2 thermometer are directly
attached on top of the sample. This has the advantage that an additional thermal
link between platform and sample is avoided and the temperature change of the
sample can be described with a single exponential. A deviation from this behavior
can occur if the nuclear heat capacity of the sample and platform contributes to the
measured heat capacity. In this case, the data cannot be described with the simple
model and the analysis may become challenging. For Na2BaCo(PO4)2 no nuclear
contribution was seen in the relaxation curves.

In a first step, the heater was fixed with epoxy to the platform. A Na2BaCo(PO4)2
single crystal around 0.5mg was mounted in a planar manner with GE varnish
on to the platform. Using silver paste and GE varnish the thermal link and the
thermometer, respectively, were glued onto the sample. The heat capacities C(T )
and C(B) were recorded in zero magnetic field and for magnetic fields up to 2T
for B perpendicular to c and B parallel to c. The lowest temperature reached was
50mK.
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4. Results and Discussion

4.1. Na2RuO3

SOC is a key factor that leads to novel exotic states in 4d and 5d transition metal
systems. Widely studied are d5 systems with spin-orbit entangled J = 1/2 pseu-
dospins on a honeycomb lattice with edge-shared octahedra in the context of Kitaev
physics. The here presented Na2RuO3 has a honeycomb lattice with edge-shared
octahedra but with a 4d4 configuration the system should not be confused with a
Kitaev material. The ground state is still debated in the literature and Na2RuO3

is reported as insulating antiferromagnet, semiconducting antiferromagnet and cor-
related electron metal. In general, the ground state of 4d4 Ru compounds is under
discussion. The magnetism in Ca2RuO4 was first explained by tetragonal crystal-
field splitting and Hund’s coupling leading to a S = 1 ground state [87–89]. Later
it was found that the orbital momenta are unquenched and SOC seems to have an
important role in ruthenates and can lead in an interplay with Hund’s coupling and
crystal-field splitting to exotic excitonic magnetism [90]. Experimental findings hint
towards the scenario of J multiplets in Ca2RuO4 with the lowest energy level J = 0
[43, 44, 91]. If the superexchange is comparable in size to the singlet-triplet split-
ting the so called triplon condensation causes the magnetism in the system. RIXS
spectroscopy on single crystals of K2RuCl6 with an undistorted cubic crystal field
revealed the SOC driven non-magnetic J = 0 singlet state [92]. Ref. [92] suggests
the J multiplet scenario as generic basis in 4d4 Ru compounds.
Here, first structural features will be discussed before the analysis of the heat ca-

pacity, magnetization and IRIXS data is addressed with regard to characteristics of
J = 0 physics. The XRPD pattern shows partly reduced peak intensities and asym-
metric peak broadening which originate from the faulted stacking of the honeycomb
slabs. The amount of stacking faults in the structure was quantified by DIFFaX sim-
ulations of the XRPD pattern. In both the heat capacity and magnetization data
down to 2K no phase transitions are observed. Magnetization measurements up
to 500K show a deviation from the Curie-Weiss behaviour and signatures of Van-
Vleck magnetism point towards a non-magnetic J = 0 ground state. This finding
is supported by low-temperature RIXS measurements. The spectrum reveals four
transitions at around 70, 350, 780, and 1000meV. The lowest excitation energy fits
perfect to the SOC energy scale for Ru4+-compounds.
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4.1.1. Crystal Structure and Stacking Faults

The crystal structure is characterized by a honeycomb lattice formed by Ru4+O6

octahedra in the ab plane [see Fig.4.1(a)]. The octahedra are connected via the
edges. The center of the honeycomb cells are each occupied by one Na+ ion. In
addition, the Na+ ions serve as non-magnetic spacer ions and separate the honey-
comb slabs which are stacked along the crystallographic c direction [see Fig.4.1(b)].
The monoclinic unit cell with the symmetry C2/c (no. 15) was already described in
the literature [47]. Simulation on the basis of this symmetry yields the PXRD pat-
tern depicted in Fig. 4.2(a) in black. For comparison with the experimental results,
the measured XRPD pattern is superimposed in red. The simulation and exper-
imental data share common features but show also severe differences in the form
of reduced peak intensities and asymmetric peak broadening in the measured data.
Particularly striking is the broad asymmetric feature at around 20 ◦. This feature
is characteristic for stacking faults and is also referred to as triangular Warren-type
peak originally investigated in the context of faulted stacking in graphite [94]. Also
for layered honeycomb compounds, e.g. Li2IrO3, Li2PtO3, and Li2MnO3, the War-
ren peak is commonly observed in the diffraction data [95–97].
The effect of the stacking faults on the XRPD pattern depends on the propor-

tion of stacking faults in the structure. To simulate the XRPD pattern under the
assumption of stacking faults, a faulted stacking vector has to be chosen first. In

Figure 4.1.: Crystal structure of Na2RuO3. (a) The honeycomb layers in the ab
plane are formed by RuO6 octahedra. Na+ ions occupy the centers of the honeycomb
cells. The Na+ ions which separate the honeycomb layers are omitted for clarity. (b)
The honeycomb layers and Na+ layers are alternately stacked along the c axis. The
ideal stacking along (001) is indicated with the black arrow. The faulted stacking
vector (0.5 0.172 1) drawn in blue was used for the simulation of the XRPD patterns.
The visualization program VESTA was used to depict the crystal structure [93].
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Figure 4.2.: Comparison of the measured XRPD pattern of Na2RuO3 and the simu-
lation of the XRPD pattern under the assumption of stacking faults. (a) Experimental
data and simulated PXRD pattern for the ideal case without stacking faults and for
different proportions of stacking faults. The peak positions for the hexagonal space
group are added as gray ticks. (b) The simulated PXRD pattern for Na2RuO3 with
an amount of stacking faults of 30% is combined with the refined profile parameters
and compared to the experimental data.
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the ideal case the (001) stacking vector stacks the honeycomb layers along c. This is
indicated in Fig. 4.1(b) with the black arrow. The faulted vector is depicted as blue
arrow and shifts one Ru ion onto a Na ion in the center of a honeycomb cell. This
corresponds to a (0.5 0.172 1) stacking vector in the monoclinic coordinate system.
Other descriptions of the stacking faults are possible but a good match of simulation
and experiment in the end justifies the choice. Also multiple stacking vectors are
conceivable but simulating the XRPD pattern with two different stacking vectors
did not lead to a better description of the experimental data. In the following, the
results are given for the (0.5 0.172 1) stacking vector.
Before the results are presented it should be noted that a detailed description

of the simulation procedure with the DIFFaX routine is given in Ref. [59]. As al-
ready mentioned in Sec. 3.2 a coordinate transformation from the monoclinic into
a Cartesian coordinate system is necessary since the program requires the c axis
orthogonal to the ab plane (α, β = 90 ◦, no restrictions for γ). In a first consistency
check the diffraction pattern was simulated for the structure without stacking faults
using the ideal stacking vector only. Thus, the expected diffraction pattern for the
space group C2/c was recreated. Next, the effect of different degrees of disorder on
the diffraction pattern was investigated by setting different ratios of the faulted and
ideal stacking vectors. To introduce for example 10% of stacking faults one out of
ten times the unit cells were stacked in a faulted manner on top of each other. Note
that in this work the unit cell containing two honeycomb layers was used. Care
should be taken when comparing ratios of stacking faults because values found in
the literature are sometimes referred to stacking of unit cells containing only one
honeycomb layer.
The results for different quantities of stacking faults are illustrated in Fig 4.2(a).

Already small amounts of stacking faults of 10% are noticeable, especially in the
region between 20 and 30 ◦ in the form of significant peak broadening and intensity
reduction. The effects become stronger if the degree of disorder increases. For 30%
of faulted stacking the smeared out peaks merge into the Warren-type peak. If the
unit cells are stacked in a completely faulted manner, a featureless Warren-type
peak is observed [see orange pattern in Fig. 4.2(a)].
The easiest way to determine the amount of stacking faults in the compound from

the diffraction pattern is to use two structural models in the Rietveld refinement.
The space group C2/c describes the ideal case and the second space group R3m (no.
166) accounts for the complete stacking disorder [47, 51]. The peak positions in the
second case are given as gray ticks in Fig. 4.2. The hexagonal space group describes
a structure with a random distribution of the Ru and Na ions in the honeycomb lay-
ers. This is only a crude approximation of the real situation. There is no site mixing
in Na2RuO3. The average structure recorded by the x rays is not truly hexagonal
and monoclinic distortions are sill present. The degree of disorder is gained from
the phase fraction. Drawback of this method is that the Warren-type peak cannot
be interpreted and many peak intensities and the asymmetric broadening cannot be
modeled correctly.
A more straightforward estimate of the stacking faults compared to the two-phase
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Figure 4.3.: Heat capacity of Na2RuO3. (a) The heat capacity in zero field and
at 7T does not show any phase transition down to 2K. (b) Low-temperature heat
capacity divided by temperature. The data can be fitted with a phonon contribution
and a Schottky anomaly stemming from magnetic impurities.

approach is possible with the concept of the stacking vector. Fig. 4.2(b) shows the
simulation to which the refined profile parameters were added. The data are well
described assuming 30% of stacking faults. Besides a more accurate evaluation of
the amount of stacking faults, this method can distinguish if low-intensity peaks
stem from stacking faults or impurity phases. For example, the peaks marked with
arrows in Fig. 4.2(b) can be clearly assigned to stacking faults and impurities can
be excluded. However, there is still room for optimization because refining and sim-
ulating simultaneously was not possible and the amount of stacking faults had to
be adapted manually.

4.1.2. Thermodynamic Properties

No phase transition can be observed in the heat capacity. Fig. 4.3(a) shows the
heat capacity between 2 and 100K. The low-temperature part of the heat capacity
divided by temperature is given in Fig. 4.3(b). A sizeable residual value of C/T is
present at 2K and Ref. [51] suggests an electronic contribution to the heat capacity
Cel = γT with the electronic coefficient γ. However, the fit function used by Ref. [51]
C = B · T 3 + γT with the electronic contribution added to the phonon contribution
with constant B fails to describe the data. The fit was added in blue to Fig. 4.3(b).
The data can be described by

C = B1 · T 3 +B2 · T 2 + A · 8.314 ·
(
E

T

)2
eE/T

(eE/T + 1)
2 . (4.1)

The first two terms are phonon contributions. The first term is the known Debye
T 3 law. The prefactor is two orders of magnitude smaller than the prefactor of the
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Figure 4.4.: The susceptibility of Na2RuO3 shows no phase transition. (a) The FC
and ZFC susceptibility measured at 10Oe differ slightly below 15K and show a sharp
upturn below 8K, which can be traced back to magnetic impurities. (b) Ferromagnetic
impurities cause also the small peak in the AC susceptibility. The absence of frequency
dependent shifts excludes a spin glass. (c) The susceptibility measured at 7T shows a
plateau and a clear deviation from the Curie-Weiss behavior. The data can be fitted
accurately by adding a Kotani contribution to the Curie-Weiss fit. The individual
contributions are indicated with dashed lines. The fit is discussed in the text.
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T 2 term. The phonon heat capacity of two dimensional crystals follows a T 2 behav-
ior. The stacking faults in Na2RuO3 possibly break the crystallinity in c direction,
which is mirrored in the T 2 behavior of the heat capacity. Additionally, a Schottky
contribution was added to account for an impurity contribution. The impurity is
non magnetic since the Schottky anomaly is nearly independent of the magnetic
field with E = 7.6(1) and 8.7(2)K for 0 and 7T, respectively. From the entropy
contained in the Schottky anomaly the amount of paramagnetic spins is estimated
to be around 1%. Note, however, that anomalies in the heat capacity or in the
thermal expansion can also be led back to stacking faults [98–100].
Also the magnetic susceptibility does not reveal any phase transition down to 2K.

The abrupt increase of the magnetic susceptibility below 8K [see Fig. 4.4(a)] is typ-
ical of a tiny ferromagnetic impurity contribution. The FC and ZFC susceptibility
at 10Oe shown in Fig. 4.4(a) starts to differ slightly below 15K. This difference of
the FC and ZFC data is probably related to the ferromagnetic contribution and to
exclude that the difference is caused by glassy dynamics AC susceptibility measure-
ments were performed. A small cusp is visible in the AC susceptibility shown in
Fig.4.4(b) at the same temperature at which the sharp increase of the FC and ZFC
susceptibility was observed. In case of a spin glass the cusp would shift to higher
temperatures for higher frequencies. The AC magnetic susceptibility does not show
any frequency dependence and spin glass physics can be ruled out. Instead the weak
magnetism is caused by ferromagnetic impurities.
The susceptibility at 7T up to 500K is given in Fig. 4.4(c) and deviates from a

Curie-Weiss behavior. The data are badly described by the Curie-Weiss fit shown
in blue. Striking is the plateau which was already reported for other d4 compounds
[92, 101] and is characteristic of the Van Vleck contribution to the susceptibility.
The Curie tail at low temperatures is assigned to paramagnetic impurities. The fit
function used to describe the data

χm = χ0+
C

T − θ
+
NAµ0µ

2
B

3kBT

3
[
24 +

(
ξ

2kBT
− 9
)
e−ξ/(2kBT ) +

(
5ξ

2kBT
− 15

)
e−3ξ/(2kBT )

]
ξ

kBT
(1 + 3e−ξ/(2kBT ) + 5e−3ξ/(2kBT ))

(4.2)
consists of a Curie-Weiss part which accounts for the Curie tail and the Kotani part
[15]. Concerning the Kotani part the SOC constant is the only free parameter. It is
noted in passing, that the constant refers to the single-electron SOC strength ξ. In
the literature also λ = ξ/2 can be found but the notation is not used uniformly. As
described in Subsec. 2.5.1 Kotani calculated the Van Vleck susceptibility of 6-fold
coordinated complex d ions. In contrast to rare-earth compounds with the SOC
as dominating interaction, the electrostatic energy due to the surrounding ligands
can not be neglected for transition metal compounds. Kotani included the corre-
sponding energy in the Hamiltonian assuming a crystal field with cubic symmetry.
Moreover, only the low-spin configurations are considered.
The Kotani fit given in equation 4.2 describes the bending. Although the Curie

paramagnetism is caused by impurities, it dominates over the weaker Van Vleck
paramagnetism especially at low temperatures and the fit parameters strongly de-
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Figure 4.5.: Excitations in Na2RuO3. (a) The energies of the t42g multiplet levels
as for the case of Ca2RuO4 depend on the strength of the tetragonal crystal field
∆tetra and the SOC constant ξ. Hund’s coupling leads to the separation of the levels
with different S and L. The scheme was redrawn from Ref. [44]. (b) Two IRIXS
spectra were recorded at 300K for two different incident x-ray energies 2838.9 eV
and 2839.4 eV. At the lower energy 2838.9 eV, the excitations below 1 eV are better
resolved. (c) Beside the IRIXS spectrum at 300K, a further spectrum was recorded
at 25K. Four features, marked with green circles, can thus be observed at 70, 350,
780, and 1000meV. The Ca2RuO4 single crystal data collected with an incident angle
of the photons of 60 ◦ from Ref. [44] are superimposed and the peak positions from
ionic model calculations for K2RuCl6 from Ref. [92] are indicated for comparison.
Measurements by Hakuto Suzuki and Bernhard Keimer.

pend on the chosen temperature window. The parameters obtained by fitting the
data between 57 and 500K are given in Fig. 4.4(c). The Curie contribution is over-
estimated which might be due to the hardly separable contributions. Also the SOC
constant of ξ/kB = 3589(4)K is nearly two times higher than 2014K, the highest
value reported in the literature for Ru4+ [102]. This makes clear that Kotani’s the-
ory does not include every aspect present in this material, which will be further
discussed in Subsec. 4.1.4. The SOC energy ξ ranges between 120 and 170meV
(1400 and 2000K) for Ru4+ compounds [44, 102–104] and possible excitations on
this scale should be detectable with IRIXS.

4.1.3. Resonant Inelastic X-ray Scattering

At 300K two IRIXS spectra were recorded at the L3 absorption edge of Ru. At
2838.9 and 2839.4 eV 2p→ 4d transitions are excited. Three features are observable
in the spectrum shown in Fig. 4.5(b). The excitations below 1 eV can be assigned to
intra t2g excitations. The level scheme up to around 1 eV is sketched in Fig. 4.5(a).
The scheme was originally published for Ca2RuO4 [44] to which Na2RuO3 will be
compared at the end of this subsection and in Subsec. 4.1.4. The excitations above
3 eV correspond to t2g → eg transitions. At the higher incident energy (2839.4 eV)
the resolution of the low energy excitations is reduced, whereas the feature above
3 eV shows a higher intensity. Since the focus is on the lowest energy excitations, a
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third spectrum was collected at the lower incident energy of 2838.9 eV at 25K [see
Fig. 4.5(c)]. Three transitions at 70, 350, and 780meV can thus be resolved and are
indicated with green circles. An additional weak and broad peak can be identified
at around 1 eV.
In Fig. 4.5(c) the collected IRIXS spectra are compared to the IRIXS data of

Ca2RuO4 and K2RuCl6, two other 4d4 Ru4+ compounds [44, 92]. In the case of
Ca2RuO4 the spectrum recorded at the incident energy of 2838.5 eV at 12K is su-
perimposed in dark blue on the data in Fig. 4.5(c). The spectra show strong resem-
blance concerning the excitation energies. Ca2RuO4 as well shows four transitions up
to 1 eV. The energies of 50, 320, 750, and 1000meV in Ca2RuO4 are very similar to
those of Na2RuO3 at around 70, 350, 780, and 1000meV. The spectrum of K2RuCl6
shows very sharp peaks and the spectra are more difficult to compare. Only the
peak positions are added to Fig. 4.5(c). In K2RuCl6 two excitations were recorded
below 0.5 eV as well and the lowest energy excitation at 66meV coincides with the
lowest energy excitation in Na2RuO3. The comparison to Ca2RuO4 and K2RuCl6
will be further discussed in Subsec. 4.1.4 in the context of J = 0 magnetism.

4.1.4. Discussion

It is published that Na2RuO3 crystallizes in the Li2SnO3 structure type with the
symmetry C2/c [47]. Yet, it should be noted that the peak broadening and reduc-
tion of the intensities due to the stacking faults observed in the XRPD pattern do
not allow for the determination of the space group symmetry unambiguously. Both
symmetry restrictions and stacking faults can lead to the absence of peaks and the
intensity of the peaks is affected by both the atomic positions and stacking faults.
For Na2IrO3 the space group was initially reported to be C2/c but was later cor-
rected to C2/m [105]. In the C2/m structure the honeycomb layers are stacked
along the monoclinic c axis. In contrast, in the C2/c structure the honeycomb lat-
tice in the adjacent layer is displaced by a few percent of the unit cell parameters
which makes a description with a doubled unit cell volume necessary. The absence
of superstructure peaks in the well-ordered single crystal diffraction pattern ruled
out the C2/c scenario in Na2IrO3. For Na2RuO3 samples with less stacking faults
would be necessary to determine the preferred stacking sequence, i.e. to distinguish
between the two space groups C2/c and C2/m. Here, the more general space group
C2/c was used as starting point for the simulation.
All samples prepared in this work had a comparable amount of stacking faults.

Controlling this amount during synthesis is, therefore, not easy. Since the same two-
step synthesis used here is commonly reported as synthesis method in the literature
the samples should have similar amounts of stacking faults. The simulation of the
XRPD pattern shows that small changes in the amount of stacking faults is directly
visible and the resemblances of the rather featureless asymmetric peak indicates
similar amounts of stacking faults in the samples. Still, sample dependencies can
not be ruled out.
In the literature Na2RuO3 is described as insulating antiferromagnet [49], semi-
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conducting antiferromagnet [50] and by contrast as correlated metal [51]. The single
crystals in Ref. [49] were claimed to be Na2RuO3 single crystals but show all prop-
erties of Na3RuO4. This can be lead back to the easy formation of Na3RuO4 as
by-product during the synthesis of Na2RuO3. Ref. [50] partly relies on those results
and neglects SOC in the calculations. However, SOC seems to be a key factor in
4d4 Ru compounds.
Here, the experimental results are discussed in the context of a non-magnetic

J = 0 ground state. The energy level scheme and a short introduction into excitonic
magnetism is given in Figs. 2.4 and 4.5(a) and Subsec. 2.7.4.
The correlated-metal scenario of Ref. [51] implies that the magnetic susceptibility

of Na2RuO3 should be temperature independent. The upturn at low temperatures
is possibly caused by impurities. At higher temperatures the susceptibility shows a
strong temperature dependence in the form of a downward bending that the tem-
perature independent Pauli paramagnetism fails to explain. The susceptibility keeps
decreasing to at least 500K, at odds with the correlated-metal scenario. Instead,
an alternative scenario of J=0 magnetism is considered. Level excitations from the
spin-orbit entangled J = 0 ground state to the higher lying J = 1 and J = 2 levels
captured by the Kotani fit explain the main features of the curve which were also
observed for other J = 0 systems [92]. In contrast to Ref. [51] the heat capacity
shows no linear γT contribution and hence no signatures of itinerant electrons in
the system can be seen. This fits to the insulating behavior in Ref. [51], which
contradicts the hypothesis of a correlated electron metal.
Possible excitations from the ground state to higher lying J levels can be probed

spectroscopically. Reported inelastic neutron scattering results do not show excited
states below 150meV [51]. IRIXS allowed to extend the energy range to 4 eV and
four excitations could be detected at around 70, 350, 780, and 1000meV. It is not
clear why the lowest energy excitation was not detected by inelastic neutron scatter-
ing. The spectrum of Na2RuO3 strongly resembles that of Ca2RuO4 and the energy
of the first transition coincides with that of K2RuCl6 [see Fig. 4.5(c)]. It was found
that the two lowest energy excitations in Ca2RuO4 and K2RuCl6 are excitations
from J = 0 to J = 1 or J = 2. In analogy, the excitation in Na2RuO3 at 70meV can
be assigned to the J = 0 to J = 1 transition and the excitation at 350meV can be
assigned to the J = 0 to J = 2 transition. As illustrated in Fig. 4.5(a) the Hund’s
coupling can be surpassed at higher energies and spin-state transitions explain the
excitations at higher energies. Besides SOC and Hund’s coupling, the strength of
the tetragonal crystal field ∆tetra plays an important role and lifts the degeneracy
of the J levels [see Fig. 4.5(a)]. This can be observed in a broadening of the peaks.
The peaks in the case of K2RuCl6 with ideal octahedra are rather sharp. The dif-
ferent environment of the Ru4+ ions can explain the broader peaks, especially the
second one, in Na2RuO3 compared to Ca2RuO4. The monoclinic Na2RuO3 shows
distortions of the RuO6 octahedra beyond orthorhombic and features two different
Ru sites, whereas the orthorhombic Ca2RuO4 has only one Ru site. Besides, the
measurements were not performed on single crystals as for Ca2RuO4 and K2RuCl6
but on powder samples, which can cause a broadening of the peaks too. Moreover,
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sample degradation during the measurement can additionally contribute to the peak
broadening.
The fit of the Kotani model to the susceptibility data shows that the behavior can

be quantitatively explained with excitations into higher J levels. The difference of
the RIXS peak positions of Na2RuO3 to those of K2RuCl6 with an ideal octahedral
environment of the Ru ions mirrors the deviation of the RuO6 octahedra from the
octahedral symmetry in Na2RuO3. However, trigonal crystal field splitting is not
considered in the Kotani model, which explains the inconclusive fit parameters.
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4.2. Na3RuO4

After the presentation of a Ru4+ compound the focus is now on Na3RuO4 with a by
one increased oxidation state of the Ru ion. Initially, the synthesis of the compound
was not intended but Na3RuO4 formed easily as by-product and its investigation
allowed to clarify the situtation concerning the miscategorization of Na3RuO4 which
was published as Na2RuO3 in Ref. [49]. The crystal structure sets the basis for var-
ious actors like frustration, low-dimensionality, and Ru-O covalency. In the layered
Na3RuO4 two isosceles Ru triangles form a tetramer and the tetramers form again a
triangular lattice (see Fig. 4.6). The Ru ions carry a spin of 3/2 and hence, a triangu-
lar spin lattice is formed on two different length scales. The magnetic susceptibility
shows that long-range antiferromagnetic order forms at 30K. The heat capacity re-
veals a second transition at 26K. To explore the nature of the two phase transitions
and to study the influence of the frustration on the magnetic ordering, temperature
dependent NPD measurements were performed. The magnetic moments of Ru1 and
Ru2 are 2.23(3) and 3.04(3)µB, respectively. The tetramers are nearly antiferromag-
netically coupled but the magnetic structure is incommensurately modulated on the
secondary triangular lattice with the propagation vector k⃗ = (0.242, 0, 0.312). The
incommensurability is caused by frustration between the tetramers, which is con-
firmed by density functional theory (DFT) calculations of the exchange couplings
by Alexander A. Tsirlin. Elias Papke optimized the exchange couplings and the
experimentally determined propagation vector could be perfectly recreated. Finally,
the system will be compared to the anisotropic TLAF presented in Subsec. 2.7.2.

Figure 4.6.: Crystal structure of Na3RuO4. The distances refer to the crystal struc-
ture at 300K. (a) The Ru5+ ions form magnetic layers which are stacked along the
monoclinic c axis. The Ru layers are separated by Na+ ions. (b) View of the unit cell
along the c axis. The Ru ions are arranged such that a triangular motif can be found
on two different length scales. Two isosceles triangles form tetramers (drawn in gray)
which form a triangular lattice as well (drawn in black). The octahedral coordination
and the Na atoms are omitted for clarity. The RuO6 octahedra are bridged over the
edges. The visualization program VESTA was used to depict the crystal structure [93].
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4.2.1. Room-temperature Crystal Structure

One interesting aspect of Na3RuO4 lies within the crystal structure. The unit cell
is shown in Fig. 4.6. The triangular motif, one possible prerequisite for geometri-
cal frustration, is found on two different length scales. The edged-shared Ru5+O6

octahedra form lozenges with an edge length of around 3.21 Å. The tetramers are
composed of two isosceles triangles. The lozenge units again are arranged on a
secondary triangular lattice, also referred to as simplex lattice [106]. The trian-
gles forming this simplex lattice are isosceles as well with the two shortest edges of
8.45 Å. The triangular layers are stacked along the crystallographic c axis and are
separated by non-magnetic Na+ layers.
The crystal structure is described with the monoclinic space group C2/m (no.

12). The lattice parameters obtained from the refinement for the neutron diffrac-
tion data at 300K are a = 11.0280(3) Å, b = 12.8141(3) Å, c = 5.7047(2) Å, and
β = 109.906(2) ◦. The lattice parameters are in perfect agreement with the values
from [55]. It is noted in passing, that the table for atomic coordinates in Ref. [107]
contains two typos (for atom Na3 z = 0.5 and for atom O3 y = 0.5).
The temperature dependence of the crystal structure was investigated with neu-

tron diffraction and the results are given in Subsec. 4.2.3.

4.2.2. Thermodynamic Properties

Fig. 4.7(a) shows the temperature dependent heat capacity between 2K and 50K.
The heat capacity is field independent to at least 7T. Striking are two successive
phase transitions at 26K and 29K. The data are in good accordance with the heat
capacity given in Ref. [107]. The double peak characteristic in the heat capacity
was also reported in Ref. [49] and assigned to Na2RuO3. This is in contrast to the
findings of this work. For Na2RuO3 no phase transition was detected (see Fig. 4.3).
The compound in Ref. [49] was most likely miscategorized, which was also stated in
Ref. [51]. This can be explained by the easy formation of Na3RuO4 as a side product
during the synthesis of Na2RuO3 if the reducing atmosphere is not sufficient.
The magnetic susceptibility and Fisher’s heat capacity, given in Figs. 4.7(b) and

4.7(a), respectively, show one antiferromagnetic transition at 30K. The paramag-
netic regime follows a Curie-Weiss behavior and the corresponding fit of the Curie-
Weiss equation χ = χ0 + (C/(T − θ)) to the data collected at 1T between 150
and 300K is depicted in Fig. 4.7(b) in red. A Curie-Weiss temperature θCW of
-161.5(5)K and an effective moment of 4.07(2)µB are obtained. The fit parameters
obtained by fitting the data collected at 3 and 7T differ less than 2%. The value
of the effective moment is close to the spin-only value 3.87µB expected for Ru5+

carrying a spin of S = 3/2. The diamagnetic susceptibility of Na3RuO4 was cal-
culated from Pascal’s constants taken from [108] to χdia ≈ −9 · 10−5 emu/mol. A
similar contribution as for Ru3+ and Ru4+ was assumed for Ru5+. The temperature
independent constant χ0 accounts for the diamagnetic contribution from the sample
and the background (χ0 = −4.97(8) · 10−4 emu/mol). The inset in Fig. 4.7(b) shows
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Figure 4.7.: Thermodynamic properties of Na3RuO4. (a) The measured heat capac-
ity shows no dependence on the magnetic field up to 7T. Clearly visible are two phase
transitions at 26 and 29K. Only one phase transition is observed in Fisher’s heat
capacity depicted in green. (b) The magnetic susceptibility measured at 1, 3, and 7T
reveals an antiferromagnetic phase transition at around 30K. The high-temperature
susceptibilities follow a Curie-Weiss behavior and the Curie-Weiss fit between 150 and
300K is shown for the data collected at 1T. The field-dependent magnetization for
temperatures between 2 and 300K is given in the inset. The magnetization shows a
linear field dependence.

the linear magnetization with magnetic field for temperatures between 2 and 300K.
The slope in the paramagnetic regime increases with decreasing temperature. The
slope decreases again after passing the antiferromagnetic transition temperature of
30K, which was already expected from the susceptibility data.
The ratio of Curie-Weiss temperature and Néel temperature θCW/TN ≈ 5.4 could

already indicate a medium frustrated system in which magnetic ordering is shifted
to lower temperatures. However, a weaker coupling between the tetramers compared
to the intra-tetramer coupling could have the same effect on the ratio. If frustra-
tion is present in the system can be revealed by the determination of the magnetic
structure with elastic neutron scattering. Additionally, neutron diffraction allows to
clarify if both transitions are magnetic, but not resolvable in the magnetic suscep-
tibility, or if one of them is structural. In the next section these open questions will
be answered by determining the Néel temperature, the size of the ordered magnetic
moment and the magnetic structure from neutron diffraction experiments.
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4.2.3. Neutron Diffraction

Temperature-dependent Crystal Structure

First, to determine the temperature dependent cell parameters with high precision,
experiments were performed at the high-resolution instrument D2B. The neutron
diffraction data collected above the transition temperatures at 40K, in the transi-
tion region at 27K, and well below the transitions at the base temperature 1.5K
are given in Fig. 4.8(a). Pure nuclear scattering which is measured at high angles
and given in the inset of Fig. 4.8(a) excludes a structural phase transition. No
additional peaks or peak splitting indicating symmetry lowering is observed below
the transition temperatures. Hence, both transitions observed in the heat capacity
data must be of magnetic nature. The C2/m space group describes the structure
throughout the temperature window of the experiment and the refined monoclinic
cell parameters are given in Fig. 4.8(b) in dependence of the temperature. No hints
towards a structural phase transition can be seen in the evolution of the cell param-
eters which do not show any anomalies but decrease monotonically with decreasing
temperature. Below 50K the parameters a and c show a slight upturn. This is al-
ready an indication for magnetic ordering below 50K which is accompanied by spin
induced lattice deformations mediated through spin-lattice coupling. Indeed, mag-
netic Bragg peaks are discernible at low angles and the four peaks visible at 1.5K
are indicated with arrows in Fig. 4.8(a). At 15.5◦ first signs of magnetic ordering

Figure 4.8.: Na3RuO4 high-resolution neutron diffraction data. (a) Neutron diffrac-
tion pattern at low angles recorded above the transition temperatures (40K), in the
transition region (27K), and below the transitions at the base temperature (1.5K).
The four magnetic peaks visible at 1.5K, and partly at 27K, are indicated with ar-
rows. The data at higher angles are shown in the inset. A structural phase transition
can be ruled out. (b) The refined cell parameters of the monoclinic unit cell decrease
monotonically with decreasing temperature. Below 50K a and c increase slightly. The
cell parameters were normalized with respect to the values at 300K. The error bars
are smaller than the symbol size.
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are already visible at 27K. At 40K no magnetic scattering is recorded, which fits to
the data presented in Subsec. 4.2.2.
At the beginning, the tetramers were thought to be magnetically decoupled, which

would not be surprising given the fact that NaO6 octahedra separate the tetramers
in the plane and in adjacent layers [109]. Magnetization and elastic neutron scat-
tering data presented herein show long-range magnetic order below 30K and thus
prove inter-tetramer coupling. If the inter-tetramer coupling is weak compared to
the intra-tetramer coupling or if their strengths are comparable in size and compet-
ing interactions are at play, needs to be investigated. An analysis of the magnetic
structure is not possible with the data obtained from D2B because of the lower
intensity in the high-resolution mode. Therefore, in the next step, measurements at
the high-intensity instrument D20 were performed. The collected data are discussed
in the following section.

Magnetic Structure

For a first overview, the thermo diffraction pattern between 5 and 30K was recorded
at the high-intensity instrument D20. The nuclear background was subtracted and
the magnetic contribution is given in Fig. 4.9. Two conclusions can be drawn from
the measurements. First, the two phase transitions observed in the heat capacity
are also reflected in the magnetic diffraction data. This is expected since both tran-
sitions were already known to have magnetic character. Upon cooling, a first set

Figure 4.9.: The thermo-diffraction pattern of Na3RuO4 shows the magnetic con-
tribution after subtraction of the nuclear background in dependence of the scattering
angle and the temperature. Two sets of magnetic peaks emerging at 26 and 29K,
respectively, are distinguishable.
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Figure 4.10.: Refinement of the magnetic structure of Na3RuO4. (a) Magnetic
diffraction pattern at 1.5K after subtraction of the nuclear background. The data
(black dots) can be described accurately with the refined magnetic structure model.
The residual magnetic R-factor is 4.79. The difference between experiment and fit is
shown in blue. The black ticks mark the positions of the magnetic peaks. (b) Depen-
dence of the components of the propagation vector kx and kz with temperature. (c)
Dependence of the magnetic moments of Ru1 and Ru2/Ru3 with temperature. The
error bars are smaller than the symbol size.

of magnetic Bragg peaks emerges at 29K and a second set appears at 26K. These
transition temperatures fit perfectly to those determined earlier with the heat ca-
pacity. No further transitions are detectable. Second, the magnetic peak positions
shift stronger with temperature compared to the nuclear positions. This already
shows that the magnetic structure is incommensurate.
In the next step, measurements at fixed temperatures were recorded for a mag-

netic refinement. The magnetic diffraction pattern at 1.5K is given in Fig. 4.10(a)
in black. The propagation vector is determined from the positions of the magnetic
Bragg peaks. The exact procedure is described in the following.
The cell parameters were refined for the data collected at 40K at the high-

resolution instrument D2B. The cell parameters can thus be determined with high
precision and were taken and fixed during the refinement for the data collected at
40K at the instrument D20. The wavelength and zero-shift were kept as refinable
parameters. The magnetic peak positions at 1.5K were determined and corrected
for the zero-shift. Peak positions can be conveniently obtained with the program
WinPLOTR [110]. The refined cell parameters, the wavelength, and the positions of
the magnetic peaks were listed in an input file for the software k-SEARCH. The infor-
mation was added that the propagation vector is incommensurate. k-SEARCH then
generates an output file containing possible propagation vectors and their corre-
sponding residual R-values. Reasonable vectors must be chosen and compared in a
LeBail refinement. Experience is necessary in identifying reasonable vectors from the
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list and would not have been possible without the help of the local contact Clemens
Ritter. The propagation vector was found to be k⃗ = (0.2415(2), 0, 0.3127(2)) and
creates the magnetic peak positions with a residual R-value of ≈ 4.7. The incom-
mensurability along c points already towards significant coupling between the layers,
which will be addressed later in this subsection.
The software BASIREPS was used to determine all allowed irreducible representa-

tions and their basis vectors. After comparing the different possibilities one is left
with an irreducible representation of dimension one and three basis functions. The
final magnetic refinement for the data collected at 1.5K is shown in Fig. 4.10. The
residual nuclear peak in the angular region of 26 ◦ was excluded. The second Ru site
is split by the propagation vector leading to three different Ru sites in the magnetic
refinement (see Fig. 4.11). The Ru atom on site 1 carries the magnetic moment
of 2.23(3)µB and the magnetic moment of the Ru atoms on the split positions is
3.04(3)µB. These values are close to 3µB, the saturated moment of a J = 3/2 ion
in the spin-only case. Without loss of the fit quality the magnetic moments of the
Ru atoms on the former site 2 were restricted to be equal. The size of the magnetic
moment at different temperatures was refined and the temperature dependence be-
tween 1.5 and 25K is shown in Fig. 4.10(c). The magnetic moment could not be
extracted from the data collected at 27 and 29K. Between 1.5 and 10K the magnetic
moments stay constant within experimental error. Above 10K the magnetic mo-
ments of the Ru atoms on site 1 and 2/3 decrease monotonically and have dropped
at 25K to 60% and 70% of the initial value.
Also the x and z components of the propagation vector first show a slow and then

a strong change with increasing temperature. Between 1.5 and 15K kx and kz change
only around 2%. Up to 25K the components change around 10% and both compo-
nents merge at 25K. The magnetic structure at 1.5K is shown in Fig. 4.11. The
individual tetramers are not frustrated but are antiferromagnetic units with a small
phase shift of ϕ = 0.0924(31) concerning the moment of the Ru3 atoms. Refinement
in the case of a spin density wave shows that all spin amplitudes are directed along c.
The size of the magnetic moment is modulated incommensurately along the crystal-
lographic a and c axis. In an isotropic system the helical structure evolves whereas
in an anisotropic system the spins keep pointing along the easy axis and instead the
size of the magnetic moment is modulated. The collinear spin density wave cannot
be distinguished from a helical structure with unpolarized neutrons. With the same
periodicity the same Bragg pattern is observed. Determination of the anisotropy
via numerical calculations or direction dependent magnetization measurements on
single crystals could point towards one of the two possible scenarios. Polarized single
crystal neutron diffraction would be necessary to determine the magnetic structure
unambiguously. The intensities of the spin-flip and non-spin flip channels for the
magnetic Bragg peaks with the scattering vector perpendicular to the neutron spin
polarization give information about the spin components in the plane perpendicu-
lar to the scattering vector [111]. Here, experiments with spin polarized neutrons
along c would clarify if a spin density wave as depicted in Fig. 4.11 or a helical spin
structure or a combination of those spin structures is present, but this investigation
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Figure 4.11.: Magnetic structure of Na3RuO4 obtained from powder neutron diffrac-
tion. The tetramers are nearly antiferromagnetic units and the spin density wave is
modulated sinusoidally along a and c. The magnetic structure was depicted with the
software FpStudio.

goes beyond the scope of this work.
The incommensurability of the magnetic order in the ab plane results from compet-

ing exchange interactions between the tetramers. Competing interactions between
the tetramers lead also to incommensurability along c, because the c axis is not
perpendicular to the ab plane in the monoclinic structure. To complete the pic-
ture, intra and inter-tetramer exchange couplings obtained from ab-initio DFT+U
calculations (with the Coulomb and Hund exchange interaction Ud = 3 eV and
JH = 0.5 eV, respectively) and their optimization via energy minimization [112] are
summarized briefly in the following. The couplings are listed in Tab. 4.1. Jex > 0
for antiferromagnetic coupling and Jex < 0 for ferromagnetic coupling. The listed
couplings are illustrated in Fig. 4.12 whereby the strength of the coupling scales
with the thickness of the line.
An initial rough examination shows that the couplings fit to the observed mag-

netic structure. The leading intra-tetramer exchange energy J2 couples the spins
antiferromagnetically along the edges of the tetramer. This fits to the scenario
of antiferromagnetic units observed experimentally. The ferromagnetic exchange
interaction J1 is compatible with that antiferromagnetic arrangement. J3 is a com-
peting interaction but an order of magnitude smaller than J2 and hence, does not
destroy the antiferromagnetic arrangement. The dominant interactions between the
tetramers J4 and J5 are competing and explain the incommensurability in the mag-
netic structure along a. In contrast to J8, J9 couples oblique to the crystallographic
c axis and the incommensurability along c is not surprising. Moreover, the kx and
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Table 4.1.: Exchange couplings in Na3RuO4. The labels are illustrated in Fig. 4.12.
Listed are the values obtained from ab-initio DFT (Ud = 3 eV, JH = 0.5 eV) and from
further optimization to better match the experimental propagation vector. Antiferro-
magnetic couplings are positive and ferromagnetic couplings are negative.

bond label d (Å) Jex (K) Jex (K)
DFT opt.

within the tetramer
Ru1-Ru1 J1 3.210 -4.9 -4.90
Ru1-Ru2 J2 3.210 30.2 30.28
Ru2-Ru2 J3 5.559 2.0 1.96

between the tetramers in the ab plane
Ru2-Ru2 J4 5.477 34.7 34.70
Ru1-Ru2 J5 5.531 23.4 24.68
Ru1-Ru1 J6 6.376 7.1 5.84
Ru2-Ru2 J7 6.413 2.0 1.97

between the ab planes
Ru1-Ru1 J8 5.703 6.1 3.53
Ru2-Ru2 J9 6.262 20.9 21.83

kz values are linked because the incommensurability along c is mostly due to the
incommensurate order in the ab plane.
In a more quantitative approach in Ref. [112], the propagation vector result-

ing from the couplings determined via DFT was calculated. To this end, E(k⃗),
the energy function assuming sinusoidal modulation of the magnetic moments and
summing over all relevant bonds was set up and the couplings from DFT were
fixed. The propagation vector was determined by numerical minimization with kx,
ky, kz and phase shifts between the different Ru ions taken as free parameters to

k⃗calc = (0.2495, 0, 0.3502) and deviates around 9% from the experiment at 1.5K

(k⃗exp = (0.2415(2), 0, 0.3127(2))). In contrast to the refinement for which a phase
shift ϕ concerning the moment of the Ru3 atom was introduced, in Ref. [112] ∆ϕ
was defined as phase shift between neighboring atoms of the tetramer. A small
phase shift ∆ϕ = 0.01074 was determined and confirms the almost antiferromagnetic
arrangement of the tetramers obtained from the refinement with ϕ = 0.0924(31)
at 1.5K. In the next step, the exchange couplings J1 to J9 were optimized by
making use of the experimental propagation vector and following the gradient of∣∣∣⃗kcalc(J1, ..., J9)− k⃗exp

∣∣∣ until the final propagation vector k⃗calc = (0.2420, 0, 0.3120)

deviating less than 0.3% from the experimental propagation vector was reached.
The optimized parameters were added in Tab. 4.1. It has to be kept in mind that
the values can not be determined unambiguously as the nine coupling constants are
optimized against only three values determined experimentally. The good agree-
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Figure 4.12.: Illustration of the exchange couplings in Na3RuO4. The strength of the
couplings scales with the thickness of the line. Depicted in red are the intra-tetramer
couplings, in green the inter-tetramer couplings, and in orange the interlayer couplings.
Additionally, the effective couplings between the tetramer units are indicated in blue.
The visualization program VESTA was used to depict the structures [93].

ment of the DFT and optimized values suggests that the starting values from DFT
are reasonable and that the overall tendency is sound.

In the following the interplay of the calculated exchange interactions in view of
the incommensurability of the magnetic structure in the ab plane will be discussed.
In Ref. [112] it was shown that the four main interactions J2, J4, J5, and J9 are
already sufficient to obtain the propagation vector similar to the experimental one.
J2 and J9 do not add frustration into the system and the incommensurability can
be led back to the competition between the exchange couplings J4 and J5. In-
deed, keeping all exchange couplings constant and lowering J4 below the critical
value 26.2K leads to antiferromagnetic tetramers tiling up the ab plane, which is
described by the propagation vector k⃗ = (0, 0, 1/2). Instead of lowering J4, J5 can
be raised above 31.9K to create the same result. The ratio J4/J5 is crucial for the
formation of an incommensurate order.
To deduce now the incommensurability along c, it was shown in Ref. [112] that

J4, J8, and J9 as the only couplings between the antiferromagnetic tetramers would
not create an incommensurate structure, because J8 is too weak, but lead to a fer-
romagnetic stacking along c described by k⃗ = (1/2, 0, 0). By setting J8 = 0, which
complies with the DFT result J8 ≪ J9, the energy in dependence of kz can be
written as EJ8=0(kz) = J9 cos (2π (kx + kz + ϕ)) and kx and kz are linked through
the condition kx + kz + ϕ = 0.5. The experimentally determined values nearly fulfill
this condition kx + kz + ϕ = 0.6466(35).
Ignoring the small phase shift and assuming purely antiferromagnetic tetramers,

parallels can be drawn to the anisotropic triangular lattice discussed in Subsec. 2.7.2.
In the following only the in-plane propagation vector will be considered and the inter-
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planar couplings will be neglected. Each tetramer can be treated as single magnetic
site which couples to the neighboring tetramers via J4eff and J5eff as indicated in
Fig. 4.12. Thus an anisotropic J4eff - J5eff triangular lattice is formed. Setting ky = 0
as observed experimentally, the energy function is given by

Eab = J4 cos(2πkx) + 2 (−2 J5 + J6 + J7) cos(πkx). (4.3)

Comparison with equation 2.65 shows that equation 4.3 describes an anisotropic
triangular lattice if the effective antiferromagnetic coupling J4eff = J4 and the effec-
tive ferromagnetic coupling J5eff = −2·J5+J6+J7 are introduced. In the case of in-
commensurability the ratio of J5eff to J4eff dictates kx via cos(π ·kx) = −J5eff/2J4eff
and to recreate the experimentally determined kx of 0.2415, J5eff/J4eff = −1.45 must
hold. Despite the simplifications made, the optimized exchange couplings yield a
similar value J5eff/J4eff = −1.20 and the anisotropic triangular lattice is a justified
model for the secondary triangular lattice.
From this point of view, the two successive magnetic phase transitions are not

surprising and are commonly found in TLAFs. TLAFs show a rich phase diagram
with various spin structures though temperature independent phase transitions in
a larger magnetic field window as observed for Na3RuO4 between 0 and 7T are
unusual. It has to be kept in mind that Na3RuO4 has a secondary triangular lattice
and a direct comparison with the spin structures in TLAFs is difficult. No statement
can be made if the phase transition between the magnetic phases is due to a spin-
reorientation process or due to the vanishing of the second independent magnetic
moment upon increasing the temperature.
The section about Na3RuO4 with a secondary triangular lattice is now closed

and in the following two sections the two antiferromagnets Na2BaCo(PO4)2 and
Na2SrCo(PO4)2 with a simple triangular lattice will be discussed.
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4.3. Na2BaCo(PO4)2

In this section the S = 1/2 TLAF Na2BaCo(PO4)2 will be presented. In the first
publication about Na2BaCo(PO4)2 the compound was presented as possible can-
didate hosting a spin-liquid state based on ac susceptibility measurements which
do not show any static magnetism down to 50mK [4]. This set the ball rolling and
many experimental and theoretical reports followed. The results reported are highly
contradictory and further efforts from both the experimental and theoretical side are
necessary to define the low-temperature states and properties unambiguously. The
controversy is described in what follows and an overview of all the publications so
far is given.
Na2BaCo(PO4)2 is reported to crystallize in the trigonal crystal structure P3m1.

The octahedrally coordinated Co2+ ions form an ideal triangular network in the
ab plane. The magnetic layers are separated by non-magnetic ions and are stacked
along c (see Fig. 4.13). At low temperatures the Co2+ ions have an effective spin-1/2
(see Sec. 2.4 and Fig. 2.5).
The absence of long-range magnetic order was later supported by muon spin re-

laxation measurements which show a dynamically fluctuating ground state down
to 80mK [113]. As summarized in Subsec. 2.7.3 a spin liquid can only be real-
ized if nnn interactions and/or off-diagonal anisotropy are present in the system.
In Na2BaCo(PO4)2 the CoO6 octahedra are not directly linked but connected via
PO4 tetrahedra and the nnn distance of around 9.2 Å is nearly twice as large as the
nn distance of around 5.3 Å. Hence, off-diagonal anisotropy and nnn exchange are
expected to be insignificant and the simple nn XXZ model describes the system.
From this perspective not a QSL but an ordered 120◦ non-collinear ground state is
expected in Na2BaCo(PO4)2.
Indeed, the here presented heat capacity data collected by Noah Winterhalter-

Stocker show a phase transition at 147mK in zero magnetic field. This contrasts with

Figure 4.13.: Crystal structure of Na2BaCo(PO4)2. (a) and (b) Triangular layer
in the case of the P3m1 and P3 symmetry, respectively. The Na and Ba ions are
omitted for clarity. In the case of P3 ferrorotations of the Co octahedra are allowed.
(c) The triangular layers are stacked along c and are separated by non magnetic layers.
Illustrated is the P3 structure and the unit cell is indicated with the black lines.
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the experimental findings reported in Refs. [4, 113] but fits to the low-temperture
heat capacity data shown in Ref. [114]. Additionally to the phase transition at
148mK, Ref. [114] found a residual linear term by extrapolating the thermal con-
ductivity in zero magnetic field above TN. This could point towards the existence
of gapless spinons and a QSL-like state above TN. By modeling the ground state
numerically Ref. [115] predicts a phase without magnetic order, possibly a QSL
state, if besides nn Ising interactions Kitaev interactions are introduced into the
system. Through theoretical considerations Ref. [16] found sizable Kitaev interac-
tions in Na2BaCo(PO4)2. Their ESR data suggest that magnetic correlations set in
two orders of magnitude above TN, which let them put Na2BaCo(PO4)2 forward as
Kitaev-exchange assisted QSL.
However, the picture of a QSL-like regime above TN is challenged by other groups.

While Ref. [116] confirms the phase transition, yet at 139mK, the thermal conduc-
tivity could not be reproduced and the residual linear terms in different samples are
negligible. In Ref. [117] heat capacity and magnetization could be successfully mod-
eled assuming the simple XXZ model with negligible perturbations. The publication
suggests a spin supersolid state in Na2BaCo(PO4)2. Also Ref. [118] supports the
picture of Na2BaCo(PO4)2 being a TLAF which can be described with an easy-axis
XXZ model. The experimental determined phase diagrams for in-plane and out-of-
plane field directions are in good accordance to the theoretical phase diagrams for
XXZ compounds. Neutron scattering showed a strongly reduced ordered moment of
the Co ions, which indicates strong quantum fluctuations. The neutron diffraction
data can be explained with the Y configuration expected for XXZ model TLAFs
but the spin configuration could not be determined unambiguously.
In this work, the analysis of the heat capacity and magnetization data support

the picture of a nn spin-1/2 TLAF with easy-axis anisotropy. The heat capacity in
the milli-Kelvin temperature regime measured by Noah Winterhalter-Stocker con-
firm the phase transition in zero magnetic field published in the literature and hint
towards a further transition below 50mK.
All the reports so far agree on the space group P3m1. The atomic displacement

parameters (ADPs) are given in Ref. [4] and the atomic displacement is rather high
for one of the O positions. Therefore, high-resolution synchrotron diffraction mea-
surements were performed in dependence of the temperature. The crystal structure
is trigonal but in contrast to the published P3m1 space group, this study reveals
a P3 space group symmetry. The absence of the mirror plane allows ferrorotations
of the Co octahedra [see Fig. 4.13 (a) and (b)]. Refinements for the synchrotron
data between 2 and 300K reveal a slightly enhanced ADP of Na compared to the
displacements of the other elements. The displacements accompany structural dy-
namics which are further confirmed by NMR. The temperature dependence of the
ADPs shows that the structural dynamics become frozen below 50K. As for the pre-
vious presented compounds, the characterization of the crystal structure is presented
before the properties are addressed.
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Figure 4.14.: Temperature dependence of the lattice parameters of Na2BaCo(PO4)2.
The error bars are smaller than the symbol size.

4.3.1. Crystal Structure

The published space group for Na2BaCo(PO4)2 is P3m1 (no. 164) [4]. The Co ions
are octahedrally coordinated by O ions and the octahedra are connected via PO4

tetrahedra [see Fig. 4.13(a)]. The octahedra form triangular layers in the ab plane
which are stacked along c. Na ions fill the voids in the triangular layers and the
layers are separated by Ba ions.
The trigonal lattice parameters at 300K were determined to a = 5.316677(5) Å

and c = 7.009656(8) Å through the refinement for the synchrotron XRPD data
and are in good accordance with the lattice constants determined in Ref. [4]. The
lattice parameters extracted from synchrotron XRPD between 10K and 300K and
normalized to the values at 300K are shown in Fig. 4.14. The lattice parameters in

Table 4.2.: Atomic positions and ADPs for Na2BaCo(PO4)2 in the space group P3m1
at 300K.

Atom x y z Uiso [Å2]

Ba 0 0 0 0.0048(1)
Co 0 0 0.5 0.0047(2)
P 0.3333 0.6667 0.2438(4) 0.0044(3)
Na 0.3333 0.6667 0.6748(6) 0.0181(8)
O1 0.3333 0.6667 0.022(1) 0.014(1)
O2 0.1746(4) 0.8254(4) 0.3192(6) 0.034(1)
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4. Results and Discussion

Figure 4.15.: Temperature dependence of the ADPs of Na2BaCo(PO4)2. The values
were obtained from the refinement with the space group P3 and are thus different
from the values listed in Table 4.2. The lines are guides for the eye.

dependence of the temperature do not show any anomalies and no peak splitting or
superstructure reflections were observed in the whole temperature range. Therefore,
a structural phase transition can be ruled out.
The atomic positions and isotropic ADPs at 300K obtained by refining the P3m1

structural model are listed in Tab. 4.2. Striking is the rather high ADP of 0.034(1) Å2

for the O2 ion. The value is around three times larger than the ADP for the second
O1 position. The two different O positions are marked in Fig. 4.13. The O1 ion is
not connected to Co but part of the PO4 tetrahedra. The large ADP is an indication
that the atomic position of the O2 ion is slightly off the real position and hence that
the space group symmetry is not chosen correctly. Glaserite type materials show a
broad range of structure types. Another candidate structure is P3 (no. 147) which
is simply obtained from P3m1 by removing the mirror plane symmetry element.
If the symmetry is lowered from P3m1 to P3, ferrorotations of the Co octahedra
are allowed [see Fig. 4.13(a) and (b)]. The rotation angle at 10K was refined to
be 9.4(2) ◦. The O1 ions are not affected by the rotations which explains the high
ADPs in the P3m1 case for O2 only. For the P3 structure model the temperature
dependence of the ADPs between 10 and 300K is shown in Fig. 4.15. The ADPs
are all in a reasonable range and the temperature dependence does not reveal any
anomalies. A closer look at the ADPs shows that the values for Na are the highest
at every temperature and the ADPs for Na and O1 increase strongly with increasing
temperature. While all other ADPs are below 0.008 Å2 at room temperature, U11
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of Na is 0.023(2) Å2 and Uiso of O1 is 0.014(1) Å2. In contrast to the displacements
of Na, which appear mainly in the ab plane, the ADPs for the other elements were
refined to be isotropic. The displacements are connected to structural dynamics
which affect mainly Na and the flattening of the ADP of Na below 50K indicates
the freezing of the displacements and hence the dynamics. The dynamics and its
temperature dependence are further investigated with NMR presented in the next
subsection.

4.3.2. Nuclear Magnetic Resonance

The disorder in the structure revealed through the ADPs is also seen in the 23Na
NMR spectra. 23Na is a nucleus with quadrupolar moment with spin 3/2 so three
allowed transitions for the magnetic field parallel and perpendicular c are observed
[see Fig. 4.16(a) and (b)]. It is striking that the satellite transitions are much broader
than the central transition. The width of the narrow central peak is due to an inho-
mogeneous hyperfine shift. The difference of the frequency of the satellite compared
to the central transition is caused by the quadrupolar interaction. The broad lines
indicate that there is a distribution of the quadrupolar interaction, therefore of the
local electric field gradient. This in turn indicates an intrinsic disorder involving
the displacement of Na. The 23Na spectrum and the high-resolution MAS NMR 31P
spectrum recorded at room temperature show single resonance indicating that the
distortions are dynamical (see Fig. 4.16).
The Na displacement is also apparent from the angular dependence of the 23Na

Knight shift given in Fig. 4.17. The data were collected at room temperature and
the crystal was rotated around the c axis. Captured was the hyperfine shift of the
central transition in the ab plane. The Knight shift shows a sinusoidal behavior and
can be described by 724 ppm + 27 · cos (2π · (υ + 24)/180) ppm with the rotation
angle υ. The angular dependence of the Knight shift clearly shows the absence of
3-fold rotation and confirms the displacements of the Na atoms away from the 3-fold
rotation axis.
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Figure 4.16.: NMR spectra at room temperature. (a) and (b) 23Na NMR spectra for
the magnetic field of 4.7T parallel and perpendicular to c, respectively. The satellites
are broader than the central line. (c) The static and MAS 31P NMR spectra show a
single line. The spinning side lines are marked with asterisks. Measurements by Ivo
Heinmaa and Raivo Stern.
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4.3. Na2BaCo(PO4)2

Figure 4.17.: Angular dependence of the 23Na Knight shift at room temperature.
Shown is the hyperfine shift of the central transition in the ab plane. The single crystal
was rotated around the c axis. Measurements by Ivo Heinmaa and Raivo Stern.

4.3.3. Magnetization

In Na2BaCo(PO4)2 the magnetic Co2+ ions with the electronic configuration d7 are
in an octahedral environment. The 4T1 dodecet in the high-spin case splits in the
presence of SOC into the lowest lying doublet with effective spin 1/2 and higher
lying levels with effective spin 3/2 and 5/2. The change of the occupation with
temperature is observable in the temperature dependence of the inverse susceptibility
(see Fig. 4.18) which shows a deviation from the linear behavior and a point of
inflection at around 70K. At this temperature the excited state with effective spin
3/2 becomes increasingly populated. At low temperatures Na2BaCo(PO4)2 can be
treated as spin-1/2 system because the lowest-lying doublet is accessed only. The
model from Griffith [119] describes the effective magnetic moment in dependence of
the temperature for d7 high-spin octahedral complexes [119]. The SOC constant is
the only free parameter in the model and fitting the model to the data yields the
SOC constant 785(8)K. The SOC constant is in good agreement with the literature
value of around 766K [16]. The model describes the data accurately and is given in
Fig. 4.18.

Hence, the susceptibility at low temperatures is governed by the effective spin-
1/2 system only and is given in Fig. 4.19 for both field directions, H ⊥ c and
H ∥ c. No phase transition is visible down to 400mK. The Curie-Weiss fits in
Figs. 4.19(a) and 4.19(c) between 5 and 20K describe the data accurately. The
choice of the temperature range is a trade-off. The temperature must be high
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Figure 4.18.: The inverse magnetic susceptibility data of Na2BaCo(PO4)2 measured
at 1T show an inflection point at around 70K. The data are accurately described by
the Griffith model given in Ref. [119].

enough to enter the paramagnetic state but low enough to stay in the regime where
the system can be described with the effective spin-1/2. The fits yield the Curie-
Weiss temperature θCW = −2.52(2)K, the Landé factor g = 4.80(1), the Van-
Vleck contribution χ0 = 9.9(3) · 10−3 emu/mol for H ∥ c and θCW = −1.66(2)K,
g = 4.16(1), χ0 = 8.4(2) · 10−3 emu/mol for H ⊥ c. The Curie-Weiss temperatures
and g values are in very good accordance with the values reported in the literature
[16, 114, 117, 118]. With θCW = 1.5J/kB for nn TLAFs Jz/kB = 1.68(1)K and
Jxy/kB = 1.11(2)K. The g anisotropy is 13%, which is in agreement to the g
anisotropy of 12% obtained fromM(H) measurements. M(H) and the g anisotropy
will be discussed and compared to Na2SrCo(PO4)2 in Subsec. 4.4.4.
The broad hump visible in the magnetic susceptibility [see Figs. 4.19(b) and (d)]

is indicative for short-range magnetic order typical of low-dimensional systems or
frustrated antiferromagnets [122]. The susceptibility of spin-1/2 TLAFs can be
fitted with a Padé approximated high-temperature series expansion [120, 121]. The
fits describe the data accurately and are given in Figs. 4.19(b) and (d). g and the
exchange coupling J are the free parameters and by fitting the data below 20K
collected at 0.1T Jz/kB = 1.40(2)K and g = 4.87(2) for H ∥ c and Jxy/kB =
1.05(1)K and g = 4.27(1) for H ⊥ c are obtained. The g values, Jz, and Jxy are in
good accordance to the values determined from the Curie-Weiss fits. The accuracy
of the model, which assumes only Heisenberg nn interactions, shows that Jxy and
Jz are the leading interactions and the off-diagonal anisotropy can be assumed to
be small. Also extensive numerical calculations reported in Ref. [117] show that
off-diagonal anisotropy is negligible.
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Figure 4.19.: Magnetic susceptibility of Na2BaCo(PO4)2 for the magnetic field par-
allel to c (top row) and for the magnetic field perpendicular to c (bottom row). No
phase transition down to 400mK is visible. [(a) and (c)] Susceptibility up to 50K and
Curie-Weiss fits between 5 and 20K. [(b) and (d)] Short-range magnetic order mani-
fests itself in the broad hump which is described accurately with the high-temperature
series expansion for TLAFs given in Refs. [120, 121].

4.3.4. Heat Capacity

The total heat capacity in zero magnetic field between 1 and 20K is shown in
Fig. 4.20(a). To extract the phonon contribution the data in an intermediate tem-
perature range were fitted with B ·T 3+A/T 2. The first term accounts for the phonon
contribution and the second term is the lowest-order term in the high-temperature
series expansion for the magnetic heat capacity [123]. The fit is shown in Fig. 4.20(a)
and the two parameters B = 6.6(1) · 10−4J/(K4 ·mol) and A = 4.3(2)J ·K/mol were
obtained. With A = (9/16) · R · (J/kB)2 for nn TLAFs J/kB = 0.96(2)K results,
which fits well to the average value Jav/kB = (2Jxy + Jz)/3kB = 1.17(2)K and
1.30(2)K obtained in Subsec. 4.3.3 from the TLAF fit and the Curie-Weiss temper-
ature, respectively.
The magnetic heat capacity after subtraction of the phonon contribution is given

in Fig. 4.20(b). The data below 400mK were collected in a dilution fridge by Noah
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Winterhalter-Stocker. The specific heat of TLAFs were calculated in the theory pa-
per Ref. [124] for the cases of the simple nn, the nnn, and the distorted TLAF. The
best match with the measured data was obtained by using the model of the simple
nn TLAF. The modeled heat capacity for a TLAF with the exchange interaction
J/kB = 1.28K is superimposed on the data in Fig. 4.20(b). The exchange coupling
fits well to the average values obtained from the magnetization measurements. Ad-
ditionally, the height was corrected by a factor of 0.95. This takes account of the
weighing error which is with 5% reasonable for the small sample sizes.
Clearly visible is a magnetic phase transition at 147(2)mK in form of a sharp

peak. The transition temperature is in good accordance to the value reported in
Ref. [114]. The data presented here also challenges the picture of a QSL candidate
and contradicts the findings of Refs. [4, 113] reporting the absence of long-range
magnetic order down to 50mK.
Interesting fact is that the magnetic heat capacity in zero field levels out at around

0.68 J/(K ·mol) for the lowest temperatures. The magnetic heat capacity necessar-
ily has to approach zero for T → 0. A nuclear Schottky contribution to the heat
capacity with the relation 1/T 2 of the high-temperature tail fails to explain the de-
viating behavior. Since the extrapolation of the data to zero is not clearly possible
the integration to obtain the entropy is unfeasible. Yet, the flat course of the graph
suggests a non-trivial behavior of the heat capacity and maybe another anomaly at
a temperature not accessible with the dilution fridge. This idea of a second tran-
sition comes from further measurements in low magnetic fields parallel to c. The

Figure 4.20.: Heat capacity of Na2BaCo(PO4)2 in zero magnetic field. (a) The
total heat capacity and fit including the phonon contribution (∝ T 3) and the high-
temperature limit of the magnetic specific heat (∝ 1/T 2). (b) Magnetic part of the
heat capacity after subtraction of the phonon contribution. A clear transition is
visible at 147(2)mK. The red line depicts the heat capacity of a nn TLAF with the
exchange interaction J/kB = 1.28K. The data below 400mK were collected by Noah
Winterhalter-Stocker.
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Figure 4.21.: Milli-Kelvin heat capacity of Na2BaCo(PO4)2 in zero and low mag-
netic fields parallel to c. Within a small field pocket another phase transition can be
observed at around 66mK. Measurements by Noah Winterhalter-Stocker.

measurements at fields between 0 and 0.3T are shown in Fig. 4.21. Within a small
field pocket from 0.15 to 0.22T a clear second phase transition at around 66mK
can be observed. This transition smears out if the field is increased further. The
transition temperature shows a slight downward trend with decreasing field. For
the magnetic fields above 0.18T the transition temperature is 67mK and is slightly
reduced to 65mK at 0.15T. Similar to the zero-field data, the heat capacity shows
no transition and stays constant for a small field of 0.10T. To see if the decreasing
trend of the transition temperature continues below 0.15T further measurements
between 0.1 and 0.15T would be desirable.

4.3.5. Discussion

First, the structure of Na2BaCo(PO4)2 is addressed. The CoO6 octahedra are
slightly distorted, which leads to the deviation of the O-Co-O angle from the ideal
90 ◦. At 10K the two O-Co-O angles are 93.43(13) and 86.57(13) ◦. These trig-
onal distortions lead to the splitting of the isotropic value of g = 4.33 into gxy
and gz with a small g anisotropy of 12%. The g anisotropy is further compared to
Na2SrCo(PO4)2 in Subsec. 4.4.4 and Sec. 4.5.
The P3m1 structure reported in the literature was revised to P3. The still en-

hanced value of the refined ADP of Na and the distribution of the quadrupolar
interaction observed in the 23Na spectrum are clear indications of intrinsic struc-
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tural dynamics. It is conceivable that structural dynamics in form of rotations of
the Co octahedra are present. The octahedral rotations change the geometry of
the cage containing the Na ion and explain the in-plane displacements of Na away
from the 3-fold symmetry axis observed experimentally. The O1 atoms have the
same x, y coordinates as the Na atoms (see Fig. 4.13) which pull on O1 leading to
enhanced displacements of O1 as well. Larger displacements are connected to larger
rotation angles possible at higher temperatures. Below 50K the Na displacements
freeze as indicated by the ADPs of Na and O1 which become constant below 50K
and that is connected to a spread of the relative rotation angles of the octahedra.
The randomness of the frozen rotations may lead to different exchange paths and a
distribution of the exchange couplings.
Structural disorder can influence the properties tremendously. One famous exam-

ple is the rare earth triangular lattice compound YbMgGaO4. The T
2/3 dependence

of the heat capacity and the excitation continuum observed in inelastic scatter-
ing point towards a QSL ground state. However, the thermal conductivity lacks
any magnetic contribution as would be expected for itinerant spinons. Supposedly,
site disorder in YbMgGaO4 creates a disordered magnetic sublattice and the QSL
behavior is only mimicked [125–130]. It was also shown for the triangular-lattice
Heisenberg model that defects can destroy long-range magnetic order and instead a
glassy state emerges [131].
Back to Na2BaCo(PO4)2, the debate described in the introduction of this section

if a QSL-like state above TN exists, is also triggered by contradictory experimental
results. The heat capacity in Ref. [4] and Ref. [114] starts to deviate from each
other around 1K. The thermal conductivity is crucially different in Ref. [114] and
Ref. [116]. This can be possibly traced back to differences in the samples. Imaginable
are unequal amounts of disorder in the structure due to differences in the synthesis
or due to different cooling rates causing individual freezing of the structural dynam-
ics. Different degrees of structural randomness could also explain the discrepancy
between Ref. [114] and Ref. [113] reporting the formation of long-range magnetic
order at 148mK and a dynamically fluctuating ground state down to 80mK, respec-
tively. This thesis needs of course further proof and it is essential to characterize the
structural disorder carefully and connect it to the measured results to understand
its impact on the properties.
Concerning the discussion if Na2BaCo(PO4)2 can be described with an easy-axis

XXZ model [117, 118] or if additional interactions like Kitaev interactions are present
[16], the analysis of the thermodynamic properties herein clearly points towards an
easy-axis TLAF described by the XXZ model. The broad hump visible in the mag-
netic susceptibility can be fitted with a TLAF model including Heisenberg interac-
tions only. Fitting the direction dependent susceptibility yields a slight easy-axis
anisotropy Jz/Jxy = 1.33(4), which is consistent with the ratio Jz/Jxy = 1.51(4)
obtained from the Curie-Weiss fits. The theoretically and experimentally deter-
mined anisotropy parameter reported in the literature is with Jz/Jxy = 1.7 slightly
higher [117, 118]. Also the magnetic heat capacity is accurately described by a nn
Heisenberg TLAF model [124]. The broad hump is typically observed for frustrated
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systems forming short-range order with spin fluctuations.
The phase diagrams for magnetic fields parallel and perpendicular to c obtained

from heat capacity, thermal expansion, magnetostriction and magnetocaloric mea-
surements will be subject in the dissertation of Noah Winterhalter-Stocker. It should
only be noted here, that the overall phase diagrams agree with the published ones
[118] and are consistent with the theoretical phase diagrams for XXZ model TLAFs.
Additional field-induced phases were detected for the magnetic field parallel to c (see
Subsec. 4.3.4) and perpendicular c.
The model from Ref. [117] predicts a transition at 150mK in zero magnetic field,

which is experimentally confirmed. Interestingly, a second Berezinskii-Kosterlitz-
Thoueless transition in zero magnetic field around 50mK was predicted. So far, this
transitions lacks experimental proof since the temperature lies below the tempera-
tures accessed in previous measurements. Given the heat capacity data presented
herein, a second phase transition would not be surprising although the transition is
expected below 50mK. Of course further measurements below 50mK are indispens-
able to verify this conjecture.
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4.4. Na2SrCo(PO4)2

The balance of competing interactions is influenced by subtleties of the crystal struc-
ture which, in turn, command the quantum state of matter. Undistorted TLAFs,
for example Ba3CoSb2O9 with a high symmetry (P63/mmc), show a single plateau
phase at one third of the saturation magnetization which corresponds to the up-up-
down magnetic phase [132]. Cs2CuBr4 with the orthorhombic space group Pnma in
contrast has a distorted triangular lattice. The DM interactions allowed in this set-
ting are suspected to be, together with a spatially anisotropic exchange, the reason
for the stabilization of multiple plateau phases [133–136].
Also the non magnetic ions can affect the properties. To realize a magnetic 2D

system in a bulk material, non-magnetic buffer layers separate the magnetic layers.
The thickness of the non-magnetic layers sets the distance between the magnetic
layers and dictates the 2D character of the system. The effect was investigated by
increasing the non magnetic layer thickness between the Co layers from Ba3CoNb2O9

to Ba8CoNb6O24, which leads to an over 2.5 times larger interplanar Co-Co distance
in the latter compound. As a consequence, the two successive phase transitions ob-
served in Ba3CoNb2O9 are suppressed in Ba8CoNb6O24 and the heat capacity shows
a single broad feature [137, 138].
In the following, a chemical sibling of Na2BaCo(PO4)2, the new Na2SrCo(PO4)2

compound is presented. Instead of increasing the number of non magnetic lay-
ers between the Co layers, the Ba ions are replaced by Sr ions. Substituting the
Ba ions with the smaller Sr ions does not only lead to the expected smaller in-
terplanar Co-Co distance but also has a decisive impact on the symmetry. In
contrast to the trigonal symmetry of Na2BaCo(PO4)2 at room temperature, the
monoclinic symmetry of Na2SrCo(PO4)2 is described with the space group P21/a.
High resolution synchrotron XRPD reveals a trigonal high temperature phase for
temperatures above 1025K. The structure does not transform from P21/a to the
trigonal symmetry directly but passes through the intermediate monoclinic C2/m
phase which forms at 650K. The triangular spin lattice is weakly deformed in
the monoclinic case and the monoclinic symmetry allows small distortions of the
CoO6 octahedra beyond the trigonal deformations commonly found in the glaserite
type structures. The symmetry lowering of the CoO6 octahedra manifests itself in
the enhanced g-tensor anisotropy for Na2SrCo(PO4)2 (gz/gxy = 1.6) compared to
Na2BaCo(PO4)2 (gz/gxy = 1.1). Additionally, despite the same average coupling
strength Jav/kB = (2Jxy+Jz)/3kB ≃ 1.3K, a larger XXZ anisotropy of Jz/Jxy = 2.1
for Na2SrCo(PO4)2 compared to Jz/Jxy = 1.5 for Na2BaCo(PO4)2 was extracted
from the magnetization data. The above listed differences lead to the over four
times higher Néel temperature of 600mK in Na2SrCo(PO4)2 compared to 140mK
in Na2BaCo(PO4)2 and a sizable uncompensated moment of 0.066(4)µB/f.u. in the
plane was detected. In the following, the distortions of the crystal structure are
captured and their impact on the observed thermodynamic properties is revealed by
comparing the two Co compounds.
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4.4.1. Room-temperature Crystal Structure

Figure 4.22.: Comparison of the Ri-
etveld refinement for the synchrotron
XRPD data of Na2BaCo(PO4)2 and
Na2SrCo(PO4)2 at 300K. The peak
splitting in the case of Na2SrCo(PO4)2
indicates the lower monoclinic symme-
try in contrast to the trigonal symmetry
of Na2BaCo(PO4)2. For a better com-
parison of the two data sets the scat-
tering angles for Na2BaCo(PO4)2 were
renormalized. The same graph was used
in our publication [139], which is copy-
righted by the American Physical So-
ciety.trickery trickery trickery trickery
trickery trickery trickery trickery trick-
ery trickery trickery trickery trickery
trickery trickery trickery

Fig. 4.22 contrasts the synchrotron
XRPD data for Na2BaCo(PO4)2 and
Na2SrCo(PO4)2 collected at 300K. From
the peak splitting it becomes appar-
ent that in contrast to Na2BaCo(PO4)2,
which crystallizes in a trigonal symmetry,
Na2SrCo(PO4)2 has a monoclinic sym-
metry. To create a structural model in
the monoclinic setting, the basis vectors
of the Na2BaCo(PO4)2 structure were

transformed as follows: a⃗ ′ = a⃗ − b⃗, b⃗ ′ =
a⃗+ b⃗, and c⃗ ′ = 2c⃗. The refined lattice pa-
rameters at 300K for Na2SrCo(PO4)2 are
a = 9.20152(2) Å, b = 5.26593(1) Å, c =
13.54116(2) Å, and β = 90.06613(12) ◦.
From the extinction conditions the

possible space groups can be narrowed
down. A primitive space group is ex-
pected and the extinction rules point to-
wards an a glide plane and a 21 screw
axis ∥ b⃗ as present symmetry elements.
Rietveld refinement proves the correct-
ness of the space group P21/a (No.
14). It is noted that the Co1 atom
and not a spacer ions as in the case of
Na2BaCo(PO4)2 is located at the origin
of the unit cell. An additional origin
shift of (0 0 0.5) was needed to derive
the structural model for Na2SrCo(PO4)2
from the initial Na2BaCo(PO4)2 struc-
ture.
In addition to the powder measure-

ments, single crystal x-ray diffraction ex-
periments performed by Jan Langmann
confirm the structural model. The single
crystal exhibited triple twinning first. A
single domain crystal was obtained after
cutting the sample. The reconstructed
reciprocal space planes, the refined atom-
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Figure 4.23.: Crystal structure of Na2SrCo(PO4)2. (a) Unit cell of Na2SrCo(PO4)2.
The Co layers are stacked along c and separated by non magnetic layers. The tilting
of the CoO6 octahedra referred to in the text is sketched with the black arrow. (b)
Top view perspective of the unit cell with the low-temperature monoclinic symmetry
P21/a. The triangular lattice is formed by the CoO6 octahedra. The Co-O-P bonds
referred to in the text are indicated in black. (c) Triangular layer in the unit cell
with the intermediate symmetry C2/m. (d) Triangular layer in the unit cell with the
high-temperature symmetry P3m1. For clarity, the Na+ and Sr2+ ions were omitted
in (b) to (d). The same graph was used in our publication [139], which is copyrighted
by the American Physical Society.

ic coordinates and displacement parameters at room temperature are included in
Appendix A. While completing this work the room-temperature monoclinic space
group P21/a was confirmed in Ref. [140] which further reports thermodynamic prop-
erties measured on polycrystalline samples down to 2K.
Figs. 4.23(a) and (b) depict the unit cell of Na2SrCo(PO4)2. As in Na2BaCo(PO4)2

a planar triangular lattice is formed by CoO6 octahedra. The CoO6 octahedra are
connected in-plane by PO4 tetrahedra. The voids are filled with Na+ ions. The
magnetic Co layers are stacked along the crystallographic c axis and are separated
by the non magnetic spacer ions. The buffer layer determines the distance between
the magnetic layers. As expected, the smaller Sr2+ ions lead to the smaller inter-
planar Co-Co distance of 6.77 Å compared to 7.01 Å in Na2BaCo(PO4)2.
After the description of the similarities, the differences responsible for the lower

monoclinic symmetry of Na2SrCo(PO4)2 will be addressed next. The cooperative
tilting of the CoO6 octahedra and PO4 tetrahedra is one of the main reasons for the
symmetry lowering. Additionally, in the P21/a crystal structure distortions of the
CoO6 octahedra are allowed. The distortions lower the local symmetry of the Co2+

ion from S6 in P3 Na2BaCo(PO4)2 to Ci in Na2SrCo(PO4)2. The symmetry of the
PO4 tetrahedra is reduced from C3 to C1. The trigonal distortions can be quantified
through the deviation of the O-Co-O angle from 90 ◦. The deviation is 6.0(3)% and
7.9(3)% for the Co1O6 and Co2O6 octahedra, respectively. Na2BaCo(PO4)2 shows
a lower trigonal distortion of 4.8(2)%. Distortions beyond trigonal are absent in
Na2BaCo(PO4)2 but cause three different Co-O lengths in Na2SrCo(PO4)2. This
distortion is captured by the largest deviation from one of the the Co-O distances
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to the mean length of the three Co-O distances. The distortions amount to 1.5(7)%
in the Co1O6 octahedra and to 2.2(7)% in the Co2O6 octahedra. Both tilting and
distortion are different in adjacent layers and lead to a doubled unit cell along c.
Also the geometry of the triangular lattice is different in the two compounds.

Whereas in Na2BaCo(PO4)2 the triangular lattice is composed of equilateral tri-
angles, the triangles forming the triangular lattice in Na2SrCo(PO4)2 are isosceles.
One of the Co-Co distance is around 0.7% shorter with regard to the two other
Co-Co distances of equal length.

4.4.2. Structural Phase Transitions

Several aspects point towards a structural phase transition at higher temperatures.
As chemical sibling of Na2BaCo(PO4)2, the trigonal symmetry may be restored at
higher temperatures in Na2SrCo(PO4)2. The monoclinic to trigonal phase transition
was already reported for various glaserite-type compounds [141–145]. An additional
hint towards a structural phase transition is the triple twinning observed in the sin-
gle crystal x-ray diffraction. During the synthesis Na2SrCo(PO4)2 crystallizes in a
higher symmetry at higher temperatures and when the sample is cooled down the
structure transforms into monoclinic.
To detect structural phase transitions, temperature dependent synchrotron XRPD

measurements were performed between 10 and 1025K [146, 147]. The temperature
dependent lattice parameters are given in Figs. 4.24(a) and (c). The data will be
discussed from low to high temperatures. At 200K a first small anomaly is visible in
the monoclinic angle β. However, at this temperature an anomaly is seen neither in
the a, b, c lattice parameters nor in the susceptibility (Fig. 4.27) nor in Fisher’s heat
capacity [inset of Fig. 4.24(a)]. In this temperature region the sample environment
was changed from the He cryostat to the N2 cryostream, which probably causes the
measurement artifact.
At 650K a, b, and β exhibit significant anomalies and a structural phase transition

can be identified. The comparison of the synchrotron XRPD data collected below the
transition at 500K and above the transition at 800K is given in Fig. 4.24(b). The
symmetry remains monoclinic. The disappearing reflections are labeled in black.
The unit cell of the new phase should be C centered as apparent from the new
extinction condition h+ k = 2n. Since the volume of the unit cell does not show a
discontinuity at 650K [inset of Fig. 4.24(c)] the transition is of second order. Hence,
the group-subgroup relation should hold and the space group C2/m is a potential
description of the structure with the highest possible symmetry. Indeed, Rietveld
refinement shows that the structural model describes the data above 650K accu-
rately. The Rietveld refinement for the exemplarily chosen data at 800K and the
refined atomic parameters are given in Appendix A. The top view perspective of
the unit cell is illustrated in Fig. 4.23(c). In P21/a the CoO6 octahedra within one
layer show the same absolute tilting angle but the translational symmetry element
(0.5 0.5 0) is not allowed because the b components of the tilting vector have oppo-
site sign. However, in C2/m the unit cell is C-centered. The b component of the
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Figure 4.24.: Temperature dependence of the crystal structure of Na2SrCo(PO4)2.
(a) Monoclinic angle β as function of temperature. The inset shows Fisher’s heat
capacity d(χT )/dT . The weak anomaly of β at 200K is seen neither in Fisher’s
heat capacity nor in the thermodynamic measurement data and can be assigned to
a measurement artifact. The first structural phase transition from P21/a to C2/m
manifests itself in the anomaly at around 650K. The gradual structural transition
into a trigonal phase is not fully completed at 1025K and is indicated by the color
gradient. (b) Exemplarily chosen synchrotron PXRD data of each structural phase are
contrasted. The symmetry changes are evident from the peak merging. The reflections
which disappear during the symmetry change from P21/a to C2/m are labeled in
black. The remaining reflections in the case of P3m1 are labeled in red. For a better
comparison the scattering angles were rescaled to those of the measurement at 500K.
(c) The refined lattice parameters a/

√
(3) and b in dependence of the temperature

are given in red and blue, respectively. The phase transition at around 650K from
P21/a to C2/m is observed in both parameters as kink. Above 650K a/

√
(3) and b

gradually converge and thus indicate the smooth transition into a trigonal structure.
The monotonous increase of the volume of the unit cell with increasing temperature
is given in the inset. (d) The synchrotron PXRD data collected at 1025K can already
be described with the trigonal space group P3m1. The gradual merging of the split
peaks with increasing temperature is given in the insets. The same graph was used in
our publication [139], which is copyrighted by the American Physical Society.
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tiling vector is zero which confines the tilting to the ac plane and all the octahedra
tilt the same way. The unit cell is still doubled in the c direction. The structural
phase transition from P21/a to C2/m is reversible upon cooling.
At the beginning of this subsection aspects pointing towards a trigonal symme-

try at higher temperatures were listed. The space group C2/m was reported as
intermediate structure in the P21/a to P3m1 transition series in the glaserite-type
compound Na2SrMg(PO4)2 [148]. Indeed, upon increasing the temperature fur-
ther, the lattice parameters a/

√
(3) and b converge and the monoclinic angle β

approaches 90 ◦ as illustrated in Figs. 4.24(a) and (c). This indicates a transition
into a trigonal phase. The transition sequence is illustrated in Fig. 4.24(b). From
C2/m to P3m1 many split peaks merge and the remaining reflections for P3m1 are
labeled in red. For selected peaks the merging with temperature is shown in the
inset of Fig. 4.24(d). The peaks merge with increasing temperature and at 1000K
the peak splitting cannot be resolved anymore. The restrictions a/

√
(3) equals b

and β equals 90 ◦ are imposed by symmetry. Since β equals 90.0122(2) ◦ and has
not reached 90 ◦ at 1025K the transition may not be complete. However, the space
group P3m1 can already be used as structural model if the residual broadening is
taken into account during the refinement. Considering an increased reflection width,
the diffraction data can be described accurately [see Fig. 4.24(d)]. The residue value
for the trigonal refinement Rp = 9.36% is only slightly higher than the residue value
of the refinement for the same data set in the monoclinic structure (Rp = 8.59%).
Same holds for the Lorentzian parameter of the peak-shape function LY . For the
refinement in the trigonal space group LY is 0.0412(2) ◦ and for the refinement in
the monoclinic space group LY is 0.0352(2) ◦. At 1025K Na2SrCo(PO4)2 is at the
threshold of the transition to a trigonal structure but the transition is not yet com-
pleted. Unfortunately, measurements at higher temperatures could not be performed
due to technical reasons. The atomic parameters obtained through the refinement
with the trigonal space group P3m1 are listed in Appendix A.
Fig. 4.23(d) illustrates the P3m1 unit cell. In contrast to the monoclinic struc-

tures at lower temperatures, the trigonal structure is undistorted and in the trigonal
case the polyhedra are not tilted. Fig. 4.23(d) indicates the ferrorotations of the
CoO6 octahedra which can be easily introduced in the trigonal structure. The av-
erage structure recorded by the x rays is the P3m1 structure.
In the following, the evolution of the distortions and tilting with temperature will

be analyzed. The distortion of the triangular lattice is captured through the ratio
of the nn Co-Co distances. This ratio of the short (d′) and long (d) Co-Co distance
with temperature is given in Fig. 4.25(a). The difference between d′ and d increases
upon cooling. At the phase transition to C2/m at 650K the slope changes. The
ratio approaches 1.0 but does not reach 1.0, which would be imposed by the trigonal
symmetry. The triangles are nearly equilateral but the trigonal symmetry is still
forbidden due to the distortions.
The tilting of the CoO6 octahedra which is referred to now is indicated with a

black arrow in Fig. 4.23(a). Here, the tilting angle is defined as the angle between
the crystallographic c axis and the vector perpendicular to the indicated face of the
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Figure 4.25.: Distortion and tilting in Na2SrCo(PO4)2. (a) The deformation of the
triangular lattice is captured by the ratio of the short (d′) to the long (d) Co-Co
distances. The deformation is larger the lower the temperature. The error bars are
smaller than the symbol size. [(b) and (d)] The tilting angles of the Co1O6 and Co2O6

octahedra stay nearly constant in the P21/a symmetry and start to decrease at the
phase transition to C2/m. [(c) and (e)] Three different Co-O-P angles are present in
each layer in the case of the lowest symmetry P21/a. Two of those angles in each
layer merge at the phase transition to C2/m. The trigonal symmetry restricts the
angles to be equal and the angle in the trigonal case was used for normalization. The
same graph was used in our publication [139], which is copyrighted by the American
Physical Society.
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octahedron. The temperature dependence is given in Figs. 4.25(b) and 4.25(d). In
both Co layers, the tilting angle is the highest in the P21/a space group and stays
nearly constant in the temperature window of the P21/a structure. The phase tran-
sition to the C2/m structure is visible as drop of the tilting angle at around 650K.
The angle keeps decreasing and at 1000K reaches half of the starting value of 3 ◦.
The tilting angle would vanish if the undistorted P3m1 phase were reached.
The detailed analysis of the orientation of the polyhedra is essential not only in

regard of a complete structural characterization but also in regard of the magnetic
properties. Because there is no direct Co-O-Co link the magnetic exchange is me-
diated through the Co-O-P units which are delineated in Fig. 4.23(b). The Co-O-P
bond angles are influenced by the tilting of the CoO6 octahedra and PO4 tetrahedra.
The evolution of the Co-O-P bond angles with temperature is given in Figs. 4.25(c)
and 4.25(e). Without tilting as in the P3m1 case, all the angles are identical. The
angle obtained from the refinement for the data at 1025K in the space group P3m1
is used for normalization. In contrast to only one value in the P3m1 case, three
different angles are present in the P21/a structure which lead to different superex-
change paths. Again, at the lowest temperature the values deviate the most from the
reference value. The spread of the angles decreases if the temperature is increased.
The first phase transition is indicated by the convergence of two angles in each Co
layer and one is left with two different angles in both layers in the C2/m structure.
These two angles would finally merge at the phase transition to P3m1.

4.4.3. Heat Capacity

The total heat capacity in dependence of the temperature is given in Fig. 4.26(a).
To obtain the magnetic heat capacity the phonon contribution has to be extracted.
Therefore, the zero-field data were fitted between 2.5 to 10K to the expression
B ·T 3+A/T 2. Due to the light weight of the single crystal the extraction of the spe-
cific heat from the relaxation curves becomes difficult above 6K and is not possible
anymore above 10K. Anyway, the data collected above 10K would not be suited for
fitting because the phonon contribution would start to deviate from Debye’s T3 law,
which makes up the first term of the fit function. The second part is the lowest-order
term in the high-temperature series expansion for the magnetic specific heat [123].
The fit parameters are B = 2.6(2) · 10−4 J/(K4 ·mol) and A = 8.3(1) J ·K/mol. For
nn TLAFs A = (9/16) · R · (J/kB)2 holds and thus J/kB = 1.33(1)K is obtained.
This value is in good accordance to those determined in Subsec. 4.4.4.
The magnetic specific heat obtained by subtracting the phonon contribution from

the total heat capacity in different magnetic fields is given in Fig. 4.26(b). Long-
range magnetic order in zero magnetic field is observed in form of a sharp peak at
around TN ≃ 600mK. TN initially stays constant upon increasing the magnetic field
but at 0.4T TN decreases to 520mK. Further increase of the magnetic field leads
to a suppression of the transition below 0.4K or a complete vanishing of magnetic
order.
Besides the sharp transition a broad hump is centered around 1K up to 1T. This
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Figure 4.26.: Temperature dependent specific heat of Na2SrCo(PO4)2. (a) Total
specific heat at 0T. The fit shown in red includes the phonon contribution and the
lowest-order term in the high-temperature series expansion for the magnetic heat ca-
pacity. (b) Magnetic heat capacity at different magnetic fields parallel to c. The
λ-type peak indicates long-range magnetic order at 600mK in low magnetic fields.
The superimposed broad Schottky-like anomaly is caused by short-range magnetic
order. Above 1T the broad maximum shifts to higher temperatures with increasing
magnetic field. The fit of the zero-field data with the high-temperature series expan-
sion is shown in red. The zero-field magnetic entropy given in the inset approaches
R ln(2) as expected for an effective spin-1/2 system. The same graph was used in our
publication [139], which is copyrighted by the American Physical Society.

broad feature is caused by short-range magnetic order above TN and commonly
observed in low-dimensional and frustrated antiferromagnets. Above 1T the maxi-
mum shifts to higher temperatures with increasing field. This trend resembles the
behavior of a Schottky anomaly, which suggests that above 1T the spin system is
fully polarized and a field-induced gap opens. This fits to the saturation field of
around 2T observed in the magnetization data Fig. 4.29.
To obtain the magnetic entropy by integrating the specific heat divided by tem-

perature, the zero field data first have to be extrapolated to 0K. To this end, a
gapless antiferromagnet which follows the proportionality C ∝ T 3 was assumed.
The inset of Fig. 4.26 shows the magnetic entropy. As expected for a spin-1/2 sys-
tem the entropy value approaches R ln(2). Due to the light weight of the single
crystal the weighing error leads to the small deviation of 5%. The asymptotic limit
proofs that Na2SrCo(PO4)2 carries spin-1/2 magnetic moments below 10K, similar
to Na2BaCo(PO4)2. This is further supported by magnetization measurements pre-
sented in the next subsection.
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Figure 4.27.: The inverse magnetic susceptibility data of Na2SrCo(PO4)2 measured
at 0.1T show an inflection point at around 70K. The data are accurately described
by the Griffith model given in Ref. [119]. The same graph was used in our publica-
tion [139], which is copyrighted by the American Physical Society.

4.4.4. Magnetization

Analogous to Na2BaCo(PO4)2, the temperature dependence of the inverse magnetic
susceptibility given in Fig. 4.27 shows an inflection point at around 70K. As already
discussed in Subsec. 4.3.3, in the case of a d7 electronic configuration in octahe-
dral coordination SOC leads to a lowest Kramers level with effective spin-1/2 and
higher-lying levels with effective spin-3/2 and 5/2. Around 70K the excited states
get significantly populated but at low temperatures the system behaves like an ef-
fective spin-1/2 system. This is already known from the magnetic specific heat. The
inverse susceptibility can be described accurately with the model from Griffith for
d7 high-spin octahedral complexes as well [119]. For Na2SrCo(PO4)2 the obtained
SOC constant of 1377(11)K is nearly 2 times larger than in Ref. [16]. In the model
from Griffith an ideal octahedral symmetry is assumed, which means the SOC only
leads to the splitting of the Co2+ multiplet. For Na2BaCo(PO4)2 with only trigo-
nal distortions this assumption is still reasonable but for Na2SrCo(PO4)2 the model
runs into its limits because crystal-field splitting of the t2g levels caused by trigonal
distortions plus distortions of the octahedra beyond the trigonal symmetry is not
accounted for in the simplified model.
In the following it is focused on the pure spin-1/2 system free of the influ-

ence of the excited states which can be assumed below 20K. The Curie-Weiss fits,
χ = χ0 +C/(T − θ), for both field directions, H ⊥ c and H ∥ c, between 5 and 20K
are given in Figs. 4.28(b) and 4.28(e). The fits yield the Curie-Weiss temperature
θCW = −3.07(3)K, the Landé factor g = 5.8(3), χ0 = 7.8(5)·10−3 emu/mol for H ∥ c
and θCW = −1.44(3)K, g = 3.7(2), χ0 = 8.5(3) · 10−3 emu/mol for H ⊥ c. With χ0
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Figure 4.28.: Magnetic susceptibility of Na2SrCo(PO4)2 for the magnetic field per-
pendicular to c (top row) and for the magnetic field parallel to c (bottom row). [(a)
and (d)] The susceptibility shows an antiferromagnetic transition at 600mK for mag-
netic fields up to 0.1T. The inset compares the susceptibility at 0.05T for both field
directions and the faster drop of the susceptibility for the field parallel to c indicates
c as easy axis. The sharp increase below TN for H ⊥ c up to 0.05T arises from
small uncompensated moments in the ab plane. [(b) and (e)] Susceptibility up to
50K and Curie-Weiss fits between 5 and 20K. [(c) and (f)] The broad hump is due to
short-range magnetic order and can be described accurately with a high-temperature
series expansion for TLAFs given in Refs. [120, 121]. The same graph was used in our
publication [139], which is copyrighted by the American Physical Society.
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Figure 4.29.: M(H) for Na2BaCo(PO4)2 and Na2SrCo(PO4)2 at 400mK for H ∥ c
and H ⊥ c. The g anisotropy is three times larger in Na2SrCo(PO4)2. The uncom-
pensated moment in the ab plane causes the small hysteresis for H ⊥ c given in the
inset. The same graph was used in our publication [139], which is copyrighted by the
American Physical Society.

the Van-Vleck contribution is taken into account. For nn TLAFs θCW = 1.5J/kB
holds, which lead to Jz/kB = 2.05(3)K and Jxy/kB = 0.96(2)K. The average value
is Jav/kB = (2Jxy + Jz)/3kB = 1.32(3)K and in perfect accordance with the value
obtained from the heat capacity data. From the substantial difference of the g val-
ues the anisotropy is found to be around 37%. From the saturation magnetization
Ms = gµBJ , at 0.4K g = 5.9(3) for H ∥ c and g = 3.7(2) for H ⊥ c were deter-
mined leading to a similar value of the anisotropy. In contrast, with g = 4.7(3)
for H ∥ c and g = 4.1(2) for H ⊥ c determined from the saturation magnetiza-
tion, Na2BaCo(PO4)2 shows a much smaller anisotropy of 12% (see Fig. 4.29). The
isotropic value of g = 4.33 would be expected for an effective spin-1/2 within an
undistorted CoO6 octahedron. Distortions of the octahedra lead to a difference be-
tween gz and gxy. The small deviations from the isotropic value in Na2BaCo(PO4)2
can be traced back to the trigonal distortions of only 3.8% at 10K. The larger g
anisotropy in Na2SrCo(PO4)2 is on the one hand due to the larger trigonal distor-
tions of around 5.4% (Co1O6) and 8.8% (Co2O6) and on the other hand due to the
distortions beyond trigonal of around 2.6% (Co1O6) and 2.9% (Co2O6) at 10K.
The temperature dependent susceptibility shows that Na2SrCo(PO4)2 orders an-

tiferromagnetically at 600mK [see Fig. 4.28(a) and (d)]. The transition was already
observed in the heat capacity data. The transition is still observed at 0.1T and is no
longer visible at 1T, in agreement with the heat-capacity data. At the lowest fields
measured the behavior below the transition temperature is strongly dependent on
the direction of the applied magnetic field. For H ∥ c the susceptibility decreases,
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whereas for H ⊥ c the susceptibility increases abruptly. A direct comparison of the
susceptibility for the two different field directions is given in the inset of Fig. 4.28(d).
The behavior is that of an easy-axis antiferromagnet. If the field is applied along
the easy axis the susceptibility drops and if the field is applied perpendicular to
the easy axis the susceptibility stays independent of temperature. Together with
gz > gxy and the stronger exchange couplings for H ∥ c, c can be identified as easy
axis. While the spin component along c is fully compensated, the abrupt increase
in the susceptibility for H ⊥ c indicates an uncompensated spin component in the
ab plane. An example for this kind of behavior can be found in Refs. [149, 150].
The uncompensated moment should manifest itself in form of a hysteresis inM(H).
Indeed, a hysteretic behavior was measured and is given in the inset of Fig. 4.29.
From the saturation magnetization the in-plane moment µCo2+ = 0.066(4)µB/f.u.
was determined. This corresponds to 3.5% of the out-of-plane saturated moment
measured for B ⊥ c. In XXZ TLAFs with a large easy-axis anisotropy the Y-type
order is expected [151]. The easy-axis anisotropy and the small uncompensated mo-
ment in the ab plane is compatible with the Y-type order if the Y-type spin pattern
is turned toward the ab plane. Yet, for the exact determination of the spin structure
neutron diffraction experiments are needed.
Nonlinearities are discernible in M(H) collected at 400mK for both field direc-

tions of the magnetic field. These may indicate field induced phases, similar to the
uud phase observed through the magnetization plateau at one third of the saturation
magnetization in other TLAFs. To resolve possible intermediate phases, measure-
ments at lower temperatures would be necessary but go beyond the scope of this
work.
As for Na2BaCo(PO4)2 (Subsec. 4.3.3) a broad hump due to short-range magnetic

order is seen in the magnetic susceptibility [see Figs. 4.28(c) and (f)]. In analogy
to Na2BaCo(PO4)2, the susceptibility was fitted with the Padé approximated high-
temperature series expansion for spin-1/2 TLAFs described in Refs. [120, 121]. The
fit parameters g and the exchange coupling J are obtained to Jz/kB = 1.76(1)K and
g = 5.9(2) for H ∥ c and Jxy/kB = 1.04(1)K and g = 3.9(1) for H ⊥ c by fitting to
the data below 25K collected at 0.1T. The g values are in good accordance to those
determined from the Curie-Weiss fits and from the M(H) data. Jz and Jxy match
the values obtained from the Curie-Weiss fits and the average Jav/kB = 1.28(1)K
fit to the value determined from the heat capacity. The fits describe the data accu-
rately and are given in Figs. 4.28(c) and (f). The model does not take off-diagonal
anisotropy into account and similar to Na2BaCo(PO4)2, the off-diagonal anisotropy
is expected to be small.
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4.5. Comparison of Na2BaCo(PO4)2 and
Na2SrCo(PO4)2

Strong differences of the physical properties are sometimes linked to fine details
of the crystal structure. First, the structural differences of Na2BaCo(PO4)2 and
Na2SrCo(PO4)2 will be compared before conclusions can be drawn concerning the
particular properties. The most obvious and not surprising aspect is the decreased
Co-Co interlayer distance in Na2SrCo(PO4)2 compared to Na2BaCo(PO4)2 due to
the smaller atomic radii of Sr2+ compared to Ba2+. The over 3% smaller Co-Co
interlayer distance at 10K in Na2SrCo(PO4)2 should lead to an increased inter-
layer coupling. Additionally, the spacer ions have a remarkable effect on the sym-
metry and lower the symmetry from trigonal in Na2BaCo(PO4)2 to monoclinic in
Na2SrCo(PO4)2. To understand the origin of the different structural characteristics
the environments of the spacer ions will be compared. To this end, the bond valence
sum (BVS) was calculated. The valence of the alkaline-earth metal is obtained by
summing over the valence of the individual bonds to the surrounding O2− ions which
depends on the bond length. Ref. [152] lists the needed empirical constants. The
resulting BVS is given in Table 4.3 together with the average bond length and the
effective coordination. The latter is the mean coordination which is obtained similar
to the BVS by summing over the surrounding atoms with a weight depending on
the Sr-O distance. The smaller Sr ions are coordinated by only nine O ions whereas
the Ba ions are coordinated by ten O ions. Hence, the average bond length has to
be smaller in the SrO polyhedra to preserve the oxidation state of +2 of the central
ion. This in turn results in the tilt and distortion of the octahedra and leads to the
lower symmetry. At higher temperatures, the average bond length is increased and
the ten-fold coordination allows the formation of the undistorted structure.

The deviations from the ideal octahedral symmetry in Na2SrCo(PO4)2 explain
why the Griffith model overestimates the SOC constant. The Griffith model for d7

high-spin octahedral complexes presented in Subsecs. 4.3.3 and 4.4.4 and Figs. 4.18
and 4.27 yields a reasonable SOC constant for Na2BaCo(PO4)2 but the SOC con-

Table 4.3.: Comparison of the SrO and BaO polyhedra in Na2SrCo(PO4)2 and
Na2BaCo(PO4)2. The table is adapted from Ref. [139].

BVS
effective
coordination

average bond
length (Å)

Na2SrCo(PO4)2 2.033 9.0 2.7255
300K, P21/a

Na2SrCo(PO4)2 1.678 9.8 2.8932
1025K, P3m1

Na2BaCo(PO4)2 2.398 10.5 2.9141
300K, P3m1
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Table 4.4.: Comparison of Néel temperature TN and average exchange coupling
strength Jav/kB for different spin-1/2 TLAFs. For the Co and Cu compounds the
average exchange was calculated with Jav/kB = (2Jxy + Jz)/3kB and Jav/kB =
(J + 2J ′)/3kB, respectively. The table is adapted from Ref. [139].

TN (K) Jav/kB (K) kBTN/Jav

Na2BaCo(PO4)2 0.14 1.3 0.11

Ba3CoSb2O9 [153] 3.8 19.19 0.20

Cs2CuBr4 [154, 155] 1.4 9.0 0.16

Cs2CuCl4 [156] 0.62 2.42 0.26

Na2SrCo(PO4)2 0.60 1.32 0.45

stant obtained for Na2SrCo(PO4)2 is too large by a factor of around two. Griffith
assumes in his model an ideal octahedral symmetry and distortions leading to crystal
field splittings are not taken into account. Therefore, the model is suited to describe
the susceptibility data of Na2BaCo(PO4)2 but reaches its limits for Na2SrCo(PO4)2.
The occurrence of uncompensated moments in the ab plane in Na2SrCo(PO4)2

can also be traced back to the symmetry lowering. This weak ferromagnetism in
antiferromagnets typically stems from DM interactions which are controlled by the
bond inversion symmetry. A necessary condition for DM interactions to occur is
the absence of bond inversion symmetry. In Na2BaCo(PO4)2 every Co-Co bond has
an inversion center, hence, DM interactions are not allowed. In contrast, the lower
symmetry in Na2SrCo(PO4)2 removes the inversion symmetry for two of the three
Co-Co bonds and DM interactions become possible. With DM interactions present
in the system the tilting of the spins relative to each other is energetically favorable
and non-collinear spin arrangements accompanied with uncompensated moments
may emerge.

The larger g-tensor anisotropy is another ramification of the symmetry low-
ering. In general, g is a tensor but reduces to a single value in the isotropic
case. For the undistorted CoO6 octahedron g = 4.33. Distortions destroy the
isotropy, which leads to the splitting of the parallel and perpendicular components
of the g tensor [157]. Besides the increase of the g-tensor anisotropy, the XXZ
anisotropy is enhanced. From the Curie-Weiss temperatures the anisotropy pa-
rameters were calculated. The anisotropy parameter of Na2SrCo(PO4)2 is ∆ =
Jz/Jxy = 2.05(3)K/0.96(2)K = 2.14(8), whereas Na2BaCo(PO4)2 shows a lower
value of ∆ = Jz/Jxy = 1.68(1)K/1.11(2)K = 1.51(4). The latter value is in good
accordance with the caluculated value from Ref. [117].

The Néel temperature in relation to the average exchange coupling kBTN/Jav is
listed in table 4.4 for Na2BaCo(PO4)2, Na2SrCo(PO4)2, and other spin-1/2 TLAFs.
In comparison to other compounds which usually show values around 0.2, the ratio
for Na2BaCo(PO4)2 is halved and the ratio for Na2SrCo(PO4)2 is doubled. Even
though the exchange couplings are very similar in the two compounds, the Néel tem-
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4. Results and Discussion

Figure 4.30.: Comparison of the magnetic susceptibilities of Na2SrCo(PO4)2 and
Na2BaCo(PO4)2. The data were collected at 0.1T for both field directions and re-
scaled to match the paramagnetic regimes. The susceptibilities clearly start to deviate
at low temperatures. The same graph was used in our publication [139], which is
copyrighted by the American Physical Society.

perature is larger in Na2SrCo(PO4)2 by a factor of over four. Three combined effects,
already described above, can explain this difference. First contribution leading to
the larger TN is the stronger interlayer coupling in Na2SrCo(PO4)2. Second effect
is the deformation of the triangular spin lattice in Na2SrCo(PO4)2, as compared to
the triangular lattice with equilateral triangles in Na2BaCo(PO4)2. Third, quantum
fluctuations are weakened by the enhanced XXZ anisotropy. The 120 ◦ Y-type order
is compatible with the easy-axis anisotropy if one of the spins is oriented along the
c axis [151]. With increasing Jz/Jxy this order becomes more stable. In summary,
the small monoclinic distortions have a significant effect on the Néel temperature of
TLAFs and for Na2SrCo(PO4)2 the ratio kBTN/Jav is higher than in other TLAFs.
In comparison the ratio is lower in Na2BaCo(PO4)2. A possible explanation would
be that, contrary to Na2SrCo(PO4)2, the structural distortions in Na2BaCo(PO4)2
presented in Subsec. 4.3.1 reduce TN. The structural dynamics freeze at lower tem-
peratures and thus introduce randomness of the magnetic interactions.
The magnetic susceptibilities of Na2BaCo(PO4)2 and Na2SrCo(PO4)2 are directly

compared in Fig. 4.30. The data were rescaled to match the paramagnetic regime.
The deviations between the two compounds become prominent at low temperatures
and are the largest for H ∥ c. This indicates a stronger easy-axis anisotropy in
Na2SrCo(PO4)2 and suggests that the spins are primarily aligned along c in the
magnetically ordered state.
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5. Summary and Outlook

5.1. Na2RuO3

For this compound a few questions remain open. First, a short overview of the
findings is given. The open tasks are addressed afterwards.
In a two step approach powder samples of Na2RuO3 were obtained by reducing

the precursor compound Na2RuO4. Na2RuO3 could not be synthesized directly.
Na2RuO3 crystallizes in a monoclinic symmetry. The Ru ions form a honeycomb
lattice and the honeycomb layers separated by Na layers are stacked along the crys-
tallographic c axis. Due to the weakly coupled slabs the structure is prone to stacking
faults leading to broad asymmetric features in the XRPD pattern. The XRPD pat-
tern was simulated assuming 30% of stacking faults.
No phase transition was observed in the heat capacity and magnetic susceptibility

down to 2K. Moreover, no indications for the presence of local magnetic moments
could be detected. The magnetic susceptibility was modeled considering a Van Vleck
contribution. The analysis points towards a non-magnetic J = 0 ground state. In
the case of a J = 0 ground state excitations to the higher lying J = 1 and J = 2 lev-
els should be spectroscopically observable. IRIXS measurements (by Hakuto Suzuki
and Bernhard Keimer) indeed revealed four transitions up to 1 eV. The transition
energies are comparable to those of the J = 0 compound Ca2RuO4. The results
presented herein clearly point towards the J = 0 ground state but not towards an
antiferromagnet or a correlated metal as presented before in the literature.

Single crystals could not be synthesized so far but are highly desirable. Polariza-
tion dependent IRIXS measurements could provide information about the nature of
the transitions and underpin the J = 0 scenario. The compound can then be in-
vestigated with regard to excitonic magnetism. But the synthesis of single crystals
proved to be difficult. Because of thermal decomposition single crystals can not be
obtained by simply melting the powder. Moreover, the two step process is not a
suitable synthesis method for single crystals. With the defects in form of stacking
faults it is not clear if single crystals of sufficient quality could form.
The stacking faults introduce randomness in the system. Spin-glass behavior

was not observed, probably because no local magnetic moments are present in this
material, but the influence of the stacking faults on the properties needs to be in-
vestigated. So far, the amount of stacking faults could not be controlled during the
synthesis. The samples synthesized in the framework of this work and the samples
reported in the literature all show similar amounts of stacking faults since the same
synthesis method was used. Samples with less stacking faults would be necessary to
determine the space group (C2/c or C2/m) unambiguously.
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5. Summary and Outlook

5.2. Na3RuO4

In contrast to Na2RuO3 a consistent microscopic scenario could be developed for
Na3RuO4. Na3RuO4 crystallizes in the monoclinic space group C2/m. Tetramers
composed of two isosceles Ru triangles are arranged on a triangular lattice and
triangular features are represented on two different length scales. The two phase
transitions observed in the heat capacity at 26 and 29K were both shown to have
magnetic character using elastic neutron scattering. No structural phase transition
between 1.5 and 300K was detected. Magnetic refinement for the data collected at
10K showed that the tetramers are nearly antiferromagnetic. The magnetic mo-
ments of Ru1 and Ru2 are 2.23(3) and 3.04(3)µB, respectively. Frustration between
the tetramers leads to an incommensurate magnetic order. The propagation vec-
tor k⃗ = (0.2415(2), 0, 0.3127(2)) describes the magnetic structure. The propagation
vector could be reproduced by the exchange couplings calculated via ab − initio
DFT+U (by Alexander A. Tsirlin) and further optimized (by Elias Papke) to better
match the experimental propagation vector. If the tetramers are considered as single
sites parallels can be drawn to the anisotropic TLAF.

It remains to be shown if the magnetic structure is a helix, expected for an
isotropic system, or a spin density wave, expected for an anisotropic system, or
a combination of both types. Determination of the anisotropy through direction
dependent magnetization measurements on single crystals and scattering experi-
ments with polarized neutrons could shine light on this open question. Furthermore,
the magnetic structure forms by passing through two phase transitions. The data
collected at temperatures between the two phase transitions were not suited for a
refinement and thus it could not be determined if a spin reorientation or the appear-
ance of the second component of the magnetic moment causes the second magnetic
transition below TN.
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5.3. Na2BaCo(PO4)2

5.3. Na2BaCo(PO4)2

Synchrotron XRPD measurements showed that the published space group P3m1
had to be revised. In the newly found space group symmetry P3 the Co octahedra
are ferrorotated. No structural phase transition was detected down to 10K. At 10K
the collective rotation angle is around 9.4(2) ◦. The slightly enlarged ADPs for Na at
every temperature indicate Na in-plane displacements. 23Na NMR (by Ivo Heinmaa
and Raivo Stern) confirmed the intrinsic disorder and proved the shift of the Na
atoms away from the 3-fold rotation axis. At around 50K the enlarged ADPs of Na
and one of the O atoms become constant indicating the freezing of the structural
dynamics.
At low temperatures Na2BaCo(PO4)2 can be treated as spin-1/2 system. Heat ca-

pacity and magnetic susceptibility could be described accurately with the nn XXZ
model for TLAFs. This confirms but also contradicts different reports found in
the literature. The transition at 148mK (measured by Noah Winterhalter-Stocker)
clearly excludes Na2BaCo(PO4)2 as possible QSL candidate. Heat capacity data
revealed a second phase transition at around 66mK in a small field pocket for small
magnetic fields. The behavior of the magnetic heat capacity in zero magnetic field at
the lowest temperatures of the measurements hints towards another phase transition.

A possible second phase transition still needs to be confirmed as well as the kind
of magnetic structure which was not determined unambiguously so far. Together
with the detailed construction of the H − T phase diagrams in both field directions
the results can be analyzed with regard to XXZ TLAFs. The thermodynamic prop-
erties are subject of active experimental and theoretical research. No attention is
given to the structural intrinsic disorder. The presence of disorder was shown in
the framework of this work while the exact mechanism of the disorder could not
be determined unambiguously. Random rotations of the Co octahedra accompanied
by the Na in-plane displacements are conceivable. Whatever kind of disorder is
present in the structure, the freezing of the structural dynamics introduces struc-
tural randomness and simultaneously randomness of the superexchange paths. The
structural randomness may explain the reduced Néel temperature in proportion to
the average exchange coupling in comparison to other spin-1/2 TLAFs. Affecting the
magnetic properties the details of the crystal structure must be carefully recorded
for every sample. Sample dependencies may explain the conflicting results found in
the literature.
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5. Summary and Outlook

5.4. Na2SrCo(PO4)2 and its Comparison to
Na2BaCo(PO4)2

Less examined in the literature is Na2SrCo(PO4)2. Na2SrCo(PO4)2 is formally ob-
tained by exchanging the non-magnetic Ba ions in Na2BaCo(PO4)2 with Sr ions.
By comparing the two compounds the structural differences can be related to the
differences of the properties.
The interlayer ion exchange has a tremendous effect on the symmetry which is

lowered to monoclinic P21/a in Na2SrCo(PO4)2. This results in cooperative tilt-
ing of the CoO6 octahedra and PO4 tetrahedra, distortions of the CoO6 octahedra
beyond trigonal, and a triangular lattice composed of isosceles triangles instead of
equilateral ones. The differences are caused by the smaller atomic radius of the Sr
ion. The smaller Sr ions are coordinated by less O ions and to preserve the oxi-
dation state the average Sr-O bond length has to decrease causing the distortions.
The average bond length increases at higher temperatures and the trigonal phase is
restored at temperatures above 1025K. An intermediate phase with C2/m symme-
try forms at around 650K. The symmetry lowering entails the lifting of the bond
inversion symmetry for some of the Co-Co bonds and DM interactions are allowed.
Direction dependent magnetization measurements showed an antiferromagnetic

transition at 600mK with c as easy axis. DM interactions lead to a small un-
compensated moment in the ab plane. As well as in the case of Na2BaCo(PO4)2
the heat capacity and magnetization data of Na2SrCo(PO4)2 could be explained
with the XXZ model for TLAFs. The larger distortions of the CoO6 octahedra
increase the g anisotropy and the XXZ anisotropy. gz/gxy = 1.6 and Jz/Jxy = 2.1
in Na2SrCo(PO4)2 compared to gz/gxy = 1.1 and Jz/Jxy = 1.5 in Na2BaCo(PO4)2.
Together with the reduced frustration due to the distortion of the triangular lattice
and the increased interlayer coupling the higher anisotropies lead to the four times
higher Néel temperature in Na2SrCo(PO4)2.
The comparison of Na2BaCo(PO4)2 and Na2SrCo(PO4)2 illustrates the impor-

tance of the detailed investigation of the crystal structure. Consequently, the exact
characterization of the structural dynamics in Na2BaCo(PO4)2 is indispensable.
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a*

b*

Figure A.1.: Single-crystal x-ray diffraction data collected at room temperature and
reconstruction of the (hk0) plane. The allowed reflections are indicated with green
circles and the extinct reflections are indicated with red squares. Measurement and
refinement by Jan Langmann. The same figure was used in the Supplement of our
publication [139], which is copyrighted by the American Physical Society.

112



a*

c*

Figure A.2.: Single-crystal x-ray diffraction data collected at room temperature and
reconstruction of the (h0l) plane. The allowed reflections are indicated with green
circles and the extinct reflections are indicated with red squares. Measurement and
refinement by Jan Langmann. The same figure was used in the Supplement of our
publication [139], which is copyrighted by the American Physical Society.
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b*

c*

Figure A.3.: Single-crystal x-ray diffraction data collected at room temperature and
reconstruction of the (0kl) plane. The allowed reflections are indicated with green
circles and the extinct reflections are indicated with red squares. Measurement and
refinement by Jan Langmann. The same figure was used in the Supplement of our
publication [139], which is copyrighted by the American Physical Society.
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Table A.1.: Atomic coordinates and mean-square atomic displacement parameters
obtained from refinement with the space group P21/a. The single-crystal x-ray diffrac-
tion data were collected at room temperature and refined by Jan Langmann. The same
table was used in the Supplement of our publication [139], which is copyrighted by
the American Physical Society.

fractional atomic coordinates U eq

atom x y z [Å2]

O1 0.70178(9) 0.50090(16) 0.92242(6) 0.01196(15)
O2 0.15411(8) 0.00542(15) 0.38602(6) 0.01000(14)
O3 0.95015(8) 0.30437(14) 0.91005(5) 0.01049(13)
O4 0.41815(7) 0.72734(13) 0.88467(5) 0.00926(12)
O5 0.39957(8) 0.80737(15) 0.41800(6) 0.01240(14)
O6 0.87226(8) 0.21962(15) 0.41167(6) 0.01233(14)
O7 0.82353(10) 0.45621(15) 0.75819(6) 0.01199(16)
O8 0.35195(10) 0.02691(16) 0.25681(6) 0.01270(16)
P1 0.84842(3) 0.50923(4) 0.867019(18) 0.00515(5)
P2 0.31923(3) 0.02805(4) 0.366565(18) 0.00533(5)
Na1 0.81911(7) 0.48619(11) 0.08944(4) 0.01392(12)
Na2 0.34876(7) 0.01638(11) 0.58943(4) 0.01403(12)
Co1 0 0 0 0.00612(4)
Co2 0.5 0.5 0.5 0.00621(4)
Sr1 0.035333(9) 0.042901(17) 0.750259(5) 0.00883(3)
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Figure A.4.: Rietveld refinement with the space group C2/m. The synchrotron
XRPD data were collected at 800K. The same figure was used in the Supplement of
our publication [139], which is copyrighted by the American Physical Society.

Table A.2.: Atomic coordinates and mean-square atomic displacement parameters
obtained from refinement with the space group C2/m. The synchrotron XRPD data
were collected at 800K. The cell parameters are a = 9.22467(2) Å, b = 5.32301(1) Å,
c = 13.73148(3) Å, and β = 90.0717(2) ◦. The same table was used in the Supplement
of our publication [139], which is copyrighted by the American Physical Society.

fractional atomic coordinates U eq

atom x y z [Å2]

O1 0.6960(10) 0.5 0.9204(7) 0.034(3)
O2 0.1619(8) 0 0.3915(5) 0.009(3)
O3 0.9350(6) 0.278(1) 0.8994(5) 0.025(2)
O4 0.4037(7) 0.773(1) 0.4121(5) 0.035(2)
O5 0.8257(8) 0.5 0.7562(8) 0.026(4)
O6 0.3480(8) 0 0.2582(8) 0.034(4)
P1 0.8435(4) 0.5 0.8675(4) 0.012(1)
P2 0.3277(4) 0 0.3671(4) 0.013(1)
Na1 0.8283(6) 0.5 0.0882(5) 0.033(2)
Na2 0.3525(6) 0 0.5927(5) 0.040(2)
Co1 0 0 0 0.0198(8)
Co2 0.5 0.5 0.5 0.0187(9)
Sr1 0.0212(1) 0 0.7498(2) 0.0257(3)
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Table A.3.: Atomic coordinates and mean-square atomic displacement parameters
obtained from refinement with the space group P3m1. The synchrotron XRPD
data were collected at 1025K. The cell parameters are a = 5.338296(8) Å and
c = 6.90823(1) Å. The same table was used in the Supplement of our publication
[139], which is copyrighted by the American Physical Society.

fractional atomic coordinates U eq

atom x y z [Å2]

O1 0.1798(3) 0.8202(3) 0.3084(4) 0.0356(10)
O2 1/3 2/3 0.0169(9) 0.040(2)
P1 1/3 2/3 0.2349(4) 0.0144(5)
Na1 1/3 2/3 0.6794(5) 0.044(1)
Co1 0 0 0.5 0.0225(6)
Sr1 0 0 0 0.0310(5)
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56. Petř́ıček, V., Dušek, M. & Palatinus, L. Crystallographic Computing Sys-
tem JANA2006: General features. Zeitschrift für Kristallographie - Crystalline
Materials 229, 345–352 (2014).

57. Toby, B. H. & Von Dreele, R. B. GSAS-II: the genesis of a modern open-
source all purpose crystallography software package. J. Appl. Crystallogr. 46,
544–549 (2013).

58. Treacy, M. M. J., Newsam, J. M. & Deem, M. W. A general recursion method
for calculating diffracted intensities from crystals containing planar faults.
Proc. R. Soc. Lond. A 433, 499–520 (1991).

59. Bette, S. et al. Solution of the heavily stacking faulted crystal structure of the
honeycomb iridate H3LiIr2O6. Dalton Trans. 46, 15216–15227 (2017).
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