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A B S T R A C T

Challenges drive the state-of-the-art of automated medical image analysis. The quantity of public training data
that they provide can limit the performance of their solutions. Public access to the training methodology for
these solutions remains absent. This study implements the Type Three (T3) challenge format, which allows
for training solutions on private data and guarantees reusable training methodologies. With T3, challenge
organizers train a codebase provided by the participants on sequestered training data. T3 was implemented in
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the STOIC2021 challenge, with the goal of predicting from a computed tomography (CT) scan whether subjects
had a severe COVID-19 infection, defined as intubation or death within one month. STOIC2021 consisted of
a Qualification phase, where participants developed challenge solutions using 2 000 publicly available CT
scans, and a Final phase, where participants submitted their training methodologies with which solutions
were trained on CT scans of 9 724 subjects. The organizers successfully trained six of the eight Final phase
submissions. The submitted codebases for training and running inference were released publicly. The winning
solution obtained an area under the receiver operating characteristic curve for discerning between severe and
non-severe COVID-19 of 0.815. The Final phase solutions of all finalists improved upon their Qualification
phase solutions.
1. Introduction

Grand challenges for medical image analysis aim to provide the best
solutions to clinical problems that the field of artificial intelligence has
to offer. The sensitive nature of medical images can limit the quantity
of data for model development that challenge organizers release pub-
licly, which can in turn limit the performance of challenge solutions.
Although some recent challenges ensured that the winning solutions
were readily available after the challenge had completed, Bulten et al.
(2022), Aubreville et al. (2022), Schirmer et al. (2021), Da et al.
(2022) and Ouyang et al. (2019) reusability of the methods with which
these solutions were trained was not enforced.

This work implements a challenge format that allows for training
submissions on private data. This ensures that the winning solutions
can easily be retrained on new datasets after the challenge has con-
cluded. We aim to demonstrate the effectiveness of this challenge
format in the STOIC2021 challenge, available at https://stoic2021.
grand-challenge.org.

CT scans of COVID-19 patients can be used in the diagnostic process,
as they can show clear indicators of the disease, including ground-grass
opacities, typically distributed bilaterally, with or without consolida-
tions (Prokop et al., 2020). Automatic algorithms that analyze CT
scans of COVID-19 patients have the potential to aid healthcare pro-
fessionals in the diagnostic process (Hassan et al., 2022). The focus of
STOIC2021 was to produce fully automatic methods for discriminating
between severe and non-severe COVID-19 subjects, with severe COVID-
19 defined as death or intubation after one month. The challenge was
organized with data from the STOIC project, Revel et al. (2021) a multi-
center dataset that comprises CT scans of 10 735 subjects. The STOIC
project protocol can be accessed via ClinicalTrials.gov with identifier
NCT04355507.

Through STOIC2021, this study provides the public release of CT
scans of 2000 subjects suspected for COVID-19, along with RT-PCR
results, disease severity at one month follow-up, age, and sex labels
under a CC-BY-NC 4.0 licence.

The submission pipeline of a challenge generally consists of training
a challenge solution, running inference with it on a test set, and using
the resulting predictions to compute the submission’s performance. In
this work, we define different challenge types by considering which
steps are performed by challenge participants, and which steps are
performed by challenge organizers. Fig. 1 describes the challenge sub-
mission pipeline, previously used challenge formats that are referred to
in this work as Type One (T1) and Type Two (T2), as well as the Type
Three (T3) challenge format.

In T1 challenges, Ouyang et al. (2019), Antonelli et al. (2021), Eht-
eshami Bejnordi et al. (2017), Lassau et al. (2020), Choi et al. (2022),
Halabi et al. (2019), Ali et al. (2021), Knoll et al. (2020), Porwal
et al. (2020), Kim et al. (2021), Fang et al. (2022), Sun et al. (2021),
Sathianathen et al. (2022), Combalia et al. (2022), Kavur et al. (2021),
Hakim et al. (2021), Heller et al. (2019), Bogunovic et al. (2019),
Orlando et al. (2020), Yang et al. (2018), Hirvasniemi et al. (2023),
Arganda-Carreras et al. (2015), Ivantsits et al. (2022), Caicedo et al.
(2019), Simões et al. (2020), Veta et al. (2019), Winzeck et al. (2018),
Marinescu et al. (2019), Balagurunathan et al. (2021), De Luca et al.
(2021), Bratholm et al. (2021), Bron et al. (2015), Setio et al. (2017),
2

Pan et al. (2019), Cash et al. (2015), Kim et al. (2020), Committee et al.
(2021), Fu et al. (2020) and Babier et al. (2021) participants perform
inference on a publicly released test set themselves, which does not
preclude them from meddling with their predictions, compromising the
integrity of their submission’s performance. T2 challenges (Bulten et al.,
2022; Aubreville et al., 2022; Schirmer et al., 2021; Da et al., 2022; Sun
et al., 2022; Hatt et al., 2018) solve this issue by requiring participants
to submit functional algorithms. These can be made easily accessible
to third parties (Bulten et al., 2022; Aubreville et al., 2022; Schirmer
et al., 2021; Da et al., 2022), and generate reproducible results (Bulten
et al., 2022; Sun et al., 2022).

We implement the Type Three (T3) challenge structure, which has
only seen limited use in medical image analysis research (Schaffter
et al., 2020). With T3, participants do not submit an algorithm for
inference, but they instead submit an uncompiled codebase for training
and inference. The challenge organizers apply the codebase to the train-
ing set, generating the corresponding challenge solution. This allows
for training on a combination of public and sensitive private training
data. It guarantees that not only inference methods, but also training
methods work out-of-the-box for third parties.

2. Materials and methods

2.1. Materials

Data from the STOIC study (Revel et al., 2021) was used to construct
the database used for the STOIC2021 challenge. For each subject in
the database, the initial CT examination, performed at presentation,
was selected. The subjects were represented by one thoracic CT scan
when available, or otherwise by one CT scan that imaged more of the
body. Slices more than 80 mm above and 110 mm below the lungs were
discarded based on corrected lung masks produced by RTSU-Net (Xie
et al., 2020), as they were considered outside the typical scope of
a thoracic CT scan. For all subjects, sex and age labels, binned into
ten year ranges, were provided as optional additional model input.
RT-PCR results, and outcome, defined as death or intubation at one
month, were used as ground truth for COVID-19 infection and severity
respectively. Fig. 2a depicts how the preprocessed database was split
into training and evaluation sets for the Qualification and Final phases
of STOIC2021.

2.2. Performance metric

Performance on all leaderboards was measured in terms of Area
Under the receiver operating characteristics Curve (AUC) to reflect class
imbalance (Reinke et al., 2021). Participants were ranked based on
AUC for classifying COVID-19 severity, computed over cases with a pos-
itive COVID-19 RT-PCR result. AUC for COVID-19 presence, computed
over all cases, was used solely as additional feedback for participants
and did not directly influence ranking. Submissions with missing results
on any of the test cases were regarded as invalid.

2.3. Study design

STOIC2021 was organized on the grand-challenge.org platform. It
consisted of a Qualification phase followed by a Final phase as shown

https://stoic2021.grand-challenge.org
https://stoic2021.grand-challenge.org
https://stoic2021.grand-challenge.org
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Fig. 1. Schematic representation of the submission pipeline of challenges of Type One (T1), Type Two (T2), and Type Three (T3). (a) A challenge solution is trained by applying
a participants’ codebase to images and labels provided by the challenge organizers. With T1 and T2, participants perform this step. With T3, the challenge organizers perform
training. (b) The solution is applied to test images, producing predictions. The introduction of the T2 format allowed challenge organizers to perform this step. (c) The resulting
predictions are compared with test labels to compute the submission’s performance. Participants are ranked based on their performance. In all challenge types, the performance
is computed by the organizers.
in Fig. 2. These phases respectively followed the T2 and T3 format
illustrated in Fig. 1. Anyone with a verified, authentic user account on
grand-challenge.org platform could join the challenge. Participants had
the option to collaborate by forming non-overlapping teams.

2.3.1. Qualification phase
During the Qualification phase, participating teams submitted solu-

tions in the form of containerized algorithms trained on the publicly
available training set A (see Fig. 2a), which was publicly released on
December 6th, 2021.

Rolling submissions. On December 23rd, a submission tutorial accom-
panied by a baseline system was released and rolling submissions were
opened. The rolling submissions were evaluated on test set A1 (see
Fig. 2a). This tutorial and source code is available on https://github.
com/luukboulogne/stoic2021-baseline. Test set A1 consisted of only
200 subjects to limit the computational costs of the rolling submissions.
Teams could view their performance on a public leaderboard. A count-
down time between submissions of seven days was enforced. Violating
this rule resulted in a submission time-out with a duration equal to the
ignored count-down time.

Last submission. Teams submitted to test set A2 to qualify for the Final
phase. To prevent the performance on the corresponding leaderboard
to be tainted by overfitting, there existed no overlap between test set
A1 and A2, and each team could submit their solution to be evaluated
on test set A2 only once. Participants had a total of four months for
developing their solutions. Submissions to both test set A1 and A2 were
closed on April 13th, 2022.
3

2.3.2. Final phase
The finalists were the 10 best performing teams that accepted an

invitation to the Final Phase. Of these teams, the teams that ranked
1st, 2nd, 4th to 8th, and 14th in the Qualification phase submit-
ted code bases for performing training and inference with their so-
lution. A codebase for training and performing inference with the
baseline system along with submission instructions for the Final phase
was released on February 23rd, 2022. This tutorial and source code
is available on https://github.com/luukboulogne/stoic2021-baseline-
finalphase. These instructions ensured that the winning solutions could
be used out-of-the-box by the challenge organizers and by third parties
after the challenge had completed.

The Final phase initially consisted of a single round in which the
challenge organizers used the finalists’ training code bases to train
solutions. Since not all submissions completed training successfully
during this first training round, the Final phase was extended with a
feedback round and a second training round.

Participating teams’ members qualified as author when submitting
a codebase for training their solution to the Final Phase. Participating
teams could publish their own results separately, without embargo.

Training environment. The training environment for the Final phase was
drafted on March 17th based on resource requests and discussion with
the Qualification phase participants, and was finalized on April 29th.
Final phase training was performed on an Amazon EC2 p3dn.24xlarge
instance. Each submission was allowed training for a maximum of
120 h with access to two Tesla V100 GPUs with 32 GB vRAM each, 16
cpus with a total of 128G RAM, and 2000 GB of Elastic Block Storage
for storing intermediate results such as preprocessed data.

https://github.com/luukboulogne/stoic2021-baseline
https://github.com/luukboulogne/stoic2021-baseline
https://github.com/luukboulogne/stoic2021-baseline
https://github.com/luukboulogne/stoic2021-baseline-finalphase
https://github.com/luukboulogne/stoic2021-baseline-finalphase
https://github.com/luukboulogne/stoic2021-baseline-finalphase
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Fig. 2. Schematic overview of the STOIC2021 challenge. Each patient was represented by a single CT scan. (a) Schematic overview showing how many CT scans were used for
what purpose, how many of them showed patients with a positive RT-PCR result, and how many of those patients suffered from severe COVID-19. The CT scans in the STOIC
database were discarded when severe motion artifacts that affected the entire scan were present, and preprocessed otherwise. From this processed database, training set A, and
test sets A1, A2 and B were randomly sampled without replacement. Training set A, and test sets A1 and A2 were used in the Qualification phase. All processed data not present
in test set B, including the 6 724 CT scans not used in the Qualification phase, were used to form training set B. Training set B and test set B were used in the Final phase.
All data except for the public training set A was kept secure on the grand-challenge.org platform at all times and could not be downloaded by participants at any point. The
large sizes of test sets A2 and B were chosen to obtain accurate performance measures despite the class imbalance. Test set A1 was deliberately chosen to be smaller to lower
the challenge organization costs of rolling submissions. (b) In the T2 Qualification phase, participating teams trained challenge solutions on training set A and submitted them
in a rolling fashion. They could view their performance on test set A1 through a public leaderboard. At the end of the Qualification phase a single submission for evaluation on
test set A2 determined which teams were invited to join the Final phase. (c) The T3 Final phase started with a first training round in which participants made a single codebase
submission. The challenge organizers applied these codebases to training set B. The submitting teams received any training errors that their codebase generated. Subsequently, the
finalist teams could make a Feedback codebase submission to resolve these errors. This codebase was applied to public training set A so that each finalist could inspect all results
of their Feedback run. Lastly, finalists could submit their revised codebases to training set B, forfeiting their first training round submission. The models trained in the Final phase
on training set B were evaluated on test set B.
First training round. Finalists could submit a single code base for train-
ing and inference with their solution in the form of a GitHub repository
until May 12th. The challenge organizers generated training algo-
rithms in the form of Docker (Merkel, 2014) container images from
4

the submitted code bases and applied these to training set B (see
Fig. 2). Each finalist obtained any error messages that their training
algorithm generated in the first training round. These error messages
were first scrutinized by the challenge organizers to ensure no leakage
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Table 1
Performance on test set B. Solutions trained on training set A and B respectively are
printed in regular and bold text. The top three ensemble was obtained by averaging
the predictions of the best performing solutions, the AUCs of which are marked with
‘*’. Details about the metrics used are described in Section 2.2.

Team name AUC severe COVID-19 AUC COVID-19 presence

Top three ensemble 0.817 0.849
Code 1055 0.815* 0.616
simon.j 0.810* 0.845*
Flying Bird 0.794* 0.838*
hal9000 0.788 0.829*
uaux2 0.787 0.825
baseline 0.775 0.818
etro 0.763 0.677
deakin_team 0.741 0.820
SYNLAB-SDN 0.722 0.789

of sensitive information from training set B and to confirm the absence
of indications of model performance.

Feedback round. To acquire additional feedback about running their
code base in the training environment, finalists could submit any code
base before July 17th following the final submission guidelines. These
codebases were applied to the training environment and participants
received the complete training logs and the resulting trained model. For
the Feedback round only, two modifications were made to the training
environment. Firstly, to ensure that training set B was kept secure,
training set B was swapped out for the public training set A. Secondly,
run time was limited to 24 h to keep down computational costs.

Second training round. Finalists were given the opportunity to make
a second submission to the Final phase until July 27th. They could
update their codebases to make their resulting training and inference
containers run and complete successfully. For this update, methodologi-
cal changes with respect to the first training round submission were not
allowed. The codebases were checked for adherence to this rule by the
challenge organizers and no violations were found. Finalists that chose
to submit to the second training round were required to renounce their
first training round submission.

2.3.3. Prizes
Prizes in Amazon Web Services (AWS) credits were awarded to the

best performing teams of the Final phase with values of $10 000, $6000,
and $4000 for 1st, 2nd, and 3rd place respectively. The winners were
announced during a public webinar on October 18th, 2022.

2.3.4. Future submissions
After STOIC2021 had concluded, rolling submissions to test set A1

were re-opened. Submissions to the leaderboard corresponding to test
set A2 have been made available for submission upon request to the
challenge organizers.

2.4. Statistical tests

The DeLong (DeLong et al., 1988; Sun and Xu, 2014) test is widely
used for comparing AUCs and was also adopted for the statistical
analysis in this work. 95% confidence intervals were computed as
the interval between the 2.5% and 97.5% percentiles of a bootstrap
distribution generated with 1000 iterations (Moore and McCabe, 1989).

2.5. Baseline method

The baseline for STOIC2021 implemented a simple training and
evaluation pipeline for an Inflated 3D convnet (I3D) (Carreira and
Zisserman, 2017).

Preprocessing strategy. The input CT scans were resampled to an
3

5

isotropic spacing of 1.6 mm . A center crop of 240 ∗ 240 ∗ 240 voxels T
was extracted from the CT, using zero padding when necessary. The
voxel values were clipped between −1100 and 300 HU and rescaled to
the range [0,1].

Training strategy. A single I3D model (Carreira and Zisserman, 2017),
initialized with publicly available weights trained for RGB video classi-
fication, was trained to estimate both COVID-19 presence and severity.
The model was trained on all training data for 40 epochs using the
AdamW optimizer (Loshchilov and Hutter, 2018) with a learning rate
of 10, momentum parameters 𝛽1 = 0.9, 𝛽2 = 0.99, and a weight decay of
.01. Data augmentation was employed in the form of zoom, rotation,
ranslation, and adding gaussian noise. Patient age and sex information
ere not incorporated as input to the model.

. Results

.1. Qualification phase

413 participants registered to STOIC2021. During the rolling sub-
issions, 30 teams, comprising 68 participants developed and success-

ully submitted 119 solutions to test set A1. Fig. 3 shows an overview
f the performance of these submissions. 20 teams competed for ad-
ission to the Final phase by successfully submitting to test set A2.
he best performing teams on test set A2 were selected to advance to
he Final phase, with invitations extended to the top ten teams that
ccepted.

.2. Final phase

.2.1. First training round
Eight of the ten Finalist teams submitted a codebase for training

heir solution on training set B. These eight teams are highlighted with
nique colors in Fig. 3. In the first training round, the codebases submit-
ed by the teams simon.j, Flying Bird, and etro completed successfully.
ll other codebases exited training with an error.

.2.2. Feedback round and second training round
The teams Code1055, uaux2, and hal9000 submitted codebases to

he feedback round and to the second training round. All three submis-
ions to the second training round completed successfully, resulting in
total of six successful Final phase submissions.

.2.3. Performance
Table 1 shows the AUC on test set B for COVID-19 presence and

everity of the teams that submitted to the Final phase. Fig. 4 shows
eceiving Operating Characteristics (ROC) curves of the six successful
inal phase submissions for discriminating between severe and non-
evere COVID-19 subjects from test set B. Figs. 5 and 6 show how the
inalists ranked the subjects from test set B with severe and non-severe
OVID-19 respectively for presence of severe COVID-19. Figs. 7 and
highlight some individual cases from test set B. During the original

TOIC project (Revel et al., 2021), a logistic regression model was
eveloped to predict severe COVID-19 using clinical variables and CT
nnotations by radiologists. It was developed and evaluated using the
atients from the STOIC who were COVID-19 positive for both RT-
CR and CT, and had unenhanced CT. Of these 4238 patients, 1000
eveloped severe COVID-19. Revel and colleagues 6 reported an AUC
or this model of 0.69 (CI: 0.67–0.71). To compare this model against
he results from STOIC2021, an ensemble of the top three solutions for
evere COVID-19 prediction was evaluated on the 367 patients from
est set B who were COVID-19 positive for both RT-PCR and CT, and
ad unenhanced CT. 97 of these patients developed severe COVID-19.

he top three ensemble achieved an AUC of 0.783 (CI: 0.706–0.848).
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Fig. 3. Performance distribution of the rolling submissions to test set A1 during the Qualification phase. The performance of the baseline is represented by an ‘x’. Submissions by
he eight finalist teams are represented by colored circles. All other submissions are represented by white circles. Details about the metrics used are described in Section 2.2.
.3. Solution methodology overview

Most finalists used lung and/or lesion segmentation methods (Hof-
anninger et al., 2020; Müller et al., 2021) to extract relevant features

r to preprocess the input CT scan. Other preprocessing methods used
ere combinations of resampling, cropping, clipping, and normalizing
r standardizing the image. End-to-end deep learning was the most
ommon approach. The teams trained 2D or 3D versions of varying
onvolutional neural network architectures, Liu et al. (2022), He et al.
2016), Howard et al. (2019) and Huang et al. (2017) often starting
rom pre-trained weights, and using varying data augmentation meth-
ds. The finalists that did not employ end-to-end learning employed
ogistic regression on top of either processed features extracted by
ision transformers (Dosovitskiy et al., 2020) (simon.j) or features
esigned based on generated lung (Hofmanninger et al., 2020) and
esion masks (NVIDIA NGC Catalog, 2023) (etro and SYNLAB-SDN).
ompared to the end-to-end deep learning methods, these methods
onsumed less time and memory during training. Most teams used
n ensemble of classifiers. The rest of this section contains a detailed
verview of the methods that were successfully submitted to the Final
hase.

.3.1. Code 1055
Severity classification using CT data is very similar to classical

mage classification apart from dealing with 3D tensors instead of 2D
mages. This allows us to employ the pre-existing techniques used in
mage classification. The ConvNeXt model (Liu et al., 2022) combines
he benefits of the modern Vision Transformers (Dosovitskiy et al.,
020) with Convolutional Neural Networks (CNN) and thus reaches
tate-of-the-art ImageNet results. We implement – to the best of our
nowledge – the first 3D version of this architecture and, thus, boost
he performance for severity classification in contrast to conventional
NNs.

reprocessing strategy. The input CT scans were resized to 256 × 256 ×
56 voxels. Their intensity values were clipped between −1100 and 300
U and normalized around zero with a standard deviation of one.
6

Training strategy. Even though the STOIC project (Revel et al., 2021)
is a comparably large database of CT scans, it is exceedingly small
in contrast to ImageNet (Russakovsky et al., 2014). Nevertheless, we
are able to use a network with a large number of parameters and still
prevent overfitting. For that purpose, we employ pretrained weights,
a cosine learning rate scheduler, an early stopping strategy, an expo-
nential moving average of the network parameters and efficient online
data augmentation. Moreover, we balance our dataset in order to avoid
learning a bias in the label distribution induced by the small number
of severe cases.

In order to initialize our model with useful weights, we pretrain
our network on two additional datasets. First, we train a 2D ConvNeXt
on grayscale images from ImageNet. We calculate a superposition
of gaussian inflated 2D weights to obtain 3D ImageNet weights. To
further adjust these inflated ImageNet weights to our three dimensional
task, we perform an additional multitask-pretraining using a segmen-
tation (Roth et al., 2022; An et al., 2020; Clark et al., 2013) and
classification (Morozov et al., 2020) dataset. We use an architecture
inspired by UPerNet (Xiao et al., 2018) to concurrently perform seg-
mentation of the lung region showing signs of COVID-19 infection for
the segmentation data and prediction of severity for the classification
data. This pre-training scheme is depicted in Fig. 9. We are able to
increase the performance of our model significantly with this addi-
tional pretraining in contrast to randomly initialized weights or inflated
ImageNet weights.

In order to prevent overfitting and achieve greater generalization we
use online data augmentation to virtually increase the dataset size. Be-
sides using standard transforms like flipping, rotation or cropping, we
apply a novel implementation of elastic deformations. By separating the
gaussian kernels and utilizing GPU hardware, we are able to perform
extremely fast elastic deformations. Consequently, we can augment our
data with almost no additional cost. Furthermore, we perform 5-fold
cross-validation during training.

Follow-up work is published by Kienzle et al. (2023).

Inference strategy. We average the outputs of the 5 networks trained in
the cross validation. Therefore, we are able to train with the complete
dataset and still generalize very well.
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Fig. 4. ROC curves with confidence intervals (CIs) for discriminating between severe and non-severe COVID-19 on test set B. The curves for the codebase submissions in the Final
phase that completed training on training set B successfully are shown in blue. The ROC curves of the submissions that represented these teams in the Qualification phase, trained
on training set A, are shown in orange. DeLong p-values are shown in the top left. AUCs with CIs are shown in the legends.
Public access. Code for training and inference publicly available at ht
tps://github.com/DIAGNijmegen/stoic2021-finalphase-submission-cod
e1055. Algorithm available for public use at https://grand-challenge.
org/algorithms/code-1055-second-final-phase-submission/.

3.3.2. simon.j
Balaitous is an updated version of the AI-severity algorithm (Lassau

et al., 2021) implemented in the scancovia repository (Jégou, 2022).
Given an input CT scan, the model outputs a probability for COVID-19
disease and for severe outcome (intubation or death within one month).

Preprocessing strategy. The CT scan was rescaled to a resolution of
1.5 mm × 1.5 mm × 5 mm and reshaped to a shape of 224 × 224 × 𝐷,
where 𝐷 is the original dimension of the rescaled image along the axis
7

orthogonal to the axial plane. A lung segmentation mask was computed
using a 2D U-Net (Hofmanninger et al., 2020) and cleaned. The scan
was cropped to the slices containing the lungs. For each slice, a first
feature vector 𝑋𝑓𝑢𝑙𝑙 was extracted using a ViT-L model (Zhou et al.,
2021). This model was pretrained on ImageNet-22k using iBOT (Zhou
et al., 2021) and fine-tuned for 35 epochs on 165k CT scan images from
4k patients and 7 datasets. Next, the lung mask was applied so that only
the lungs were visible and a second feature vector 𝑋𝑙𝑢𝑛𝑔 was extracted
using the same ViT-L model without fine-tuning. For both VIT-L models,
the extracted features of the individual slices were combined through
pixel-wise average pooling.

Training strategy. For the severe outcome two logistic regressions were
applied to [𝑋 , age, sex] and [𝑋 , age, sex]. The two predictions
𝑓𝑢𝑙𝑙 𝑙𝑢𝑛𝑔
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Fig. 5. Ranked predictions for the subjects with severe COVID-19. Ranks were computed over all subjects from test set B with a positive RT-PCR test for COVID-19. Each column
shows the ranked predictions of all finalist teams for one subject. The subjects are ordered by the average rank of all corresponding finalist predictions. Fig. 7 shows the CT scans
corresponding to the columns that are outlined in black and annotated with age and sex.
were aggregated through a learned weighted average. For the COVID-
19 presence two logistic regressions were applied to 𝑋𝑓𝑢𝑙𝑙 and 𝑋𝑙𝑢𝑛𝑔
and the two predictions were aggregated through a learned weighted
average. Training was performed in 32 folds in the form of four
different eight-fold cross validations.

Inference strategy. The predictions were combined linearly with
weights optimized that maximize the performance on the 32 training
folds.

Methods altered from qualification phase to final phase. None.

Public access. Code for training and inference publicly available at
https://github.com/SimJeg/balaitous and https://github.com/DIAGN
ijmegen/stoic2021-finalphase-submission-simonj. Algorithm available
for public use at https://grand-challenge.org/algorithms/simonj-first-
final-phase-submission/.

3.3.3. Flying bird
The method employed was end-to-end deep learning with ResNet18

(He et al., 2016) models.

Preprocessing strategy. In order to minimize image size and eliminate
irrelevant regions, an open source lung segmentation model (Hofman-
ninger et al., 2020) was employed. The lung masks were used to crop
the images, and were expanded by 6 mm to ensure complete coverage.
The resulting cropped images were rescaled to 256 × 256 × 256 voxels
using trilinear interpolation. The voxel values were then clipped to
the range (−1024, 512), and standardized with a mean of −237 and
a standard deviation of 404.

Training strategy. Due to the substantial volume of data, training a
3D network from scratch without a pre-trained model would be time-
consuming. Regrettably, there is no all-purpose pre-trained model suit-
able for 3D networks. As a result, our approach involves initially
training a pre-trained model via self-supervision (Zhou et al., 2019),
followed by conducting classification tasks built upon the pre-trained
model. We used 5-fold cross validation. For training each fold, we
appended a decoder to the ResNet18 network. Then, following the
method described in He et al. (2016), we applied some transformations
8

to the input image and fed the transformed image into the network. We
trained the network to enable it to recover the original image from the
transformed image. After training, we obtained a pre-trained ResNet18
model. In the subsequent COVID-19 classification task and severity
task, we initialized our models using pre-trained ResNet18. For both the
COVID-19 classification task and severity task, we employed the same
data augmentation techniques, including rotation, scaling, flipping,
elastic transformation, Gaussian noise, and Gaussian smoothing. We
used cross-entropy loss function and AdamW (Loshchilov and Hutter,
2018) optimizer, along with a one-cycle learning rate policy. For the
severity task, we also incorporated age information by concatenating
the age, which was divided by 100, with the output of ResNet18,
thereby taking into account the influence of age on severity. Further-
more, the data used in this task only consisted of COVID-19 positive
cases.

Inference strategy. For each model obtained through the cross-
validation, test time augmentations are applied. The original input
image is passed through the model, as well as variants of it obtained
by flipping along each of the three axes, obtaining four outputs per
model. Finally, the outputs of all models are averaged to obtain the
final output.

Methods altered from qualification phase to final phase. The data aug-
mentation methods underwent minor modifications. The severity model
was trained using both COVID-19 negative and positive images during
the qualification phase, whereas only COVID-19 positive images were
utilized in the final phase. Combinatorial image flipping was applied
for test time augmentation during the qualification phase, along each
of the three axes, resulting in a total of 8 outputs per model (2 × 2 × 2).
In the final phase, only 4 outputs were generated, including the original
image and those flipped along the x, y, and z axes.

Public access. Code for training and inference publicly available at h
ttps://github.com/DIAGNijmegen/stoic2021-finalphase-submission-fly
ingbird. Algorithm available for public use at https://grand-challenge.
org/algorithms/flying-bird-first-final-phase-submission/.
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Fig. 6. Ranked predictions for severe COVID-19 for subjects with non-severe COVID-19. Ranks were computed over all subjects from test set B with a positive RT-PCR test for
COVID-19. Each column shows the ranked predictions of all finalist teams for one subject. The subjects are ordered by the average rank of all corresponding finalist predictions.
Fig. 8 shows the CT scans corresponding to the columns that are outlined in black and annotated with age and sex.
3.3.4. hal9000
We employed an ensemble of ResNet18 (He et al., 2016), and

MoblieNetV3-Large (Howard et al., 2019) models trained end to end
to predict COVID-19 disease and severity. In each model, embeddings
of all slices were averaged and passed through a classifier to get the
disease and severity probabilities. The ensemble of multiple models was
used by averaging the probabilities of each model.

Preprocessing strategy. 32 equidistant slices were sampled from the
input CT scan. These slices were resampled to 224 × 224 pixels. The
pixel values were clipped between −1350 and 150 HU. The images
were normalized to a mean of 0.5 and a standard deviation of 0.5.
9

Training strategy. The data for model development was split ten times
into a training and validation set, such that the training set contained
85% of the data. A ResNet18 (He et al., 2016) was trained on five
of these splits, and a MobileNetV3-Large (Howard et al., 2019) was
trained on the other five. Before presenting input data to a model,
data augmentations were applied in the form of resizing, horizontal
flipping, random cropping, gamma correction, color jitter, rotation, and
blurring. The embeddings of all 32 slices were averaged and passed
through a classifier to get the disease and severity probabilities. All
models were trained using the Adam optimizer, with a learning rate of
0.0001 and weight regularization of 0.0005. The learning rate decayed
by a factor of 0.1 every 40 epochs.
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Fig. 7. Subjects from test set B with severe COVID-19 that were highlighted in Fig. 5. For each subject, three axial slices of a CT scan are shown on the left. The right shows
how each finalist ranked the subject for presence of severe COVID-19. These ranks were computed over all subjects from test set B with a positive RT-PCR test for COVID-19.
Inference strategy. All model predictions were combined through av-
eraging. We employed extensive test time augmentations involving
five different crops (four corner crops and the center crop), and three
different rotations (minus five degrees, plus five and plus ten degrees),
and averaged the predictions for each augmentation. This was done
for all five models for each model class. The ensemble prediction was
obtained by averaging the probabilities.
10
Methods altered from qualification phase to final phase. In the Quali-
fication phase, we trained an ensemble of only MobileNet V3 Large
models.

Public access. Code for training and inference publicly available at http
s://github.com/DIAGNijmegen/stoic2021-finalphase-submission-hal90
00. Algorithm available for public use at https://grand-challenge.org/
algorithms/hal9000-second-final-phase-submission/.
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Fig. 8. Subjects from test set B with non-severe COVID-19 that were highlighted in Fig. 6. For each subject, three axial slices of a CT scan are shown on the left. The right shows
how each finalist ranked the subject for presence of severe COVID-19. These ranks were computed over all subjects from test set B with a positive RT-PCR test for COVID-19.
3.3.5. uaux2
To assess the severity of SARS-CoV-2 (COVID-19) based on Com-

puted Tomography (CT) scans of the lung, we apply an ensemble
method approach, where we combine meta-data and 3D-CNN pre-
dictions. In addition to the information on patient age and sex al-
ready present in the data set, we rely on the respective Infection-
Lung-Ratio (ILR) to generate our predictions. For implementation, we
used our in-house developed framework AUCMEDI which is built on
TensorFlow (Müller and Kramer, 2022).
11
Preprocessing strategy. For preprocessing, first, all data samples were re-
sampled to a voxel spacing of 1.48×1.48×2.10 and clipped to the range
[−1024, 100] to exclude irrelevant Hounsfield Unit areas (Yamada
et al., 2022). Subsequently, the data was standardized to grayscale.
Training samples that might exceed the accepted input image size of
148 × 224 × 224 were either randomly cropped or zero-padded to
match the required size. For inference, center cropping was applied. To
enable transfer learning, the grayscale images were converted to RGB.
The intensities were scaled to the range of [0, 1]. Then, normalization
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Fig. 9. The pretraining pipeline is depicted. If segmentation data (𝐼𝑆𝑒𝑔) is used as
input, the features of each stage are upsampled, concatenated and the segmentation
map is calculated with a segmentation head. If the classification data (𝐼𝐶𝑙𝑠) is used as
input, the severity prediction is obtained with a classification head using the features
of the last stage. The overall loss is calculated as 𝐿 = 𝐿𝐶𝑙𝑠 + 𝐿𝑆𝑒𝑔 .

was applied via the Z-Score normalization approach based on the mean
and standard deviation computed on the ImageNet dataset (Deng et al.,
2009).

Training strategy. In line with current state-of-the-art approaches, we
applied several augmentation methods on the dataset, including rota-
tion, flipping, scaling, gamma modification, and elastic deformations.
Our main model for COVID-19 Severity prediction is based on a custom
3D version of the DenseNet121 architecture. We modified the clas-
sification head to additionally take metadata into account, which is
described later on. For the training process, we applied transfer learning
on the classification head and a fine-tuning strategy on all layers. The
transfer learning on the classification head is done for 10 epochs, using
the Adam optimizer with an initial learning rate of 1 × 10−4 and a
batch size of 4. The fine-tuning runs for a maximum of 240 epochs,
using a dynamic learning rate starting from 1 × 10−5 to a maximum
decrease to 1 × 10−7 (decreasing factor of 0.1 after 8 epochs without
improvement on the monitored validation loss). Furthermore, an early
stopping technique was utilized, stopping after 36 epochs without im-
provement. As a loss function, we utilized the weighted Focal loss (Lin
et al., 2017). For inference, the model with the best validation loss is
used. For COVID-19 presence prediction, we utilize a model based on
the 3D ResNet34 architecture with the same hyperparameter settings
as described above, that predicts 3 classes (negative/positive/severe).
COVID-19 presence equals the sum of positive and severe cases. The
metadata consists of three parts: Patient age, sex, and the ILR of each
sample. The latter describes the ratio between infected parts of the
lung and healthy tissue. We calculate the ILR by feeding the data into
the MIScnn segmentation framework (Müller et al., 2021; Müller and
Kramer, 2021), which utilizes a standard U-Net to predict infected areas
Fig. 10. For COVID-19 severity prediction, we applied cross-validation
with a dynamic number of folds as a bagging approach for ensemble
learning and monitored the outputs on the validation loss. We aimed
to create a variety of models which were trained on different subsets
of the training data.

Inference strategy. Our final COVID-19 severity prediction comprises
the averaged sum of all predictions from the ensemble. This approach
not only allows for a more efficient usage of the available training data
but also increases the reliability of the prediction.

Methods altered from qualification phase to final phase. In the Qualifica-
tion phase, cross-validation was done with five folds.

Public access. Code for training and inference publicly available at ht
tps://github.com/DIAGNijmegen/stoic2021-finalphase-submission-uau
x2. Algorithm available for public use at https://grand-challenge.org/
algorithms/uaux2-second-final-phase-submission/.
12
3.3.6. etro
A short-term COVID-19 severity classifier was developed through

logistic regression considering age, sex, and several image-derived fea-
tures. A previously trained lung lesion segmentation model was used to
extract volume fractions for ground glass opacities and consolidations.
The segmentations were used in combination with the CT scan to derive
mean intensities, kurtosis, and skewness for healthy lung parenchyma
and lesion tissue. The final severity prediction was made by an ensem-
ble of 20 models, trained on covid-positive samples selected through
bootstrapping with replacement.

Preprocessing strategy. The lungs were segmented using an open-source
segmentation model (Hofmanninger et al., 2020). A postprocessing
step was added retaining only the 2 largest components and setting
a minimum size for the components to exclude any regions outside
the lungs that may have been segmented. CT scans were cropped to
the lung mask and resampled to an isotropic spacing of 1 mm. The
intensities were clipped to [−1000 HU, 100 HU] and scaled to [−1, 1].
Ground glass opacity and consolidation patterns were segmented using
a previously trained lung lesion segmentation model. The nnU-Net
implementation in Monai (MON, 2022) was used. The hyperparameters
for this deep learning pipeline were determined automatically using the
heuristics developed in nnU-Net (Isensee et al., 2019). The network was
trained using the sum of the mean dice loss and the cross entropy,
and deep supervision. Training data included 199 CT scans of the
COVID-19 lesion segmentation challenge (COV, 2022), 69 scans and
manual lung lesion segmentations from the icovid consortium (ICo,
2022), 70 scans from the COPLENet public dataset (COP, 2022) and
10 scans from the publicly available COVID-19 CT Lung and Infection
Segmentation Dataset (Ma et al., 2020). From these lung and lesion
segmentations, the lesion volume fractions were calculated by dividing
the lesion volume by the total lung volume. Additionally, the mean
intensity, kurtosis and skewness were derived for each type of lesion
and the healthy lung tissue.

Training strategy. A logistic regression was trained for severity. Patient
age and sex categories were assigned numerical values and were com-
plemented with several image-derived features. Volume fractions of
ground glass opacity and consolidation were included, as well as the
mean intensity, kurtosis and skewness for healthy lung parenchyma
and both lesion classes separately. For patients that were considered
lesion free, the intensities and textural features of the ground glass
opacity and consolidation were given the values of the healthy tissue.
All intensity features were rescaled to [−1, 1]. To improve robustness,
the severity classifier was built up by bagging 20 models where each
training set was composed using bootstrapping with replacement on the
covid-positive samples.

Inference strategy. For inference, the intensity features were rescaled
using the corresponding extrema from the training set. Final probabili-
ties for severe COVID-19 were obtained by averaging the predictions
of the 20 models. The probability of COVID-19 was predicted by a
previously trained 3D ConvNext (Liu et al., 2022) model.

Methods altered from qualification phase to final phase. For the Quali-
fication phase, the model for severity was trained on both COVID-19
positive and negative patients versus only positives for the Final phase.
For COVID-19 presence detection, the ConvNext model was added
in the Final phase while a regression model similar to the severity
classifier was used for the Qualification.

Public access. Code for training and inference publicly available at h
ttps://github.com/DIAGNijmegen/stoic2021-finalphase-submission-etr
o. Algorithm available for public use at https://grand-challenge.org/
algorithms/etro-first-final-phase-submission/.

3.3.7. deakin_team
The method employed was end-to-end deep learning with DenseNet-

201 (Huang et al., 2017).
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Fig. 10. The MIScnn pipeline for SARS-CoV-2 segmentation to calculate the Infection-Lung-Ratio (Müller et al., 2021).
Preprocessing strategy. The input CT scans were resampled to an
isotropic spacing of 1.6 mm3. A center crop of 240 × 240 × 240 voxels
was extracted from the CT, using zero padding when necessary. The
voxel values were clipped between −1100 and 300 HU and rescaled to
the range [0,1].

Training strategy. A 3D DenseNet-201 (Huang et al., 2017), initialized
with weights trained on the public STOIC2021 training set, was trained
using the Adam optimizer with a learning rate of 0.00004, and a batch
size of two for 15 epochs.

Inference strategy. Inference was performed by a forward pass through
the trained DenseNet-201 model.

Methods altered from qualification phase to final phase. An ensemble
approach incorporating multiple models, specifically DenseNet-201,
DenseNet-169, and DenseNet-121, was initially proposed for this study.
However, due to constraints related to computational resources and
time in the training environment, we were ultimately only able to train
a DenseNet-201 model.

Public access. Algorithm available for public use at https://grand-
challenge.org/algorithms/baseline-13/
(Qualification phase submission).

3.3.8. SYNLAB-SDN
The method was based on logistic regression using patient age, sex

and features extracted from lesion masks.

Preprocessing strategy. The CT voxel intensity values were clipped to
the range [−1000, 500]. Afterward, a pre-trained model for COVID-19
lesion segmentation by Nvidia Clara (2) was used to obtain suitable
masks representative of COVID-19 lesion burden. Furthermore, a lung
mask was segmented from the input CT scan using a U-Net (Hofman-
ninger et al., 2020). From the lesion masks, the following features were
extracted:

• Mean HU value,
• Standard deviation intensity,
• Percent of lesion volume, computed as lesion volume divided by

lung volume,
• Number of connected components in the lesion mask.

In addition, patient age and sex were included as features.
13
Training strategy. For the classification, the dataset was randomly split
into a training/validation (80%) and testing set (20%). Z-normalization
was applied to the features constituting the training set, and the mean
and standard deviation values calculated on the training set were used
on the validation and test set. A downsampling strategy was applied
to balance the dataset. We have trained logistic regression to solve the
tasks. K-Fold cross-validation with K = 5 was applied to the training
dataset for model selection in the form of hyperparameter tuning.

Inference strategy. The trained logistic regression model was applied to
perform inference.

Methods altered from qualification phase to final phase. None.

Public access. Algorithm available for public use at https://grand-
challenge.org/algorithms/2steps-2/ (Qualification phase submission).

4. Discussion

The Type Three (T3) medical image analysis challenge format pre-
sented in this study allows solutions to be trained on private data
and that guarantees that their training methodologies are reusable. T3
was implemented in the STOIC2021 challenge, in which participants
predicted from an initial CT scan, whether a COVID-19 patient would
be intubated or would die within one month.

To evaluate their solutions, challenges typically release test set
images to enable participants to run inference on them Ouyang et al.
(2019), Antonelli et al. (2021), Ehteshami Bejnordi et al. (2017), Lassau
et al. (2020), Choi et al. (2022), Halabi et al. (2019), Ali et al. (2021),
Knoll et al. (2020), Porwal et al. (2020), Kim et al. (2021), Fang et al.
(2022), Sun et al. (2021), Sathianathen et al. (2022), Combalia et al.
(2022), Kavur et al. (2021), Hakim et al. (2021), Heller et al. (2019),
Bogunovic et al. (2019), Orlando et al. (2020), Yang et al. (2018),
Hirvasniemi et al. (2023), Arganda-Carreras et al. (2015), Ivantsits
et al. (2022), Caicedo et al. (2019), Simões et al. (2020), Veta et al.
(2019), Winzeck et al. (2018), Marinescu et al. (2019), Balagurunathan
et al. (2021), De Luca et al. (2021), Bratholm et al. (2021), Bron et al.
(2015), Setio et al. (2017), Pan et al. (2019), Cash et al. (2015), Kim
et al. (2020), Committee et al. (2021), Fu et al. (2020) and Babier
et al. (2021). STOIC2021 consisted of a Qualification phase that instead
followed the structure implemented of some recent challenges (Bulten
et al., 2022; Aubreville et al., 2022; Schirmer et al., 2021; Da et al.,
2022; Sun et al., 2022; Hatt et al., 2018) where participants submit
solutions trained on public data, and of a T3 Final phase. The Final

https://grand-challenge.org/algorithms/baseline-13/
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phase solutions consistently outperformed the solutions submitted to
the Qualification phase by the same participants. This indicates that
T3 may improve challenge solution performance through training on a
combination of public and private data.

STOIC2021 resulted in six publicly available codebases through
which the training and inference methods for the top performing solu-
tions can be accessed. The challenge organizers tested these codebases
by training the corresponding solutions without manual intervention
by the participating teams. This guaranteed the reusability by third
parties of these publicly released training methodologies. Links to these
codebases can be found in Section 3.3. Most finalists used sex and age
information as additional input to their model. Advanced age and male
sex are risk factors for severe outcome of a COVID-19 infection (Revel
et al., 2021)

The released codebases may be useful for the development of tools
to assist in the diagnostic process of COVID-19 infections in patients
with suspected COVID-19. The methods developed for the STOIC2021
challenge may be useful for triaging patients based on the severity
of their infection, which could help with optimizing the allocation of
healthcare resources. This could be especially helpful in high-demand
situations, and/or in medical centers where access to specialized read-
ers is limited. Additionally, the released training methods may be
useful for any 3D medical image classification tasks. This versatility
stems from the fact that, besides employing a pre-trained segmenta-
tion model, most of the submitted solutions use 3D image processing
methods that are not specific to one task or image modality. This work
demonstrated through the STOIC2021 challenge that the T3 challenge
format allowed for training on private data and for the developed
training methods to be re-usable. This suggests that future challenges
that implement the T3 format may also reap these benefits. Future
challenges may also benefit from incorporating a T2 Qualification
phase before a T3 Final phase. In STOIC2021, this set-up minimized
overhead during method development for the participating teams and
kept down costs for the challenge organizers.

STOIC2021 participants were not incentivized to focus on the con-
firmation of COVID-19 presence, since this is possible with high sensi-
tivity through RT-PCR testing (Tsang et al., 2021). The absence of this
incentive explains why team Code 1055, which achieved the highest
AUC for discriminating between severe and non-severe COVID-19 in the
Final phase, achieved the lowest AUC for detecting COVID-19 presence
of all finalists. It also explains why, overall, the finalists’ performances
on the auxiliary metric of detecting COVID-19 presence did not align
with the finalists’ ranks in the Final phase.

This study has limitations. Participants of STOIC2021 were not
incentivized to focus on the calibration or interpretability of their solu-
tions. Also, datasets for externally validating solutions on their ability
of predicting intubation or death within one month were not pub-
licly available. This also prohibited directly comparing the presented
performances to the algorithms trained to predict severe COVID-19
outcome by Lassau et al. (2021). However, the solution by simon.j was
heavily based on this work. Furthermore, T3 challenges are limited
by the computational budget of the challenge organizers. STOIC2021
therefore implemented a limit to the compute resources for training
the Final phase solutions, as detailed in Section 2.3.2, and allowed
for a limited number of finalists. Lastly, the maximum obtainable
performance is limited by imperfections in the COVID-19 severity and
presence labels. Death at one month follow-up could have resulted
from any cause. RT-PCR is an imperfect ground truth for infection. For
the STOIC study, 39% of initially negative RT-PCR tests were found
to be positive when repeated in patients with typical clinical signs of
COVID-19 (Revel et al., 2021).

Conclusion

This work showed the efficacy of the T3 medical image analy-
sis challenge format. T3 has two benefits with respect to previous
14
challenge formats. Firstly, it allows challenge solutions to be trained
on private data. This results in training on bigger data, which can
increase the performance of the resulting challenge solutions. Secondly,
it ensures that the training methods developed for the challenge can be
used out-of-the box by third parties.
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