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Abstract: Epidemiological studies have associated plasma galectin-4 (Gal-4) levels with prevalent
and incident diabetes, and with an increased risk of coronary artery disease. To date, data regard-
ing possible associations between plasma Gal-4 and stroke are lacking. Using linear and logistic
regression analyses, we tested Gal-4 association with prevalent stroke in a population-based cohort.
Additionally, in mice fed a high-fat diet (HFD), we investigated whether plasma Gal-4 increases in
response to ischemic stroke. Plasma Gal-4 was higher in subjects with prevalent ischemic stroke, and
was associated with prevalent ischemic stroke (odds ratio 1.52; 95% confidence interval 1.01–2.30;
p = 0.048) adjusted for age, sex, and covariates of cardiometabolic health. Plasma Gal-4 increased
after experimental stroke in both controls and HFD-fed mice. HFD exposure was devoid of impact
on Gal-4 levels. This study demonstrates higher plasma Gal-4 levels in both experimental stroke and
in humans that experienced ischemic stroke.

Keywords: ischemic stroke; cardiovascular disease; diabetes; obesity; galectins

1. Introduction

In previous epidemiological studies, we have shown that increased levels of galectin-4
(Gal-4) are linked with prevalent and incident diabetes [1], as well as increased risk of future
myocardial infarction, heart failure, cardiovascular, and all-cause mortality [2]. Whether
plasma Gal-4 is also associated with ischemic stroke, which is a major complication in
diabetic patients, has not yet been investigated.

Gal-4 is a gastrointestinal tract protein involved in the apical trafficking of proteins,
including dipeptidyl peptidase-4 (DPP-4), which accumulates intracellularly in Gal-4-
depleted mice [3]. Soluble and membrane-bound DPP-4 inactivate gastric inhibitory
polypeptide (GIP) and glucagon-like peptide 1 (GLP-1), which are largely responsible
for the incretin effect [4]. The latter is defective in individuals with diabetes [5], leading
to cardio-metabolically adverse effects [6]. Recent evidence suggests that incretin-based
antihyperglycemic agents, including DPP-4 and GLP-1 receptor agonists, exert beneficial

Int. J. Mol. Sci. 2023, 24, 10064. https://doi.org/10.3390/ijms241210064 https://www.mdpi.com/journal/ijms

https://doi.org/10.3390/ijms241210064
https://doi.org/10.3390/ijms241210064
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0000-0002-9506-0158
https://orcid.org/0000-0002-5652-8459
https://orcid.org/0000-0001-5984-1574
https://orcid.org/0000-0002-0793-7213
https://orcid.org/0000-0003-1710-5936
https://doi.org/10.3390/ijms241210064
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms241210064?type=check_update&version=1


Int. J. Mol. Sci. 2023, 24, 10064 2 of 8

effects in patients with diabetes who suffer ischemic stroke by reducing infarct size and
promoting recovery [7–10].

Here, we tested whether plasma Gal-4 concentrations increase after stroke and whether
this may be dependent on metabolic syndrome by using a mouse model of ischemic stroke.
The clinical relevance of potential stroke-associated Gal-4 alterations was assessed by
testing association with prevalent stroke in a population-based cohort study.

2. Results
2.1. Gal-4 Plasma Levels Increase after Experimental Ischemic Stroke

To induce metabolic syndrome, mice were fed a high-fat diet (HFD) for 8 weeks before
stroke induction (Figure 1a). Compared to the control diet (CD; 10% fat kcal), HFD (60%
fat kcal) over the course of 8 weeks led to increased body weight (in g: 29.8 ± 0.9 in CD
vs. 40.5 ± 1.2 in HFD, p < 0.001), higher plasma glucose (in mmol/L: 4.4 ± 0.3 in CD
vs. 6.2 ± 0.5 in HFD, p = 0.007), and elevated plasma insulin (in µg/L: 3.2 ± 1.8 in CD vs.
15.8 ± 5.7 in HFD, p = 0.035).
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Figure 1. Stroke-associated increases in galectin-4 plasma concentrations are independent of meta-
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Figure 1. Stroke-associated increases in galectin-4 plasma concentrations are independent of metabolic
syndrome. (a) Study design: mice were fed HFD or CD for 8 consecutive weeks. (b) Plasma galectin-4
levels after 8 weeks of HFD or CD feeding (left panel), and 3 days after stroke or sham surgery in mice
fed the HFD and CD (right panel). Data are shown as mean ± SEM. Symbols (open grey circles = pre-
stroke, open black circles = post-sham surgery, open red triangles = post-tMCAo) represent individual
mice. * p < 0.05, ** p < 0.01, *** p < 0.001 based on Fischer’s LSD post-hoc comparison after significant
effect of diet and stroke in ANOVA. CD = control diet, HFD = high-fat diet, tMCAo = transient middle
cerebral artery occlusion.

Stroke induced by transient middle cerebral artery occlusion (tMCAo) was confirmed
by lower neurological function (i.e., higher neuro-scores after induction of stroke compared
to sham surgery: 0 in CD and HFD for sham vs. 8.8 ± 5.2 in CD and 6.7 ± 3.2 in HFD for
tMCAo) and apparent ischemic lesions (41 ± 13% in CD, 37 ± 15% in HFD). Mice on CD
and HFD had a poorer survival rate after tMCAo compared to mice on conventional rodent
chow (survival at 1 day after tMCAo in %: 100 for conventional rodent chow vs. 83 for CD
and 50 for HFD).

While HFD had negligible impact on plasma Gal-4, tMCAO resulted in increased Gal-4
plasma levels, as measured 3 days after stroke (Figure 1b; ANOVA effects: diet F(1,11) = 5.00,
p = 0.047, stroke F(1,11) = 15.50, p = 0.002, interaction F(1,11) = 0.081, p = 0.781).
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An independent mouse cohort confirmed the stroke-associated increase of plasma
Gal-4 concentrations (Figure 2). Plasma Gal-4 concentration was elevated in mice fed
conventional rodent chow (5.3% fat kcal) at 1 day post-stroke compared to sham-operated
controls (p = 0.0129). Moreover, plasma Gal-4 levels did not differ between sham-operated
mice on the conventional chow diet, CD or HFD (Gal-4 concentration in µg/µL: 3.4 ± 0.6
for rodent chow, 3.8 ± 0.7 for CD, 5.6 ± 0.4 for HFD; ANOVA: p = 0.1283).
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Figure 2. Stroke-associated increases in galectin-4 plasma concentrations. Plasma galectin-4 levels
1 day after tMCAo or sham surgery in mice fed conventional rodent chow. Data are shown as
mean ± SEM. Symbols (full blue circles = post-sham surgery, full red triangles = post-tMCAo)
represent individual mice. * p < 0.05 based unpaired t-test. tMCAo = transient middle cerebral
artery occlusion.

2.2. Gal-4 Associates with Prevalent Stroke

Subjects with prevalent ischemic stroke (n = 59) were older, more often men, had
diabetes mellitus to higher extent, and were more often treated for hypertension. Gal-
4 was significantly higher in subjects with prevalent ischemic stroke than in subjects
without (Table 1).

Table 1. Characteristics of the human study population. Values are means (±standard deviation) and
numbers (percent).

Characteristics of the Study Population

Total Subjects Free from
Ischemic Stroke

Subjects with Prevalent
Ischemic Stroke p

n = 1688 n = 1629 n = 59

Age (years) 67.4 (±6.0) 67.3 (±6.0) 70 (±5.4) 3.0 × 10−4

Sex (women; n (%)) 491 (29.1) 482 (29.6) 9 (15.3) 0.017

BMI (kg/m2) 28.3 (±4.3) 28.4 (±4.4) 28.0 (±3.8) 0.411

IFG (n (%)) * 627 (37.1) 610 (37.5) 17 (28.8) 0.175

Diabetes mellitus (n (%)) 679 (40.2) 646 (39.7) 33 (55.9) 0.012

SBP (mmHg) 147 (±20) 147 (±20) 148 (±20) 0.683

HDL-cholesterol (mmol/L) 1.3 (±0.4) 1.3 (±0.4) 1.3 (±0.4) 0.902

Smoking (n (%)) 306 (18.1) 294 (18.0) 12 (20.3) 0.654

AHT (n (%)) 788 (46.7) 740 (45.4) 48 (81.4) 5.5 × 10−8

Gal-4 (AU) 3.1 (±0.7) 3.1 (±0.6) 3.4 (±0.6) 6.8 × 10−4

AHT = antihypertensive treatment; AU = arbitrary unit (NPX in log2 scale where 1 NPX increase means a
doubling of protein concentration); BMI = body mass index; Gal-4 = galectin-4; HDL = high-density lipoprotein;
IFG = impaired fasting glucose; NPX = normalized protein expression; SBP = systolic blood pressure. * Fasting
plasma glucose ≥5.6 mmol/L.
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In logistic regressions, Gal-4 was associated with prevalent ischemic stroke in an
unadjusted model and following adjustments for age and sex as well as the main covariates
related to weight, diabetes, and cardiovascular health (Table 2). In univariate regression
analyses, each doubling of Gal-4 concentration was associated with higher BMI (β 0.87;
p = 8.3 × 10−8) and a higher probability of antihypertensive treatment (OR 2.24 [1.90–2.63];
p = 2.2 × 10−22). Gal-4 had no significant association with systolic blood pressure (p = 0.678).

Table 2. Associations between plasma galectin-4 and prevalent stroke.

Logistic Regression Analyses

OR (CI 95%) p

UNADJUSTED

Galectin-4 1.99 (1.35–2.92) 4.7 × 10−4

MODEL 1

Galectin-4 1.74 (1.17–2.59) 0.006

Age 1.08 (1.03–1.14) 0.001

Sex 0.33 (0.16–0.69) 0.003

MODEL 2

Galectin-4 1.52 (1.01–2.30) 0.048

Age 1.06 (1.01–1.11) 0.021

Sex 0.34 (0.16–0.73) 0.006

Body mass index 0.95 (0.88–1.02) 0.145

IFG/diabetes mellitus * 1.18 (0.55–2.57) 0.669

HDL-cholesterol 1.36 (0.66–2.80) 0.408

Systolic blood pressure 1.00 (0.99–1.01) 0.792

Smoking 1.34 (0.68–2.64) 0.399

Antihypertensive treatment 4.49 (2.23–9.05) 2.6 × 10−5

Values are odds ratios (OR) with 95% confidence intervals (CI 95%). BMI = body mass index; HDL = high-density
lipoprotein; IFG = impaired fasting glucose. * Fasting plasma glucose ≥5.6 mmol/L.

3. Discussion

This is the first study to show higher plasma Gal-4 levels in patients with prevalent
stroke. Verification in a murine model of experimental stroke supports a direct interaction
between Gal-4 plasma levels and ischemic stroke. The association of increases in plasma
Gal-4 with higher BMI in the tested human cohort necessitated the investigation of whether
HFD feeding has an effect on Gal-4 levels in a controlled experimental setting. Testing
whether HFD feeding increases Gal-4 plasma levels through the assessment of Gal-4 levels
after 8 weeks of HFD prior to stroke revealed that HFD has a negligible impact on plasma
Gal-4 levels in mice. From these data, it can be concluded that impaired fasting glucose
and diabetes status (both apparent in mice after 8 weeks of HDF exposure) are not directly
linked to alterations in Gal-4 levels. Although this is in contrast to results from previously
published epidemiological studies that report associations between high Gal-4 levels and
prevalent as well as incident diabetes [1], our findings showing a direct effect of stroke on
plasma Gal-4 elevation are supported by studies reporting similar relationships between
plasma Gal-4 and the incidence of myocardial infarction [2], heart failure [2,11], and
cardiovascular and all-cause mortality [2]. Together, these data rather suggest that changes
in Gal-4 levels are generally associated with the occurrence of cardiovascular events,
including stroke. This notion is underpinned by the results of the current investigation,
showing that stroke-induced plasma Gal-4 elevation is independent of metabolic syndrome.

The mechanisms by which Gal-4 concentration increase post-stroke are not yet known.
Nonetheless, several pathogenic processes post-stroke may be affected by altered Gal-4
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homeostasis. Gal-4 has been reported to be involved in immunoregulatory functions
through the activation and differentiation of monocytes [12], which have been proposed
as central players in the detrimental innate proinflammatory response post-stroke [13]. In
addition to inflammation, the formation of new vessels through angiogenesis is thought to
participate in functional stroke recovery [14]. Gal-4 has been linked to the augmented secre-
tion of circulating cytokines responsible for endothelial activation related to angiogenesis
and thus cancer metastasis [15]. Earlier studies supported its role in the proliferation and
migration of different cell types [16], emphasizing a potential involvement in angiogenic
processes that may also occur post-stroke. Similarly, arteriogenesis, as a major process
to improve collateral flow, has been associated with Gal-4 [17]. As patients with good
collateral flow experience more favorable stroke outcomes and metabolic risk factors such
as diabetes are associated with poor leptomeningeal collateral status [18], investigating the
role of Gal-4 in this respect may be promising.

Taken together, the relatively sparse knowledge base available on the role of Gal-4 in
stroke pathology and related processes, as well as its relationship to risk factors for stroke,
such as metabolic syndrome, and diabetes, necessitate mechanistic and clinical studies to
investigate the relative potential of Gal-4 as a prognostic marker for stroke outcome or even
its potential as therapeutic target.

Study Limitations

The assessed population cohort (i.e., the Malmö Preventive Project Re-Examination
cohort) consists of mainly elderly, white European men. Thus, our findings might not be
generalizable to the general population. As is common to all observational studies, no
conclusions about causality can be drawn. Further, this study did not aim at identifying
molecular mechanisms involved in Gal-4 alterations post-stroke. With a fast dissemination
of the findings that Gal-4 plasma levels increase with stroke, we instead want to stimulate
further research on this important topic and pave the way for additional mechanistic studies
that may include the testing of the relative potential of Gal-4 as a prognostic marker for
stroke outcome, its potential as a therapeutic target, or the investigation of plasma Gal-4 as
prognostic parameter for stroke incidence in patients with diabetes or metabolic syndrome.

4. Materials and Methods
4.1. Mouse Study

Male C57BL/6J mice (8 weeks old; Taconic, Skensved, Denmark) were group-housed
under a 12 h light–dark cycle in enriched cages with access to food and water ad libitum.
After acclimatization, at 9 weeks of age, mice were started on high-fat (HFD, 60% fat kcal;
N = 12) or control (CD, 10% fat kcal; N = 12) diets (Research Diets, New Brunswick, NJ-
USA) for 8 consecutive weeks as previously described [19]. Where possible, experimenters
were blinded to group allocation during sample processing and data analysis.

4.1.1. Mouse Model of Stroke

Transient middle cerebral artery occlusion (tMCAo) was performed as previously
described [20]. Briefly, the middle cerebral artery was transiently occluded using a monofil-
ament (9–10 mm coating length, 0.19 ± 0.01 mm tip diameter; Doccol, Sharon, MA, USA)
in anesthetized mice (isoflurane in 70% N2O, 30% O2). Reperfusion was initiated after
60 min. Cerebral blood flow was monitored using laser Doppler flowmetry (Moor Instru-
ments, Axminster, UK). The same protocol without occlusion was used for sham surgery.
Neurological function was evaluated using the sum of focal and general scores ranging
between 0 (no deficits) and 56 (the poorest performance) [20]. Coronal brain slices (1 mm
thick) were stained with 2,3,5-triphenyltetrazolium chloride (Sigma-Aldrich, #93140), and
infarct area was determined and presented as percentage of contralateral hemisphere [20].
Group sizes were determined based on prior experiments, considering estimated group
specific attrition. Mice from CD (n = 12) and HFD (n = 12) groups were randomly assigned
to tMCAo or sham surgery. In the CD group, 6 mice were subjected to tMCAo and 6 mice
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to sham surgery, while 8 of the HFD mice were subjected to tMCAo and 4 to sham surgery.
A separate cohort of mice fed on conventional rodent chow (SAFE A30; Safe Diets, Augy,
France) was utilized to assess direct effects of ischemic stroke on plasma Gal-4 levels (n = 8
for sham and tMCAo, respectively).

4.1.2. Plasma Analyses

Pre-surgery blood from the saphenous vein and post-stroke blood withdrawn from
vena cava prior to transcardial perfusion was collected into EDTA-coated tubes (#41.1395.105,
Sarstedt, Nürnbrecht, Germany), and separated by centrifugation at 1000× g for 10 min
at room temperature. Plasma glucose was measured using the glucose oxidase method
coupled to a peroxidase reaction oxidizing the AmplexRed reagent (#A12222, Invitrogen,
Fisher Scientific, Göteborg, Sweden), as detailed before [21]. Commercially available ELISA
kits were used to determine plasma insulin (#10-1247-10, Mercodia, Uppsala, Sweden) and
Gal-4 (#NBP2-76725, Novus Biologicals, Bio-Techne, Abingdon, UK).

4.1.3. Statistics

Data were analyzed by Prism 9.3.0 (GraphPad, San Diego, CA, USA). After normality
testing (Kolmogorov–Smirnov and Shapiro–Wilk tests), data were analyzed by either
Student’s t-test (HFD effect pre-stroke) or Mann–Whitney (stroke effect) or 2-way ANOVAs
with diet and stroke as factors. Significant diet, stroke, or interaction effects were followed
by Fisher’s least significant difference (LSD) tests for independent comparisons. Normally
distributed data are presented as mean ± standard error of the mean (SEM). Data that are
not normally distributed are presented as median ± interquartile range (IQR).

4.2. Human Study

Within the Malmö Preventive Project [22] Re-Examination cohort, a sub-sample of
participants was randomly selected based on glucometabolic status [23], i.e., 1/3 normo-
glycemic; 1/3 with impaired fasting glucose (IFG), and 1/3 with diabetes (ntotal = 1792).
Blood samples provided by 1737 individuals were analyzed with proximity extension assay
technology (Proseek Multiplex CVD III from Olink Bioscience, Uppsala, Sweden). The
CVD III panel consists of 92 proteins, among them galectin-4, with either established or
proposed associations with CVD, inflammation, and metabolism. Complete data for all
co-variates were available in 1688 subjects.

4.2.1. Examinations

Standardized methods were used to measure anthropometrics and blood pressure,
as described elsewhere [23]. Fasting plasma glucose and high-density lipoprotein (HDL)
cholesterol were analyzed using a Beckman Coulter LX20 (Beckman Coulter, Brea, CA,
USA) at Department of Chemistry, Skåne University Hospital, Malmö. Fasting blood
samples for proteomic analyses were stored at −80 ◦C until time of analysis.

4.2.2. Definitions

Prevalent stroke was defined as prior ischemic stroke, and data were collected through
regional and national registers, defined as ICD9 codes 433–434 or ICD10 codes I63.0–I63.9.
IFG was defined as fasting plasma glucose ≥5.6 mmol/L. Prevalent diabetes was defined
as either previously known diabetes or new-onset diabetes (two separate measurements of
fasting plasma glucose ≥7.0 mmol/L or one measurement≥11.1 mmol/L) [23]. Smoking
was self-reported and defined as present smoking. Antihypertensive treatment was de-
fined as use of any blood pressure-lowering medicine and retrieved through the National
Prescribed Drug Register (starting in 2005).

4.2.3. Statistics

Associations between Gal-4 and prevalent ischemic stroke were explored using logistic
regression models in three steps: (1) unadjusted; (2) adjusted for age and sex (Model (1), and
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(3) adjusted for body mass index, systolic blood pressure, prevalent IFG/diabetes, HDL-
cholesterol, antihypertensive treatment, and smoking (Model 2). Groups were compared
using Student’s t-tests or χ2 tests, where appropriate. Associations between Gal-4 and
continuous variables were analyzed using univariate linear regressions, and associations
between Gal-4 and binary variables using univariate logistic regressions.
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