
Model-based, Adaptive Testing of
Organic Computing Systems

Benedikt Eberhardinger
Institute for Software & Systems Engineering, University of Augsburg, Germany

benedikt.eberhardinger@informatik.uni-augsburg.de

Abstract—Testing is one of the critical points in the software
engineering process, especially in highly complex, autonomic
systems. Yet there is no clear concept how to test an Organic
Computing System in an appropriate way. The main problem in
this field is to handle the self-organizing and adaptive behaviour
of those systems. I propose a model-based and adaptive approach
to test Organic Computing Systems.

Index Terms—Model-based Testing; Adaptive Testing; Testing;
Organic Computing; Multi-agent System

I. INTRODUCTION

Organic Computing (OC) Systems are large, distributed,
heterogeneous systems (mostly multi-agent systems), which
are aware of their environment and themselves in order to
autonomously organize and adapt to achieve certain goals [1].
For that reason, the agents are communicating with other
agents to cooperate and interact. This leads to an evolutionary
changing system. Due to the fact that the environment and the
behaviour of other agents are hard to predict, unforeseeable
system states can occur. This fact makes it difficult, but even
more necessary, to design convincing tests to detect unintended
behaviour of the OC System.

The complexity of testing self-organizing, adaptive systems
could be spilt into two major facts: On the one hand, the self-
organizing and adaptive characteristics make it tough to design
and perform suitable tests. On the other hand, testing dis-
tributed, concurrent software is still an awkward challenge [2].
While the issues of testing distributed, concurrent software
have been a problem in research for a long time [3], the
difficulties of testing OC Systems add a new view. An example
is the task to test the aspect of reorganization. Therefore, the
test has to deal with the interactions within the OC Systems,
because a task could be achieved in many different ways
that could radically change by effects of other agents and the
environment. For example, it is pretty straight forward to test
whether or not a single agent achieves a desired output under
a given circumstance. But if the task is allocated to a system
of agents which, e.g., could form coalitions for achieving
this goal it is rather difficult to say which agent performs
correctly or not, which in this example requires to know the
responsibilities within the coalitions.

To cope with this complexity, a structured process is needed.
The aim is to design a model-based, adaptive approach de-
signed for OC Systems. For that reason, existing techniques
for distributed, concurrent software systems are extended

for OC Systems. The here presented work of my doctoral
dissertation is in an early stage, thus, this paper presents only a
crude outline on this topic: First, related work from the field of
model-based testing distributed, concurrent systems as well as
dynamic symbolic execution for testing is presented in Sect. II.
Afterwards the challenges in testing OC Systems are presented
in Sect. III. To cope with these challenges my approach is
outlined in Sect. IV.

For the further explanations a short, simplified case study of
a distributed power management system will be used [4]. The
power plants in this system are partitioned into Autonomous
Virtual Power Plants (AVPPs). These AVPPs coordinate power
plants in order to meet power demands. Each AVPP is repre-
sented by an agent and has to fulfil a specific power output
to accomplish the global goals of the system. Furthermore an
AVPP can recognize a deviation of the global output and react
to this in cooperation with the other AVPPs. The demand for
each agent is allocated autonomously among the AVPPs. To
simplify matters, all AVPPs have the same capabilities, e.g.,
they all have the same maximum power output in production,
same reaction times and same costs.

II. RELATED WORK

In the area of model-based and automatic testing of con-
current, distributed systems different approaches have been
introduced and applied. These concepts are partly related to
the approach of model-based, adaptive testing of OC Systems.
The most important of them will be introduced below.

There has been significant research in the area of model-
based testing. Zander et al. [5], Broy et al. [6] and Utting et al.
[7] provide an overview of the research in this field. The basic
idea of model-based testing is to develop a formal model of
the system under test (SUT) and to use this model to generate
tests for the system automatically. To obtain this model the
requirements and functional models of the SUT are combined
to encode the intended behaviour of the system. Therefore,
different kinds of models are applied, which describe the tests
as well as the intended behaviour [5], [6]. These models have
to describe all possible different system transactions. In OC
systems it is inpossible to define all possible system trans-
actions. Thus, a model has to be able to be more flexible to
support testing of OC Systems. By defining the model in terms
of a corridor of correct respectively intended behaviour this
flexibility could be gained. My approach is to introduce a goal-
oriented behaviour description in the system requirements.

12



This enables the static model to be more flexible according
to the SUT.

Another problem, which has gained special importance
in the case of goal-oriented behaviour descriptions, is to
generate automatically good test case and the corresponding
test oracles. Godefroid et al. [8] addressed this issue with
the tool “Directed Automated Random Testing” (DART). The
authors combine three main techniques: First the interfaces
of a program to its environment are extracted automatically.
Afterwards a test driver is generated for all interfaces to
perform random tests in order to simulate the environment.
Last the output of the program is dynamically analysed how it
behaves under random conditions. Based on this results new
test paths are generated. By using these techniques, DART
is able to test a program that compiles – as a black-box
– without writing any test driver. In other words, DART
constructs well-formed random inputs for the system, which
are used to stress-test the system. On the basis of DART
Godefroid et al. [9] developed the SAGE system, which allows
white-box fuzz tests. The program is executed, beginning
from a defined point in the program code, with a fixed
initial input. Afterwards the algorithm of SAGE is gathering
input constraints from conditional statements. These collected
constraints are used to generate test inputs.

In the field of symbolic execution tests other efficient
approaches are made by Rungta et al. [10], Davies et al. [11] as
well as Griesmayer et al. [12]. Griesmayer et al. [12] especially
take the problem of testing distributed objects into account.

In theory systematic dynamic test generation can lead to full
program path coverage. Furthermore it allows the test suite to
adapt to the program. But, the problem of these approaches is
the lack in scalability, because the techniques could lead to a
path explosion (cf. [13]). My presented approach tries to cope
with this problem by decomposition.

An alternative way to find the input for the test cases is
to use a model checker that generates possible inputs out of
a given model. Gargantini et al. [14] showed an approach
that is generating test sequences with a model checker. My
approach is trying to combine these techniques with the
dynamic symbolic execution of tests.

To apply these related work into the approach of testing
OC Systems it is necessary to take the fact of distribution and
concurrency into account. In the area of testing distributed,
concurrent systems a lot of research has been done. Souza et
al. [2] gives an overview of the most resent research in this
area. These techniques have to be taken into account to be
able to test OC Systems adequately, as mentioned in a later
section of this paper.

Concluding, in different related areas of research already
techniques are developed which could be partly integrated in
this approach. Indeed, there is no related work in the area
of testing OC Systems. Testing adaptation, self-organization,
etc. is an unexplored area, where this work tries to give its
contribution.

III. CHALLENGE

In general, testing is ”[the] process of operating a system or
component under specified conditions, observing or recording
the results, and making an evaluation of some aspect of the
system or component“ [15]. The intention of the evaluation is
to identify a failure, which is an event that leads to a state
of the observed system which does not perform a required
function within specified limits [16]. To detect this failure of
the observed system, it is necessary to be able to state whether
or not the system is in a correct state.

In OC Systems, this is not always straightforward to answer.
One approach, made by Schmeck et al. [17] is to separate the
global state space of an OC System into a target space, an
acceptance space, a survival space and the so called dead
zone. In this context a failure will occur if the system state
is in the dead zone and so is ”unrepairable“ by itself through
reconfiguration. Therefore, tests have to check in which space
the system is. In this context the following challenges for
testing OC Systems could be identified:

• Deal with reconfiguration and adaptivity
• Handle interleaved feedback-loops
• Cope with distribution and concurrency
• Find a clear classification of failures for OC Systems
• Create an appropriate environment for testing
• Define suitable levels of testing OC Systems

A. Reconfiguration and Adaptivity

Reconfiguration and adaptivity allows OC Systems to re-
cover from system states which are not fulfilling the require-
ments. This situation therefore does not have to be a failure,
but it is important that a system which is in a reconfiguration
phase still behaves in an acceptable and safe manner. In the
example of the AVPPs this case appears if one agent fails to
gain the demanded output. But all other agents recognize this
deviation and therefore produce together more output as set
to each of them. This leads to an achievement of the global
goal and therefore no failure despite of a local deviation. So a
local deviation (which is not part of the goal) does not lead to a
failure, because the system reconfigures and reacts adaptively
on this situation.

B. Interleaved Feedback-Loops

The behaviour of the self-organizing and adaptive agents of
an OC System could be described by a number of interleaved
feedback-loops [17]. As a consequence, it is possible that all
agents of the system perform as required, but the whole system
fails, e.g., all AVPPs recognize a deviation of the global goal
and therefore adapt their own output, because every agent
is trying to fix the deviation on its own, the global system
overreacts. Consequently every agent performs locally correct
by reacting to the new situation, but the system fails with
respect to its goal. Thus, one important challenge is to cope
with these interdependencies in OC Systems.

13



C. Distribution and Concurrency

In addition, there are the challenges given by the distribution
and concurrency of the systems. Namely deadlocks, livelocks,
and data races have to be identified. These are mainly situa-
tions where a concurrent usage of a resource leads to a failure.

D. Classification of Failures

Despite the known aspects about possible failures in dis-
tributed, concurrent systems and the outlined failures of OC
Systems, there is no clear classification of failures for OC
Systems. So an important step towards testing OC Systems
must be to take this problem into account.

E. Appropriate Environment for Testing

Building up on a classification of failures for OC Systems,
it is necessary to consider how to find these possible failures
in a concrete system. As a result of the self-organization and
the adaptation of an OC System, because of other possibly
not controllable agents and the environment of the system,
it is difficult to force the system to perform in a way that
allows a concrete evaluation. It is indispensable to create an
environment for the tested part of the system to generate repro-
ducible results of the evaluation for a concrete requirement.
This includes a complete initial configuration with possibly
required mock-ups or stubs. For testing the system of AVPPs
it is obvious that such a test-suite is inevitable. Mock-ups
have to simulate the energy grid, the consumers and other
participants to perform suitable evaluations. Furthermore, the
adaptivity of a single AVPP should be tested separatly from the
other AVPPs to perform reproducible, independent results. For
example to test the reaction of an AVPP to a deviation of the
global demand and the global production other agents could
influence the results and so it is difficult to evaluate this. To
perform tests in an appropriate way, a generic approach has to
be found for setting up tests in the described way. As a part of
this generic approach the differentiation between testing and
simulating a system has to be done in a more clear way.

F. Suitable Levels of Testing

Depending on the requirements to be evaluated, tests have
to be performed on an appropriate level. For example, tests
must be performed for single agents or for groups of agents
to observe interdependencies. In the example of the AVPPs
there could be one level to test a single AVPP separately, one
other to test all controllable AVPPs together and on another
level with non-controllable agents. Furthermore there could be
several levels of the environment, e.g., the Bavarian energy
market, the German energy market, the European energy
market and so on. Different levels could lead to different
interdependencies and so exhibit different kinds of failure.
Common levels of testing are unit tests, integration tests,
system tests, and acceptance tests. But OC Systems are, as
already shown, different from classical software systems. So
the levels have to be redefined and possibly extended according
to the dedicated needs.

IV. APPROACH

To cope with the challenge to test OC Systems adequately,
the intention is to develop a model-based, adaptive approach
with the following main concepts:

• Decomposition
• Discover sequences of violation
• Model-based design and execution of tests

A. Decomposition

To achieve an adaptive test, techniques of dynamically
creating and executing symbolical tests, are used to build up
on ([13], [9]). These techniques lead to a high coverage by
trying to explore every possible path for a symbolic input
automatically. One problem to be solved here is the scalability
of this approach, because the number of possible execution
paths is exponential in the size of the input [13]. Especially
in an OC System this could get problematic, because of its
complexity and size. The OC System of the AVPPs, e.g.,
could represent the whole energy market of Europe, which
means an enormous amount of participating agents. For this
reason, decomposition plays a significant role. The approach
by Steghöfer et al. [18] shows how to use and decompose
goal-oriented requirements for monitoring OC Systems. For
this purpose a set of constraints for specific agents is defined,
which describes the global invariant of the system. This
decomposition could be reused in the tests.

Built up on decomposed test cases the scenario has to
be extended ”bottom-up“ to even get the possibility to test
self-organization, adaptivity and other features of distributed,
concurrent systems.

B. Sequences of Violation

Furthermore, it is important to discover the sequences for a
possible violation and thus to reduce the size of the paths to be
tested. A possibility is to use techniques of model checking to
generate sufficient test cases. To enable these process I propose
to use techniques build up on model-based testing.

Despite the problem of creating the appropriate test cases,
it is important to get a good test oracle for the evaluation.
The Restore Invariant Approach (RIA) defines the correct
behaviour of an OC System by a corridor of correct be-
haviour [19]. The corridor of the RIA is based on a global
system invariant, which is a conjunction of all constraints of
a system. Based on a system trace it is therefore possible to
decide whether or not the system is performing correct or
has to be reconfigured. This view on correct and incorrect
behaviour of an OC System could be adapted as a test oracle
for the evaluation. For the example of the AVPPs the system
invariant only consist of one constraint, which is namely that
the demand equals to the consumption, so every evaluation
has to check this characteristic of the system.

C. Model-based Design and Execution of Tests

In this approach models are used to design and execute test
cases. For that reason models represent the required behaviour

14



of the system and its environment. Constraints designed for
an OC System could be, as already shown, used to model
the required behaviour of the system. Also there is a need of
some relies according to the environment to specify the test.
A related approach to this modelling is made in the concept
of Rely/Guarantee (R/G), which is used by Nafz et al. [20]
to formally model and verify OC System. In the case of the
AVPP case study the model for the test would be the constraint
of balanced production and demand. The rely according to
the environment is that the demand would not be bigger than
the maximum productivity of the AVPPs. Beside the required
behaviour and the relies there is a necessity for structural and
behaviour models of the tested components. Therefore, models
from the UML standard, like activity and class diagrams are
obvious to use. These models now could be used to build
concrete test cases and a test environment.

D. AVPP Case Study

The global invariant of the AVPP System is that demand is
equal to the production of the system, a pretty easy way to
break this down to constraints for single agents would be to
divide the global demand by the number of AVPPs. Thus on
the lowest level each single AVPP could be tested separately
from the system. For that reason the test-environment has to
mock-up the other agents, which perform for one test the
correct and for another the incorrect output. Furthermore there
has to be a mock-up, which simulates the consumer. After
that the evaluation just has to check whether or not the output
of the agent is as high as expected. The expectation is that
the agent produces as much output as needed so that the
sum of simulated production and its own production equals
to the simulated demand. Of course the agent is limited to its
maximum productivity, this has to be taken into account for
the test cases in form of a rely. In the next case two Agents
of the same kind could be tested together in a pretty similar
environment to evaluate the interaction, e.g., the reaction on a
deviation.

V. CONCLUSION

Self-organizing and adaptive properties of Organic Comput-
ing (OC) systems are challenging research topics with a lot of
open issues to be solved (cf. [21]). This paper points out the
major challenges in testing OC Systems. My approach is to
cope with these problems by using a model-based and adaptive
concept. To apply this, useful techniques and processes from
the field of testing distributed and concurrent systems [2] will
be adapted. This could be combined with work in the field
of dynamic creating and executing symbolical tests [13], to
achieve a certain kind of adaptivity. The basis for testing is a
model, which can be processed. The related work in model-
based testing (especially for reactive systems [6]) could give
a good initial point.

The aim of the future work is to provide a test suite with
an according process to test OC systems.

REFERENCES

[1] C. Müller-Schloer, H. Schmeck, and T. Ungerer, Eds., Organic Comput-
ing - A Paradigm Shift for Complex Systems. Springer, 2011.

[2] S. R. S. Souza, M. A. S. Brito, R. A. Silva, P. S. L. Souza, and E. Za-
luska, “Research in concurrent software testing: a systematic review,”
in Proc. Wsh. Parallel and Distributed Systems: Testing, Analysis, and
Debugging, ser. PADTAD ’11. ACM, 2011, pp. 1–5.

[3] C.-S. D. Yang, “Program-based, structural testing of shared memory
parallel programs,” Ph.D. dissertation, University of Delaware, 1999.

[4] G. Anders, F. Siefert, J.-P. Steghfer, H. Seebach, F. Nafz, and W. Reif,
“Structuring and controlling distributed power sources by autonomous
virtual power plants,” in Proc. of the IEEE Power and Energy Student
Summit, ser. PESS ’10. IEEE, 2010.

[5] J. Zander, I. Schieferdecker, and P. J. Mosterman, Eds., Model-Based
Testing for Embedded Systems. CRC Press, 2012.

[6] M. Broy, B. Jonsson, J.-P. Katoen, M. Leucker, and A. Pretschner,
Model-Based Testing of Reactive Systems, ser. LNCS. Springer, 2005.

[7] M. Utting, A. Pretschner, and B. Legeard, “A taxonomy of model-based
testing approaches,” Softw. Test. Verif. Reliab., vol. 22, no. 5, pp. 297–
312, Aug. 2012.

[8] P. Godefroid, N. Klarlund, and K. Sen, “Dart: directed automated
random testing,” in Proceedings of the 2005 ACM SIGPLAN conference
on Programming language design and implementation, ser. PLDI ’05.
New York, NY, USA: ACM, 2005, pp. 213–223.

[9] P. Godefroid, M. Y. Levin, and D. A. Molnar, “Automated whitebox fuzz
testing,” in Proc. 16th Annual Network and Distributed System Security
Symposium, ser. NDSS ’08. Internet Society, 2008.

[10] N. Rungta, E. G. Mercer, and W. Visser, “Efficient testing of concurrent
programs with abstraction-guided symbolic execution,” in Proc. 16th
International SPIN Workshop on Model Checking Software. Springer-
Verlag, 2009, pp. 174–191.

[11] M. Davies, C. Psreanu, and V. Raman, “Symbolic execution enhanced
system testing,” in Verified Software: Theories, Tools, Experiments, ser.
LNCS, R. Joshi, P. Mller, and A. Podelski, Eds. Springer, 2012, vol.
7152, pp. 294–309.

[12] A. Griesmayer, B. Aichernig, E. B. Johnsen, and R. Schlatte, “Dynamic
symbolic execution for testing distributed objects,” in Proc. 3rd Interna-
tional Conference on Tests and Proofs, ser. TAP ’09. Springer-Verlag,
2009, pp. 105–120.

[13] C. Cadar, D. Dunbar, and D. Engler, “Klee: unassisted and automatic
generation of high-coverage tests for complex systems programs,” in
Pro. 8th USENIX Conf. Operating systems design and implementation,
ser. OSDI’08. USENIX Association, 2008, pp. 209–224.

[14] A. Gargantini and C. Heitmeyer, “Using model checking to generate
tests from requirements specifications,” in Proc. 7th European soft-
ware engineering conference held jointly with the 7th ACM SIGSOFT
international symposium on Foundations of software engineering, ser.
ESEC/FSE-7. Springer-Verlag, 1999, pp. 146–162.

[15] IEEE, IEEE Standard Glossary of Software Engineering Terminology,
IEEE Std. 610.12-1990.

[16] ——, IEEE Standard Classification for Software Anomalies, IEEE Std.
1044 - 2009.

[17] H. Schmeck, C. Müller-Schloer, E. Çakar, M. Mnif, and U. Richter,
“Adaptivity and self-organization in organic computing systems,” ACM
Trans. Auton. Adapt. Syst., vol. 5, no. 3, pp. 10:1–10:32, Sep. 2010.

[18] J.-P. Steghöfer, B. Eberhardinger, F. Nafz, and W. Reif, “Synthesis
of observers for autonomic evolutionary systems from requirements
models,” in Proc. 13th IFIP/IEEE Symposium on Integrated Network
and Service Management, ser. IM ’13. IEEE Computer Society, 2013.

[19] F. Nafz, H. Seebach, J.-P. Steghöfer, G. Anders, and W. Reif, “Con-
straining self-organisation through corridors of correct behaviour: The
restore invariant approach,” in Organic Computing A Paradigm Shift
for Complex Systems, C. Müller-Schloer, H. Schmeck, and T. Ungerer,
Eds. Springer, 2011, pp. 79–93.

[20] F. Nafz, J.-P. Steghfer, H. Seebach, and W. Reif, “Formal modeling and
verification of self-* systems based on observer/controller-architectures,”
in Assurances for Self-Adaptive Systems, ser. LNCS, J. Cmara, R. Lemos,
C. Ghezzi, and A. Lopes, Eds. Springer, 2013, vol. 7740, pp. 80–111.

[21] C. Nguyen, A. Perini, C. Bernon, J. Pavn, and J. Thangarajah, “Testing
in multi-agent systems,” in Agent-Oriented Software Engineering X, ser.
LNCS, M.-P. Gleizes and J. Gomez-Sanz, Eds. Springer, 2011, vol.
6038, pp. 180–190.

15


