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1. Introduction

Since its discovery in placental extracts by Shibasaki et al. in
1982 [1], important functional roles of corticotropin-releasing hor-
mone (CRH) for human reproductive physiology were identified
[2,3]. The placental syncytiotrophoblast is a major source of plas-
ma CRH in the maternal circulation in the second half of pregnancy
[4]. CRH exerts local effects at the placental bed, controlling extra-
villous trophoblast invasion in early gestation [5] and the timing of
parturition in late gestation [6]. The latter function is achieved by
an interaction of CRH with progesterone, which enhances the con-
tractile response of the myometrium [6,7] and via the regulation of
feto-placental circulation through the nitric oxide (NO)/cGMP
pathway [8,9].

Moreover CRH exerts systemic effects in the mother, by driving
pituitary-adrenal function [10]. The majority of circulating cortisol
in the fetus is of maternal origin [11,12]. Cortisol is vital for phys-
iologic fetal organ development [13], however excessive exposure
leads to intra-uterine growth restriction (IUGR) with subsequent
morbiditiy (e.g. hypertension, diabetes mellitus) in adult life [14–
18]. Control of transplacental transfer of maternal cortisol to the
fetus is controlled by the enzyme 11bhydroxysteroid dehydroge-
nase type 2 (11b-HSD2) in the syncytiotrophoblast layer [19–21].
The expression of 11b-HSD2 increases across gestation [22], possi-
bly driven by cortisol [19,23] and CRH itself [24]. 11b-HSD2 cata-
lyzes the unidirectional conversion of cortisol to its inactive
metabolite, cortisone. Importantly, maternal glucocorticoid excess
in the first trimester of pregnancy is associated with a positive pla-
cental feedback loop that accelerates rates or excessive levels of
placental CRH in the third trimester with consecutive induction
of preterm labor [25]. We and others have previously shown that
placental CRH expression and CRH in maternal plasma are signifi-
cantly elevated in pregnancies complicated by IUGR [26,27], how-
ever placental 11b-HSD2 expression is reduced [28–30], possibly
contributing to fetal hypercortisolism in IUGR. Collectively, these
observations underscore the importance to further investigate
the role of the placental cortisol metabolism to improve fetal care
and postnatal outcome.

mailto:fabian.fahlbusch@uk-erlangen.de


                                          889
So far, most of the experimental data is either based on quanti-
tative measurements of plasma cortisol/cortisone, CRH and proges-
terone levels via immuno-assays (e.g. RIA, ELISA) at the fetal and
maternal side [14,31–33], or on placental 11b-HSD2 expression
at the mRNA level [23,34]. While the use of these methods brought
forth our understanding of placental physiology, they share the
drawback of being insufficiently selective: As a stand-alone mea-
surement, 11b-HSD2 expression analysis does not allow the deter-
mination of 11b-HSD2 activity, as the cortisol and cortisone levels
remain unknown. Quantitative immuno-assays are sufficient to
determine cortisol and cortisone in tissue (each at a time), however
they face possible cross-reactivity and tissue perturbations, hence
they are often labor-intensive as additional purification steps are re-
quired [35]. The use of these immuno-assays to determine CRH, as a
peptide hormone, in tissue is limited to the fact, that these assays
detect derivates of similar antigenicity that are often formed by
posttranslational modifications essential for physiological function.
A detailed comparison of possible drawbacks of CRH RIA and ELISA
techniques was reviewed in detail by Latendresee et al. [36].

Recently, improved robustness and sensitivity of liquid-chro-
matography tandem mass spectrometry (LC-Tandem MS)-based
techniques have led to reliable alternatives for peptide quantifica-
tion [37–40]. Hence we set out to quantify CRH simultaneously
with cortisol (F)/cortisone (E) and progesterone together in the
same placental sample via LC-Tandem MS.

As we introduce this method for the first time, we thoroughly
analyzed for possible interfering factors such as choice of placental
sampling site and sampling technique itself.
2. Experimental

2.1. Placental sample collection and sample preparation

Following selective caesarean section at term of a singleton
uncomplicated pregnancy, 6 tissue samples were collected under
sterile conditions across the placenta of 9 placentas, as previously
described [41]. Decidual basal plate remnants were thoroughly
removed and areas with calcifications avoided. 0.5 g of placental
tissue were removed directly below the decidual plate and at
mid-depth in a medial-to-lateral and basal-to-chorionic fashion
(see Fig. 3a). Tissue samples were thoroughly rinsed with cold
PBS, snap-frozen in low-bind protein Eppendorf tubes (Eppendorf,
Hamburg, Germany) and stored at �80 �C. For further usage pla-
cental samples were thawed on ice (pre-cooled vials) and ice-cold
99% Ethanol (EtOH) containing protease inhibitors Aprotinin
2.0 ng/ml, Pepstatin A 13.4 ng/ml, Leupeptin 20.0 ng/ml (all from
Sigma–Aldrich Chemie GmbH, Taufkirchen, Germany). After initial
manual grinding on ice, the samples were minced (Potter S homog-
enizer, Braun Inc. Biotech, Germany) and sonificated (UW2070,
Bandelin Electronic, Berlin, Germany) for 40 s (settings: cycle 5,
power 50%, 40 s). After centrifugation for 10 min (14000 U/min,
4 �C), supernatant was used for further analysis.

2.2. Ethics

The study was reviewed and approved by the Ethical Commit-
tee of the Medical Faculty of the University of Erlangen-Nürnberg
(#2625 02/28/02). Written informed consent was obtained.

2.3. Liquid chromatography- tandem mass spectrometry (LC-Tandem
MS)

2.3.1. CRH
2.3.1.1. Materials and chemicals. Human (CRF, H-2435) and bovine
(CRF, H-3264) CRH were purchased from Bachem (Bachem AG,
Bubendorf, Switzerland). Ammonium acetate, formic acid, acetoni-
trile, zinc sulfate and sulfosalicylic acid were supplied by Merck
(Merck Chemicals, Darmstadt, Germany). All other chemicals were
of the highest purity available from Sigma–Aldrich. Cortisol,
cortisone, progesterone were purchased from Sigma–Aldrich
(Taufkirchen, Germany). Cortisol-9,11,12,12-D4 and progesterone-
2,2,4,6,6,17,21,21,21-D9, were purchased from C/D/N ISOTOPES
(Pointe Claire, Canada), with an isotopic enrichment of 98%. We
prepared 1 g/L stock solutions of all three steroids in ethanol. For
steroids measurement the precipitation solution was zinc sulfate
monohydrate dissolved in water 50 g/L and methanol (MeOH) 1/
1 [v/v].

2.3.1.2. Standards. Stock solutions of CRH were prepared by dis-
solving accurately weighed standard in 3% acetic acid. Standard
solutions of human CRH for a range of 0.1–50.0 lg/L were prepared
with concentrations calculated based on the peptide content de-
clared by the manufacturer. Bovine CRH in MeOH containing 1%
formic acid was used as the internal standard solution at a final
concentration of 80 lg/L. Stock solutions, standards and blanks
were stored at �20 �C. Calibrators containing the steroids in differ-
ent concentrations across the concentration range of 0.1 lg/L –
250 lg/L were prepared by spiking an isotonic saline solution with
the steroid stock solution of 10 mg/L. Progesterone-D9 and cortisol-
D4 were used as internal standards. The internal standard solutions
were made with ammonium acetate (2 mM) solution and metha-
nol (1/1 v/v) at a final concentration of 250 lg/L for cortisol-D4

and 25 lg/L for Progesterone-D9. The stock solutions, standards
and blanks were stored at 4 �C.

2.3.1.3. Sample preparation. After homogenization of placenta tis-
sue 300 lL of supernatant were resuspended in 900 lL MeOH con-
taining 1% formic acid. After continuous shaking for 10 min at 4 �C,
the vials were centrifuged at 14000g for 10 min, 4 �C. Supernatants
were transferred into deepwell plates for CRH analysis and placed
in the autosampler at 15 �C.

2.3.1.4. Chromatographic conditions. The LC system consisted of a
binary pump, a quaternary pump (Agilent 1100, Agilent Technolo-
gies, Böblingen, Germany) and a 12-port switching valve (VICI, Val-
co Instruments, Houston, USA). The sample was injected by use of a
HTC PAL autosampler (CTC Analytics, Zwingen, Switzerland) fitted
with a 1000 lL peak sample loop, through the Valco valve onto the
extraction column (Oasis HLB 2.1⁄ 20 mm, 15 lm, Waters, Esch-
born, Germany). The extraction column was washed for 1.2 min
(flow-rate 3 mL/min) with water/acetic acid/MeOH (92:3:5 by vol-
ume). The valve position was then switched to allow the bound
material to be eluted from the extraction cartridge in back-flush
mode. After 2.0 min, the Valco valve position was again switched
to allow the extraction column to be purged by 1% sulfosalicylic
acid (3 ml/min) and reequilibrated at a flow rate of 3 mL/min with
water/acetic acid/MeOH (92:3:5 by volume). LC was performed
with a Chromolith column (RP-18e, 100⁄4.6 mm, Merck) at a flow
rate of 1 ml/min. Mobile phase A consisted of ammonium acetate
(10 mmol/L) and methanol (97:3 by volume), mobile phase B con-
sisted of ammonium acetate (2 mmol/L) and methanol (5:95 by
volume, pH 2.0). After 1.2 min the initial conditions (55% A) were
increased to 100% A in 1.8 min via a linear gradient, followed by
a linear return to initial conditions within 1.0 min after 4 min. To-
tal analysis time was 6.0 min.

2.3.1.5. MS/MS conditions. An API 4000 TM (Applied Biosystems,
MDS Sciex, Analyst software, version 1.5, Darmstadt, Germany)
mass spectrometer fitted with a turbo ion spray source was oper-
ated in positive ionization mode without a split. Eluates were
analyzed in the tandem mass spectrometry (MS/MS) mode,
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fragmenting the 4-fold–charged parent ions at m/z 1190.3 for hu-
man CRH and m/z 1175.0 for bovine CRH under optimized settings
determined by previous flow-injection analysis. MS conditions
were as follows: declustering potential (DP) of 116 V for human
and 120 V for bovine CRH, collision energy (CE) of 57–61 eV for hu-
man CRH and 52–53 eV for bovine CRH, temperature of the ESI
source 450 �C, ion spray voltage 5500 V, collision gas: high-purity
nitrogen.
2.3.2. Steroid profiling
CRH, cortisol, cortisone and progesterone were determined in

the same placental sample. LC-Tandem MS was performed using
a modified online SPE-HPLC-MS/MS assay developed by Rauh
et al. [42] and Koal et al. [43] allowing quantitative analysis of ste-
roid hormones in 100 lL serum with atmospheric pressure chem-
ical ionization in the positive ion mode.

In brief, the assay consists of a protein precipitation based sam-
ple preparation with methanol/zinc sulfate (50 g/L, 1/1, v/v). Fol-
lowing tissue preparation (see ‘‘Placental sample collection and
preparation’’) 100 lL of the tissue supernatant and calibrators
were deproteinized with 200 lL MeOH/zinc sulfate (50 g/L, 1/1 v/
v) and 100 lL internal standard solution.

The online SPE was performed by a Chromolith extraction col-
umn (4.6 � 50 mm), which was coupled to a Chromolith HPLC col-
umn (RP-18e, 100 � 4.6 mm, Merck). The autosampler was a HTC
PAL (CTC Analytics) fitted with a 250 lL sample loop. The HPLC-
MS/MS system consisted of a Shimadzu LC-20AD HPLC unit and a
quaternary pump (HPLC1200 series, Agilent Technologies, Wald-
bronn, Germany). The samples were washed with 5% methanol
and eluted in back-flush with 2 mM ammonium acetate/MeOH
(50:50, v/v) onto the analytical column. Mobile phase A was a mix-
ture of MeOH and water (containing 2.0 mM ammonium acetate)
in a ratio of 90:10 (v:v). Mobile phase B was a mixture of MeOH
and water (containing 2.0 mM ammonium acetate; pH value ad-
justed to 4.5 with acetate acid) in a ratio of 5:95 (v:v). The total
flow rate of the binary gradient module was maintained at 1 ml/
min. After 1.0 min the initial conditions (50% A) were increased
to 56% A in 3.8 min via a linear gradient, followed by linear gradi-
ent to 90% A in 1.7 min and a return to initial conditions after
7.5 min. The total online SPE-HPLC-MS/MS analysis time per sam-
ple was 8 min. The column temperature was set at 40 �C. The injec-
tion volume was 200 lL.

For MRM based mass spectrometric detection a 4000QTrap� tri-
ple quadrupole mass spectrometer (AB Sciex, Toronto, Canada)
equipped with an APCI source in positive mode was used. Sample
analysis was performed in the multiple-reaction monitoring mode
with a dwell time of 150 ms per channel using the following tran-
sitions for quantification: m/z 363.2/121.2(309.4) cortisol, m/z
361.1/162.9(239.0) cortisone, m/z 315/97(109.1) progesterone,
cortisol D4 367.3/121.2, and progesterone D9 324.3/100.4. The
parameters of the mass spectrometer are summarized as follows:
Curtain Gas (CUR) at 15, collision assisted dissociation Gas (CAD)
at 7, nebulizer current (NC) at 5.0, temperature (TEM) at 450 �C,
sheath Gas (GS1) at 55 and resolution at unit.
2.3.3. Assay validation
The linearity of the method was evaluated across the concentra-

tion range of 0.1–50 lg/L for CRH, and 0.1–1000 lg/L for the ste-
roid hormones. The assay acceptance criterion for each back-
calculated standard concentration was 15% deviation from the
nominal value except at the lower limit of quantification which
was set at 20%. The lower limit of quantification (LLOQ) was de-
fined as the lowest concentration with a RSD of 620%. The calibra-
tion curve was required to demonstrate a correlation coefficient of
0.990 or higher.
We defined the lowest limit of detection as a signal at least
three times greater than baseline noise. The lower limit of detec-
tion (LLOD) was ascertained by the analysis of 5.0 lg/L calibrator
and was established as the concentration at which a S/N ratio of
3.0 was obtained.

The interassay imprecision was calculated using the mean and
coefficient of variation [RSD]. To determine interassay variability,
we analyzed six different extracts of one placenta tissue sample,
which was homogenized in one single step. Additionally, we sliced
one placenta sample in six parts, to estimate the impact of tissue
homogenization. The interassay imprecision was calculated using
the mean coefficient of variation [RSD] of the six replicates, two
of which were measured on three separate days in duplicate.

To investigate the possible interference of the tissue matrix
with MS signals, we compared the peak area of the internal stan-
dard in calibrator solutions and in the presence of matrix. Recovery
rates were determined using four processed tissue samples which
had been spiked with standard solution to give a nominal concen-
tration of 10, 20, 30 and 40 lg/L. The recoveries were calculated by
linear regression.
3. Statistical analysis

Data processing and graphic presentation were performed with
Sigmaplot 200 (Systat Software GmbH, Erkrath, Germany), Origin
software (Originlab Corp., Northampton, MA, USA) and GraphPad
Prism Version 4.0c (GraphPad Software, San Diego, CA, USA). Data
are presented as mean ± standard error (SEM), unless otherwise
stated.
4. Results

4.1. Assay characteristics

Tandem MS characteristics for steroid analysis using a modified
online SPE-HPLC-MS/MS assay have been described in detail previ-
ously [42–44]. Hence, we focused on the description of CRH assay
characteristics. Adaptions to the established steroid protocol were
outlined, where needed.

For CRH detection an online extraction method with a column-
switching technique was used. Representative ion chromatograms
are shown in Fig. 2. At a flow rate of 1 mL/min, the total run time
was 6 min. Under the chromatographic conditions described, the
mean (SD) retention time for CRH was 4.53 min. As demonstrated
in Fig. 1a CRH was detected as its 3- to 5-fold–charged ions,
(M + 3H)3+, (M + 4H)4+ and (M + 5H)5+, showing the predominant
intensity at m/z for the 4-fold–charged analyte (M, molecular
mass; z, the charge on the molecule caused by the uptake of pro-
tons during ionization). The most abundant 4-fold–charged ions
were fragmented by collision-induced dissociation, yielding a typ-
ical series of y- and b-ions assignable to the fragments indicated in
Fig. 1b. The most intensive product ion signals were chosen for the
multiple reactions with m/z > m/z parent ion [45]: 1190.3/1439.3,
1190.3/1471.6, 1190.3/1103.9, 1190.3/1099.6 -for human CRH
and 1175.0/1451.5, 1175.0/1419.0 -for bovine CRH. The total signal
intensity of all respective product ions was used to display the
chromatogram, allowing the quantification of samples and stan-
dards. Bovine CRH was used as an internal standard, because of
its chemical and structural similarity to human CRH (Supplemen-
tary Fig. 1). The amino acid sequences of human and bovine CRH
differ by only 8 amino acids at positions 2, 22, 23, 25, 33, 38, 39,
41 (81% sequence homology). As a result, the molecular weights
(MW) (human MW 4757.52, bovine MW 4697.40) and isoelectric
points are also quite similar.



Fig. 1. (a) ESI Q1 full scan mass spectra of human (MW 4757.52) CRH. Full-MS
analysis demonstrates triply charged [M + 3H]3+, 4- [M + 4H]4+ and fivefold–
charged [M + 5H]5+ ions. (b) ESI mass spectra of human CRH following collision-
induced dissociation: Product ion scan spectrum of the fourfold–charged ion signal
[M + 4H]4+, resulting product ions are assigned to the amino acid sequence.
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4.2. Assay validation

The precipitation method allows rapid, easy and effective tissue
preparation. The results indicated that a precipitation with formic
acid and methanol achieved the optimal extraction recovery of
analytes. The mean recovery of extraction for bovine CRH added
to placental tissue lysates (n = 4) was 108 ± 2% with internal stan-
dard correction. To investigate the possible interference of the tis-
sue matrix with MS signals, we compared the peak area of the
internal standard in calibrator solutions and in the presence of ma-
trix. On average, in these cases the signals were 105 ± 8% for CRH,
74 ± 13% for progesterone and 79 ± 9% for cortisol, indicating only
weak matrix effects for CRH, and moderate matrix effects for
steroids.

The method proved linear from 0.1 to 50 lg/L (r > 0.99, injection
volume 900 lL) for CRH and up to 1000 lg/L for the specified ste-
roids. Calibration curves were calculated using linear least squares
regression according to the equation y = a + bx, where y is the peak-
area ratio of substance to internal standard and x is the analyte
concentration of the calibrator sample. We used 1/x weighting to
ensure maximum accuracy at lower concentrations. The mean y-
intercept was 0.0002 and the mean slope was 0.019 for CRH.

The lowest limit of detection was 0.1 to 0.2 lg/L, when analyz-
ing calibrator samples. The limit of quantification derived from the
precision profile curve of CRH was 0.5 lg/L. The mean interassay
coefficients of CRH were 6.3% (n = 12) for supernatant processing
and 15.1% (n = 12) for processing including tissue homogenization.
Similar results were found for cortisone (4.0% and 13.2%, respec-
tively) and progesterone (8.3% and 12.2%, respectively). For cortisol
the interassay coefficient for supernatant processing was 34%,
compared to a coefficient of only 3.6% after homogenization, indi-
cating a higher variability of cortisol in placental tissue.

4.3. LC-Tandem MS detection of placental CRH

We analyzed the variation of CRH content in proximal, interme-
diate and peripheral placental regions (medial-to-lateral sampling,
Fig. 3a and b) and CRH content in samples from the placental core
vs. samples below the decidual basal plate at the villous surface
(basal-to-chorionic sampling, Fig. 3a and b).

Medial-to-lateral sampling in the placental core region showed
a significantly (p < 0.05) higher variability than horizontal sam-
pling at the placental surface (n = 6 for all):

Placental CRH content at the core region in relation to the sam-
ple distance to the umbilical cord was: proximal 14.7 ± 2.6 ng/g
(range 31.5 ng/g), intermediate 17.0 ± 2.1 ng/g (range 36.2 ng/g),
peripheral 10.9 ± 1.1 ng/g (range 15 ng/g). Placental CRH content
at the villous surface in relation to the sample distance to the
umbilical cord was: proximal 14.1 ± 0.2 ng/g (range 1.6 ng/g),
intermediate 13.2 ± 0.9 ng/g (range 10.6 ng/g), peripheral
13.0 ± 0.9 ng/g (range 6.9 ng/g). There was no significant difference
in CRH content when comparing basal to chorionic samples
(Fig. 4a): the mean CRH content at the placental core was
14.5 ± 1.2 ng/g versus 13.4 ± 0.5 ng/g CRH at the placental surface.

4.4. LC-Tandem MS detection of placental cortisol and cortisone

We analyzed the variation of cortisol (F) and cortisone (E) con-
tent in proximal, intermediate and peripheral placental regions
(medial-to-lateral sampling, Fig. 3a and b), as well as F and E con-
tent in samples from the placental core vs. samples below the
decidual basal plate at the villous surface (basal-to-chorionic
sampling, Fig. 3a and b). In the placental core region (chorionic
sampling, Fig. 3a) both F and E content was low, at 0.9 ± 0.1 ng/g
– 1.2 ± 0.2 ng/g. There was a significant difference (p < 0.001) in F
and E content when comparing basal to chorionic samples
(Fig. 3a and b): Medial-to-lateral sampling at the basal placental
surface returned significantly higher F and E contents (p < 0.001,
n = 6 for all) ranging from 3.6 ± 0.4 ng/g – 5.6 ± 0.4 ng/g for F and
73.3 ± 6.8 ng/g to 80.3 ± 3.0 ng/g for E. This resulted in a signifi-
cantly (p < 0.001) higher F/E–ratio of 0.063 ± 0.006 at the placental
surface when compared to the F/E ratio at the chorionic placental
core 0.013 ± 0.001 (Fig. 4b). Medial-to-lateral sampling at the basal
placental surface only slightly influenced F/E–ratios, with a signif-
icantly lower F/E–ratio of 0.05 ± 0.01 (p < 0.05) in the intermediate
region (Fig. 3b), when compared to proximal (0.08 ± 0.012) and
peripheral (0.08 ± 0.007) sampling site F/E–ratios.

4.5. LC-Tandem MS detection of placental progesterone

We analyzed the variation of progesterone content in proximal,
intermediate and peripheral placental regions (medial-to-lateral
sampling, Fig. 3a and b), as well as progesterone content in samples
from the placental chorionic core vs. samples below the decidual
basal plate at the villous surface (basal-to-chorionic sampling,
Fig. 3a and b).

Basal-to-chorionic sampling revealed, that progesterone tissue
levels (907.4 ± 36.1 ng/g, range 684.0 ng/g – 1120.0 ng/g) at the ba-
sal placental surface were significantly (p < 0.005) higher than the



Fig. 2. Representative HPLC-MS/MS chromatograms of human CRH (left) and bovine CRH (internal standard, right), detected by fragmentation of the fourfold-charged
precursor ions [M + 4H]4+. The retention time of CRH was 4.5 min. The total chromatographic analysis time was 6 min per sample. MRM transitions (sum of the respective
transitions). Legend: (a) blank value, (b) calibrator sample (10 lg/L), (c) placental sample (human CRH 19.2 ng/g).
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progesterone levels at the placental core (749.7 ± 33.3 ng/g, range
556.0 ng/g–904.0 ng/g), as shown in Fig. 4c.

Medial-to-lateral sampling showed no significant difference for
basal placental samples (range 887.8 ± 117.4 ng/g – 919.3 ±
25.5 ng/g), while there was a significantly lower progesterone con-
tent in chorionic placental samples from the periphery (607.0 ±
26.12 ng/g), when compared to proximal (818.5 ± 28.6, p < 0.002)
and intermediate (700.0 ± 47.8, p < 0.02) chorionic samples from
the villous core region (Fig. 3a and b).

5. Discussion

The focus of our study was the evaluation of LC-Tandem MS
measurement of CRH with its signaling partners in placental tissue.
As the architecture and perfusion varies greatly across the placen-
tal disk, special care has to be applied to sample preparation. Sam-
pling parameters, such as proximity to the umbilical cord, or to the
basal- or chorionic- plate may strongly influence gene and protein
expression [46]. Interestingly, placental samples from pregnancies
complicated by IUGR and SGA, show different mRNA expression
rates than samples from AGA placentas (all placental core sam-
ples), depending on the sampling site relative to the umbilical cord,
as recently shown for CRH expression [41]. We show that the opti-
mal read-out for cortisol turnover to cortisone is seen beneath the
decidual surface of the organ, while sampling at proximal, interme-
diate and peripheral placental regions had no influence. This find-
ing supports the function of 11b-HSD2 as feto-maternal enzymatic
barrier [21], with placental tissue at close proximity to the mater-
nal environment showing a greater cortisol/cortisone–ratio. Pro-
gesterone was measured at higher levels in the placental surface
area, while CRH was readily detectable at stable levels throughout
the whole placenta. We were not able to identify a significant cor-
relation of CRH with any of the other placental factors tested, how-
ever this might be related to the limited number of samples
studied. As a result, we introduce LC- Tandem MS as a reliable,
quantitative and multi-modal method for the analysis of CRH
and its signaling partners in placental tissue. Because the placental
interface links the maternal and fetal HPA-axis via CRH, multi-
modal analysis of CRH-interacting endocrine factors at the placen-
tal level was another aim of our study. Importantly, we were able
to measure progesterone in the same tissue sample with CRH. The
interaction of CRH and progesterone in promoting myometrial
contractility or quiescence at the feto-maternal interface is impor-
tant for the timing of labor [47] (reviewed in detail by Vrachnis
et al. [48]). The onset of labor is thought to be secondary to a func-
tional progesterone withdrawal [49,50]. Progesterone differentially
controls placental CRH promoter activity via its receptor isoforms
A and B [51] and fosters CRH-induced uterine quiescence via pro-
moting CRH receptor availability. Interestingly, CRH negatively
feeds back to progesterone by decreasing enzymatic progesterone
production via PKC-dependent inhibition of placental CYP11A1
and HSD3B1 expression [52]. The effect of functional progesterone
withdrawal in late pregnancy on the above receptors might enable
myometrial contractions during labor [53], possibly by reduction
of the relaxant effect of CRH [7]. Lately, it became evident that
CRH and progesterone are not only involved in changes in the
endocrine environment at the feto-maternal interface, but modu-
late local inflammatory immune responses, including the produc-
tion of cytokines (IL-1 b, IL-6) that control significant
mechanisms of labor. Cytokines, such as TNF and IL-1 b, not only
induce CRH production directly [54], but also indirectly via inhibi-
tion of placental 11b-HSD 2 [55]. The consecutive increase of cor-
tisol levels could increase placental CRH production [23]. In this
respect, LC-Tandem MS enabled us to additionally quantify the
CRH proxys cortisol/cortisone in the same tissue sample with
CRH and progesterone.

Although we focused on the analysis of healthy placentas at
term, the presented multi-modal method of placental hormone
analysis might be of use for the future analysis of placental
processes in pregnancies complicated by intra-uterine growth



Fig. 3. The correlation between gene expression level and location of placental sampling site. Layout adopted from Wyatt et al. [46]. (a) Location of sampling sites within the
placental disk. (b) The placental hormone expression in ng/g according to sample location (n = 6, for all). Legend: A = basal, B = chorionic; 1 = proximal, 2 = intermediate,
3 = peripheral sampling sites in relation to the umbilical cord stem. d = p < 0.05.
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restriction (IUGR). IUGR is characterized by increased placental
CRH [26,27], reduced 11b-HSD2 activity and hence fetal hypercor-
tisolism [16,30,56]. So far most studies analyzing placental 11b-
HSD2 activity in human cohorts use either placental tissue lysates
[56] or try to indirectly asses its activity by comparing cortisol cord
blood levels of newborns to maternal levels [14,31].

The role of serum progesterone in IUGR is controversially dis-
cussed. Older studies in Japanese cohorts were indicative of lower
levels of progesterone in IUGR, following a multifactor analysis
[57,58]. However, low oxygen pressure at high altitudes (an
in vivo model resembling IUGR and preeclampsia) has been shown
to increase progesterone levels and concomitantly lower estradiol
levels [59]. To our knowledge, there are no reports on placental
progesterone tissue levels in IUGR.

Beyond its role at the maternal side, placental CRH also acts on
the fetal pituitary-adrenal axis [60]: via induction of adrenocorti-
cotropic hormone (ACTH) in the fetal pituitary and in the placenta
CRH indirectly stimulates the fetal adrenals to produce cortisol.
As CRH increases exponentially at the end of gestation and placen-
tal CRH production is induced via cortisol, CRH exerts a positive
feed-back loop on its own placental production. CRH also fosters
negative feed-back loops: CRH induced ACTH additionally drives
adrenal dehydroepiandrosterone(-sulfate) (DHEA/DHEA-S) secre-
tion, which is converted into estrogens at the placental level.



Fig. 4. LC-Tandem MS measurement of (a) CRH (ng/g), (b) cortisol / cortisone–ratio
and (c) progesterone in placental tissue: influence of sampling site (core vs.
surface). Legend: ‘‘Core’’ equals the pooled ‘‘A’’ samples, ‘‘surface’’ equals the pooled
‘‘B’’ samples of Fig. 3b; F = Cortisol, E = Cortisone, ns = not significant,
HH ¼ p < 0:005, HHH ¼ p < 0:0001.
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Estrogen, in turn, is known to inhibit CRH production, hence facil-
itating parturition [47,61,62]. Interestingly, we were previously
able to successfully measure estrogen and DHEA/S via LC-Tandem
MS in serum [43] together with progesterone and cortisol/corti-
sone. Therefore it seems intriguing for future studies to include
the placental metabolism of these hormones in our presented LC-
Tandem MS tissue analysis. We hope that our methodical concept
of multi-modal placental tissue analysis via LC-Tandem MS will
strengthen the predictive value of placental endocrine biomarkers
for a more efficient prevention of fetally programmed post-IUGR mor-
bidities, as already shown for single placental biomarkers [14,34,63].

Taken together the multi-modal LC-Tandem MS approach helps
to effectively link the above placental feedback loops at the level of
the placenta, providing a deeper insight into the placental gluco-
corticoid metabolism and hence into the regulation of fetal devel-
opment and maternal parturition.
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