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Experimental demonstration of a skyrmion-
enhanced strain-mediated physical reservoir
computing system

Yiming Sun 1,12, Tao Lin1,12, Na Lei 1,12 , Xing Chen1,12, Wang Kang1,
Zhiyuan Zhao2, Dahai Wei2, Chao Chen1, Simin Pang2,3, Linglong Hu4, Liu Yang1,
Enxuan Dong1, Li Zhao5, Lei Liu 2, Zhe Yuan 5, Aladin Ullrich 6,
Christian H. Back 7,8,9, Jun Zhang 2,3,10, Dong Pan 2, Jianhua Zhao2,
Ming Feng 4 , Albert Fert 1,11 & Weisheng Zhao 1

Physical reservoirs holding intrinsic nonlinearity, high dimensionality, and
memory effects have attracted considerable interest regarding solving com-
plex tasks efficiently. Particularly, spintronic and strain-mediated electronic
physical reservoirs are appealing due to their high speed, multi-parameter
fusion and low power consumption. Here, we experimentally realize a
skyrmion-enhanced strain-mediated physical reservoir in a multiferroic het-
erostructure of Pt/Co/Gd multilayers on (001)-oriented 0.7PbMg1/3Nb2/
3O3−0.3PbTiO3 (PMN-PT). The enhancement is coming from the fusion of
magnetic skyrmions and electro resistivity tunedby strain simultaneously. The
functionality of the strain-mediated RC system is successfully achieved via a
sequential waveform classification task with the recognition rate of 99.3% for
the last waveform, and a Mackey-Glass time series prediction task with nor-
malized root mean square error (NRMSE) of 0.2 for a 20-step prediction. Our
work lays the foundations for low-power neuromorphic computing systems
with magneto-electro-ferroelastic tunability, representing a further step
towards developing future strain-mediated spintronic applications.

Reservoir computing (RC) is a computational framework of recurrent
neural networks (RNNs) in neuromorphic computing, suited to tem-
poral/sequential information processing1–3. The reservoir is a network
of recurrently and randomly connected nonlinear nodes, where input
data are mapped into a high-dimensional space and become linearly

separable at the output nodes. In particular, all the recurrent connec-
tions inside the reservoir are fixed, and only the external connections
(between the reservoir and an output layer), Wout, need to be trained
with a simple method, such as linear regression. The training proce-
dure is greatly simplified, making the learning rapid and stable.
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Therefore, the computational cost of a RC system is significantly
reduced compared to typical RNNs.

In recent years, worldwide interest has been gained in the physical
implementation of RC systems, in which the reservoirs can accelerate
data processing and reduce the learning cost. The physical reservoirs
(systems/substrates/devices) should possess intrinsic high dimen-
sionality, nonlinearity, and short-termmemory characteristics4–27. The
complex nonlinear dynamics guarantee energy-efficient machine
learning, while the short-term memory effect is crucial for temporal/
sequential processing where the history of the input signal is influen-
tial. A rich variety of physical reservoirs has been proposed and
demonstrated, including electronic4–8, photonic9–11, mechanical12,
spintronic13–27 reservoirs, etc. Among these, spintronic reservoirs are
appealing for scalable and low-power physical implementations of RC
systems due to their non-volatility, nonlinear dynamics, multi-func-
tionality, and complementary metal–oxide–semiconductor (CMOS)
compatibility15,16.

To date, spin-torque nano-oscillators13,14, spin waves17, dipole-
coupled nanomagnets18, and magnetic skyrmions19–27 have been pro-
posed for realizing physical reservoirs. Magnetic skyrmions exhibiting
small size (sub-10 nm), high energy efficiency, and especially topolo-
gical stability28–42 show exclusive advantages for implementing a
reservoir regarding nonlinear response, memory of past manipula-
tions and complex interaction between multiple skyrmions. Thus,
characters of skyrmion displacement and deformation are utilized to
propose RC in individual skyrmion and skyrmion fabrics systems19–22.
Recently, skyrmion-based reservoirs have been successfully demon-
strated to realize the benchmark tasks including Boolean logic
operations, pattern recognition, and chaotic time series
forecasting23–25. However, either the electrical currents or magnetic
fields are served as inputs, which is not advantageous to lower energy
costs. Accordingly, a strain-mediated voltage-controlled skyrmion RC
block employing the nonlinear breathing dynamics has been pro-
posed, with an estimated energy dissipation of 50 fJ per single input,
which is three-four orders of magnitude lower than that of the CMOS-
based reservoir26. Moreover, strain is a universalway to control various
characteristics, which have been widely studied, including
magnetization43–48, resistance49,50, Dzyaloshinskii–Moriya interaction
(DMI)51, phase transitions52, luminescence53, etc. Hence, multiferroic
heterostructures inherently capable for multi-parameter fusion are
promising to be a powerful physical reservoir for different tasks. Here,
we proposed a strain-mediated Hall bar device using the electric-field
(E-field) as inputs and the anomalous Hall effect (AHE) response as
outputs that are all electrical voltage signals.We experimentally realize
a skyrmion-enhanced strain-mediated physical reservoir by combining
the magnetization and resistivity changes. Furthermore, we demon-
strate its functionality via a sequential waveform classification task and
a Mackey-Glass time series prediction task. Our work opens a new
route for low-power neuromorphic computing.

Figure 1 illustrates the framework of our skyrmion-enhanced
strain-mediated RC system. A Hall bar device fabricated on a PMN-
PT(001) substrate functions as a physical reservoir, where a voltage
sequenceV(t) is applied across the substrate, serving as the input, with
the Hall voltage Vxy as the output signal. The bottom panel of Fig. 1
illustrates that E-field induced compressive in-plane strain, which
could change both the magnetization Mz and the longitudinal resis-
tivity ρxx.

The empirical relationship between the Hall resistivity ρxy
54 and

the applied perpendicularmagnetic fieldHz,Mz, and ρxx
55,56 ismodified

as follows:

ρxyðEÞ=R0Hz +Rs4πMzðEÞ+aρxxðEÞ ð1Þ

where E is the applied E-field across the PMN-PT substrate and R0, Rs,
anda are the coefficients for the ordinaryHall, the anomalousHall, and

the longitudinal resistivity, respectively. The applied E-fields generate
the ferroelastic strains and further tune the magnetization and
resistivity of the magnetic layers.

Results
Characterization of the nonlinearities
The nonlinearity of this skyrmion-enhanced strain-mediated physical
reservoir is examined, where the magnetization and resistivity varia-
tion behaviours are measured independently from the applied vol-
tages across the PMN-PT(001) substrate. First, the magnetization
changes under the application of an E-field are studied using the
magneto-optical Kerr effect (MOKE), and the corresponding hysteresis
loops are shown in Fig. 2a. Cross-sectional transmission electron
microscopy (TEM) is performed to confirm the quality of the interfaces
(see supplementary information S1) and the magnetic states in the Pt/
Co/Gdmultilayers are examined bymagnetic forcemicroscopy (MFM)
under different magnetic fields and voltages. The transition of the
magnetic states from labyrinth domains to skyrmions and finally to the
saturation state when increasing the magnetic field are further con-
firmed by Lorentz transmission electron microscopy (L-TEM), for
details see supplementary information S2. When the E-field is applied,
the magnetization nucleation fields increase significantly from 100 to
150mT at E = 20 kV/cm, indicating that the skyrmion states are mod-
ified by the applied E-fields. As shown in the upper insets of Fig. 2a,
MFM images are taken under the magnetic field μ0Ha = 90mT with no
voltage applied (I) and at 10 kV/cm (II). Upon applying and increasing
the E-field, skyrmions start to nucleate, and a low-density skyrmion
phase (I) evolves to a high-density skyrmion phase (II). To investigate
the relationship of the magnetization with the E-fields, we extract the
remnant magnetization M/Ms at μ0Ha = 200 and 90mT, where Ms

Fig. 1 | Schematic diagrams of the experimental method and the skyrmion-
enhanced strain-mediated spintronic RC system. The top panel shows the AHE
measurement setup under a voltage sequence V(t), where the top and bottom
surfaces are ground and voltage applied, respectively. The central light-yellow
rectangle is the Hall bar whose size is 150× 900 μm2. The physical reservoir is
realized using the strain-mediated spintronic AHE device, which is confirmed as a
nonlinear dynamic system. The Hall voltage Vxy is the output signal of this system.
The yellow parts are Au electrodes for wire bonding and the grey part is conductive
silver paint tominimize contact resistance. The bottompanel illustrates that theMz

(skyrmion size change) and ρxx both varies with the applied E-field due to the
inverse piezoelectric effect, where in-plane compressive strain εin-plane < 0 is
generated.
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denotes the saturated magnetization, as shown in Fig. 2b, corre-
sponding to the saturation and skyrmion phases. Through counting
the skyrmion area from the MFM images in the Fig. 2a insets I and II,
ΔMskyrmion/Ms are 1.3% and 13%, respectively (see supplementary
information S3 for detailed results and analysis). ΔM(E) for E-fields
between0 and 10 kV/cm is 11.7%,which is in a goodagreementwith the
results shown in Fig. 2b, where themagnetization change is about 13%.
We can conclude that the magnetization decrease comes from the
skyrmion density increase with E-field applied. Further extracting the
magnetization change versus E-fields, a typical butterfly shape is
shown apparently at μ0Ha = 90mT, indicating the strain-mediated
modulation of the skyrmion phase realized in this heterostructure.
Note that, the skyrmion phase change mainly stems from the strain
induced magnetic anisotropy change, that exhibits a similar butterfly
shape (see supplementary information S4 for detailed results and
analysis). Such nonlinearity of the magnetization originates from the
nonlinear variation of the piezoelectric strain versus the applied E-field
with ferroelectric switching fields of ±1.67 kV/cm57,58. Therefore, the
skyrmion phase controlled by an E-field is preferable for the RC
application to achieve greater nonlinearity in comparison to the
saturation state in multiferroic heterostructures.

Second, the variation of the Hall resistivity ρxy with the applied E-
fields is measured, as shown in Fig. 2c. By scanning the unipolar E-field
from 0 to 15 kV/cm and then back to 0 in a time period of 50 s (the red
and blue arrows indicate the scan directions) at μ0Ha = 90mT (the
skyrmion state), ρxy shows a half branch of a typical butterfly shape
from piezoelectric strain with partial contribution of 109° ferroelastic
domain switching48,49. When sweeping the E-field from zero, ρxy first
increases slightly to the switching E-field and then decreases sharply.
When sweeping the E-field back, a typical hysteresis increase of ρxy can
be seen, and the curves cross over the first half cycle (the red curve)
when the E-field is close to zero, which induces a slight positive offset
at 0 kV/cm. The grey curve in Fig. 2c shows the nonlinear ρxy variation
at μ0Ha = 200mT (the saturation state), where only the change of
longitudinal resistivity with E-field occurs. Thus, the amplitude is
smaller than the one in the skyrmion state, where an additional change
of the magnetization combines with the longitudinal resistivity
change. In the working regime for the sequential waveform classifi-
cation task (marked by the yellow shaded area in Fig. 2b, c), i.e. the
positive E-field range, both the Hall resistivity ρxy and the magnetiza-
tion in the skyrmion state behave nonlinearly with the input voltages,
implying that a better performance of the strain-mediated RC system
can be expected compared to the saturated magnetization state. We
can conclude that the strain-control of skyrmions in PMN-PT/Pt/Co/Gd
multilayers would be a capable candidate for a physical reservoir with
rich nonlinearity.

Sequential waveform classification task
In this part, we use a representative sequential waveform classification
task21,24,26 to test the performance of our skyrmion-enhanced strain-
mediated RC system. The input signal is a randomwaveform sequence
comprising square and sine waveforms (labelled as ‘0’ and ‘1’, respec-
tively) encoded as the voltage V(t) applied to the RC system, and the
output signal is the AHE voltage Vxy.

The AHE measurement system is shown in Fig. 1, and a constant
current Idc = 0.5mA (jdc = 9.8 × 103 A/cm2) is applied along the x-axis of
the Hall bar device, where the Joule heating and magnetic structure
changing are negligible due to the extremely low current density.
Figure 3a illustrates the schematic of the strain-mediated spintronic
RC framework, where the two different magnetization states (sky-
rmion phase and saturation) serve as different physical reservoirs,
presented by MFM images. Figure 3b shows a segment of randomly
extracted input signals (black waves on the top panel) and the cor-
responding output signals from the strain-mediated spintronic
reservoir. The red and grey output signals correspond to the sky-
rmion and saturation states, respectively, as shown in the bottom
panel of Fig. 3b. Note that the output signals are offset to zero,
centred to eliminate the background voltages caused by different
magnetic fields. The E-field-induced anomalous Hall voltage change
ΔVxy of the skyrmion state reservoir is around 3μV (red output sig-
nal), while the saturation (grey output signal) shows much smaller
amplitudes around 1.5μV as displayed in Fig. 3b. The behaviour of the
output signal coincides with the nonlinearity shown in Fig. 2c, and
obvious differences can be seen around 0 kV/cm with single and
double peaks for square and sine waveforms, respectively. The gra-
dually approaching to and departing from 0 kV/cm in the input
waveform both induce peaks in the output signals, but the non-
linearity is less significant around 15 kV/cm. Relatively, the memory
effect in our systems can be derived from the gradual decrease/
increase of the output signals around 15 kV/cm after a series of
square/sine waveforms, which is consistent with the previous repor-
ted phenomena59,60.

The purpose of the waveform recognition task is to recognize the
current (black square), last (green square), and second-to-last (orange
square) waveform types (Fig. 3c) by using the sampled n data points
from the current period of output signal and the trained weights
corresponding to each point (see methods). The waveform sequences
‘0 1 1’ and ‘0 0 1’ are marked by the yellow and blue regions. The last
cycle of the input signals in these two regions are different (sine wave
in the yellow region and square wave in the blue region). The orange,
green, black squares, and the yellow dots correspond to those in
Fig. 3c. The coloured lines connecting squares and dots represent the
output weightmatrixWout. The dotted and solid curves in Fig. 3d show

Fig. 2 | Evaluation of the E-field effects and nonlinearity of the reservoir. aOut-
of-planemagnetic hysteresis loops under different E-fields. The bottom inset shows
the enlarged loops around μ0Ha, where the skyrmions start to nucleate. The
MFM phase shift images of stages I and II are shown as insets. The image size is

5 × 5μm2.bM/Ms extracted from a versus the E-field. The arrows indicate the E-field
scanning directions. c Nonlinearity of the Hall resistivity ρxy versus the E-field,
where μ0Ha = 90mT (for the red and blue curves) and 200mT (for the grey curve).
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the recognition rates for the saturation and skyrmion state-based
strain-mediated RC systems, respectively. The black, green, and
orange curves in Fig. 3d show the recognition rates of the current, last,
and second-to-last waveforms as a function of n, the number of data
points sampled per period at Vxy. For the current waveform, the
recognition rates reach 100% (perfectly classified) on increasing n. The
system will provide better efficiency to run a reservoir computer if a
smaller n is used to realize higher accuracy in a task. For the second-to-
last waveform, the recognition rates of both RC systems are all around
50%, indicating randomness and unpredictability. Interestingly, the
two RC systems have similar trends with n; however, distinctive dif-
ferences are observed for the last waveform recognition. Upon
increasing n, the recognition rates increase rapidly with obvious ran-
domness and then tend to saturate with n > 10. The recognition rates
are 94.4% and 99.3% in the saturation and skyrmion states, respec-
tively. The skyrmion-enhanced strain-mediated reservoir shows a
better performance regarding the recognition rate for the last wave-
form. This result demonstrates the short-term memory effect of the
strain-mediated reservoir, which is 2-waveform duration time (speci-
fically to our experiment, the time scale is about 9 s × 2 = 18 s). The
physical mechanism of the skyrmion enhancement is discussed later
(see discussion section and supplementary information S4, S5). The
reservoir’s computational capabilities are evaluated by further ana-
lyzing the experimental data of the waveform classification task61,62,
where Tdelay, max = 2 is used in the calculation since the experimental
results of the waveform classification only comprise the current, the
last, and the second-to-last waveform. The parity check capacity (CPC)
and short-termmemory content (CSTM) at the skyrmion state are both

around 2.31, which are restricted by the slow operation of the present
configuration. However, they could be significantly enhanced through
involving the fast magnetization dynamics26.

Mackey-Glass time series prediction task
In addition to the task of waveform recognition, our strain-mediated
spintronic reservoir can also implement more complex tasks, e.g.
Mackey-Glass (MG) time series prediction, a benchmark task for
reservoir computing5,25–27. In the MG prediction task, the reservoir
input corresponds to a MG chaotic time series, which is generated
from a delay differential equation (DDE),

dxðtÞ
dt

=
βxðt � τÞ

1 + x10ðt � τÞ � γxðtÞ ð2Þ

where x(t) is a dynamical variable, and we set the parameters β =0.2,
γ =0.1 and τ = 17 to obtain chaotic dynamics63.

We first construct a model to demonstrate that the system is able
to perform this complicated task (see supplementary information S6)
for both skyrmion and saturation states. In the ideal case where
experimental noise is ignored, the RC systems in both magnetic states
exhibit equivalent performance. This suggests that the better perfor-
mance in waveform recognition in the skyrmion state is mainly due to
the higher signal amplitude. Therefore, it is imperative to increase the
total output signal amplitude in order to identify the out-of-noise
signal induced by small variations of the input signal. By applying a
negative polarized E-field, we achieve amplitudes of output Vxy in tens
of mV range with sweeping E-field in between 0 and 15 kV/cm, which is

……

Fig. 3 | Sequential waveform classification task via the strain-mediated spin-
tronic RC system. a Schematic of the strain-mediated spintronic RC system. Two
differentmagnetization states are studied, as shown in theMFMphase shift images.
The image size is 5 × 5μm2. b Input waveform sequences and the corresponding
output signals of the strain-mediated spintronic reservoir. The red and grey output
signals correspond to the skyrmion and saturation states, respectively. The output
signal is sampled by n data points per period, marked by the yellow dots. cOutput

values are summed by weight for three different sets of weights. One set is trained
to recognize the current waveform (black), one is trained to recognize the last
waveform (green) preceding the current waveform, and the other is trained to
recognize the second-to-last waveform (orange). d Recognition rates as a function
of n for two magnetization states (skyrmion and saturation states) of the strain-
mediated spintronic RC system.

Article https://doi.org/10.1038/s41467-023-39207-9

Nature Communications |         (2023) 14:3434 4



the non-volatile longitudinal resistivity change induced by 109° fer-
roelastic domain switching presumably (see supplementary
information S7).

The task of MG time series prediction is then performed experi-
mentally. As shown in Fig. 4a, the physical reservoir receives a pre-
processed sequence of electric voltage inputs (the variation range of
the E-field is in between 0 and +5 kV/cm, the grey data set), and the
output is obtained from the Hall voltage Vxy (the red data set) multi-
plied by a trained output matrix Wout. The number of steps between
the future time step and the current step is defined as prediction
horizontal step i. ThematrixWout is different for different i values. The
details about the input signal pre-processing and the output matrix
Wout training procedure are introduced in the methods section.

To maximize the use of the collected reservoir dynamics, a pre-
viously proposed method is used for output reconstruction27. Instead
of solely relying on the reservoir’s output at current step for output
reconstruction, we can enhance the information available for training
through combining the response states at each time step with the
output states from the previous time steps. This creates a new state
matrix that has a larger state dimensionality of Nr·(1+np), where np
represents the number of previous steps’ states and Nr represents the
original reservoir size (see methods). This technique helps to incor-
porate more information about the reservoir states, effectively
increasing the size of the reservoir from Nr to Nr·(1+np).

To evaluate the performance of the trained matrix Wout, normal-
ized root mean square error (NRMSE) is calculated on the prediction

results of the testing set ypre compared to the true trajectory of MG
series ytar,

NRMSE=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
nsσ

2
tar

Xns

i=0
ðytar ðiÞ � ypreðiÞÞ2

s

ð3Þ

A lower value of the NRMSE represents a more accurate predic-
tion. In Fig. 4b, the red and the black curves show the result of NRMSE
(in log scale) as a function of horizontal prediction step i, using the
optimized algorithm (np = 30) and the basic method (without com-
pensation, i.e. np =0) for output reconstruction, respectively. Better
accuracy of prediction can be achieved by using the optimized
algorithm.

Figure 4c–f shows the predicting results of MG time series for the
next value (i = 1), and the value happening 20 steps later (i = 20), for
both the basic method and the optimized algorithm. Each horizontal
prediction step i corresponds to a different prediction task. In the
figures, the blue curve is the ground truth, the black and red curves are
prediction results from basic and optimized methods, respectively. In
general, it is more difficult to predict for later steps due to the chaotic
nature of theMGtimeseries. Theprediction error apparently increases
in Fig. 4d compared to 4c, and also the same trend shown in Fig. 4f
compared to 4e. In addition, the predicted results using the optimized
algorithm shown in Fig. 4e, f demonstrate better accuracy than those
using the basicmethod shown in Fig. 4c, d, respectively. To be specific,
the NRMSE values are 0.16 and 0.2 for predictions of i = 1 and i = 20

Fig. 4 | Mackey-Glass time series prediction task demonstrated by the strain-
mediated spintronic RC system. a Input pre-processed signal (grey data set) and
the corresponding output signal (red data set) of the strain-mediated reservoir.
b NRMSE as a function of horizontal prediction step i, shown in log scale, for the
testing set by using the basic method (black curve) and the optimized algorithm
(red curve) for output reconstruction. c and d are the selected predicting results
(black) for horizontal step i = 1 (for short-term prediction) and 20 (for long-term

prediction), respectively, predicted by the strain-mediated RC system using basic
method for output reconstruction, in comparison with the ground truth (blue) of
MG time series. e and f are the selected predicting (red) results for horizontal step
i = 1 and 20, respectively, predicted by the strain-mediated RC system using opti-
mized algorithm for output reconstruction, in comparison with the ground truth
(blue) of MG time series.

Article https://doi.org/10.1038/s41467-023-39207-9

Nature Communications |         (2023) 14:3434 5



using the optimized method, correspondingly the values are 0.27 and
0.34 using the basic method for output reconstruction. These results
indicate the great potential of our physical reservoir for doing more
complicated tasks with an extended reservoir size.

Discussion
The enhancement of the recognition rate for the skyrmion state in our
strain-mediated reservoir has been demonstrated in the waveform
classification task, and the physical origin of the enhancement is dis-
cussed here. The output signal Hall resistivity ρxy(E) is a combination of
Mz(E) and ρxx(E), see Eq. (1). In the saturation state, the perpendicular
magnetizations do not change under the variation of E-field, whereMz(E)
remains zero. So, the ρxy(E) change is only attributed to the longitudinal
resistivity change under E-field (ρxx(E)), which ismainly influenced by the
ferroelastic strains generated by the E-field49,60. In the skyrmion state, the
skyrmion number and size are controlled by the applied E-fields through
the inverse piezoelectric effect, as shown in Fig. 5, contributing to the
Mz(E) in the output Hall signal, and inducing the enhancement of
recognition rate. A lower density skyrmion phase is initially obtained
without E-field applied as shown in Fig. 5a, where μ0Ha =90mT. A
positive E-field of +5 kV/cm is then applied (Fig. 5b). Evidently, a large
amount of skyrmions is created, and some elongated shapes are
observed. After reducing the E-field back to +0kV/cm, the quantity of
skyrmions is almost unchanged (note that the skyrmionwinding number
is unchanged due to its topological protection), while some elongated
skyrmions restore to round shapes, as shown in Fig. 5c. The results
indicate that strain can create skyrmions non-volatilely and deform their
shapes reversibly. The binarizedMFM images with extracted contours of
the skymions are shown in Fig. 5d–f, where the proportion of skyrmion
area (M/Ms) is calculated and indicated. From 0 to +5 kV/cm, the M/Ms

change is 23%, accompanied by skyrmion creation and deformation.
When decreasing the applied voltage from +5kV/cm back to +0kV/cm,
the M/Ms change is only 6%, accompanied by a recovery of skyrmion
deformation. In thewaveform classification task, the input signal (E-field)
is sweeping between +0 to +15 kV/cm repeatedly, corresponding to the
phase changebetween Fig. 5b, c. Thus, the skyrmiondeformation plays a
key role for the Mz(E) component in our RC system.

We further study the physical origin of the skyrmion deformation
(see supplementary information S4). MOKE with rotating magnetic

fields (Rot-MOKE) is conducted to evaluate the effective magnetic
anisotropy fields quantitatively with the applied E-fields (Hk,eff). The
out-of-plane magnetic anisotropy Keff decreases with heightened E-
fields (ΔHk,eff = 464Oe, under the E-field between 0 and −20 kV/cm),
which is consistent with the results reported by Ba et al.46. The inter-
facialDMI constantD ismeasuredby Brillouin light spectroscopy (BLS)
for the Pt/Co/Gd trilayer (see supplementary information S5). Due to
the out-of-plane tensile strain, a decrease of the DMI constant D is
expected, which has previously been reported46. The decrease of Keff

and the DMI constant D under E-field will enlarge and reduce the
skyrmion size in the isolated skyrmion system, respectively64. In our
experiments, the skyrmions elongate (enlarge) under applied E-field
and restore when the E-field decreases to 0 (Fig. 5). Thus, we can draw
the conclusion that the decrease of Keff plays a dominant role in the
skyrmion deformation, instead of the decrease of D under E-field
applied.

In the study of theMG time series prediction task, the information
embedded in the small signal (peak-to-peak amplitude of a fewμV) will
be submerged by the system noise (which is subμV level). Thus, we
increase the output amplitude by exploiting the nonvolatile resistivity
controlled by strain. In the PMN-PT(001) substrate, the ferroelectric
domain structure comprises 109° and 71°/180° domains switching
under applied E-fields in [001] direction. The in-plane strain from 109°
ferroelastic switching is important for the nonvolatility in E-field con-
trol of the in-plane magnetization and longitudinal resistivity48,49,
which results in the memory effect in our system. After applying a
negative polarized E-field, a loop-like response of the AHE signal ΔVxy

appears (see supplementary information S7), indicating that the 109°
ferroelastic switching is the dominating factor in our system. In this
way, the increased output signal with amagnitude of mV is sufficiently
large to perform the MG prediction task against the system noise
(subμV level). Note that the anomalous Hall voltage is normally in
theμV range, which barely contributes to the output signal Vxy with a
magnitude of mV. In an effort to realize the skyrmion enhancement,
the magnetic tunnel junction (MTJ) can be a replacement of Hall bar
device tomagnify the output signal induced by skyrmiondeformation,
and make it comparable with the longitudinal resistivity variation with
the magnitude of mV42,49,65. The magnitude of the tunnelling magne-
toresistance (TMR) read out is estimated as following. It has been

Fig. 5 | MFMphase shift images under different E-fields in the skyrmion state at
μ0Ha = 90mT. aMFMimage taken after reducing themagneticfield fromsaturated
state to μ0Ha = 90mT without applied E-field, a few skyrmions generate. b MFM
image with positive E-field of +5 kV/cm applied, a large amount of skyrmions

appears with deformed shape. c MFM image taken after reducing the E-field to
+0 kV/cm, skyrmions restore to circular shape. The scale bar is 1μm. d, e, and
f show the corresponding contours of the magnetic skyrmions.
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reported experimentally that a single skyrmion would contribute a
TMR signal up to 6.6μV65. Considering the density of skyrmions
deduced fromFig. 5c (about 60 skyrmions in the area of 5 × 5μm2) and
the area of our device (Hall cross 10 × 150μm2), the number of
3600 skyrmions and the total TMR of 23.76mV can be calculated for
our RC system. The TMR read out induced by skyrmion deformation
can be further estimated from the change of skyrmion area, as (26.05%
−20.31%)/20.31% = 28.3% of the total skyrmion TMRchange, i.e. 6.7mV,
shown in Fig. 5e, f. Hence, by employing the fusion of multiple para-
meters, the strain-mediated spintronic system can be considered as a
powerful physical reservoir.

In addition to multi-parameter fusion, strain-mediated artificial
multiferroics is advantageous for low energy consumption43–45. We
estimate the energy dissipation in a scale-down model. The input
energy (including the ferroelectric hysteresis loss) and the output read
energy are taken into account (see supplementary information S8).
The total power dissipation is less than 1 fJ, which is 2 orders of mag-
nitude lower than that of other spintronic reservoirs13,26.

Limited to the data acquisition setup, we input 10 data points
per second in the experiments, which is considerably slower than
previous spintronic physical reservoirs, such as spin-torque nano-
oscillators13,14. Nevertheless, the operation frequency in such strain-
mediated reservoir is potential to work at gigahertz. Due to the
intrinsic ultrafast switching of ferroelectric and ferromagnetic
domains66–69, the piezoelectric and ferroelectric polarization switching
time can be extremely fast down to 1 ns70,71. Moreover, ferrimagnetic
systems exhibit ultrafast magnetization dynamics compared to ferro-
magnetic systems, which can reach sub-THz68,72.

To sumup, our strain-mediated spintronic reservoir operateswith
all-electrical input and output voltages, exhibiting compelling ultra-
low-power and multi-parameter fusion, and having the potential for
ultrafast operation. To improve performance in tackling real-world
problems, more effort is needed to develop the strain-mediated phy-
sical reservoir exhibiting high operation speed and computational
capability with downscaled devices.

In this work, we fabricate ferrimagnetic Pt/Co/Gd multilayers on
piezoelectric PMN-PT(001) substrates to host magnetic skyrmions to
demonstrate a strain-mediated spintronic reservoir. E-field control of
the magnetization and Hall resistivity is then investigated by MOKE
and AHE, respectively, in the multiferroic heterostructure. By explor-
ing the nonlinearity, multi-parameter fusion and short-term memory
effect of this strain-mediated physical reservoir system, we success-
fully demonstrate a RC functionality with sequential waveform classi-
fication and Mackey-Glass time series prediction tasks. Our results
show that the strain-mediated spintronic RC system enhanced by
skyrmions performs better (regarding the waveform recognition rate)
is mainly attributed to the strain control of magnetic anisotropy. The
energy dissipation per single waveform is estimated to be on the sub-fJ
scale for hybrid nanodevices. Regarding the rich characteristics of
skyrmions, we believe the skyrmion-based physical reservoir has
excellent potential for future research and applications. By accom-
plishing benchmark tasks for the skyrmion-enhanced strain-mediated
RC system, our work opens a new route to low-power neuromorphic
computing.

Methods
Sample preparation and magnetic properties characterization
Films were grown by magnetron sputtering at a base pressure below
1 × 10−8 Torr. The sample structurewas substrate/Ta(2)/Pt(3)/[Co(1.95)/
Gd(1.2)/Pt(3)]7 (with thicknesses given in parentheses in nanometres).
The hysteresis loop measured by Polar MOKE at room temperature is
shown in supplementary Fig. 2a.

L-TEMmeasurementswith a tilting angleof 10°were conducted to
observe the magnetic structures and confirm the skyrmion type in the
multilayer structure at room temperature. The sample deposited on a

50-nm-thick silicon nitride membrane (CleanSiN) was used for L-TEM
measurements. As shown in supplementary Fig. 2b, the magnetization
reversal process, and Néel-type skyrmions in the Pt/Co/Gdmultilayers
are confirmed35,46.

MFM measurements were conducted with the MFP-3D Infinity
atomic force microscope, using the high-resolution and low-moment
magnetic probe, SSS-MFMR (Nanosensors), with a lifted height
of 30 nm.

Electrical measurements
The electrical measurements were conducted using a Keithley 2182 A
nanovoltmeter, a Keithley 6221 current source meter, a Dahua
DHD60010 voltage source meter, a NF WF1948 multifunction gen-
erator, an Aigtek ATA7010 high voltage amplifier and a Keithley
DMM6500multimeter. For the waveform classification task, the input
signals (0–450V for E-field 0–15 kV/cm applied across to PMN-PT
substrates) were provided by DHD60010, and the real input signal is
measured by DMM6500. For the MG time series prediction task, the
input signalswereprovidedbyWF1948 andATA7010. 6221wasused to
supply a 0.5mA Idc current and 2182 A was employed to measure the
output voltage Vxy.

Sine and square waveform classification
For the sequence waveform classification task in Fig. 3, the input is a
random waveform sequence comprising 400 sine and square wave-
forms with the same period around 9 s. We use the five-fold cross-
validation technique to estimate the performance of the task. The
training goal is to determine a set of weightswj, where j is the index for
n sampled values. These weights are used to multiply the n sampled
output weights to give an output value y, which should ideally equal to
one for square waves and zero for sine waves. Note thatwj is different
for recognizing the current and past input signals. For the training
process, we use a technique called the linear Moore-Penrose pseudo-
inverse operator to extract the eigenvalues from singular matrices.
Specifically, considering the matrix target Y containing all the targets
and S containing all the output signals for training, the weight matrix
containing all the optimal weights ofwj is given byW = YSy, where the
dagger symbol denotes the pseudo-inverse operator. Note that the
weights training is performed separately for each of the different
reservoirs (skyrmion and saturation states).

Mackey-Glass time series prediction
The dataset for the prediction task is prepared in the following way.
First, a Mackey-Glass time series is obtained by solving Eq. (2). For the
experiment, we obtain 2500 data points in total. After removing the
results of the initial 600 data points (for the initialization of
the reservoir), the first 1200+idata points areused for training, and the
rest 700−i are for testing, where i is the prediction horizontal step. The
first stage of the masking procedure is a matrix multiplicationWin·Mo,
where Win∈RNr×1 is the mask matrix with data values drawn from a
standard normal distribution and Mo∈R1×L is the original input data.
HereL = 1200+i is the lengthof theoriginalMGdatapoints andNr is the
reservoir size. We adopt Nr = 50 in the experiment. As a consequence
of the masking, we obtain the data matrixMe =Win·Mo∈RNr×L. ThenMe

is column-wise flattened into a vector e∈RNr·L and then fed into the
reservoir of skyrmion systems.

Each of the value from e, multiplied and translated as the E-field
(ranging from 0 to 5 kV/cm as shown in Fig. 4a), is provided as pre-
processed input into the reservoir with a time interval tstep = 0.1 s. In
the following, the reservoir dynamics is recorded for every tstep to form
a vector of My∈RNr·L, which is then unflattened into a response matrix
Mx∈RNr×L for output reconstruction. We use the matrix A∈RNr×Tr con-
sisting the first Tr = L−i columns ofMx for training the read out matrix.
The teaching matrix B∈R1×Tr consisting the last Tr of the original signal
Mo is the time series to be predicted. A read-out matrix Wout is
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therefore constructed through the method of ridge regression,

W out = ðA�AT +μIÞ�1 ðA�BTÞ

where μ = 10−4 is used as regularization parameter.
Instead of using only the reservoir’s output from the current step,

we concatenate the response matrix A at each column with output
states from previous steps to form a new matrix A*∈R(Nr·(1+np))×Tr, where
np is the number of previous steps’ states.

Data availability
The data that support the findings of this study are available within the
paper and the Supplementary Information. Additional data related to
this study are available from the corresponding authors upon rea-
sonable request. Source data are provided with this paper.

Code availability
The custom code used in this study are available from the corre-
sponding authors upon reasonable request.

References
1. Jaeger, H. The “echo state” approach to analyzing and training

recurrent neural networks. Technical Report GMD Report 148, Ger-
man National Research Center for Information Technology (2001).

2. Maass, W., Natschläger, T. & Markram, H. Real-time computing
without stable states: a new framework for neural computation
based on perturbations. Neural Comput. 14, 2531–2560 (2002).

3. Verstraeten, D., Schrauwen, B., D’Haene, M. & Stroobandt, D. An
experimental unification of reservoir computing methods. Neural
Netw. 20, 391–403 (2007).

4. Du, C. et al. Reservoir computing using dynamic memristors for
temporal information processing. Nat. Commun. 8, 2204 (2017).

5. Moon, J. et al. Temporal data classification and forecasting using a
memristor-based reservoir computing system. Nat. Electron. 2,
480–487 (2019).

6. Zhong, Y. et al. Dynamic memristor-based reservoir computing for
high-efficiency temporal signal processing. Nat. Commun. 12,
408 (2021).

7. Milano, G. et al. In materia reservoir computing with a fully mem-
ristive architecture based on self-organizing nanowire networks.
Nat. Mater. 21, 195–202 (2022).

8. Liu, K. et al.Multilayer reservoir computingbasedon ferroelectricα-
In2Se3 for hierarchical information processing. Adv. Mater. 34,
2108826 (2022).

9. Paquot, Y. et al. Optoelectronic reservoir computing. Sci. Rep. 2,
287 (2012).

10. Vandoorne, K. et al. Experimental demonstration of reservoir com-
puting on a silicon photonics chip. Nat. Commun. 5, 3541 (2014).

11. Sun, L. et al. In-sensor reservoir computing for language learning
via two-dimensional memristors. Sci. Adv. 7, eabg1455 (2021).

12. Hauser, H., Ijspeert, A. J., Fuchslin, R. M., Pfeifer, R. & Maass, W.
Towards a theoretical foundation for morphological computation
with compliant bodies. Biol. Cybern. 105, 355–370 (2011).

13. Torrejon, J. et al. Neuromorphic computing with nanoscale spin-
tronic oscillators. Nature 547, 428 (2017).

14. Jiang, W. et al. Physical reservoir computing using magnetic sky-
rmion memristor and spin torque nano-oscillator. Appl. Phys. Lett.
115, 192403 (2019).

15. Grollier, J., Querlioz, D. & Stiles, M. D. Spintronic nanodevices for
bioinspired computing. Proc. IEEE 104, 2024–2039 (2016).

16. Grollier, J. et al. Neuromorphic spintronics. Nat. Electron. 3,
360–370 (2020).

17. Nakane, R., Tanaka, G. & Hirose, A. Reservoir computing with spin
waves excited in a garnet film. IEEE Access 6, 4462–4469 (2018).

18. Nomura, H. et al. Reservoir computing with dipole-coupled nano-
magnets. Jpn. J. Appl. Phys. 58, 070901 (2019).

19. Prychynenko, D. et al. Magnetic skyrmion as a nonlinear resistive
element: a potential building block for reservoir computing. Phys.
Rev. Appl. 9, 014034 (2018).

20. Bourianoff, G., Pinna, D., Sitte, M. & Everschor-Sitte, K. Potential
implementation of reservoir computingmodels based onmagnetic
skyrmions. AIP Adv. 8, 055602 (2018).

21. Pinna, D., Bourianoff, G. & Everschor-Sitte, K. Reservoir computing
with randomskyrmion textures.Phys. Rev.Appl. 14, 054020 (2020).

22. Love, J. et al. Spatial analysis of physical reservoir computers. Pre-
print at https://arxiv.org/abs/2108.01512 (2021).

23. Raab, K. et al. Brownian reservoir computing realized using geo-
metrically confined skyrmions. Nat. Commun. 13, 6982 (2022).

24. Yokouchi, T. et al. Pattern recognition with neuromorphic com-
puting using magnetic-field induced dynamics of skyrmions. Sci.
Adv. 8, eabq5652 (2022).

25. Lee, O. et al. Task-adaptive physical reservoir computing, Preprint
at https://arxiv.org/abs/2209.06962 (2022).

26. Rajib, M. M., Misba, W. A., Chowdhury, M. F. F., Alam, M. S. & Atu-
lasimha, J. Skyrmion based energy efficient straintronic physical
reservoir computing. Neuromorph. Comput. Eng. 2, 044011 (2022).

27. Chen, X. et al. Forecasting the outcome of spintronic experiments
with Neural Ordinary Differential Equations. Nat. Commun. 13,
1016 (2022).

28. Mühlbauer, S. et al. Skyrmion lattice in a chiral magnet. Science
323, 915–919 (2009).

29. Yu, X. Z. et al. Real-space observation of a two-dimensional sky-
rmion crystal. Nature 465, 901–904 (2010).

30. Fert, A., Cros, V. & Sampaio, J. Skyrmions on the track. Nat. Nano-
technol. 8, 152–156 (2013).

31. Fert, A., Reyren, N. & Cros, V. Magnetic skyrmions: advances in
physics and potential applications. Nat. Rev. Mater. 2, 17031 (2017).

32. Meyer, S. et al. Isolated zero field sub-10 nm skyrmions in ultrathin
Co films. Nat. Commun. 10, 3823 (2019).

33. Jiang, W. et al. Blowing magnetic skyrmion bubbles. Science 349,
283–286 (2015).

34. Litzius, K. et al. Skyrmion Hall effect revealed by direct time-
resolved X-ray microscopy. Nat. Phys. 13, 170–175 (2017).

35. Lin, T. et al. Observation of room-temperature magnetic skyrmions
in Pt/Co/W structures with a large spin-orbit coupling. Phys. Rev. B
98, 174425 (2018).

36. Moreau-Luchaire, C. et al. Additive interfacial chiral interaction in
multilayers for stabilization of small individual skyrmions at room
temperature. Nat. Nanotechnol. 11, 444–448 (2016).

37. Zázvorka, J. et al. Thermal skyrmion diffusion used in a reshuffler
device. Nat. Nanotechnol. 14, 658–661 (2019).

38. Pöllath, S. et al. Spin structure relation to phase contrast imaging of
isolated magnetic Bloch and Néel skyrmions. Ultramicroscopy 212,
112973 (2020).

39. Song, K. M. et al. Skyrmion-based artificial synapses for neuro-
morphic computing. Nat. Electron. 3, 148–155 (2020).

40. Li, S. et al. Magnetic skyrmions for unconventional computing.
Mater. Horiz. 8, 854 (2020).

41. Chen, X. et al. Magnetic skyrmion spectrum under voltage excita-
tion and its linear modulation. Phys. Rev. Appl. 12, 024008 (2019).

42. Li, S. et al. Experimental demonstration of skyrmionic magnetic
tunnel junction at room temperature. Sci. Bull. 67, 691–699 (2022).

43. Lei, N. et al. Strain-controlledmagnetic domain wall propagation in
hybrid piezoelectric/ferromagnetic structures. Nat. Commun. 4,
1378 (2013).

44. Cai, K. et al. Electric field control of deterministic current-induced
magnetization switching in a hybrid ferromagnetic/ferroelectric
structure. Nat. Mater. 16, 712–716 (2017).

Article https://doi.org/10.1038/s41467-023-39207-9

Nature Communications |         (2023) 14:3434 8

https://arxiv.org/abs/2108.01512
https://arxiv.org/abs/2209.06962


45. D’Souza, N. et al. Energy-efficient switching of nanomagnets for
computing: straintronics and other methodologies. Nanotechnol-
ogy 29, 442001 (2018).

46. Ba, Y. et al. Electric-field control of skyrmions in multiferroic hetero-
structure viamagnetoelectric coupling.Nat. Commun. 12, 322 (2021).

47. Wang, Y. et al. Electric-field-driven non-volatile multi-state switch-
ing of individual skyrmions in a multiferroic heterostructure. Nat.
Commun. 11, 3577 (2020).

48. Zhang, S. et al. Electric-field control of nonvolatilemagnetization in
Co40Fe40B20/Pb(Mg1/3Nb2/3)0.7Ti0.3O3 structure at room tempera-
ture. Phys. Rev. Lett. 108, 137203 (2012).

49. Yan, H. et al. A piezoelectric, strain-controlled antiferromagnetic
memory insensitive to magnetic fields. Nat. Nanotechnol. 14,
131–136 (2019).

50. Yang, Y. et al. Piezo-strain induced non-volatile resistance states in
(011)-La2/3Sr1/3MnO3/0.7Pb(Mg2/3Nb1/3)O3–0.3PbTiO3 epitaxial het-
erostructures. Appl. Phys. Lett. 102, 033501 (2013).

51. Gusev, N. et al. Manipulation of the Dzyaloshinskii–Moriya Interaction
in Co/Pt multilayers with strain. Phys. Rev. Lett. 124, 157202 (2020).

52. Weber, M. C. et al. Multiple strain-induced phase transitions in
LaNiO3 thin films. Phys. Rev. B 94, 014118 (2016).

53. Zhang, Y. et al. Piezo-phototronic effect-induced dual-mode light
and ultrasound emissions from ZnS:Mn/PMN-PT thin-film struc-
tures. Adv. Mater. 24, 1729 (2012).

54. Nagaosa, N., Sinova, J., Onoda, S., MacDonald, A. H. & Ong, N. P.
Anomalous Hall effect. Rev. Mod. Phys. 82, 1539–1592 (2010).

55. Zheng, R., Wang, Y., Chan, H., Choy, C. & Luo, H. Determination of
the strain dependence of resistance in La0.7Sr0.3MnO3/PMN-PT
using the converse piezoelectric effect. Phys. Rev. B 75,
212102 (2007).

56. Liu, M. et al. Non-volatile ferroelastic switching of the Verwey
transition and resistivity of epitaxial Fe3O4/PMN-PT (011).Sci. Rep.3,
1876 (2013).

57. Wilkie, W. K., Inman, D. J., Lloyd, J. M. & High, J. W. Anisotropic
laminar piezocomposite actuator incorporating machined PMN-PT
single-crystal fibers. J. Intell. Mater. Syst. Struct. 17, 15 (2006).

58. Thiele, C. et al. Influence of strain on the magnetization and mag-
netoelectric effect in La0.7A0.3MnO3/PMN-PT(001) (A=Sr, Ca). Phys.
Rev. B 75, 054408 (2007).

59. Zhou, W. et al. Manipulation of anisotropic magnetoresistance and
domain configuration in Co/PMN-PT (011) multiferroic hetero-
structures by electric field. Appl. Phys. Lett. 111, 052401 (2017).

60. Wang, P. et al. Differentiation of non-volatile strain and ferro-
electric field effects in (011)- and (001)-La0.67Sr0.33MnO3/
Pb(Mg1/3Nb2/3)0.7Ti0.3O3 heterostructures. J. Appl. Phys. 127,
244102 (2020).

61. Bertschinger, N. & Natschläger, T. Real-time computation at the
edge of chaos in recurrent neural networks. Neural Comput. 16,
1413 (2004).

62. Furuta, T. et al. Macromagnetic simulation for reservoir computing
utilizing spin dynamics in magnetic tunnel junctions. Phys. Rev.
Appl. 10, 034063 (2018).

63. Penkovsky, B. Theory and modeling of complex nonlinear delay
dynamics applied to neuromorphic computing. Ph.D. thesis (Uni-
versité Bourgogne Franche-Comté, 2017).

64. Wang, X. S., Yuan, H. Y. & Wang, X. R. A theory on skyrmion size.
Commun. Phys. 1, 31 (2018).

65. Guang, Y. et al. Electrical detection of magnetic skyrmions in a
magnetic tunnel junction. Adv. Electron. Mater. 9, 2200570 (2023).

66. Beaurepaire, E., Merle, J.-C., Daunois, A. & Bigot, J.-Y. Ultrafast spin
dynamics in ferromagnetic nickel. Phys. Rev. Lett. 76,
4250–4253 (1996).

67. Koopmans, B., Ruigrok, J. J. M., Dalla Longa, F. & De Jonge, W. J. M.
Unifying ultrafast magnetization dynamics. Phys. Rev. Lett. 95,
267207 (2005).

68. Stanciu, C. D. et al. Subpicosecond magnetization reversal across
ferrimagnetic compensation points. Phys. Rev. Lett. 99, 217204
(2007).

69. Yang, T., Wang, B., Hu, J.-M. & Chen, L.-Q. Domain dynamics under
ultrafast electric-field pulses. Phys. Rev. Lett. 124, 107601 (2020).

70. Grigoriev, A. et al. Subnanosecondpiezoelectric X-ray switch.Appl.
Phys. Lett. 89, 021109 (2006).

71. Lyu, X., Si, M., Shrestha, P., Cheung, K. & Ye, P. First direct mea-
surement of sub-nanosecond polarization switching in ferroelectric
hafnium zirconium oxide. IEEE Int. Electron Devices Meeting (IEDM)
15.2.1 (2019).

72. Lisenkov, I., Khymyn, R., Åkerman, J., Sun, N. X. & Ivanov, B. A.
Subterahertz ferrimagnetic spin-transfer torque oscillator. Phys.
Rev. B 100, 100409(R) (2019).

Acknowledgements
This work was mainly supported by the National Natural Science Foun-
dation of China (NSFC) Grants No. 52061135105 and 12074025 received
by N.L. W.K. acknowledges the supports from the Beijing MSTC Nova
Program (Z211100002121014 and Z201100006820042), and the NSFC
Grant No. 62274008, and Beijing Natural Science Foundation
(L223004). D.W. acknowledges the support from the Chinese Academy
of Sciences (CAS) Project for Young Scientists in Basic Research (Grant
No. YSBR-030). C.H.B. acknowledges fundings by the German Research
Foundation (DFG) via project BA 2181/21-1 and the excellence cluster
MCQST under Germanyʼs Excellence Strategy EXC-2111 (Project No.
390814868). J.Z. acknowledges the support from the Research Equip-
ment Development Project of CAS (YJKYYQ20210001). J.H.Z. acknowl-
edges the support from the NSFC Grant No. 11834013. M.F.
acknowledges the supports from the NSFC Grants No. 51772126 and
52171210.

Author contributions
N.L. conceived the project and designed the research with the help of
W.K. Y.S. and T.L. prepared the sample with help from Z.Z., D.W., and
J.H.Z. Y.S. performedMOKE, and AHEmeasurementswith help fromT.L.
and C.C. Y.S. performed MFM measurements with help from L.H. and
M.F. T.L., C.C., and L.Y. performedSQUID-VSMmeasurements. T.L., E.D.,
S.P., and J.Z. performed the BLS measurement. L.L. and D.P. conducted
the cross-sectional TEM measurement. A.U. and C.H.B. conducted the
L-TEM measurement. Waveform classification and Mackey-Glass time-
series prediction tasks were realized by Y.S., X.C., and W.K. L.Z., Z.Y.,
D.W., A.F., and W.Z. were involved in the discussion. All the authors
contributed to analysing the results and writing the manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s41467-023-39207-9.

Correspondence and requests for materials should be addressed to
Na Lei or Ming Feng.

Peer review information Nature Communications thanks Jayasimha
Atulasimha and the other anonymous reviewer(s) for their contribution
to the peer review of this work. A peer review file is available.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jur-
isdictional claims in published maps and institutional affiliations.

Article https://doi.org/10.1038/s41467-023-39207-9

Nature Communications |         (2023) 14:3434 9

https://doi.org/10.1038/s41467-023-39207-9
http://www.nature.com/reprints


Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if
changes were made. The images or other third party material in this
article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2023

Article https://doi.org/10.1038/s41467-023-39207-9

Nature Communications |         (2023) 14:3434 10

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Experimental demonstration of a skyrmion-enhanced strain-mediated physical reservoir computing system
	Results
	Characterization of the nonlinearities
	Sequential waveform classification task
	Mackey-Glass time series prediction task

	Discussion
	Methods
	Sample preparation and magnetic properties characterization
	Electrical measurements
	Sine and square waveform classification
	Mackey-Glass time series prediction

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




