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Abstract. We demonstrate how machine learning can be eas-
ily applied to support the analysis of large quantities of ex-
cited hydroxyl (OH∗) airglow imager data. We use a TCN
(temporal convolutional network) classification algorithm to
automatically pre-sort images into the three categories “dy-
namic” (images where small-scale motions like turbulence
are likely to be found), “calm” (clear-sky images with weak
airglow variations) and “cloudy” (cloudy images where no
airglow analyses can be performed). The proposed approach
is demonstrated using image data of FAIM 3 (Fast Airglow
IMager), acquired at Oberpfaffenhofen, Germany, between
11 June 2019 and 25 February 2020, achieving a mean av-
erage precision of 0.82 in image classification. The attached
video sequence demonstrates the classification abilities of the
learned TCN.

Within the dynamic category, we find a subset of
13 episodes of image series showing turbulence. As FAIM 3
exhibits a high spatial (23 m per pixel) and temporal (2.8 s
per image) resolution, turbulence parameters can be derived
to estimate the energy diffusion rate. Similarly to the results
the authors found for another FAIM station (Sedlak et al.,
2021), the values of the energy dissipation rate range from
0.03 to 3.18 W kg−1.

1 Introduction

Airglow imagers are a well-established method for studying
UMLT (upper mesosphere–lower thermosphere) dynamics.
As the shortwave infrared (SWIR) radiation of excited hy-
droxyl (OH∗) between approx. 82 and 90 km height (von

Savigny, 2015; Wüst et al., 2017, 2020) is known to be the
brightest diffuse emission during the nighttime (Leinert et
al., 1998; Rousselot et al., 1999), atmospheric dynamics is
observed using airborne (Wüst et al., 2019) or ground-based
SWIR cameras (Taylor, 1997; Nakamura et al., 1999; Hecht
et al., 2014; Pautet et al., 2014; Hannawald, 2016, 2019; Sed-
lak et al., 2016, 2021). OH∗ measurements are also possible
from satellites, where they can be made in limb- or nadir-
viewing geometry (see Table 1 of Wüst et al., 2023, for
limb instruments). The limb measurements address mainly
the SWIR range and are mostly used for deriving information
about the OH∗ layer height and thickness. Nadir-looking in-
struments, however, such as VIIRS DNB (Day/Night Band
nightglow imagery from the Visible Infrared Imaging Ra-
diometer Suite) on board Suomi NPP (Suomi National Polar-
orbiting Partnership) and JPSS-1 (Joint Polar Satellite Sys-
tem 1), which have been used for analyses of atmospheric dy-
namics until now, measure in the VIS (visible) range. In con-
trast to imager systems using an all-sky lens, which enable
us to observe the entire dynamical situation of the nocturnal
sky, operating an imager with a lens of long focal length and
narrow aperture angles provides the opportunity to observe
small-scale dynamical features in the UMLT with a high spa-
tial resolution. This includes not only instability features of
gravity waves, such as “ripples” (Peterson, 1979; Taylor and
Hapgood, 1990; Li et al., 2017), but also turbulence (Hecht
et al., 2021; Sedlak et al., 2016, 2021). Previous studies at
Oberpfaffenhofen (Sedlak et al., 2016) and Otlica, Slovenia
(Sedlak et al., 2021), using the high-resolution airglow im-
ager FAIM 3 (Fast Airglow IMager) have shown that the ob-
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servation of turbulent episodes in the OH∗ layer is possible
with this kind of instrument.

Turbulence marks the end of the life cycle of breaking
gravity waves (Hocking, 1985). Having become dynamically
or convectively unstable, the wave can no longer propagate
and eventually breaks down developing eddies. Within this
inertial subrange of turbulence, energy is cascaded to smaller
and smaller structures until it is dissipated via viscous damp-
ing, causing a heating effect on the atmosphere. Observing
turbulence episodes with high-resolution airglow imagers,
the respective energy dissipation rate can be derived from the
image series by reading out the typical length scale L of the
eddies and the root-mean-square velocity U , i.e., the veloc-
ity of single eddy patches relative to the background motion
(Hecht et al., 2021; Sedlak et al., 2021).

The energy dissipation rate ε is given by

ε = Cε
U3

L
(1)

(Chau et al., 2020), where Cε ≈ 1 (Gargett, 1999). The re-
sults in Sedlak et al. (2021) suggest that, locally and within
a few minutes, the heating rate driven by the turbulent break-
down of gravity waves can be as large as the daily chemical
heating rates in the mesopause region (Marsh, 2011). Thus,
one has to assume that this dynamically driven effect is of
great importance for the energy budget of the atmosphere and
needs to be included realistically in modern climate models.

In order to derive statistically reliable and also global
information about gravity wave energy deposition in the
UMLT, more and more high-resolution airglow imagers need
to be deployed at different locations around the world. The
largest challenge is to identify turbulence episodes in a
rapidly growing data set of airglow images. While in former
studies turbulence episodes were found by manual inspection
(Sedlak et al., 2016, 2021), this will not be feasible anymore
with much larger quantities of data.

When it comes to image recognition, artificial intelligence
(AI) is a field that has seen tremendous progress in recent
years (Fujiyoshi et al., 2019; Horak and Sablatnig, 2019; Guo
et al., 2022). In particular, algorithms using neural networks
(NNs) show a very good performance in identifying different
objects in images and also have a quite efficient computation
time. Using these methods to detect turbulence in airglow
images presents several challenges that complicate the use of
off-the-shelf image recognition algorithms:

– Turbulent movement manifests itself in a wide variety
of shapes and structures.

– Structures in the OH∗ layer appear blurred, and con-
trasts are strongly dominated by clouds.

– Turbulence can often only be identified in the dynamic
course of a video sequence; single images of a turbulent
episode are easily confused with clouds.

– The number of images showing turbulence is much
smaller than the number of images showing no turbu-
lence; thus there is an essential imbalance of available
training data for the different categories.

All these aspects have the consequence that a direct extrac-
tion of turbulent episodes from the entire measurement data
set is very difficult. However, some existing approaches ex-
hibit promising advantages that could help in finding turbu-
lence episodes. In this work, we show how NN-based meth-
ods can be combined into an algorithm that is easy to use and
performs well in strongly reducing the database where turbu-
lence can likely be found. We demonstrate the application
and performance of this practical approach on OH∗ airglow
image data of the FAIM 3 instrument acquired at Oberpfaf-
fenhofen, Germany, between 11 June 2019 and 25 February
2020.

Our goal is to explain our approach in a way that it is rel-
atively easy to apply for airglow scientists who do not spe-
cialize in AI. Therefore, the description of the classification
algorithm (Sect. 3) is in more detail than for example the in-
troduction of the airglow instrument or the data preparation
(Sect. 2).

2 Instrumentation and data preparation

The OH∗ airglow imager FAIM 3 is based on the short-wave
infrared (SWIR) camera Cheetah CL by Xenics nv. The sys-
tem has already been described in Sedlak et al. (2016); there-
fore, only the most important information is given here.

The SWIR camera consists of a 512× 640 pixels InGaAs
focal plane array, which is sensitive to infrared radiation with
a wavelength between 0.9 and 1.7 µm. Images are acquired
automatically during each night (solar zenith angle > 100◦)
with a temporal resolution of 2.8 s. Since June 2019 mea-
surements have been performed at the German Aerospace
Center (DLR) site at Oberpfaffenhofen (48.09◦ N, 11.28◦ E),
Germany, with a zenith angle of 34◦ and an azimuthal an-
gle of 204◦ (SSW direction). Due to the aperture angles of
5.9 and 7.3◦, this results in a trapezium-shaped field of view
(FOV) in the mean OH∗ emission height at ca. 87 km with
size 175 km2 (13.0–13.9 km× 13.1 km) and a mean spatial
resolution of 23 m per pixel. The FOV is located ca. 80 km
south of Augsburg, Germany.

The database used in this work consists of nocturnal im-
age series acquired between 11 June 2019 and 25 Febru-
ary 2020. During this period, measurements were performed
during 258 nights. Analyzing keograms, 95 (37 %) of these
nights show complete cloud coverage and prevent analyses
based on airglow observations. The remaining 163 nights ex-
hibit a clear sky either all of the time or at least temporarily
(at least ca. 30 min), so the OH∗ layer is visible in a total
of 188 episodes (it is possible that a single night may have
several clear episodes interspersed with cloudy episodes).

Atmos. Meas. Tech., 16, 3141–3153, 2023 https://doi.org/10.5194/amt-16-3141-2023



R. Sedlak et al.: Analysis of 2D airglow imager data 3143

Figure 1. Typical examples of the three label classes: (a) cloudy,
(b) dynamic and (c) calm.

The images are prepared for analysis by performing a
flat-field correction and transforming each of them onto an
equidistant grid (for further details see Hannawald et al.,
2016). In order to completely remove any pattern remnants,
such as reflections of the objective lens in the window, the av-
erage image of each episode (a pixel-wise mean of all images
in that episode) is subtracted from the individual images.

3 Image classification with neural networks

3.1 Label classes

When looking at the temporal course of the image data, three
main types of observation can be distinguished, which we
use as label classes for the classification algorithm (typical
examples of these label classes are shown in Fig. 1):

– Cloudy. These are episodes of clouds or cloud fragments
moving through the image (Fig. 1a). These cloudy
episodes are too short or too faint to be recognized dur-
ing keogram analysis (see Sect. 2). The image series
are characterized by sharp contrasts and fast movement
of coherent structures (compared with structures in the
“dynamic” class). Often (but not necessarily) stars are
covered by the clouds.

– Dynamic. These are cloud-free episodes with pro-
nounced moving OH∗ airglow structures (Fig. 1b), in-
cluding waves and eddies. OH∗ dynamics can be dis-
tinguished from cloud movement due to slower veloci-
ties, blurrier edges and (except for extended wave fields)
more isotropic movements.

– Calm. These are cloud-free episodes with weak move-
ment in the OH∗ layer (Fig. 1c). The images appear
quite homogeneous and hardly change in the temporal
course.

The goal of the classification algorithm is to automatically
and reliably identify the dynamic label class. In a subsequent
step, which is not part of this work, these episodes can then
be analyzed with respect to turbulence.

3.2 Image features

We calculated a set of 1-dimensional features for each im-
age series that we believe help to distinguish the categories
introduced in Sect. 3.1.

The mean value and standard deviation are calculated for
every image. The mean value feature is calculated based on
the assumption that “cloudy” episodes have a higher intensity
than “calm” episodes due to reflections from ground lights or
the moon. The standard deviation of the label class calm is
expected to be lower, whereas the label class cloudy is ex-
pected to have higher values, since clouds exhibit both very
bright areas (strongly reflecting clouds) and very dark areas
(shades or small clear-sky gaps in the cloud coverage). Both
the mean and the standard deviation of the label class cloudy
are expected to have intermediate values between those of
the calm and cloudy classes. We refer to these two features
(mean value and standard deviation) as the basic features.

They are supplemented by three texture-based features de-
rived from the grey level co-occurrence matrix (GLCM) as
described in Zubair and Alo (2019). Homogeneity is the first
of these three texture-based features and is a method of mea-
suring the similarity of neighboring pixels in an image. If
its value is particularly high, it suggests a high similarity of
adjacent pixels (Zhou et al., 2017). This may indicate a posi-
tive correlation with the label class calm. The second texture-
based feature, dissimilarity, is inversely correlated to homo-
geneity and thus could help to identify the episodes contain-
ing a lot of motion. The third texture-based feature, unifor-
mity, is particularly high if the image has uniform structures.
On the other hand, this value is very small as soon as the
image contains heterogeneous structures.

Additionally, features which are based on a 2-dimensional
fast Fourier transform (2D-FFT) as described in Hannawald
et al. (2019) are derived for each image. They are called
the “PSD” feature group in the following. As in Sedlak et
al. (2021), the 2D-FFT is applied to a squared cutout cen-
tered at the image center with side length 406 pixels (9.3 km).
This results in 2-dimensional spectra, which depend on the
zonal and the meridional wavenumber. They are integrated
over these wavenumbers such that the power spectral den-
sity (PSD) as a function of horizontal wavenumber k is
derived. According to Kolmogorov (1991), the log(PSD)–
log(k) shows different slopes, which depend on whether
the observed field is in the buoyancy (dominating energy
transport by waves), the inertial (energy cascades to smaller
scales) or the viscous subrange (viscous damping of move-
ments). Therefore, the feature slope is derived as the linear
fit in the log(PSD)–log(k) plot. Then, the PSD is integrated
over all k and the change in this value per time step is cal-
culated. This feature is called DiffIPSD (differences in inte-
grated PSD) and takes into account the fact that clouds tend
to cause stronger fluctuations over time than during clear-sky
episodes. Last, the PSD is integrated over all k and over the
whole night. This feature is denoted IPSD (integrated PSD).
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In total, we calculate eight different features for each im-
age. They are summarized again in Table 1 for a better
overview.

3.3 Data basis for the classification algorithm

The features introduced in the last subsection were calcu-
lated for every fifth image. This results in a temporal resolu-
tion of 14 s and data set of approximately 240 000 time steps.
About 105 000 time steps are assigned to the label class calm,
65 000 to cloudy and 70 000 to dynamic. This data set is di-
vided into three parts: training, validation and test data. The
partition is performed as follows: first, the list of all mea-
sured nights is arranged chronologically and divided into
parts with 10 measured nights each. From these parts, one
measured night is randomly selected and assigned to the test
data. From the remaining nine measured nights, two are ran-
domly assigned to the validation data. The remaining seven
measured nights are assigned to the training data. This re-
sults in approximately 70 % training data, 20 % validation
data and 10 % test data by looking at the total number of time
steps. All features of the three data sets were independently
normalized to the range 0 to 1. Before normalization, the out-
liers (lowest and highest 0.05 quantile) were replaced by the
highest value of the lowest 0.05 quantile and the lowest value
of the highest 0.05 quantile respectively.

The training data set is used to train a neural network,
and at the end of an epoch (one training cycle of the whole
training data set), the result and the learning progress are
checked using the validation data set. After running through
all 100 epochs and additional possible manual adjustments
to the classification procedure, the final quality of a classi-
fier is determined on the test data set. This procedure serves,
among other things, to avoid overfitting to the training data
set. In order to use this procedure properly, the training, vali-
dation and test data must be different from each other. In our
case, this is ensured by dividing the complete data set into
training, validation and test data set by complete nights and
not by individual parts of a night. Features from one night
may be more similar to each other than features from differ-
ent nights, which could lead to inadvertent overfitting if parts
of a night were used for the partitioning into the training,
validation and test data set.

3.4 Classification algorithm

A neural network consists of an input and an output layer as
well as one or more hidden layers in between (in the latter
case, the network is called “deep”). Each layer is composed
of one or more neurons, which work like biological neurons:
multiple input signals are passed to a neuron. If the aggre-
gated inputs exceed a certain strength, the neuron is activated
and transmits a signal to its outputs. For artificial neurons, we
assume that the incoming signal (for all but the input layer)
is the weighted sum from other neurons’ outputs plus a bias.

The activation of the artificial neuron happens according to
an activation function (e.g., rectified linear unit, ReLU, as
described in Nair and Hinton, 2010). The different hidden
layers are used to learn the true output. This is done by opti-
mizing the weights and the bias for each neuron.

The goal of our neural network is to assign a FAIM image
to one of the three label classes calm, cloudy or dynamic.
Hence, the output layer of our NN has three neurons. Each
output neuron represents a label class and is supposed to out-
put the probability of the respective class given the input fea-
tures. These three output probabilities are combined in a vec-
tor, the prediction vector.

Since considering a sequence of images instead of an indi-
vidual image often simplifies the discrimination between the
different classes, our neural network uses sequences as input.
In our case these are sequences of the abovementioned fea-
tures and not sequences of images. The sequences of features
are derived from several consecutive images that are located
symmetrically in time around the original image that is to be
classified.

In order to attribute one image to a specific class, we used
a temporal convolutional network (TCN; see, e.g., Bai et
al., 2018) in the TensorFlow Keras implementation of Rémy
(2020). TCNs are based on dilated convolutions, so at each
neuron of the hidden layer, a convolution takes place. In our
case, the input is a time series stored in x. Each temporal
component of x consists of the eight features mentioned be-
fore and is calculated from the same image. Thus x is 2-
dimensional and of size T ×8, with T being the length of the
time series. The kernel k is a function (details are given later)
with which our input x is convolved. It is 2-dimensional with
dimension (2r + 1)× 8: 2r + 1 is its temporal length (i.e., k
is defined at−r,−(r−1), . . ., −1,0,1, . . ., (r−1),r , where
r can be chosen) and 8 is due to the eight features per time
step. d is the dilation factor (d ∈N).

The dilated convolution is then calculated as follows:

x′(t)= (x ∗dk)(t)=
∑r

a=−r
xT (t −da) · k (a ) . (2)

The result of the dilated convolution x(t) is a scalar (in con-
trast to x (t −da ), which is the vector of features at time
t −da, and k (a ), which is a vector of length 8). The dila-
tion factor d leads to the fact that, for the computation of
x′, not every temporal component of x but every dth tempo-
ral component of x is taken. From the range of the running
index a, which goes from −r to r , it becomes clear that we
have here a so-called non-causal convolution; i.e., for the cal-
culation of x′ at time t , values of x at time points later than t
(i.e., values referring to the future) are included. The values
of kernel k represent the weights mentioned at the beginning
of this section. So, through the training process, the kernel
and therefore the weights as well as the bias are optimized
for each hidden layer in order to achieve the true classifica-
tion.

In TCNs, these dilated convolutions are stacked, which is
visualized for two dilations in Fig. 2. The dilation factor in-
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Table 1. Image features used with the classification algorithm.

Feature group Feature Description

Basic Mean Mean value of an image

Standard deviation Standard deviation of an image

Texture-based
(GLCM)

Homogeneity Similarity of neighboring pixels in an image

Dissimilarity Inversely correlated to homogeneity; measure
to identify strong motion

Uniformity Measure of how homogeneous/heterogeneous
the structures in an image are

PSD-based Slope Slope in the log(PSD)–log(k) plot resulting
from the 2D-FFT analyses

DiffIPSD Change in PSD integrated over all
wavenumbers k per time step

IPSD PSD integrated over all k and the time period of
the episode

Figure 2. Stacked dilated convolutions applied to a time series x(t).
The output is denoted with y(t). The dilated convolutions have the
dilation factors d = 1,2 and a kernel of length 3 (according to Bai
et al., 2018). In order to avoid a shortening of the time series in each
step, the series are enlarged by zeros at the beginning and the end
(also called zero padding).

creases by a factor of 2 with each additional stacked dilated
convolution. This makes sure that all information from the
input sequence contributes (in a modified way) to the output
and allows large input sequences with only a few layers.

We constructed and trained two TCN instances for differ-
ent sequence lengths. The short sequence includes features of
13 time steps, which corresponds to a time of approximately
3 min. The long sequence includes features of 61 time steps,
which corresponds to a time span of approximately 14 min.
These two different sequence lengths were used so that one
TCN (TCN13), on one hand, has a way of reacting well to

short-term events. On the other hand, the greater informa-
tion content of a long sequence can be used, so the second
TCN (TCN61) can better classify unclear episodes. The two
sequence lengths lead to two independent classifications by
the respective TCN for the same point in time.

We always used a kernel size of 3 for the dilated convolu-
tions. Furthermore, for the input sequence length of 13, the
dilation factors for the TCN13 were d = 1,2, while for the
input sequence length of 61, the dilation factors for that TCN
were d = 1,2,4,8. Comparing the given sequence length of
13 for the given dilation factors 1 and 2 with the sequence
length from Fig. 2 for the same dilation factors, a differ-
ence between the theory and implementation can be noticed.
This is a known property of the given implementation (https:
//github.com/philipperemy/keras-tcn/issues/207, last access:
21 June 2023, https://github.com/philipperemy/keras-tcn/
issues/196, last access: 21 June 2023). The implementation
always achieves a maximum sequence length with a dilation
factor less than required in theory. For example, a maximum
sequence length of 13 does not require the theoretical dila-
tion factors of d = 1,2,4; it only requires d = 1,2.

The number of filters (number of different stacked di-
lated convolutions applied to every feature sequence) is 16.
This results in approximately 3000 trainable parameters for
TCN13 and 6000 trainable parameters for TCN61.

After describing the basic idea of a TCN as introduced in
Bai et al. (2018), we also would like to give the most impor-
tant information about the implementation of the TCN. For
this the TCN used so-called residual blocks as described in
Bai et al. (2018). A residual block consists of two hidden lay-
ers (each hidden layer comprises the weighting of the signals
using dilated convolutions, the activation of the neurons and
the processed signals) and a skip connection. The skip con-
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nection allows us to jump over hidden layers. As the activa-
tion function we used the rectified linear unit (ReLU) in the
residual block (Nair and Hinton, 2010) and, due to the clas-
sification task, the softmax function in the output layer. Soft-
max ensures, among other aspects, that the individual values
of the prediction vector, i.e., the output of the neural network,
can be interpreted as a probability. The weights in the resid-
ual block are normalized during the training process with
weight normalization as introduced in Salimans and Kingma
(2016) and for temporal convolution networks suggested in
Bai et al. (2018).

One challenge when using neural networks is to avoid
overfitting; i.e., the network only memorizes the training
data. In order to prevent this, we used a dropout regulariza-
tion as proposed in Srivastava et al. (2014), with the ratio of
0.3 in the residual block as well as in the layer before the out-
put layer. That means randomly 30 % of the inputs of neurons
in each of these layers are switched off during the training
of the network. Additionally, Gaussian noise is added to the
time series before it is passed to the TCN. The architecture
of our TCN is displayed in Fig. 3.

As mentioned at the beginning of this section, the class
prediction of each image is stored in a vector. The length of
the vector is equal to the number of classes. Since we have
three classes, the vector is 3-dimensional. The ground truth
classification vector has a single entry equal to 1 and two en-
tries equal to zero because each image is manually assigned
to a single label class. This kind of classification encoding is
called a one-hot classification vector. The prediction vector
of our learned classifier also has three entries, and every entry
gives the predicted probability of the respective label class.
We calculate the mean vector of the two prediction vectors
for a sequence length of 13 and 61 and call this the “com-
bined classifier”, whose entries can also be interpreted as a
probability for the respective label class. To retrieve infor-
mation about the quality of the classification and to learn, the
difference between the classification vector and the predic-
tion vector needs to be measured; this is done by the “cate-
gorical cross-entropy” metric which is explained in Murphy
(2012). This is repeated for all inputs in a batch and the re-
sulting average is called loss. This loss has to be minimized
based on the adjustment of the trainable parameters (i.e.,
weights and biases of the different neurons), which can be
done using a gradient-based optimizer. Our TCN was trained
by the Adam optimizer, which was introduced in Kingma and
Ba (2014). A starting learning rate of 0.05 provided the best
results. The learning rate was additionally (to the adjustments
of the Adam optimizer) adjusted at the beginning of all 100
training epochs in the following way: after each epoch the
learning rate was reduced by a factor of exp(−0.2). After 25
epochs and multiples thereof, the learning rate was increased
to approximately 70 % of the last maxima. This principle of
such a so-called cycling learning rate was proposed in Smith
(2017) and leads to the fact that only a range around the per-

Figure 3. The input is a sequence of length 13 with 8 features at
each time step. It has the dimensions 8× 13. The first layer is a
Gaussian noise layer, which is only active during training and adds
slight normally distributed noise to the input data (standard devi-
ation= 0.01). Afterwards the 8× 13 data points are passed to the
TCN and there to the first residual block. This residual block imple-
ments a 1-dimensional dilated convolution with a dilation factor of
d = 1 and kernel length of 3. Since we have 16 filters (16 different
initialized kernels), this also leads to 16 output features. The num-
ber of time steps remains the same. Afterwards, the same is repeated
in the second residual block, only with the dilation factor increased
to d = 2. The last step in the TCN is picking up the black-marked
middle element of the 13 time steps since only this element contains
information about the complete time sequence. This is done with the
help of a so-called lambda layer. Finally, we map the 16 features re-
sulting from the TCN to the three output neurons with a fully con-
nected layer and the softmax function as the activation function. In
this representation, the dropout regularization in the residual blocks
as well as in the output layer (with a factor of 0.3) is not shown.
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fect learning rate has to be found instead of a perfectly fitting
learning rate.

During the training process we saved the model with the
lowest loss on the validation data, also estimated by the cat-
egorical cross-entropy metric.

Due to the large number of data, it is most important
that sequences predicted as dynamic are actually dynamic
episodes. This can be measured by the precision. The preci-
sion Pi of a label class i is the quotient of correctly positive
predicted time steps of a label class tpi and all time steps that
are assigned by the classifier to a label class (i.e., the sum
of the correctly positive and the false positive predicted time
steps tpi + fpi ):

Pi =
tpi

tpi
+ fpi . (3)

The counterpart to precision is recall Ri (of a label class i),
which is calculated by dividing the correctly positive pre-
dicted time steps of a label class tpi by all the time steps man-
ually assigned to a label class (i.e., the sum of the correctly
positive predicted and the false negative predicted time steps
tpi + fNi ):

Ri =
tpi

tpi + fNi
. (4)

Therefore, recall is a measure of how many time steps of a
label class are actually recognized by the classifier, whereas
precision only evaluates the time steps assigned to a label
class by the classifier and thereby determines the proportion
of all correctly assigned time steps.

Thresholds can be defined to determine at what value a
prediction is assigned to a label class. For example, if a
threshold value of zero is set for the output neuron of the
label class dynamic, all time steps will be assigned to the la-
bel class dynamic. In this case, the recall is at its maximum
value of 1, whereas the precision is usually at its minimum,
since there is normally a large number of false positive time
steps. If the threshold value is now increased step by step,
recall decreases and precision increases at the same time.

For each threshold value, a value pair of precision and re-
call can now be formed. Plotting recall versus precision and
calculating the area under the curve, we get the so-called “av-
erage precision” (AP) of a respective label class, which can
reach the maximum value of 1 (see Fig. 4). This is a reliable
quality metric for the detection of a label class of a classi-
fier independent of the thresholds used. Calculating the mean
value of all average precision values, i.e., for calm, dynamic
and cloudy, gives the mean average precision of a classifier.

3.5 Analysis of the classification algorithm

According to the precision–recall curves on the test data set
(Fig. 4), the combined classifier achieves a mean average pre-
cision of 0.82. Taking a closer look at all average precision
values reveals the following result.

Figure 4. Precision–recall curves of all three label classes on the
test data. Each value pair of precision and recall is based on a thresh-
old value which decides whether a prediction is assigned to a label
class or not. These thresholds start at a high level and are decreased
constantly until a recall of 1.0 is achieved. This is done for all la-
bel classes separately. The area under the precision–recall curve is
called the average precision (AP) of the label class.

The average precision for the actual target label class dy-
namic is 0.63. If we consider the same statistical measures
on the non-target label classes calm and cloudy, we achieve
an average precision of 0.85 for the label class calm and an
average precision of 0.90 for the label class cloudy.

For our combined classifier, we used features instead of
whole images. In order to determine the importance of indi-
vidual features groups for detection, we derived the precision
values by omitting one of the three groups of features (basic,
texture and PSD features). If we omit the feature groups basic
features or texture features, we only detect tiny changes in the
average precision of the label classes calm and cloudy. The
decrease in the average precision of the label class dynamic
is a bit higher while omitting the basic feature group instead
of the texture feature group. This leads to a slightly lower
mean average precision by omitting the basic feature group
compared to the texture feature group. The greatest influence
on all statistical measures is the PSD feature group. Omit-
ting this feature group leads to a decrease of approximately
10 % in every average precision value. Therefore, the mean
average precision also decreases by approximately 10 %.

So far, we have reported the general metrics of the neural
network. To sum it up, the prediction of the label class cloudy
has given the best results, followed by calm and with some
distance dynamic.

Since our goal is the identification of dynamic episodes,
we adjusted the classification criteria to optimize the preci-
sion of the label class dynamic. This configuration was mod-
ified according to the validation data and tested on the test
data in the final step. The classification criteria are specified
as follows.

First, we set thresholds for whether predictions are as-
signed to a label class or not. This is done using Fig. 5, which
shows the precision and recall for each label class as a func-
tion of the threshold values.
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Figure 5. Precision and recall dependent on thresholds (on valida-
tion data) for all three label classes calm, cloudy and dynamic.

We have chosen threshold values 0.35 for the label class
clouds and 0.5 for the label class calm, since the precision
and recall of these two label classes are almost identical for
these threshold values on the validation data set. For the label
class dynamic we have chosen 0.5 as the threshold. In con-
trast to the other label classes, precision is higher than recall
in order to optimize the precision of the label class dynamic.
Due to these individual thresholds, it is possible that the final
classifier suggests no label class or more than one label class
for some time steps.

If time steps are not assigned to any label class, we classify
them as “unsure”. If the classifier suggests more than one
label class for a time step, the label class with the highest
average precision wins the prediction.

Applying this procedure to the test data leads to the follow-
ing confusion matrices and statistical measures (Tables 2, 3
and 4).

In confusion matrices, the manual classifications are plot-
ted in the vertical direction and the automatic predictions in
the horizontal direction. Correct predictions are therefore on
the main diagonal, whereas incorrect predictions are on the
secondary diagonal. This allows us to not only identify label
classes that can be well distinguished, but also label classes
that are more difficult to distinguish.

The confusion matrix displayed in Table 2 presents a de-
tailed look at every manual classification and prediction of
the combined classifier. As the number of manual classifi-

Table 2. Confusion matrix of the combined classifier, with thresh-
olds of 0.35 for the label class cloudy, 0.5 for the label class calm
and 0.5 for the label class dynamic. The bold values represent the di-
agonal of the confusion matrix, i.e., the number of points for which
the predicted label is equal to the true label.

Manual Classifier prediction

classification Calm Cloudy Dynamic Unsure Sum

Calm 6862 540 1982 1081 10 465
Cloudy 109 5046 567 646 6368
Dynamic 1402 764 4371 931 7468
Sum 8373 6350 6920 2658 24 301

Table 3. Normalized confusion matrix of the classifier displayed in
Table 2. Each row in the confusion matrix is divided by the sum of
the row, which is equal to the sum of classifications in the corre-
sponding label class.

Manual Classifier prediction

classification Calm Cloudy Dynamic Unsure

Calm 0.66 0.05 0.19 0.10
Cloudy 0.02 0.79 0.09 0.10
Dynamic 0.19 0.10 0.59 0.12

cations differs in each label class, drawing a conclusion on
the quality of the classifier’s predictions regarding the con-
fusion of individual label classes is quite difficult. Therefore,
we also display a normalized version of the confusion matrix
in Table 3. Each row is normalized by the sum of each row,
so the results in Table 3 are independent of the number of
manual classifications in each label class.

Before we go into the details of the confusion matrices in
Tables 2 and 3, we briefly focus on the statistical measures
which are calculated based on the confusion matrix in Ta-
ble 2. The statistical measures precision, recall and overall
accuracy are presented in Table 4.

As we have seen before, Table 4 also shows that the
combined classifier gives the best results for the label class
cloudy, followed by calm and with some distance dynamic.
There is just little difference between precision and recall in
both label classes cloudy and dynamic, while the recall of the
label class calm is much lower than its precision.

This is initially unexpected because we adjusted our
thresholds in a way that recall and precision for the label
classes calm and dynamic are almost on the same level. How-
ever, this can be explained by the confusion matrix in Ta-
bles 2 and 3. First, the label classes calm and dynamic have
a high potential of being mixed up: 19 % of the episodes
classified as calm are predicted as dynamic and vice versa.
Secondly, all label classes occur at similar frequencies in the
validation data set. So, if we compare this to the test data set,
we can see (in the column “Sum”) that there are far more
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Table 4. Statistical measures precision, recall and overall accuracy
calculated by the confusion matrix of Table 2.

Calm Cloudy Dynamic

Precision 0.82 0.80 0.63
Recall 0.66 0.79 0.59

Overall accuracy 0.67

calm classifications than dynamic classifications. Combining
these two aspects, it is on the one hand clear that the preci-
sion of the label class is boosted by the large number of calm
classifications and therefore higher than the recall of the la-
bel class calm. On the other hand, a larger number of calm
classifications leads (due to the high potential of mixed-up
predictions between calm and dynamic) to a large number
of predictions of dynamic which were originally classified as
calm. This decreases the precision of the label class dynamic.

The confusion matrix in Table 2 suggests that there are in
total more dynamic predictions which are originally classi-
fied with the label class calm than vice versa. But we have
also seen that there are by far more calm classifications than
dynamic classifications. Due to these aspects, the confusion
matrix in Table 3 is normalized by the sum of each row,
which means by the number of classifications of each la-
bel class. This confusion matrix shows that the proportion
of mixed-up calm and dynamic timestamps in relation to the
number of classifications of each label class is the same in
both directions (19 % of the label classes calm or dynamic).
It also shows that the lower recall of the label class dynamic
(0.59) compared to the label class calm (0.66) is mainly
caused by the increased number of cloudy predictions in re-
lation to the total number of classifications when the times-
tamps are classified as dynamic.

It has been shown that the imbalance of the test data set
and the mix-up between calm and dynamic predictions have
a large influence on the statistical measures. Therefore, as a
next step, calm predictions which are classified as dynamic
and dynamic predictions which are classified as calm will be
investigated. All these episodes are categorized as mispre-
dicted or misclassified (Table 5).

Table 5 shows that in both cases most of the time steps
that are considered wrongly predicted are actually misclassi-
fied and not mispredicted. The relative frequency of mispre-
dicted episodes is higher in the case of classified as calm but
predicted as dynamic than in the opposite case. This can be
partly explained by gravity wave structures, which are clas-
sified as dynamic and often predicted as calm, which leads to
the assumption that our classifier or our features are not able
to detect these structures.

In a further next step, the data classified as dynamic are
used to find turbulence episodes. To determine the frequency
of turbulence episodes in this label class, all sequences of the
test data set predicted as dynamic were viewed and split into

three categories: turbulence if rotating structures of nearly
cylindrical shape can be detected, potentially turbulence if
rotating structures can be suspected but not clearly detected
and no turbulence if no structures can be observed that are
relatable to rotating cylinders. Examples of these three cate-
gories can be seen in Video 1 (see video supplement to this
article). The intervals of these three categories are discussed
in detail within the next section.

Splitting all as dynamic predicted timestamps in the de-
scribed manner delivers three categories of roughly the same
size (see Table 6). Slightly less than one-third contain turbu-
lence. Another third contain structures that can be related to
turbulence, and slightly more than one-third do not contain
any structures that can be related to turbulence.

3.6 Discussion of the classification algorithm

At first glance, the statistical measures of mean average pre-
cision of 0.82 and average precision values of 0.90 for the
label class cloudy, 0.85 for the label class calm and 0.63 for
the label class dynamic on the test data set appear satisfy-
ing but not entirely convincing. In this context, a few aspects
need to be considered. For instance, the fundamental task is
not one of completely unambiguous class assignments (as
it is in the case of basic object detections). In our case, the
transitions between the label classes, in particular the transi-
tions between calm and dynamic, are fluid. This also means
that the manual classification is always subjective to some
degree. Furthermore, there are events that are generally dif-
ficult to classify manually, such as very short cloud fields
moving rapidly through the field of view or short calm (non-
cloudy) episodes between cloud fields. To illustrate these as-
pects with an example, a video is digitally attached to the
submission (Video 1). It shows the complete video footage
of one night out of the test data set and is provided with the
manual classification as well as with the raw and final auto-
mated prediction of the classifier (i.e., the manual classifica-
tion is represented as a one-hot vector and the raw prediction
is represented as a one-hot vector). In this video, some tur-
bulent vortices are visible (19:30, 19:55, 20:10, 20:50; the
time zone is UTC throughout the paper). These time periods
are all correctly predicted as dynamic. Furthermore, the com-
bined classifier detects even the smallest cloud veils, such
as from 19:44–19:52. These are undoubtedly detectable but
only faintly and briefly, so they were not noticed in the man-
ual classification. In the statistics, this is counted as a false
classification, as the labeling was incorrect.

The largest impact on the statistical measures is the con-
fusion between calm and dynamic episodes (as shown in
Tables 2 and 4). Video 1 in the video supplement also
shows confused calm and dynamic episodes, especially
episodes which are classified as dynamic but predicted as
calm (22:06–22:14 and 22:23–22:45). Taking a closer look
at these episodes reveals the difficulty of drawing bound-
aries between the label classes calm and dynamic. Never-
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Table 5. Overview of calm and dynamic episodes categorized as mispredicted and misclassified.

Classified as calm but Classified as dynamic but
predicted as dynamic predicted as calm

Frequency Relative frequency Frequency Relative frequency

Mispredicted 872 0.44 362 0.26
Misclassified 1110 0.56 1040 0.74
Sum 1982 1.00 1402 1.00

Table 6. Categorization of all as dynamic predicted timestamps into
three categories: turbulence, potentially turbulence and no turbu-
lence.

Frequency Relative frequency

Turbulence 1825 0.26
Potentially turbulence 2242 0.39
No turbulence 2853 0.36

theless, episodes 22:06–22:14 and 22:33–22:45 can be con-
sidered misclassified, whereas the episode 22:23–22:33 is
more likely to be considered mispredicted. Although only
two of three episodes can be considered misclassified, all
three episodes are counted as misclassification and formally
impair the statistical measures of the classifier. So, in these
cases it is mainly the manual classification that is wrong and
not the prediction of the classifier. The prediction of the clas-
sifier also provides further advantages: the prediction of the
classifier happens without significant time effort, whereas the
manual classification of future data would take an extreme
amount of time. In addition, it is not affected by human
effects such as lack of concentration and subjectivity. This
leads to the result in Table 5, which implies that the major-
ity of confused calm and dynamic timestamps are caused by
the manual classification due to misclassifications instead of
mispredictions of the classifier. This leads to the fact that the
classifier is better suited to distinguishing between calm and
dynamic episodes than the manual classification. This confu-
sion due to misclassification has the largest negative impact
on precision and recall of the label class dynamic (listed in
Table 4 and calculated according to Table 2) and is caused
by errors in the manual classification (Table 5) and not by
mispredictions of the classifier.

Assuming that the validation and training data sets contain
the same proportion of calm and dynamic episodes that have
been mixed up during the manual classification, it is worth
saying that the training and validation data do not have to
be perfectly classified (manually) in order to train a well-
performing classifier.

The classification into three different label classes calm,
dynamic and cloudy is a natural approach according to the
video material. This does not automatically mean that this is

a helpful search space restriction for the automated search
for turbulence.

Looking at the relative frequencies of turbulence and po-
tential turbulence (Table 6) reveals that about two-thirds of
all data belonging to the label class dynamic can be of inter-
est for turbulence analysis.

In the video shown in the video supplement, the inter-
vals 19:28–19:30, 20:00–20:08, 20:22–20:25 and 21:16–
21:29 are annotated with potential turbulence and the in-
tervals 19:30–19:43, 19:52–20:01, 20:08–20:22 and 20:50–
20:58 are episodes in which turbulence can be observed. In
order to complete the annotations of the video, the sequences
that have been annotated with no turbulence are the follow-
ing: 20:25–20:35, 20:48–20:50, 20:58–21:02, 21:05–21:17,
21:30–22:05 and 22:12–22:23. It remains to be said that the
classification into the three label classes calm, dynamic and
cloudy can be regarded as quite reasonable, since in two-
thirds of all dynamic timestamps, either turbulence or events
resembling turbulence occur.

In future work, the resulting downsized data set (all data
that are predicted as dynamic) can be used to train neural
networks using image data to directly detect and potentially
measure turbulence. This was not possible before due to sev-
eral issues.

Firstly, the computational cost of processing image se-
quences in a neural network is higher than processing a time
series of manually determined features of the images: a time
series of images requires processing 10 000 data points per
time step (if the image has a resolution of 100× 100 pixels),
whereas a time series of our features only requires process-
ing 8 data points per time step. Using time series (with 13 and
61 steps respectively) instead of a single time step increases
computational costs additionally. This will become crucial
when applying this method to larger quantities of data.

Secondly, training with single images instead of image
sequences to reduce computational cost is not ideal. Image
sequences, in comparison to single images, contain essen-
tial information for the differentiation of the respective la-
bel classes. For example, cloud veils in a single image often
cannot be distinguished from the label class dynamic, or tur-
bulence vortices that appear similar to rotating cylinders can
only be clearly identified by the information of the image se-
quence.
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Table 7. Values of the energy dissipation rate ε and the correspond-
ing uncertainty δε of all turbulence events of sufficient quality found
in the airglow image data between 11 June 2019 and 25 February
2020 acquired at Oberpfaffenhofen, Germany.

Date ε [W kg−1] δε [W kg−1]

16 June 2019 0.55 0.50
16 June 2019 0.46 0.44
16 June 2019 2.24 1.43
6 July 2019 0.06 0.11
18 July 2019 0.19 0.24
18 July 2019 0.03 0.09
3 September 2019 2.43 1.55
13 October 2019 1.75 1.09
13 November 2019 3.18 1.39
12 December 2019 2.65 1.25
18 December 2019 0.78 0.63
29 December 2019 0.19 0.24
19 February 2020 0.04 0.09

This reduced data set contains only episodes that show
“dynamics” in the UMLT, of which approximately two-thirds
are potentially related to turbulence. Thus, the data set is
more balanced with respect to turbulence, which simplifies
training for direct search and measurement of turbulence. Fu-
ture work will also not waste computational time on calm
and cloudy episodes (where observable turbulence is not ex-
pected), making training with the image sequences more ef-
ficient.

4 Analysis and discussion of turbulence

Checking the dynamic episodes from the TCN model by
hand, we identified 19 episodes of turbulence. Of them, 13
exhibited such a good quality that we were able to read out
the length scale and the root-mean-square velocity of turbu-
lence and calculate the energy dissipation rate ε, according
to the method applied by Hecht et al. (2021) and Sedlak et
al. (2021). The resulting values are displayed in Table 7. The
uncertainty δε is calculated by applying the rules of error
propagation to Eq. (1). Similarly to Sedlak et al. (2021), a
general read-out error of ±3 pixels is used. This leads to an
uncertainty in the length scale δL of±69 m and (since veloc-
ities are determined over a set of 10 images) an uncertainty
in the velocity δU of ±2.5 m s−1.

The values of ε range from 0.03 to 3.18 W kg−1 with
a median value of 0.55 W kg−1 and a standard deviation
of 1.16 W kg−1. In Sedlak et al. (2021), for comparison, ε
ranges from 0.08 to 9.03 W kg−1 with a median value of
1.45 W kg−1. In both studies, the values cover 3 orders of
magnitude; however this is also reflected in the publications
of other authors. Hecht et al. (2021) found an energy dis-
sipation rate of 0.97 W kg−1 with this approach; Chau et
al. (2020) present an energy dissipation rate of 1.125 W kg−1

and claim that this would be a rather high value. Hocking
(1999) finds a maximum order of magnitude of 0.1 W kg−1.

Although the identification of turbulent episodes is done
automatically via the TCN approach presented in Sect. 3, the
measurement of L and U is still done manually. This im-
plies an inherent read-out uncertainty due to the blurry struc-
tures and a remaining possibility of misinterpretation, which
we intended to minimize by multiple-eye inspection of the
episodes. It is interesting to note that no events with very
large energy dissipation rates in the range 4–9 W kg−1 as in
Sedlak et al. (2021) were found in this data set, whereas the
lower limit of ε is quite similar. It is still an open question
whether the larger values are the result of direct energy dis-
sipation or if the respective large eddies are about to further
decompose into smaller structures beyond the sensitivity of
our instrument, which then mark the actual end of the energy
cascade.

The values in Table 6 are in good agreement with litera-
ture values; however the database is still very small. Future
measurements of airglow imagers will have to be analyzed
with the method applied here in order to establish reliable
statistical conclusions.

5 Summary and outlook

We have investigated the application of practical and easy-to-
use algorithms based on neural networks (NNs) to facilitate
the detection of episodes showing turbulent motions in OH∗

airglow image data. This is done by setting up two variants of
a TCN (temporal convolutional neural network) to automat-
ically pre-sort the images into images exhibiting strong air-
glow dynamics (where turbulence can likely be found), im-
ages exhibiting calm airglow or images disturbed by clouds
(which can be excluded from further turbulence analyses).
The image data used in this work were acquired by the high-
resolution camera system FAIM 3 at Oberpfaffenhofen, Ger-
many, between 11 June 2019 and 25 February 2020.

The TCN-based classification algorithm (based on the
time series of features derived from the temporal image se-
quences) achieves a mean average precision of 0.82. We
demonstrated with a video example from the test data set
that the algorithm works much better than the statistical val-
ues suggest. A total of 13 episodes exhibit a sufficiently high
quality to derive the energy dissipation rate ε. Values range
from 0.03 to 3.18 W kg−1 and are in good agreement with
previous work. The data analyzed here confirm the impor-
tance of considering dynamically driven energy deposition
by breaking gravity waves when studying the energy budget
of the atmosphere.

We have shown that an NN-based algorithm can support
the identification of turbulent episodes in airglow imager
data. This marks an important step in expanding the method
of extracting turbulence parameters from airglow images.
Utilizing neural networks is a promising way of dealing with
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“big data”. With ongoing airglow measurements, it will be
possible to also investigate effects like seasonal or latitudi-
nal variations in the energy dissipation rate with diminishing
uncertainties.
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