
Distributed Management of
Cloud Computing Applications

Michael Roth
Universität Augsburg, Germany

E-Mail: michael.roth@informatik.uni-augsburg.de

I. INTRODUCTION

Cloud Computing allows customers to pay for servers as
needed. Customers can deploy large web applications without
an upfront investment in hardware. Most web applications
have a high peak load in daytime and fewer visitors at night.
Because of the ability to change the number of running servers
in a matter of minutes the number of servers can be reduced
during times of low traffic, and it can be increased during peak
times. By using Cloud Computing developers can also start a
small web application which can easily scale up if more users
discover the application. For these reasons Cloud Computing
has become very popular over the last years.

Large Cloud Computing applications consist of thousands
of servers and are too dynamical to manage them manually.
Therefore, an automated way to manage these applications is
needed. Organic Computing aims to control complex systems
by introducing self-x abilities. Organic Computing systems
posses the abilities to self-configure, self-optimise, self-heal
and self-protect themselves.

We are developing an Organic Computing Middleware
[1] which is capable of managing large Cloud Computing
applications on its own by using these self-x properties.
Our middleware is completely decentralised and therefore
possesses no single-point-of-failure. An Organic Manager is
the key component of our middleware. The manager uses
a MAPE Cycle [2] to observe and control the system. The
planing in our middleware is done by an automated planer [3].
We investigate the monitor and analyse phases in this paper.

II. SCENARIO

In our scenario a company develops a new web application
and uses Cloud Computing to run the application. The com-
pany rents virtual machines from a Cloud Computing provider.
The application requires web servers to process user requests
and database servers to store information.

We use Amazon Web Services (AWS) [4] as an example
Cloud Computing provider. Other providers have similar ser-
vices, therefore our research can be used with them as well.
Users can rent Virtual Machines (VM) and pay for them by
the hour. VMs have different computing capabilities. The more
computing power a VM possesses the higher is the price.
Currently the prices for one hour range from $0.02 to $4.60
for the AWS Data Centre in North Virginia. Additionally,
customers are charged for generated network traffic.

The customers have only limited influence on the VM
placement. AWS currently operates 8 data centres, called
Regions, all over the world. Each Region is divided in two
to four Availability Zones. A customer can choose the Region
and the Availability Zone for new instances.

Amazon also offers some additional services to manage the
cloud application. Amazon’s monitoring service CloudWatch
[5] is a centralised monitoring system which can monitor
instances in one Region. It is not possible to monitor the
whole application over multiple Regions. The CloudWatch
server collects information from the instances over SNMP. The
user can also define other information sources.

With Amazon’s Auto Scaling new VMs can be deployed
automatically if an observed metric reaches a predefined
threshold. It is also possible to stop instances if an observed
metric falls below predefined value. The Auto Scaling service
uses the data collected from CloudWatch. It is only possible
to define thresholds which trigger actions.

Elastic Load Balancing [6] is a service from Amazon
which manages user requests and distributes them to different
servers. Users send their requests to the load balancer. The
load balancer distributes the requests to the web server pool.
Therefore it is possible to change the number of web servers
without the user noticing. The Amazon load balancer can only
handle traffic for one region.

In our work we use an example web application which is
used by customers all over the world and is therefore hosted
in all 8 AWS regions. To handle the failure of an entire region
the monitoring system must observe all VMs in all regions.
It is not necessary to know the exact information for each
VM in other regions but the overall state must be known. We
use the response time of the web server as indicator for the
application’s health. Users expect an answer in a reasonable
time and are not interested on the CPU load or RAM usage of
the instances. If the response time is too high the middleware
must determine the cause. A high response time can be caused
by the web server or by the database server. If only a single
web server is slow, succeeding requests can be routed to other
web servers by the load balancer until the slow web server
recovers. If more web servers have a high response time the
middleware must decide if new instances must be launched.
To save money the company wants only to rent the number
of servers which are actually required to handle the user
requests within a given response time interval. If the workload
decreases and the user requests are answered with a very low

31

response time the middleware can shut down instances to save
money.

The middleware must also detected failed instances and
decide whether the VMs must be replaced or shut down.
Such failed instances can respond fast to user requests with
an error page or a partial HTML page. Therefore not only a
low response time must be guaranteed. The middleware must
also ensure that the web servers work correctly.

III. MONITORING PHASE

Amazon Web Services use a centralised monitoring system
like most Cloud Computing providers. In such a system all
monitoring data is sent to the central monitoring instance.
To avoid a singe-point-of-failure the monitoring instance is
often replicated which leads to even more traffic. Amazon
CloudWatch is not suitable for our scenario since it can not
monitor system in different AWS regions.

Our goal is to develop a decentralized monitoring system
for a self-managing Cloud Computing Middleware. The mon-
itoring system must collect enough information to observe the
status of the web application. With the monitoring information
the middleware can decide if the system must be adjusted.
Some instances in the web application monitor the system.
These instances are chosen by the middleware. We want to
spread these observer instances over the entire network. Each
observer is responsible for close-by instances but knows also
the approximated status of the entire network. If an observer
fails or the system changes, the middleware can change the
number of observers or relocate the observer to another VM.

The instances are not aware of the network structure. To
enable the instances to send monitoring data to all observers,
all components form a distributed hash table (DHT). The DHT
allows a structured decentralised forwarding of information for
all participants in the middleware. More details on the used
DHT based information dissemination algorithms can be found
at [7].

To allow the observer instances to receive the required
information a publish/subscribe protocol is used. We use the
DHT network to forward the subscriptions and information.
Neighbours in the DHT network are chosen by their network
distance. The node information of different nodes is combined
on its way to the observer. Therefore each node in the
information path has an partial view an the network. Only
the observer receives all information and has therefore a more
complete view of the network. Because of the different transit
times the observer does not possess a consistent view.

IV. ANALYSE PHASE

Because of the decentralized nature of our middleware
and to save network bandwidth we want to analyse the
information on its way to the monitoring instances and send
only aggregated information. We also want to investigate if it
is possible to trigger actions before the information reaches
the monitoring instance if the aggregated data shows a fatal
problem. This can be done by the nodes forwarding the
information to the observer. In this case the observer is only

responsible for optimizations that cannot be performed by the
other instances. The monitoring system must also observe the
actions taken from aggregated information and control if these
actions guide the system into a valid state.

A. Fuzzy Logic

One interesting way to analyse the monitored data is Fuzzy
Logic. In Fuzzy Logic variables have truth values which can
adopt a value between 0 and 1. Member Functions describe
the truth values of variables for given input values. Rules are
used to map the variables to output variables. The truth values
of the input variables and the rules are used to calculate the
truth values of the output variables. By using the different truth
values of the output variables an output value is calculated.

Usually the input and output variables are named to be
easily understood, e.g. low utilization, high temperature, mod-
erate latency, extreme high throughput, start few instances,
start many instances. The rules are therefore very easy to
understand, e.g. IF high latency AND high throughput THEN
start few instances. The idea is that these simple rules can
be entered by users without knowing the exact values repre-
senting good and bad latencies. The definition of the Member
Functions must be done by an expert whereas the rules can
be generated by users without specific domain knowledge.
Because of this simple rule language fuzzy logic is a good
match for our organic computing concept.

B. Time Series Analysis

Most web applications have a peak load every day at the
same time and a different load on weekends and holidays.
With time series analysis and time series forecasting we
want to analyse the previous behaviour to predict such peak
times. If possible such analysis should be done by each in-
stance. The instances send recommendations to the monitoring
system. These recommendations can be calculated on the
source instances and are sent to the monitoring instances. The
monitoring instances can trigger actions on behalf of these
recommendations.

We want to investigate if it is possible for single instances to
calculate reliable forecasts. Each instance knows only the local
load information. If the VM has recently been started there is
not enough information available. If the local knowledge is not
sufficient enough the load information is sent to the monitoring
instance. We want to determine how many data is needed to
calculate a reliable forecast. The data sent to the monitoring
system can be aggregated on its way. A forecast can be
calculated if the aggregated data is significant so that only
the forecast for a group of instances is sent to the monitoring
system. By doing so we can save bandwidth.

V. EVALUATION

Because of the size of such web applications we are unable
to test our scenario in the real world evaluation. We use
the ns3 [8] network simulator to generate a simulated Cloud
Computing environment. The work of Barroso and Hölzle [9]
are used to model a Cloud Computing data centre. Within this

32

environment we will simulate user interactions. We are looking
for real performance information to simulate the behaviour
of the VM instances and the visitors. We will induced VM
failures and fluctuations in the number of visitors. To judge the
efficiency of our middleware we will compare our approach
with traditional centralised solutions. The objective of our
evaluation is to see if the example web application can be
reached with a low response time and at the same time the
number of used servers is kept low. To measure the costs
we will monitor the used network bandwidth. Also the time
required to counteract disturbing influences will be measured.

VI. SUMMARY

We presented a distributed middleware to manage cloud
computing application. The middleware uses an organic man-
ager to control the application. The manager uses a MAPE
cycle. In this paper we focus on the monitoring and analyse
phase.

For information dissemination the instances of the applica-
tion build a distributed hash table network. Information can
be spread throughout the entire network without knowing the
network topology or many other active instances by using
the DHT network. We use a publish/subscribe protocol over
the DHT network to send the node information only to the
observer instances. All other nodes collect and forward the
information to these observers.

A distributed analyse phase aggregates the information on
its way to the observer. If a problem is detected which can be
solved with local knowledge actions are taken. The observer
must only interact with the system if a bigger problem is
detected.

We will evaluate our research with a network simulator. To
get accurate results we model the network after current cloud
computing centres and use real performance information for
modelling the instances behaviour.

REFERENCES

[1] M. Roth, J. Schmitt, R. Kiefhaber, F. Kluge, and T. Ungerer, “Organic
Computing Middleware for Ubiquitous Environments,” in Organic Com-
puting A Paradigm Shift for Complex Systems, ser. Autonomic Systems,
C. Müller-Schloer, H. Schmeck, and T. Ungerer, Eds. Springer Basel,
2011, pp. 339–351.

[2] J. Kephart and D. Chess, “The Vision of Autonomic Computing,” IEEE
Computer, pp. 41–50, jan 2003.

[3] J. Schmitt, M. Roth, R. Kiefhaber, F. Kluge, and T. Ungerer, “Using an
Automated Planner to Control an Organic Middleware,” in Self-Adaptive
and Self-Organizing Systems (SASO), 2011 Fifth IEEE International
Conference on. IEEE, 2011, pp. 71–78.

[4] Amazon, Getting started with Amazon Web Services, 2013 (accessed
April 22, 2013). [Online]. Available: https://aws.amazon.com/en/
documentation/gettingstarted/

[5] ——, Amazon CloudWatch Documentation, 2013 (accessed April 22,
2013). [Online]. Available: https://aws.amazon.com/en/documentation/
cloudwatch/

[6] ——, Amazon Elastic Load Balancing Documentation, 2013 (accessed
April 22, 2013). [Online]. Available: https://aws.amazon.com/en/
documentation/elasticloadbalancing/

[7] M. Roth, J. Schmitt, F. Kluge, and T. Ungerer, “Information dissemination
in distributed organic computing systems with distributed hash tables,”
in Computational Science and Engineering (CSE), 2012 IEEE 15th
International Conference on. IEEE, 2012, pp. 554–561.

[8] N. Baldo, M. Requena, J. Nunez, M. Portoles, J. Nin, P. Dini, and
J. Mangues, “Validation of the ns-3 IEEE 802.11 model using the
EXTREME testbed,” in Proceedings of SIMUTools Conference, 2010,
March 2010.

[9] L. Barroso and U. Hölzle, “The Datacenter as a Computer: An Introduc-
tion to the Design of Warehouse-Scale Machines,” Synthesis Lectures on
Computer Architecture, vol. 4, no. 1, pp. 1–108, 2009.

33

