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1  Introduction  
 
This deliverable describes the work done and results achieved in WP 4 of the CATNETS 
project- In detail, these tasks are finished in year 3 of the work package: 
 

� T 4.1 Metrics specification and implementation, prototype and simulator (Month 
7-30) 

� T 4.2 Evaluation of implemented market mechanisms (Month 13-30) 
� T 4.3 Prototype evaluation (Month 19-30) 
� T 4.4 Performance analysis, comparison, evaluation (Month 25-30) 
� T 4.5 Further research on properties of Catallaxy applied to computer networks 

(Month 19-30) 
  

The  deliverable  reports  the  performance  assessment  of  the  Catallactic  approach.  It  
depends on the work done and results  achieved in  the other workpackages,  particularly  
WP2,  the  simulator  and  scenario  generator  development,  and  WP3,  the  prototype  
development. 
 
Table 1 summarizes the work of WP4 over the three years of the project. The third year 
targeted  on  the  evaluation  of  the  Catallaxy  in  two  ways:  by  assessing  the  developed  
prototype,  and  by  evaluating  the  performance  of  the  Catallaxy  in  several  simulation  
scenarios  like  comparison  to  the  implemented  centralized  approach.  By  the  end  of  the  
first  year,  the  metrics  framework  was  presented  in  terms  of  a  metrics  pyramid.  In  the  
second year, an implementation of a performance measuring framework was achieved. 
 

CATNETS PERFORMANCE EVALUATION 
year  3  Evaluation  of  the  Catallactic  mechanism by  assessment  

of the prototype and simulations.  
year  1  &  
year 2 

Design of metrics pyramid.  
Implementation  of  performance  measuring  components  
in  prototype  and  simulator,  initial  tests  of  performance  
measuring infrastructure.   

Table 1. Evolution of performance evaluation work in CATNETS 

 

1.1 Structure of the document 

The  document  is  divided  in  four  parts:  The  second  chapter  recalls  the  metrics  used  for  
assessment  of  the  prototype  experiments  and  the  simulations.  Compared  with  previous  
deliverable,  they  are  now  set  into  the  context  of  how  they  were  used  in  experimets.  
Chapter  3  describes  the  market  mechanisms,  which  were  finally  implemented  in  
prototype  and  simulator.  Parts  of  our  evaluation  are  based  on  the  results  of  the  
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comparision  of  the  different  market  mechanism.  Chapter  4  describes  our  assessment  of  
the  Catallaxy  concerning  the  feasibility  of  its  implemention  in  real  application  layer  
networks.  In  chapter  5  our  general  assessment  about  Catallxy for  resource allocation in  
application layer networks is presented. Chapter 6 discusses the results obtained. Chapter 
7 contains our conclusions. 
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2 Metrics in prototype and simulator 
 
This chapter describes the metrics finally applied to assess Catallaxy in experiments with 
the prototype and the simulator. 
 

2.1 Metrics of the prototype 

As  results  from  year  two  of  the  project,  a  performance  measuring  framework  was  
available  in  order  to  assess  the  prototype  performance.  The  measuring  framework  
essentially follows this process: 
 

� During the execution of an experiment, data was periodically or in an event-based 
way  obtained  from  the  three  main  layers  of  the  prototype  (application,  
middleware, base platform) at each node of the deployed prototype.  

� At each node, components of the middleware collected the data from the different 
layers and wrote it into several local text files.  

� After the experiment, the raw data files were collected from the local nodes and 
moved with the help of scripts (see Annex A) to a global metrics collector.  

� Scripts  were  also  used  to  process  the  data,  compute  metrics  and  to  provide  a  
format of the data which could be used for graphical representation. 

  
During  the  development  of  the  prototype,  three  kind  of  economic  agents  have  been  
implemented. The architecture of the prototype allows to derive from a given base agent 
class  different  economic agents.  This  requires  only few code changes for  each of  agent  
implemenation. The available agents are: 
 

� Catallactic agents  
� Zero Intelligence Plus (ZIP) agents 
� Contract Net (CNet) agents 

 
Compared to the Catallactic agents, the ZIP agent and CNet agents are simpler regarding 
to their configuration and their messaging protocol, easier to use and earlier available. An 
early  version  of  the  ZIP  agents  includes  also  real  measured  resource  usage  in  the  price  
calculations. Later versions of the agents work only with a dedicated resource model. In 
that model, the price calculation does not take into account the detailed resource usage. 
 
Each agent type generates for the performance measuring components of the middleware 
several text files. These raw data text files are collected from each node and stored in a 
central  repository.  For  the  three  agent  types  (ZIP  agents,  CNets  agents,  and  the  
Catallactic agents), the following data files (Table 2, Table 3, and Table 4) are obtained 
in the prototype: 
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FILE NAME DESCRIPTION 
Price.txt current price of an agent 

Match.txt contains the price at which an offer is accepted 
((offer+bid)/2) 

Active.txt logs if the CS is in the market or not (after a 
successful match an agent leaves the market and 
returns with the certain probability, for example 1/3) 

Table 2. Output files for the ZIP agents 

 
 

FILE NAME DESCRIPTION 
Price.txt current price of an agent

sellSucces.txt contains the number of succesfull trades 

Table 3. Output files for the CNet agents 

 
 

FILE NAME DESCRIPTION 
negotiation_request.txt 
 

CFP received by the BS 

negotiation_start.txt 
 

Negotiation start events between 2 agents 

negotiation_end.txt 
 

Negotiation end events between 2 agents 

strategy_metric.txt Contains the Catallactic strategy values like current 
market price (see Table 5 for more information) 

Table 4. Output files for the Catallactic agents 

 
In  order  to  allow  understanding  of  the  behaviour  of  the  different  agents,  each  agent  
forwarded  data  to  the  middleware  which  wrote  it  to  particular  text  files.  It  was  not  
straightforward to find common parameters which could be obtained in all agent types in 
the  same way.  For  this  reason  and  also  due  different  time of  implementation,  there  are  
different text files for each agent type. In order to compare, the raw data of each of agent 
type has to be processed with scripts a posteriori and off-line, aiming to extract common 
metrics. 
 
Table  5  illustrates  the  data  written  into  the  strategy_metric.txt  file of  the  Catallactic  
agents. The strategy metric.txt file contains the following fields, which provide details on 
the parameter values used in the agent strategy. 
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PARAMETER  DESCRIPTION  
Agent Name of the agent 
Acquisitiveness Value for concession level in %
Price Step Price step size in % 
Price Next Deal range adoption in %
Satisfaction Satisfaction level of the ongoing negotiation in %  
weightMemory Influence of the price history for the current market price estimation in % 
averageProfit Average profit of the agent 
generation  Crossover  counter  
currentMessageID ID of negotiation 
currentMessagePrice Agreement price of the negotiation. 
currentAverage  Estimated  market  price  
currentLowerLimit Current lower limit of the deal range 
currentUpperLimit Current upper limit of the deal range 

Table 5. Data structure of the agent strategy metrics: the strategy_metric.txt file 

 
From Table 5, it can be observed that the data describing the Catallactic agents contains a 
large number of parameters. Compared to the other two agent implementrations, there is 
more information available than for the ZIP and CNet agents. The goal is to find a set of 
metrics which is available for all three agent implementations. 
 
The  allocationRate  metric  was identified as  a  metric  which could be obtained from the 
data  of  all  the  three  agent  types.  It  is  computed  posteriori  form the  raw data  files.  The  
allocationRate  metric  in  the  ZIP  agents  is  obtained  by  counting  the  events  in  the  file  
Match.txt  and  dividing  it  by  the  total  number  of  requests  issued  till  the  moment  of  the  
metric collection. The allocationRate  metric in the CNet agents is obtained by counting 
the events in the file sellSuccess.txt and dividing it by the total number of requests issued 
till the moment of the metric collection. In order to calculate the allocation rate metric in 
the Catallactic agents, all complex service negotiation_end events are counted. Also, the 
negotiation_end  events  of  the  BSs  are  taken  into  account,  since  both  complex  services  
and basic services can close a negotiation. 
 
The  evaluation  of  the  service  market  only  takes  the  allocationRate  metric  into  account  
because  this  metric  is  available  in  all  middleware  agent  implementations.  However,  it  
needs to be noticed, that the Catallactic agent strategy uses a learning mechanism which 
makes  these  agents  to  work  in  another  time  scale.  On  the  contrary,  the  fairly  simple  
decision making in the ZIP and CNet agents could allow obtaining results in experiments 
with shorter time duration. 
 

2.2 Metrics implemented in the simulator 

All  metrics  -  as  reported  in  D4.2  [Del06b]  -  have  been  implemented  in  the  simulator.  
Deliverable D2.3 [Del07a] describes the measured values during a simulation run. 
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The simulator metrics set is definined following the D4.1 [Del05b]. The complete list of 
metrics has been refined taking into account two main issues: the simulator development 
process and the current metric setting available for the prototype. The main changes have 
been done on the technical level: since the first year’s project it was established to collect 
12 technical metrics which has been merged together or redefined in the definition. The 
upper  levels  (economic,  aggregated  indicators  and  final  indexes)  have  been  kept  
unchanged.  
 
Before  dicussing  the  changes,  we  recapitualte  that  the  technical  metrics  are  used  to  
evaluate  two  main  economic  indicators:  On  DeMand  availability  (ODM)  and  
Infrastructure  Costs  (IC).  Therefore,  technical  metrics  are  divided  into  two  subgroups  
corresponding to the economic indicators. The ODM group contains the allocation rate,  
agent  satisfaction,  discovery  time,  negotiation  time,  and  service  provisioning  time.  The  
IC group aggregates number of hops (referred to the distance metric), message size and 
number of messages, and service and resource usage. The simulator output log provides a 
larger set of data than the technical metric set requires.  
 
The evaluation process selects the technical metrics defined above and processes them to 
build a metrics database. The technical metrics at the bottom level of the matrics pyramid 
are  organized  per  agent  and  per  transaction.  The  raw  data  os  collected  from  different  
simulator  output  files  in  the first  step.  The second step assigns the collected data to  the 
individual agent.  
Table 6 shows the available metric set for each agent role. Not all agents have a full set of 
metrics.  But,  this  scheme  holds  for  each  experiment  preserving  the  comparabilty  of  
results. 
 
Metric  CSAgent  BSAgent  RSAgent  
Allocation Rate X X X 
Satisfaction  X  X  X  
Allocation Time X X  
Provisioning Time X   
Distance  X  X  X  
Latency  X  X  X  
Usage  X  X   
Messages  X  X  X  

Table 6. Implemented and evluated metric set for each agent role in the simulator 

 
The  following  aggregation  process  is  applied  for  each  metric  listed  in  Table  6.  We  
assume  a  technical  metric  mit  with  i as  agent  index  and  t  as  agent  transaction.  A  
normalized indicator is computed in a general fashion as  
 

( )itit mfI =    and  YX:f  
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where ]1,0[Y .  The benefit  of  normalized indicators  is  twofold:  the  first  benefit  is  to  
get interoperability between the different metrics used to compose upper level indicators. 
This is  achieved mainly by normalization to the interval between 0 and 1 which let  the 
metrics  leave  their  initial  measurement  system units.  The  second  benefit  is  the  ordinal  
measurement system. We build an ordinal measurement system in which the goodness of 
system behavior  related  to  the  specific  metric  m is  better  than  the  value  approach.  The  
size  of  the  metric  value  in  absolute  numbers  is  not  meaningful  any  more,  and  the  
evaluation and interpretation can only be performed in a realtive fashion, i.e. comparing 
the same metric for two or more experiments. 
The function f  is  specified depending on the individual  metric.  An exponential  function 
(see Dev05b, pag. 31) is applied for allocation time, provisioning time and usage time: 
 

itm�_
it eI =  

 
where � is arbitrarily choosen1.  The behavior for the metric is depicted in the Figure 1. 
The problem is to find a function which gives 1 for time value near 0 (this would measure 
optimality  of  the  behavior  system,  for  example  a  service  provisioning  time =  0  it  is  an  
ideal  and  optimal  occurrence  for  the  final  social  utility  index)  and  0  for  large  time  
intervals. 
 

 
Figure 1– Exponential normalization function between 0 and 50000 milliseconds and the resulting value 
range; a beta value of 0.0001 is selected for this plot.

 
The  allocation  rate  is  defined  as  the  ratio  between  the  accepted  requests  and  the  total  
number of received request: 
                                                 
1 The beta parameter defines the curve shape and is fixed for all time metrics and all experiment runs. In 
particular, the beta value used for the time evaluation is set to 0001.0� =  . 
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requests.agent
accepts.agent

Rate.Allocation =  

 
The satisfaction is alreadly normalized and calculated during simulation. The calculation 
is twofold, depending on the seller or buyer role of the agent: 
 

i

it
it price.max

price
 -1buyer.onsatisfacti =  

i

it
it price.min

price
 -1seller.onsatisfacti =  

where price.max and price.min are the price intervals for the agent2. 
 
The distance metric it is normalized taking into account the number of links between the 
trading agents. This measure addresses the costs in terms of time and space to trade with 
longer  distance  traders.  The  normalization  is  performed  with  repsect  to  the  worst  
situation  for  an  agent:  to  trade  with  an  agent  at  the  other  side  of  the  network when the  
topology is a row with all agents: 
 

Agents#
links

cetandis it =  

 
Finally the message normalization is done taking the total number of messages3:  
 

message#
messages

usage.network it= . 

 
2.2.2 Economic metric layers 

The normalized, technical metrics are taken as input for the economic metric layer. The 
economic metric layer appregates the metrics using mean and variance of the indicators: 
 

)I(�E iti =  
 

( )2

t
iiti E-m

n
1

� =  

                                                 
2  The  price  intervals  are  heterogeneous  and  can  be  thougth  as  demand  and  supply  schedules  for  the  
resourcce and service market, as they measure the maximum and minimum price level the agent are willing 
to trade. 
3 This is the main change in the technical metric level because the metric message size is no more collected. 
The  metric  has  a  constant  value  for  every  transaction  and agent.  This  reduces  the  formula  in  deliverable  
D4.2, page 34 to the above one. 
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where  E  and  �  are  the  mean  and  variance  for  each  agent,  respectively.  This  layer  
computes the mean values of the metrics for each agent during the simulation run and its 
variability. The mean and variance indicators are incorporated in the aggregated indexes 
definded at top of the metric pyramid. 
The  aggregated  economic  layer  is  defined  by  two  indexes:  On  DeMand  availabilty  
(ODM)  and  Infrastructure  Costs  (IC).  Both  contain  information  about  the  ability  of  the  
system to provide the service to a user of the CATNETS allocation approaches and the 
costs needed to provide them at a high abstraction level.  
Renaming the variable as ODM-1X = and ICY = , and recalling the fact that X and Y 
are random variable, the final social utility index is defined as a function of ODM, IC and 
their variances4.  
In  this  context,  it  is  needed  to  evaluate  the  mean  and  variance  values  of  agent  metrics.  
They are derived from these formulas:  
 

=
i

ij En
1�  

=
i

ij �n
1�     

metrics,...#1j = . 
 

Finally the ODM and IC are obtained by computing the mean and variances: 
 

( )=
4

1
j x �4

1 -1�   (1-ODM)  

( )=
7

5
jy �3

1�   (IC)  

( )
=

=
4

1j
j

2
u �4

1�   (s_ODM)  

( )
=

=
7

5j
j

2
z �3

1�   (s_IC)  

 
The final social utility index is  
 

2
z

2
u

2
y

2
x ��������L +++=   (Final).  

 
In brackets behind the formulas, the short names of the values are printed as they are used 
in the figures of the evaluation section of this deliverable. The alpha and beta weights are 
set to 0.5 for all evaluations of the allocation approaches. This assumes equal importance 
of both composite indexes and enables a better comparison of the different scenarios. If 

                                                 
4 See [Del05b] for details. 
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one or the other index should be more or less emphasized, a policy maker for a concrete 
application layer network can adjust the final evaluation function. 
 

2.3 Performance evaluation process in the prototype and 
the simulator 

 
The performance evaluation process was reported in D4.2 [Del06b]. In year 3, the work 
continued  with  adapting  and  adjusting  to  practical  issues  occurring  during  experiments  
and observed in the evaluation tasks.  
 
Recalling the main steps, the performance evaluation process of the prototype is made in 
the  following  way:  The  vxarg  script  is  used  to  obtain  in  parallel  the  data  from  the  
different nodes. Once collected the data, other scripts are used to extract the needed data 
from the data files. Aggregated values can be computed by Matlab. Graphics are obtained 
with Matlab and/or GNUPlot. A more detailed description of the particular design of the 
performance measuring framework on the middleware level of the prototype is described 
in  [FCC2007].  The  evaluation  process  in  the  context  of  the  simulation  environment  is  
presented in deliverable D2.3. [Del07a]. 
 
This  section  presents  the  main  function  behavior  of  the  scripts  for  the  analysis  of  
decentralized  and  centralized  behavior  in  the  simulator.  The  scripts  are  divided  in  two  
packages  Catnets_decentral  and  Catnets_central,  which  contain  the  scripts  for  the  
scenario  evaluation.  Both  script  packages  are  available  on  the  CATNETS  website  for  
doenload. The main behavior scheme could be depicted as in Figure 2: 
 
 
 
 
 
 
 
 
 

Figure 2. Main behaviour of scipts

 
 
The raw simulator output  data is  mapped to a structured format,  the agent  database,  by 
the  agent  analysis  script.  Data  stored  in  the  agent  data  base  is  selected  by  the  agent  
evaluation  script  to  produce  the  final  index  and  plot  the  graphs  for  data  analysis  and  
comparison. In detail, the packages are organized as shown in Table 7. 
 
 
 

AGENT  
 
DATABASE 

RAW 
 

DATA 

OUTPUT  
 

DATA 

Agentanalysis Agent_eval 
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Catnets_decentral Catnets_central  Behavior  

import_decentral  Import_central  
The scripts import the data from txt files and 
save the metrics in a cell matrix *_mat. Each 
row contains a dataset of an experiment. 

Agentanalysis2  Agentanalysis_c

The  scripts  select  the  agents  which  have  
traded in the experiment.  For each agent,  the 
scripts  collect  the  defined  set  of  metrics  and  
store  them  in  a  database  like  schema  called  
structure. 

Agent_eval  Agent_eval_c  

These scripts evaluate the upper layer metrics 
and  compute  the  final  social  utility  index  L.  
Plots  are  automatically  generated  which  
enable  the  graphically  comparison  of  several  
simulation runs. 

Catnetsplot  Catnetsplot  
Using  the  database  structure  of  the  analysis  
scripts, the catnets plot scripts produce metric 
plots at agent population level. 

Table 7. Scripts package organization 

 
At  the  end  of  the  evaluation  process,  there  is  the  final_comparison  package  available  
which  performs  a  grahical  comparison  of  the  simulations  runs  between  the  centralized  
and decentralized allocation approaches and between several simulation runs of the same 
scenario. 
 
The main scripts are Agentanalysis2, Agentanalysis_c and agent_eval, agent_eval_c. The 
agent  analysis  scripts  build the following database structure where the evaluation script  
can be applied to. 
 
The root element of the structure is test.T1<experiment_id>. Experiment id is the folder, 
which contains the output files of the simulation run. For example, the root element of the 
structure for experiment id 184664821646 is test.T1184664821646. The fields of the data 
structure are organized by the agent id. Agent ids of the simulation follow this format:  
 
<agent role> <consecutive agent number for this node> Site 
<consecutive node number> 
 
An example structure has this format in MATLAB: 
 
CSA0Site3: [1x1 struct] 
CSA3Site15: [1x1 struct] 
BSA0Site9: [1x1 struct] 
BSA0Site6: [1x1 struct] 
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BSA1Site9: [1x1 struct] 
RA1Site29: [1x1 struct] 
RA0Site24: [1x1 struct] 
RA0Site15: [1x1 struct] … 
 
The  structure  test  contains  one  experiment  called  T1184664821646.  The  experiment  
contains a list of agents. Each agent has its metrics list, which can be accessed using the 
“.” operator in MATLAB.  
 
For  example,  this  operation  selects  agent  CSA1Site8  in  the  given  experiment:  
test.T1184664821646.CSA1Site8. This results in the metrics list for agent CSA1Site8: 
 
Allocation_rate: 0.7579 
Satisfaction: [95x1 double] 
Allocation_Time: [1x95 double] 
Provisioning_Time: [95x1 double] 
Distance: [80x1 double] 
Latency: [80x1 double] 
Usage: [1x80 double] 
Messages: 1 
 
Further  details  on  the  datastructure  computation  and  the  source  code  of  the  evaluation  
scripts are moved to the Annex B and Annex C. The whole script packages are available 
on the CATNETS web site. 
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3 Evaluation of the implemented market mechanisms 
 

3.1 Market mechanism implemented in the simulator 

 
The  market  mechanisms  implemented  in  the  simulator  have  been  the  decentralized  
Catallactic  market  mechanism  and  the  centralized  approach  based  on  auctions.  A  
detailled description can be found in deliverbale D2.2 [Del06a]. 
 

3.1.1 Centralized market 
 
In the simulator, a market for service and resources has been implemented for simulation 
of the centralized approach. A brief description about practical issues is given here. 
 
Service Market:  
 
For  the  service  market,  we  implemented  a  double  auction  institution  [Fri91].  Such  
auctions are organized by means of order books, each for a set  of homogeneous goods. 
An order book is responsible for storing non-executed orders of the agents. For instance, 
in the service market there will be n different order books, each for one of the n different 
services. Buyers and sellers submit their bids in a sealed envelope to the auctioneer. The 
auctioneer aggregates the bids to form supply and demand curves. Once these curves are 
aggregated,  they are used to set  a  specific  price for  trading – the price at  which supply 
equals demand. Double auctions can be either cleared continuously (Continuous Double 
Auction) or periodically (Periodic Double Auction, Call Market): A Continuous Double 
Auction  (CDA)  is  a  double  auction  where  buyers  and  sellers  simultaneously  and  
asynchronously announce bids and offers. Whenever a new order enters the market, the 
auctioneer tries to clear the market immediately. A Call Market is a double auction with 
periodic  uniform clearing,  e.g.  the  auctioneer  clears  the  market  every  five  minutes.  All  
orders in a period are collected in an order book and will be cleared periodically. In the 
implemented  component,  both  clearing  can  be  selected  by  means  of  an  external  
parameter. 
 
In  the  CATNETS  simulator,  the  service  market  auctioneer  is  represented  as  an  agent.  
This  auctioneer  gets  instantiated  by  the  simulator  during  its  initialization  and  can  be  
contacted  by  every  other  agent.  Complex  service  agents  and  basic  service  agents  
communicate with the auctioneer by means of messages, i.e. they can submit their bids in 
form of messages. Furthermore, they can receive further information from the auctioneer 
agent such as the current market price. In case the auctioneer cleared the market – i.e., it 
computed an outcome and prices – agents get informed whether or not they are part of the 
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allocation.  A  detailed  description  of  the  integration  can  be  found  in  Deliverable  2.2  
[Del06a]. 
 
 
Resource Market: 
 
In the resource market, participants are the basic services as resource consumers (buyers) 
and resource services (sellers) offering computational services having specific capacities, 
e.g.  processing  power.  The  same  resources  (e.g.  CPUs)  can  differ  in  their  quality  
attributes,  e.g.  a  hard  disk  can  have  30GB  or  200GB  of  space.  An  adequate  market  
mechanism  for  the  resource  market  has  to  support  simultaneous  trading  of  multiple  
buyers  and  sellers,  as  well  as  an  immediate  resource  allocation.  Furthermore,  the  
mechanism has to support bundle orders – i.e. all-or-nothing orders on multiple resources 
– as basic services usually demand a combination of computer resources. For comprising 
the  different  capacities  of  the  resources  (i.e.  resources  can  differ  in  their  quality),  the  
mechanism has to support bids on multi-attribute resources.  
 
Reviewing the requirements and surveying the literature, no classical auction mechanism 
is  directly  applicable  to  the  resource  market.  Instead,  a  multi-attribute  combinatorial  
exchange (MACE) is applied that satisfies the described requirements [Sch07]. 
 
MACE  allows  multiple  buyers  and  sellers  simultaneously  the  submission  of  bids  on  
heterogonous  services  expressing  substitutabilities  (realized  by  XOR  bids)  and  
complementarities  (realized by bundle  bids).  Furthermore,  the  mechanism is  capable  of  
handling  cardinal  attributes  as  well  as  an  immediate  execution  of  given  orders  as  the  
clearing can be done continuously. For instance, a resource consumer can bid on a bundle 
consisting of a computation service and a storage service. The computing service should 
have  two  processors  where  each  processor  should  have  at  least  700MHz.  Furthermore,  
the  storage  service  should  have  200MB  of  free  space.  After  the  participants  submitted  
their bids to the auctioneer, the allocation (winner determination) and the corresponding 
prices are determined. 
 
The resource market  is  integrated similarly  into the CATNETS simulator as  the service 
market.  The  auctioneer  is  represented  as  an  agent  and  has  access  to  the  market  
implementation. A detailed description of the integration can be found in Deliverable 2.2 
[Del06a]. 

3.1.2 Decentralized market  
 
This section describes an alternative, decentralized approach. The bargaining mechanism 
introduced here, implements the selection decision in the requesting client itself. Related 
realizations of decentral approaches are found in P2P Networks, where Gnutella [AH00] 
is a typical example. An optimization of network performance is out of the scope of the 
clients  behavior;  in  contrast,  the  selfish  conduct  of  each  peer  leads  to  performance  and  
congestion  problems  in  the  P2P  network,  which  are  principally  hard  to  solve  [AH00].  
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Gnutella  uses  a  flooding  algorithm for  service  discovery.  The  catallactic  approach  also  
uses flooding for decentral service and resource discovery.  
 
In decentral matchmaking models, agents communicate directly with each other, decide 
on  their  own,  and  do  not  take  the  system state  into  account.  In  the  Edgeworth  process  
[Var94]  economic  subjects  trade  bilaterally  with  each  other  only  if  their  utility  is  
supposed to increase after the barter.  In that case,  the sum of all  utilities increases after 
each successful barter; the final state is Pareto-optimal and has maximum system utility. 
A  theoretical  fundament  for  how  dynamic  market  processes,  heterogeneous  agents  and  
choice  under  incomplete  information  work  together  can  be  found  in  Neo-Austrian  
Economics, in particular in Friedrich August von Hayek’s Catallaxy concept [HBK+89]. 
Catallaxy  describes  a  state  of  spontaneous  order,  which  comes  into  existence  by  the  
community  members  communicating  (bartering)  with  each  other  and  thus  achieving  a  
community  goal  that  no  single  user  has  planned  for.  The  implementation  of  Catallaxy  
uses  efforts  from  both  agent  technology  and  economics,  notably  agent-based  
computational economics [Tes97]. 
 
An  iterative  bilateral  negotiation  protocol,  similar  to  a  contract-net,  is  used  since  no  
complete information is available [ST98]. Both agents approximate to the trade-off point 
in  iterative  steps  exchanging  offers  and  counter-offers.  This  process  is  described  as  
monotonic concession protocol [RZ94]. If an agent receives an offer or counter-offer, it 
decides to either make a concession or send the same price as in the last negotiation until 
the  negotiation  ends  with  an  accept  or  a  reject.  After  the  negotiation,  the  autonomous  
agents  adapt  their  negotiation  strategies  using  a  feedback  learning  algorithm.  The  
learning concept  used in this  simulation is  derived from so-called  gossip  learning.  This  
means  that  the  agents  learn  from  received  information  about  other  transactions  in  the  
market.  This  information  may  not  be  accurate  or  complete,  but  serves  as  an  indication  
about the gross direction of the market. In our implementation, this gossip information is 
created and broadcast by a successful agent, in analogy to issuing an adhoc information 
in  stock  market  periodicals.  In  economic  simulations  lots  of  research  efforts  on  
evolutionary algorithms can be found. We selected the STDEA (Smith Taylor Decentral 
Evolutionary  Algorithm)  [ST98].  The  STDEA  is  a  decentral  evolutionary  algorithm,  
which  has  no  global  evaluation  metric  (fitness  value),  used  in  genetic  algorithms  to  
separate  the  under  performing  participants  [Gol93].  A  fundamental  quality  of  the  
mechanism is  the decentral  communication and fitness  evaluation,  using local  available 
data.  Every  agent  sends  a  plumage  object  after  a  successful  transaction,  advertising  its  
average income (fitness) and its genes (genotype) to all agents of the population after an 
evaluation  phase,  i.e.  after  it  has  carried  out  a  certain  number  of  negotiations  with  this  
genotype.  If  an  agent  receives  a  plumage  object  from  other  agents,  it  decides  using  a  
blindness  probability,  whether  the  plumage  objects  is  evaluated,  avoiding  premature  
unification of the genotype. 
 
Sender  and  recipient  remain  anonymous.  If  a  certain  maturity  threshold  of  received  
plumage is exceeded, the agent replaces his old genotype with the evolved version after 
the completion of evaluation, selection, recombination and mutation phases as in normal 
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genetic algorithms. The mutation rate is also influencing the algorithm, which determines 
the frequency and the extent of explorative behavior of the population. 
 
Ongoing  communication  by  using  price  signalling  leads  to  constant  adaptation  of  the  
system  as  a  whole  and  propagates  changes  in  the  scarcity  of  resources  throughout  the  
system.  The  resulting  patterns  are  comparable  to  those  witnessed  in  human  market  
negotiation experiments [KR95] [ST99] [Pru81]. 
 

3.2 Evaluation of the market mechanism implemented in 
the simulator 

 

3.2.1 Comparision of the centralized and the decentralized allocation 
approach 

 
The  objective  of  this  section  is  the  performance  comparison  of  the  centralized  and  the  
decentralized allocation approach. Therefore, two sets of scenarios where developed. The 
goal of the first set is to evaluate how the centralized and the decentralized approach deal 
with a raising number of agents within a fixed large network topology. The second set of 
scenarios  is  designed  to  evaluate  how the  density  of  agents  within  a  network  topology  
affects the outcomes of both mechanisms. 
In Section 3.3, the different types of services, their relation to each other and the market 
property files are introduced. This service configuration remains the same all simulation 
runs in both scenario sets. In Section 3.4, the scenarios from the first set and the second 
set  are  described  in  detail.  The  description  of  the  different  experiments  and  their  
evaluation is presented in Section 3.5 and Section 3.6. 

3.3 Services, Resource Types and Market Configuration Files 
 
The service types on service and resource markets are the same for both sets of scenarios. 
Three complex service types, four basic service types and three resource service types are 
specified. In detail, these are CS1, CS2, CS3, BS1, BS2, BS3 as well as ARB1, ARB2, 
ARB3. The dependences between the services are depicted in Figure 3. 
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Figure 3. Service types and their dependencies 

For example, a complex service of the type CS1 requires a basic service of the type BS1 
in order to perform its task. Each type of basic service needs some resources to perform 
its tasks. In the specific case of BS1, these are the resources r1 and r2. These resources 
are  at  most  partially  provided  by  the  resource  service  types  ARB1  and  ARB2.  For  the  
complete set of configuration files (arb.conf, bs.conf and cs.conf) the reader is referred to 
the  example  package  of  the  simulator  release.  This  is  available  for  download  on  the  
CATNETS website. 
 
The  same  market  configuration  files  are  used  in  all  scenarios.  These  files  are  
market_decentral.properties,  strategy.conf,  and  learning.conf  for  the  decentralized  case  
and  market_central.properties  for  the  centralized  case.  The  reader  is  referred  to  
deliverable  D2.3  for  a  detailed  parameter  description  of  those  files.  In  the  
market_decentral.properties  file,  the  starting  price  ranges  for  buyers  and  sellers  on  the  
service as well as the resource market are specified as depicted in Table 8. 
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Basic service price ranges Resource product price ranges

bs1.seller.minPrice = 55 
bs1.seller.maxPrice = 65 
bs1.buyer.minPrice = 55 
bs1.buyer.maxPrice = 65 
bs1.hard.lower.limit = 25 
bs1.hard.upper.limit = 85 
bs1.resource.itemids = r1r2_0 

r1r2_0.seller.minPrice =50.0 
r1r2_0.seller.maxPrice =60.0 
r1r2_0.buyer.minPrice =50.0 
r1r2_0.buyer.maxPrice =60.0 
r1r2_0.hard.lower.limit =20.0 
r1r2_0.hard.upper.limit =80.0 
r1r2_0.baseunit.r1= 1 
r1r2_0.baseunit.r2= 1 
r1r2_0.resourceids = r1 r2 

bs2.seller.minPrice = 30 
bs2.seller.maxPrice = 35 
bs2.buyer.minPrice = 30 
bs2.buyer.maxPrice = 35 
bs2.hard.lower.limit = 15 
bs2.hard.upper.limit = 45 
bs2.resource.itemids = r4_0 

r1r3_0.seller.minPrice =50.0 
r1r3_0.seller.maxPrice =60.0 
r1r3_0.buyer.minPrice =50.0 
r1r3_0.buyer.maxPrice =60.0 
r1r3_0.hard.lower.limit =20.0 
r1r3_0.hard.upper.limit =80.0 
r1r3_0.baseunit.r1= 1 
r1r3_0.baseunit.r3= 1 
r1r3_0.resourceids = r1 r3 

bs3.seller.minPrice = 55 
bs3.seller.maxPrice = 65 
bs3.buyer.minPrice = 55 
bs3.buyer.maxPrice = 65 
bs3.hard.lower.limit = 25 
bs3.hard.upper.limit = 85 
bs3.resource.itemids = r1r3_0 

r4_0.seller.minPrice =25.0 
r4_0.seller.maxPrice =30.0 
r4_0.buyer.minPrice =25.0 
r4_0.buyer.maxPrice =30.0 
r4_0.hard.lower.limit =10.0 
r4_0.hard.upper.limit =40.0 
r4_0.baseunit.r4= 1 
r4_0.resourceids = r4 

bs4.seller.minPrice = 55 
bs4.seller.maxPrice = 65 
bs4.buyer.minPrice = 55 
bs4.buyer.maxPrice = 65 
bs4.hard.lower.limit = 25 
bs4.hard.upper.limit = 85 
bs4.resource.itemids = r4r5_0 

r4r5_0.seller.minPrice =50.0 
r4r5_0.seller.maxPrice =60.0 
r4r5_0.buyer.minPrice =50.0 
r4r5_0.buyer.maxPrice =60.0 
r4r5_0.hard.lower.limit =20.0 
r4r5_0.hard.upper.limit =80.0 
r4r5_0.baseunit.r4= 1 
r4r5_0.baseunit.r5= 1 
r4r5_0.resourceids = r4 r5 

Table 8: Initial price configuration for the services and products traded on the service and 
resource market 

The left column of the table contains the valuations for the basic service types the service 
market  participants  start  with.  The right  column lists  the valuations for  the products  on 
the resource market resource market participants start with. The starting price ranges are 
the  same  for  basic  service  buyers  and  sellers.  The  valuations  depend  on  the  product  
assigned to the basic service types. If a product consists of two resource types, the price 
ranges almost double (cf.  bs4 and bs2).  The same configuration model is applied to the 
resource  market.  This  guarantees  that  the  product  r4_0  consisting  of  the  resource  r4  
cannot  be  more  valuable than  the  product  r4r5_0  consisting  of  the  resources  r4  and  r5.  
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The hard lower and the hard upper price limits are set on the service market 5 units above 
the corresponding limits on the resource market. This models value creation between the 
two markets. A basic service type should have at minimum the same value than the sum 
of resource types it is consuming have. In the learning.conf file, the strategy parameters 
used for the comparisons were defined as depicted in Table 9. 
 
 

Strategy 
maturityThreshold = 5 
courterThreshold = 20 
mutationProbability = 0.05 
ringSize = 10000 
crossOverSelectionModel = 0 
gaussWidth = 0.01 
min = 0.001 
max = 0.999 
genotype.randomize = no 
genotype.acquisitiveness = 0.05 
genotype.satisfaction = 0.99 
genotype.priceStep = 0.5 
genotype.priceNext = 0.05 
genotype.weightMemory = 0.9 

Table 9: Strategy parameter set

 
Agents  using that  strategy  are  likely  to  continue negotiations  making high concessions.  
That leads to fast negotiation rounds that are not likely to be aborted. 
 
In the market_central.properties file, the parameters were set as depicted in Table 10. The 
imitate strategy parameter was set to zero. A simpler version of the valuation generator 
was  used.  The  valuations  of  the  agents  were  drawn  form  a  normal  distribution  with  a  
mean of 10 and a deviation of 1. The lower limit for the values to be generated was set to 
2.85  units.  It  was  verified  by  the  evaluation  of  simulation  runs,  that  this  configuration  
models best the strategy applied by the agents in decentralized case. LPSolve was used as 
solver  and  the  search  for  disjunctive  sets  within  the  orderbooks  was  switched  off.  The  
time limit of the solver was set to 1200ms. For a detailed insight into the configuration 
files themselves the reader is referred to the simulator package. 
 
 

Central market configuration 
basic.useServiceMarketPrice = 1 
service.kprice = 0.5 
resource.kprice = 0.5 
resource.numberattributes = 1 
resource.updateunsuccessful = 0 
resource.orderbook.finddisjunctivesets = false 
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resource.orderbook.split = 0 
resource.allocator.model = 3 
resource.allocator.solver = 1 
resource.allocator.timelimit = 1200 
valuation.imitateStrategy = 0 
valuation.smallestvalue = 2.85 
valuation.normal.mean = 10 
valuation.normal.deviation = 1 

Table 10: Parameter valus of the central market configuration file

 

3.4  Scenarios  

The scenarios of the first set are developed to evaluate how the centralized approach and 
the decentralized approach deal with a rising number of agents within a large topology. 
Three  scenarios  are  created.  Each  of  those  scenarios  is  based  on  the  same  network  
topology  with  500  nodes,  which  are  partially  connected.  If  there  is  a  link  between  two  
nodes,  the  transmission  rate  has  a  minimum capacity  of  1024  Mb/s.  The  probability  of  
node failure is set to zero. The agents are randomly distributed in each scenario. 20% of 
the total agent number are complex service agents, 40% are basic service agents and 40% 
are  resource  service  agents.  A  complex  service  agent  is  able  to  handle  each  type  of  
complex service request. The basic and resource service agents are dedicated to a specific 
service  type.  The number  of  these  types  was  uniformly  distributed.  The scenarios  were  
defined as follows: 
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For  a  detailed  view  on  the  network  topology  and  the  precise  location  of  each  service  
within  the  topology,  the  reader  is  referred  to  the  example  package  on  the  CATNETS  
website. 

The scenarios of the second set are developed to evaluate how the centralized approach 
and  the  decentralized  approach  deal  with  the  same  number  of  agents  within  topologies  
differing  in  size.  Again,  three  scenarios  are  created  whose  topologies  have  up  to  50  
nodes. This network is also partially connected; not all nodes are connected to each other 
like in a fully connected mesh. The links have a constant maximum bandwidth of 1024 
Mb/s. The nodes’ failure probability is zero. The agents are randomly distributed on the 
nodes in each scenario. 20% of the total agents’ number is complex service agents, 40% 
are basic service agents and 40% are resource service agents. A complex service agent is 
able  to  handle  each  type  of  complex  service  request.  The  basic  service  and  resource  
service  agents  are  dedicated  to  a  specific  service  type.  The  number  of  agent  types  is  
uniformly distributed. The scenarios are defined as follows: 
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For  a  detailed  view on  each  network  topology  and  the  precise  location  of  each  service  
within  the  specific  topology,  the  reader  is  referred  to  the  example  package  on  the  
CATNETS website. 

3.5  Experiments  Scenarios  1  

The  goal  of  the  experiments  is  to  evaluate  how  the  centralized  and  the  decentralized  
mechanism perform in scenarios with a topology of 500 nodes with up to 300 agents.  
During  the  third  year,  we  are  not  able  to  achieve  meaningful  simulation  results  for  the  
scenarios  of  the  first  set  in  centralized  case.  The  reason  is  the  not  properly  working  
advanced  Grid  time  model  of  the  simulator  for  the  centralized  allocation  approach.  
Instead of using the advanged Grid time model, only the real time model could be used 
for  simulations.  This  extends  the  duration  of  simulation  runs  a  lot  in  comparison  to  
decentralized case. 
It was planned to perform simulation runs with at least 10000 requests. But, even a single 
simulation run with only 1000 requests lasts up to one week depending from the number 
of agents placed in the topology. It is not possible to calibrate the simulator parameters in 
a manner that a meaningful comparison could have been achieved. Therefore, there is no 
analysis part in this section. 

3.6  Experiments  Scenarios  2  

The  experiments  presented  in  this  section  are  all  based  on  the  second  scenario  set.  In  
Section  3.6.1,  the  simulator  configuration,  which  is  used  for  each  experiment,  is  
described.  The  results  of  the  experiments  are  used  to  gain  experience  of  how  the  
centralized as well as the decentralized mechanism perform in different scenarios (3.6.2). 
In  Section  3.6.3,  the  results  of  centralized  and  decentralized  simulation  runs  are  
compared to each other. In Section 3.6.4, the influence of the hopcount parameters on the 
decentralized  allocation  approach  is  evaluated.  Simulation  runs  with  different  hopcount  
values are analyzed. 
 

3.6.1 Simulator Configuration 
 
Each  experiment  is  started  with  1000  complex  service  requests.  The  complex  service  
selection  probability  is  the  same  for  all  complex  service  types.  Demand  is  submitted  
randomly  to  the  complex  service  agents.  The  time  interval  between  the  submissions  of  
complex  service  requests  is  set  to  1000  milliseconds.  The  queue  size,  which  indicates  
how many requests a complex service agent is able to store, is set to 2000. This ensured 
that no request is lost. The basic service execution time is set to 100 milliseconds. Both 
markets are connected. The budget of a basic service buyer is limited by the earnings it 
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has achieved on the service market. The negotiation timeout is set to 5000 milliseconds 
and  the  message  size  to  2  kByte.  A  small  message  size  avoids  transmission  problems  
which are out of scope in this scenario. 
 
For the centralized market mechanism, the clearing policy of the service market is set to a 
continuous  double  auction.  The  continuous  double  auction  is  chosen  because  the  
simulator  is  not  able  to  perform simulations  in  call  market  mode  if  the  advanced  Grid  
time  model  is  switched  on.  On  the  resource  market,  the  clearing  policy  is  set  to  a  call  
market. The according clearing interval is set to 400 milliseconds. 
 
The parameters for the decentralized market mechanism are set as follows: The starting 
price ranges are not randomized. The dedicated resource model is used and the proposals 
are selected according to the option: best price – one shot. Co-allocation is switched off. 
The parameter hop count is set to one hop count. 
 

3.6.2 Comparison of centralized and decentralized simulation results 
 
In this section, centralized and decentralized simulation runs are analyzed separately from 
each  other.  The  goal  is  to  evaluate  whether  the  results  differ  for  topologies  of  varying  
size.  10 simulation runs are performed in the centralized as well  as in the decentralized 
mode  for  each  scenario.  The  overall  results  of  the  simulation  runs  performed  in  the  
centralized mode are depicted in Figure 4, Figure 5, and Figure 6. 
 
 
 
Figure 4 shows the final index computed for each single simulation run executed in  
 

Figure 4: Final (social utility index) bar diagram centralized comparison of 50 agent and different 
topologies; 10 simulation runs for each scenario are plotted.



 32

Figure 6: Mean spider centralized comparison

 

Figure 5: ODM and IC for centralized comparison
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For  the  centralized  mode  (three  scenarios,  ten  runs  each),  the  values  are  almost  stable  
even  if  the  topology  size  changes.  The  final  index  is  computed  by  the  inverse  On  
DeMand  availability  (1-ODM),  the  Infrastructure  Costs  (IC)  as  well  as  the  related  
standard  deviations.  These  values  are  depicted  in  Figure  5.  They  do  also  not  change  
significantly.  A  high  inverse  On  DeMand  availability  (1-ODM)  and  low  infrastructure  
costs can be observed. 
 
Figure 6 shows the mean and the standard deviation of the values the IC and the 1-ODM 
are computed of. The runs performed for a specific scenario are plotted in the same color. 
The  figures  show that  the  mean values  as  well  as  the  related  standard  deviations  differ  
slightly  for  the  different  scenarios.  Only  two  simulation  runs  differ  significantly  in  the  
allocation rate. 
 
The  small  deviations  of  the  overall  results  imply  that  the  density  of  agents  within  a  
topology  does  not  influence  the  performance  of  the  centralized  mechanism.  This  is  an  
obvious observation for a market mechanism where supply and demand are coordinated 
by a central auctioneer. The low IC value can be explained by the short distances between 
the  auctioneer  and  each  node  that  does  not  deviate  (Figure  7).  The  low  value  of  the  
distance parameter flattens the second influencing value of IC, which is usage. The high 
usage  value  shows that  an  agent  has  almost  no  idle  times  –  it  is  biding  or  delivering  a  
service. The high value of the allocation time parameter indicates that agents spend low 
time on allocation of service and resources. The solver computes very fast the allocation. 
This parameter drives the (1-ODM) value. 
 

 
Figure 7: Standard deviation spider centralized comparison
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The overall results of the decentralized mode are depicted in Figure 8,Figure 9,Figure 10 
and Figure 11. 

 
Figure 8: Final bar decentralized comparison

 

 
Figure 9: ODM and IC decentralized comparison
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Figure 10: Mean spider decentralized comparison

 
Figure 11: Standard deviation spider decentralized comparison
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Figure 8 shows the final index computed for each single simulation run executed in the 
decentralized  mode  (three  scenarios,  ten  runs  each).  The  final  values  are  slightly  
fluctuating between  the  runs  of  the same scenario.  Furthermore  the  final  values  change 
significantly  if  the  topology  size  changes.  The  final  index  is  computed  by  the  mean  
invese on demand availability (1-ODM), the mean infrastructure costs (IC) as well as the 
related  standard  deviations.  These  values  are  depicted  in  Figure  9.  They  also  change  
significantly  between  different  scenarios.  In  the  scenario  50A_10N,  a  lower  inverse  on  
demand availability and high infrastructure costs can be observed, whereas this changes 
for  the  scenarios  50A_30N  and  50A_50N.  Here,  the  graph  shows  a  high  inverse  on  
demand availability (1-ODM) and low infrastructure costs.  
 
The related standard deviation values are constant over all simulation runs. Figure 10 and 
Figure  11  show the  mean  and  standard  deviation  values  the  IC  and  1-ODM values  are  
computed  of.  The  runs  which  correspond  to  a  specific  scenario  are  plotted  in  the  same  
color. The figures show a significant change in the mean values for the runs of different 
scenarios.  The related  standard deviation values differ  only  slightly.  Only the values of  
the allocation rate deviate a bit. 
The deviations of the final values between the different scenarios show that the topology 
size influences the outcome of the decentralized approach. Two effects can be observed if 
the  topology  size  is  increased.  On  the  one  hand  the  number  of  negotiation  partners  
decreases. This is caused by the parameter hopcount which limits the range of the call for 
proposal message. The decreasing number of negotiation partners results in decreasing IC 
(Figure 9). On the other hand in a bigger network topology the 1-ODM increases. This is 
mainly caused by the decreasing number of negotiation partners. The less the negotiation 
partners are available the higher the probability is that they are busy. This is verified by 
the  values  IC  and  1-ODM  are  computed  of.  The  bigger  the  topology  the  more  the  
numbers  of  sent  messages  declines.  Agein,  the  reason  is  that  the  number  of  possible  
negotiation partners decreases, whereas the distance value rises a little bit and the usage 
parameter  is  constant.  That  causes  a  declining  IC  value.  The  1-ODM value  decrease  is  
caused  by  a  lower  allocation  rate  as  well  as  a  lower  satisfaction.  The  best  final  result  
using the decentralized mechanism was achieved in the scenario 50A_30N. In that case, 
IC and 1-ODM are balanced best. 
 

3.6.3 Comparison of centralized to decentralized simulation results 
 
In  this  section,  the  centralized  and  the  decentralized  mechanism  are  compared  to  each  
other  by  means  of  the  results  of  10  simulation  runs  for  each  scenario.  The  goal  is  to  
evaluate which mechanism performs better in which scenarios. 
Like Figure 4 and Figure 8 from section 3.6.2, they show that the centralized mechanism 
performs  better  in  each  scenario.  The  final  social  utility  index  value  is  almost  constant  
around 0.51, whereas the final value for the decentralized mechanism fluctuates between 
0.61 and 0.53. The better performance of the centralized approach is based on the lower 
IC  costs  compared  to  the  decentralized  approach.  The  On  DeMand  availability  of  the  
resources is higher for all runs performed in decentralized case (Figure 5 and Figure 9). 
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But, the mean IC and their standard deviation are higher in decentralized simulation runs. 
The  overall  results  show  the  centralized  mechanism  outperformes  the  decentrlaized  
approach.  
 
Figure 12, Figure 13, Figure 14, and Figure 15 show a comparison of the results of the 
simulation  runs  for  the  scenario  50A_30N.  This  scenario  is  chosen  for  the  direct  
comparison  of  the  centralized  to  the  decentralized  approach  because  it  showed  the  best  
results for decentralized case. Figure 12 depicts the final values for each simulation run. 
It can be observed that the decentralized case results are slightly worse than the ones of 
centralized case. This is caused by the high mean IC of decentralized case compared to 
the  ones  of  centralized  case  (Figure  9).  Furthermore  the  better  1-ODM  mean  value  of  
decentralized case is not able to turn the tide because of its high standard deviation. That 
is what Figure 14 and Figure 15 depict in detail. The mean allocation rate, which drives 
odm,  is  really  high  for  the  decentralized  case  compared  to  the  centralized  approach  
(Figure 14). But it is combined with a high standard deviation (Figure 15). That is why 
the  decentralized  case  cannot  outperform  the  decentralized  case.  The  high  mean  
allocation rate which drives the ODM value is neutralized by its high standard deviation. 
Moreover the IC values usage and distance turn out better for the centralized case. That 
combination makes the centralized case superior to the decentralized case. 
 

 
Figure 12: Final bar decentralized vs. centralized
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Figure 13: ODM and IC decentralized vs. centralized

 
Figure 14: Spider mean centralized vs. decentralized
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Figure 15: Standard deviation spider decentralized vs. centralized

 

3.6.4 Influence of hopcount on decentralized simulation results 
 
This  section  analyzes  the  influence  of  the  hopcount  parameter  on  the  decentralized  
simulation  results.  The  parameter  hopcount  determines  the  range  of  call  for  proposal  
messages.  The  analysis  was  done  based  on  the  scenario  50A_10N.  The  hopcount  
parameter is evaluated with a value of zero, two and four. For each parameter setting, 10 
simulation runs are executed. 
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Figure 16: Final bar hopcount comparison

 

 
Figure 17: ODM and IC hopcout comparison
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Figure 18: Mean spider hopcount comparison

 

 
Figure 19: Standard deviation spider hopcount comparison

The Figure  16,  Figure  17,  Figure  18  and  Figure  19  show the  results  for  each  hopcount  
setting. Figure 16 shows the final values for each parameter setting. The best values are 
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achieved if hopcount is set to zero. If hopcount is set to two or four the results differ only 
slightly.  Figure  17  depicts  IC  and  1-ODM  values  for  each  experiment  type.  It  can  be  
observed  that  a  raising  hopcount  causes  higher  mean  IC  costs.  On  the  other  hand,  the  
mean 1-ODM value and its deviation are decreasing the higher the parameter hopcount  
was  set.  This  can  be  explained  by  the  graphs  depicted  in  the  Figure  18  and  Figure  19.  
Figure  18  shows  that  the  parameters  influencing  the  1-ODM  value  are  raising  only  
slightly  for  a  higher  hopcount.  But  the  message  parameter,  which  drives  IC  value,  is  
rising  by  a  large  value.  The  standard  deviations  for  the  different  parameters  are  almost  
stable  (Figure  19).  Small  deviations  can  be  observed  for  the  parameters  distance  and  
allocation  rate.  The  experiments  show  that  raising  the  hopcount  parameter  lowers  the  
final  value.  The  gain  that  can  be  achieved  by  communicating  to  a  bigger  set  of  
negotiation  partners  is  lower  than  the  costs  arising  to  enable  the  communication.  In  a  
topology with high a  density  of agents,  the hopcount  parameter  has to  be  set  as low as  
possible. 
 

3.6.5 Evaluation of the catallactic approach with failure swichted on 
 
This experiment analyses the influence of message failure on system performance of the 
catallactic  strategy.  300  agents  were  distributed  over  a  topology  with  500  nodes.  The  
failure rate of each node increases from 0% up to 10%. Two different catallactic strategy 
variations are compared to each other. 
 

Description  Configuration  
complex service types and 
their basic service 
configuration 

cs1 bs3  
cs2 bs1 bs2 
cs3 bs1 bs4 

basic services and their 
requested resource bundle 

bs1 bs1 bronze r1 3 r2 3 
bs2 bs2 gold r4 2 
bs3 bs3 bronze r1 25 r3 10 
bs4 bs4 bronze r4 33 r5 25 

resource provider types and 
available resources for each 
type 

arb1 r1 50 r2 30 r3 30 
arb2 r4 50 r5 50 
arb3 r1 50 r3 44 r4 45 

Table 11. Service and resource supply and demand configuration.

 
The  configuration  of  the  service  market  encompasses  three  complex  service  types.  The  
detailed configuration shows Table 11. Complex service cs1 requests only basic service 
bs3 while complex services cs2 and cs3 need two basic services (bs1 and bs2 for cs2, bs1 
and  bs4  for  cs3)  to  fulfill  their  demand.  The  user  demands  are  equally  distributed  to  
available  complex services in  the  system.  Every  site,  which  hosts  a  complex service,  is  
able to process cs1,  cs2 and cs3 complex service user demands. On the service market,  
sellers  offer  four  basic  services,  which  are  all  requested  by  complex  services.  On  the  
resource  market,  the  basic  services  bs1  –  bs4  request  a  resource  bundle  from the  three  
available  resource  provider  types  arb1  –  arb3.  The  resource  providers  use  a  dedicated  
resource  model,  which  assigns  the  whole  resource  to  one  single  basic  service.  The  not  
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used resources are not available for another basic service. Using this resource model, bs1 
and bs3 compete for resource provider arb1, bs2 and bs4 compete for resource provider 
arb2 and bs2 and bs3 compete for resource provider arb3.  
 
In this scenario, the products on the service market are bs1 – bs4. The prices follow the 
price configuration of Table 12. The left side of the table presents the basic service price 
configuration; the right side of the table shows the corresponding price configuration of 
the resource market. Each basic service requests one specific resource product. The hard 
upper and lower limit prices for basic services on the resource market are 5 units above 
the price level of the corresponding limits of the resource products traded on the resource 
market.  This  forces  resources  to  be  cheaper  than  the  services  on  the  service  market  in  
general. But, there is still the possibility of a resource product to be more expensive than 
a basic service is able to pay. If a basic service bs1 sells his service for 55 price units and 
the resource bundle is traded with 70 resource units,  a basic service bs1 fails in buying 
the resource bundle. For a detailed explanation of the individual properties, the reader is 
referred to deliverable D2.3. 
 
Basic service price configuration Resource price configuration 
bs1.seller.minPrice = 55 
bs1.seller.maxPrice = 65 
bs1.buyer.minPrice = 55 
bs1.buyer.maxPrice = 65 
bs1.hard.lower.limit = 25 
bs1.hard.upper.limit = 85 

bs1.resource.itemids = r1r2_0 

r1r2_0.seller.minPrice =50.0 
r1r2_0.seller.maxPrice =60.0 
r1r2_0.buyer.minPrice =50.0 
r1r2_0.buyer.maxPrice =60.0 
r1r2_0.hard.lower.limit =20.0 
r1r2_0.hard.upper.limit =80.0 
r1r2_0.baseunit.r1= 1 
r1r2_0.baseunit.r2= 1 
r1r2_0.resourceids = r1 r2  

bs2.seller.minPrice = 30 
bs2.seller.maxPrice = 35 
bs2.buyer.minPrice = 30 
bs2.buyer.maxPrice = 35 
bs2.hard.lower.limit = 15 
bs2.hard.upper.limit = 45 

bs2.resource.itemids = r4_0 

r4_0.seller.minPrice =25.0 
r4_0.seller.maxPrice =30.0 
r4_0.buyer.minPrice =25.0 
r4_0.buyer.maxPrice =30.0 
r4_0.hard.lower.limit =10.0 
r4_0.hard.upper.limit =40.0 
r4_0.baseunit.r4= 1 
r4_0.resourceids = r4  

bs3.seller.minPrice = 55 
bs3.seller.maxPrice = 65 
bs3.buyer.minPrice = 55 
bs3.buyer.maxPrice = 65 
bs3.hard.lower.limit = 25 
bs3.hard.upper.limit = 85 

bs3.resource.itemids = r1r3_0 

r1r3_0.seller.minPrice =50.0 
r1r3_0.seller.maxPrice =60.0 
r1r3_0.buyer.minPrice =50.0 
r1r3_0.buyer.maxPrice =60.0 
r1r3_0.hard.lower.limit =20.0 
r1r3_0.hard.upper.limit =80.0 
r1r3_0.baseunit.r1= 1 
r1r3_0.baseunit.r3= 1 
r1r3_0.resourceids = r1 r3  

bs4.seller.minPrice = 55 
bs4.seller.maxPrice = 65 
bs4.buyer.minPrice = 55 
bs4.buyer.maxPrice = 65 
bs4.hard.lower.limit = 25 
bs4.hard.upper.limit = 85 

r4r5_0.seller.minPrice =50.0 
r4r5_0.seller.maxPrice =60.0 
r4r5_0.buyer.minPrice =50.0 
r4r5_0.buyer.maxPrice =60.0 
r4r5_0.hard.lower.limit =20.0 
r4r5_0.hard.upper.limit =80.0 
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bs4.resource.itemids = r4r5_0 
r4r5_0.baseunit.r4= 1 
r4r5_0.baseunit.r5= 1 
r4r5_0.resourceids = r4 r5 

Table 12. Initial price configuration for services and resource bundles.

 
Next  to  the  scenario  configuration,  the  main  simulator  configuration  integrates  the  
configuration described above and sets the simulation parameters. A user submits 10000 
complex  requests  to  the  simulation  scenario.  Each  complex  service  type  is  requested  
equally.  The  complex  service  dispatcher  randomly  selects  an  inbox  queue  of  complex  
service instance hosted on a Grid site. The delay between each complex service request is 
set to 1000ms. The delay remains constant during the simulation run. The execution time 
of each basic service is 1000ms. A constant execution time disables the effects of service 
execution times on the resource allocation approach. Both markets are connected to each 
other.  This  means,  the  agreement  price  of  a  basic  service  seller  equals  the  budget  of  a  
resource  buyer.  As  already  mentioned,  the  resource  providers  use  a  dedicated  resource  
model. Co-allocation of resource on the resource market is switched off. A buyer uses a 
fifo policy for selecting a seller to negotiate with. The fastest answering seller is selected. 
The hop count for all broadcast messages is set to 3 hops. A discovery timeout of 500ms 
limits the waiting time for reaching a proposal. If a negotiation partner does not answer at 
all,  a negotiation timeout of 2500ms for each market resets the negotiation. The size of 
each message is set to 2 kByte which will lead to low delays on the network. 
 
Strategy 1 Strategy 2 
maturityThreshold = 5 maturityThreshold = 5 
courterThreshold = 20 courterThreshold = 20 
crossoverProbability = 0.20 crossoverProbability = 0.20 
mutationProbability = 0.7 mutationProbability = 0.05 
ringSize = 10000 ringSize = 10000 
crossOverSelectionModel = 0 crossOverSelectionModel = 0 
gaussWidth = 0.1 
min = 0.001 
max = 0.999 

gaussWidth = 0.01 
min = 0.001 
max = 0.999 

genotype.randomize = yes 
genotype.acquisitiveness = [0.4, 0.8] 
genotype.satisfaction = [0.4, 0.8] 
genotype.priceStep = [0.1,0.4] 
genotype.priceNext = [0.1,0.6] 
genotype.weightMemory = [0.3,0.7] 

genotype.randomize = no 
genotype.acquisitiveness = 0.05 
genotype.satisfaction = 0.99 
genotype.priceStep = 0.5 
genotype.priceNext = 0.05 
genotype.weightMemory = 0.9 

Table 13. Two strategy configurations for the failure scenario analysis.

 
Two  different  learning  setups  were  compared  to  each  other  for  the  defined  failure  
scenarios whose configuration lists Table 13. The characteristic of the first strategy is a 
randomized  initial  behavior  and  fast  adaption  to  new  behavior.  A  random  number  is  
drawn  between  the  given  interval  bounds  for  each  gene  of  the  agent.  This  assures  a  
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diverse trading behavior of the agents. Additionally, a mutation probability of 0.7 forces 
the agent  to  mutate 70% of  the 5 genes in  every learning step.  A large Gaussian width  
causes  adaptations  steps  up  to  10%  of  the  current  gene  value.  Together  with  the  high  
mutation rate, the agents have the possibility to move very fast away from an initial bad 
trading performance.  
 
The strategy 2 does not randomize the initial trading behavior. Every agent uses the given 
genotype  as  a  start  behavior.  The  characteristic  of  this  behavior  is  a  high  satisfaction  
value together with a high price step value which leads to only a few negotiations round 
and  low  cancellation  of  negotiations.  A  low  acquisitiveness  forces  the  agent  to  make  
concessions even if the agent doesn’t make profit  any more. The genes of the genotype 
are quite stable, only with a probability of 5% a gene is mutated with at maximum 1% of 
the gene’s value (Gaussian width). 
 
Using  this  simulation  and  strategy  configuration,  Table  14  gives  an  overview  of  the  
simulation runs. 10 simulations with two strategies and failure settings are examined. The 
following plots print only the experiment id due to amount of space. The table helps to 
map the results to the experiment setting.  
 
Experiment Id Parameter setup 
1189323882133  Strategy  1,  0%  failure  
1189326383709  Strategy  1,  1%  failure  
1189327402864  Strategy  1,  2%  failure  
1189328268368  Strategy  1,  5%  failure  
1189330779897  Strategy  1, 10% failure 
1189333572714  Strategy  2,  0%  failure  
1189337074555  Strategy  2,  1%  failure  
1189344749997  Strategy  2,  2%  failure  
1189347224464  Strategy  2,  5%  failure  
1189348828710  Strategy  2, 10% failure 

Table 14. Mapping of experiment ids to parameter setup.

 
Figure  20  depicts  the  overall  performance  of  the  catallactic  allocation  approach.  The  
strategy  shows  less  loss  from  the  optiomal  allocation  performance  in  both  0%  failure  
simulation runs. The final index value is about 0.1 units better in the second strategy than 
in the first strategy. The second strategy shows a better inverse on demand availability (1-
ODM)  than  the  first  strategy.  But,  the  infrastructure  costs  remain  almost  the  same.  As  
expected, the introduction of failure to the system increases the non availibility and leads 
to  more  loss  of  the  system.  Additionally,  the  infrastrubure  costs  increase.  The  standard  
deviations of both indexes IC and ODM equal in both strategy settings. 
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Figure  20.  Bar  graph  for  10  simulations  runs  and  different  scenario  setup.  The  simulations  runs  are  
compared with the On Demand Availability (ODM) and Infrastructure Cost (IC) index which are used to 
compute the final loss function (Final). 

 
A more detailled analysis enables the mean and stadard deviation radar plot in Figure 21 
and  Figure  22.  Seven  metric  values  are  aggregated  on  agent  population  level  and  
normalized between the interval 0 and 1. Each colored line equals an experiment run. The 
experiment with the yellow line (0% failure and strategy 1) shows the the best  average 
satisfaction  value  with  low  standard  deviation.  Beside  the  best  allocation  time,  this  
simulation  run  has  second  best  allocation  rate.  A  very  high  number  of  messages  are  
needed to reach this performance. All agents in the system show high usage. This means, 
the agents show low idle times. There are two reasons for low idle times: first the agent 
spends lots of time in negotiations and deliverance of services or the agents are blocked 
until simulation end due to lost unblocking messages. Additionally, the strategy 1 applied 
to this scenario selects trading partners with low distance. The provisioning time is worse 
in failure scenarios. This occurs due to the low number of obersvation in these scenarios. 
All other simulation runs spend more time on service provisioning. 
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Figure 21. Spider plot for 10 simulations runs.

 

 
Figure 22. Spider plot for 10 simulation runs.
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Table  15  lists  the  number  of  observations  used  in  the  scenario  for  index  computations.  
Strategy  2  with  the  predefined  genotype  outperforms  strategy  2  with  the  randomized  
genotype  initialization.  Increasing  the  failure  rate  rapidly  decreases  the  number  of  
observation.  Only  a  few of  the  10000  requests  are  successfully  completed.  The  current  
catallactic strategy implementation is very sensitive to message failures.  There is also a 
difference between the numbers of agent involved in trades. This number is decreases in 
strategy 1 faster than in strategy 2. 
 

Experiment Id Observation 
1189323882133 BSA_buyer: 43, BSA_seller: 79, RSA: 34, 

CSA: 54 
1194 observations (accepts SM + RM) 

1189326383709 BSA_buyer: 38, BSA_seller: 77, RSA: 27, 
CSA: 52 

356 observations (accepts SM + RM) 
1189327402864  BSA_buyer: 8, BSA_seller: 54, RSA: 8, 

CSA: 40 
78 observations (accepts SM + RM) 

1189328268368  BSA_buyer: 1, BSA_seller: 40, RSA: 1, 
CSA: 28 

51 observations (accepts SM + RM) 
1189330779897  BSA_buyer: 8, BSA_seller: 38, RSA: 8, 

CSA: 31 
46 observations (accepts SM + RM) 

1189333572714 BSA_buyer: 65, BSA_seller: 86, RSA: 53, 
CSA: 54 

14518 observations (accepts SM + RM) 
1189337074555 BSA_buyer: 67, BSA_seller: 90, RSA: 54, 

CSA: 54 
1911 observations (accepts SM + RM) 

1189344749997 BSA_buyer: 64, BSA_seller: 86, RSA: 50, 
CSA: 51 

571 observations (accepts SM + RM) 
1189347224464 BSA_buyer: 55, BSA_seller: 77, RSA: 44, 

CSA: 49 
242 observations (accepts SM + RM) 

1189348828710  BSA_buyer:  53,  BSA_seller: 77, RSA: 46, 
CSA: 49 

220 observations (accepts SM + RM) 
Table 15. Observation and involved agents for index computation

 
Summarizing  the  failure  experiments,  the  catallactic  strategy  shows  a  high  messaging  
vulnerability in the analyzed scenarios. The reason is the high number of messages which 
have to be transferred until an agreement is closed. The final system loss increases with 
the  increasing  unavailability  of  the  agents  and  their  services.  But,  the  numbers  of  
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observation  have  to  be  taken  into  accounts,  which  prevent  higher  loss  measures  of  the  
system.  The  infrastructure  costs  also  increase  with  higher  failure  rates  because  agents  
wait  for the trading partners to answer until  a predefined timeout.  In case of no failure,  
the standard deviations are higher than in case of message failure. Agents trade to reach 
an  agreement  with  very  different  success.  This  is  the  reason  for  a  high  allocation  rate  
deviation in the failure free simulation runs. The main reason for the different success is 
the one shot policy of the agents (agents have only one try to reach an agreement) and no 
parallel negotiations supported. 
 

3.6.6 Decentralized approach and the learning algoithm 
 
This experiment analysis the co-evolutionary algorithm used in the catallactic strategy for 
adapting  the  strategy’s  genotype.  The  genotype,  the  price  estimation  and  the  fitness  
evolvement  is  measured  in  a  large  scale  scenario.  The  automated  scenario  generator  is  
used for generating this scenario.  The scenario topology follows the Waxman model of  
Brite  with  2000  nodes  randomly  distributed.  Table  16  shows  the  scenario  generator  
configuration.  The  bandwidth  of  the  links  was  set  to  a  fixed  value.  This  will  almost  
exclude any bandwidth influence on the simulation results. Table 16 gives an overview of 
the  CATNETS service  and  resource  market  scenario  setting  for  the  automated  scenario  
generator.  Keeping  the  complexity  low,  the  scenario  generator  produces  a  set  of  three  
resource  providers  with  a  resource  bundle  size  of  at  maximum  3  resource  items  and  a  
maximum quantity of 100 resource units. The set of basic services and complex service is 
also limited to 3 different types. Additionally, the workflow length of a complex service 
is limited to 3 basic services. The topology is assumed to be stable, no failures occur. The 
automated  scenario  generator  places  2000  agents  on  the  topology  with  20  %  complex  
service and 40 % basic service and resource service using a uniform distribution to map 
the  number  of  agents  to  service  and  resource  types.  The  last  two  configuration  entries  
BSTable and ARBTable display the mapping of how many instances of each agent type 
are distributed on the network nodes. 
 
Scenario generator parameter Value 
#Resources Number ResNum = 3 
#Resource Max Quantity ResMaxQuantity = 100 
#Available Resource Bundle 
Number 

ARBNumber = 3 

#Available Resource Bundle Max 
Number 

ARBMaxResNum = 3 

#Basic Service Number BSNumber = 3
#Complex Service Number CSNumber = 3 
#Complex Service Max 
Cardinality 

CSMaxCardinality = 3 

#Node Min Failure probability FailProbMin = 0.0 
#Node Max Failure probability FailProbMax = 0.0 
#Quality Number QualityNumber = 4 
#Quality Level Quality0 = platinum, Quality1 = gold, 

Quality2 = silver, Quality3 = bronze 
#0 Centralized; 1 Catallactic allocationMechanism = 1 
#Agents Number agentsNum = 2000 
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#CS Schedule 0= All, 1= random 
set 

csSchedule = 0 

#Agent share in percent csaPercentage = 20, bsaPercentage = 40, 
raPercentage = 40 

#Probability distribution (0 = 
uniform) 

csaDistrProb = 0, bsaDistrProb = 0, 
raDistrProb = 0 

#BSTable bs1 = 33.0, bs2 = 33.0, bs3 = 33.0 
#ARBTable arb1 = 33.0, arb2 = 33.0, arb3 = 33.0 

Table  16.  Scenario  generator  parameters  for  generating  complex  service,  basic  service  and  available  
resource bundle types and their distribution over the network topology using probability distributions.

 
The automated scenario generator creates the scenario presented in Table 17. There is a 
supply of three different basic service types and a demand of three different basic service 
sequences  of  the  complex  services.  The  resource  market  offers  three  resource  bundles  
which are asked by basic services. 
 
Description  Configuration  
complex service types and their basic 
service configuration 

cs1 bs2  
cs2 bs1 bs3 bs2  
cs3 bs2 bs3 

basic services and their requested resource 
bundle 

bs1 bs1 bronze r1 20 r3 3 
bs2 bs2 bronze r2 52 
bs3 bs3 bronze r2 6 r3 1 

resource provider types and available 
resources for each type 

arb1 r1 21 r3 10 
arb2 r2 25 r3 1 
arb3 r2 59 

Table 17. Generated scenario configuration with different workflow lengths for complex services and three 
different complex service, basic service and resource types.

 
The price configuration is similar to the price configuration described in the last section. 
The  prices  help  to  explain  the  following  analysis  of  the  price  estimation  of  the  agents  
presented later in this section. The hard upper and lower limit price help to identify the 
price ranges of the traded products. 
 
Basic service price configuration Resource price configuration 
bs1.seller.minPrice = 55 
bs1.seller.maxPrice = 65 
bs1.buyer.minPrice = 55 
bs1.buyer.maxPrice = 65 
bs1.hard.lower.limit = 25 
bs1.hard.upper.limit = 85 

bs1.resource.itemids = r1r3 

r1r3.seller.minPrice =50.0 
r1r3.seller.maxPrice =60.0 
r1r3.buyer.minPrice =50.0 
r1r3.buyer.maxPrice =60.0 
r1r3.hard.lower.limit =20.0 
r1r3.hard.upper.limit =80.0 
r1r3.baseunit.r1= 20 
r1r3.baseunit.r3= 3 
r1r3.resourceids = r1 r3  

bs2.seller.minPrice = 30 
bs2.seller.maxPrice = 35 
bs2.buyer.minPrice = 30 
bs2.buyer.maxPrice = 35 
bs2.hard.lower.limit = 15 
bs2.hard.upper.limit = 45 

r2.seller.minPrice =25.0 
r2.seller.maxPrice =35.0 
r2.buyer.minPrice =25.0 
r2.buyer.maxPrice =35.0 
r2.hard.lower.limit =20.0 
r2.hard.upper.limit =40.0 
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bs2.resource.itemids = r2 
r2.baseunit.r2= 52 
r2.resourceids = r2  

bs3.seller.minPrice = 55 
bs3.seller.maxPrice = 65 
bs3.buyer.minPrice = 55 
bs3.buyer.maxPrice = 65 
bs3.hard.lower.limit = 25 
bs3.hard.upper.limit = 85 

bs3.resource.itemids = r2r3 

r2r3.seller.minPrice =50.0 
r2r3.seller.maxPrice =60.0 
r2r3.buyer.minPrice =50.0 
r2r3.buyer.maxPrice =60.0 
r2r3.hard.lower.limit =20.0 
r2r3.hard.upper.limit =80.0 
r2r3.baseunit.r2= 6 
r2r3.baseunit.r3= 1 
r2r3.resourceids = r2 r3 

Table 18. Price configuration for basic services and resource bundles. 

 
The simulation run is started with 100000 complex service requests with a delay of 1000 
ms between.  The maximum queue size  is  increased to  20000 to  ensure  there  is  enough 
capacity to store all requests, if the system is not able to fulfill the current request faster 
than  the  incoming  requests.  The  execution  time  of  basic  services  is  set  to  1000  
milliseconds.  Both,  the  service  and  the  resource  market  are  connected.  The  service  
seller’s  income  is  his  budget  on  the  resource  market.  The  resource  providers  use  a  
didcated resource model. The buyers select the first incoming proposal for the succeeding 
bilateral negotiation. Co-allocation is switched off. The call-for-proposal and the plumage 
broadcast is limited to 3 hops. The discovery timeout is set to 500 ms. The simulation run 
uses the advanced Grid time model. 
 
 

Strategy 1 
maturityThreshold = 5 
courterThreshold = 20 
crossoverProbability = 0.20 
mutationProbability = 0.7 
ringSize = 10000 
crossOverSelectionModel = 0 
gaussWidth = 0.01 
min = 0.001 
max = 0.999 
genotype.randomize = yes 
genotype.acquisitiveness = [0.4, 0.8] 
genotype.satisfaction = [0.4, 0.8] 
genotype.priceStep = [0.1,0.4] 
genotype.priceNext = [0.1,0.6] 
genotype.weightMemory = [0.3,0.7] 

Table 19. Strategy configuration for the simulated scenario; the initial genotype is randomized between the 
given interval limits. 
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Table  19  presents  the  selected  starting  configuration  of  the  strategy  and  the  learning  
algorithm. The initial genotype of each agent is randomized at the beginning between the 
given  interval  limits.  A high mutation probability  and a  low Gaussian width enable the 
agent to adapt their genes often and in small steps. They wait for 5 generations until they 
broadcast their plumage and perform a crossover when they have received 20 plumages. 
 
A  pair  of  agents  for  each  agent  role  was  chosen  for  analysis.  Figure  23  and  Figure  24  
show two pairs of complex service agents. The left plot displays the genotype evolution, 
the plot in the middle the price estimations and right plot the fitness evolution for 200 and 
500 observations. An observation is a successful trade between a complex service agent 
and  a  basic  service  agent.  In  Figure  23,  both  agents  are  very  successful  in  their  trades.  
Their  fitness  increases  from  0  at  the  beginning  to  a  peak  around  10  to  a  quite  stable  
fitness value. One reason for this high fitness value is a low price step. Together with a 
decreasing satisfaction value, the agents follow a strategy of fast agreement with only low 
price concessions. The agent with a higher price concession rate (acquisitiveness) is able 
to make more profit.  A weighting memory value of 0.6 seems a good parameter taking 
old agreement prices into account for new price range estimations.  
 
The price estimation plot shows for both agents of Figure 23 basic service agent trades at 
different  estimated  market  price  level.  Both  trade  at  least  two  different  basic  services.  
The market  price estimation is  more stable  for  the upper agent  than the lower one.  The 
means, the upper complex service agent gets enough offers from basic service. He hasn’t 
to  increase  his  price  estimations  to  a  possible  scarceness  of  basic  services.  The  lower  
agent has to increase his price estimations to be able to contract basic services. 
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Figure 23. A pair of successful complex service agents in the simulated scenario; the left graph displays 
the genotype evolution, the plot in the middle the price estimations and right plot the fitness evolution for 
200 observations.

 
In Figure 24, a second set of complex services is selected. This set isn’t as successful as 
the first  set  in estimating the market  price but engages in more trades than the first  set.  
The set uses a higher satisfaction value than the first set, which leads to more negotiation 
round  and  a  higher  possibility  of  reaching  an  agreement.  The  upper  agent  is  more  
successful  in  making  some  large  concession  steps  than  the  lower  agent.  A  low  
acquisitiveness value between 0 and 5 % still enables the agent to reach agreements but 
with only with negative fitness. 
 
Summarizing  up,  successful  strategies  of  service  sellers  follow  a  strategy  with  a  low  
concession rate together with a high concession step or a high concession rate with lower 
concession  steps.  The  higher  the  satisfaction  value,  the  more  successful  trades  are  
possible. 
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Figure 24. A pair of unsuccessful complex service agents in simulated scenario; the left graph displays the 
genotype evolution, the plot in the middle the price estimations and right plot the fitness evolution for 500 
observations.

 
The  basic  services  have  two  roles  on  in  the  CATNETS  scenario:  a  seller  role  on  the  
service  market  and  a  buyer  role  on  the  resource  market.  Figure  25  presents  a  set  of  
selected basic  service  sellers  for  300  observations.  Both  agents  show a  positive  fitness,  
which  indicates  a  successful  strategy.  They  follow  the  strategy  of  many  negotiation  
rounds together with a low concession rate and high concession steps. But, their market 
price  estimation  differs  a  lot.  The  upper  basic  service  seller  is  at  the  beginning  not  
successful. He has to lower his price estimations. After a while, he gets more and more 
selected  and  increases  the  prices  for  his  service.  The  lower  agent  is  successfully  at  the  
beginning  and  has  to  lower  his  prices  step  by  step  because  he  did  not  succeed  in  
negotiations. As a result of this, his fitness decreases over time. 
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Figure 25. A pair of basic service sellers in the simulation scenario; the left graph displays the genotype 
evolution, the plot in the middle the price estimations and right plot the fitness evolution for 300 
observations.

 
Figure 26 and Figure 27 plot a set of basic service buyer agents and resource agents. In 
general,  the  number  of  observation  decreases  on  the  service  market  because  resource  
negotiations  are  started  only  after  successful  service  market  agreements.  One  basic  
service buyer agent with 60 and one agent with 150 observations present Figure 26. Both 
agents depend on the results of the service market seller agents. This agreement price is 
used to adapt the price ranges. Comparing to the price range adaptation before, the upper 
and  lower  bounds  show  higher  variability.  The  market  price  estimations  for  resource  
products  are  fairly  stable.  The  lower  agent  shows a  successful  strategy,  low price  steps  
together with a high concession and satisfaction rate. The upper agent is not able to reach 
positive fitness values because he isn’t able to reach his current price estimation due to a 
high concession step. In the current simulation scenario configuration, it is not possible to 
initialize  the  resource  market  with  a  different  strategy  setup.  A faster  adaptation  of  the  
genotype on the resource market could help to improve the fitness results. 
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Figure 26. A pair of basic service buyers; the left graph displays the genotype evolution, the plot in the 
middle the price estimations and right plot the fitness evolution for 150 observations.
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Figure 27. A pair of resource agents; the left graph displays the genotype evolution, the plot in the middle 
the price estimations and right plot the fitness evolution for 50 observations.

 
Finally, Figure 27 depicts two selected resource agents. Both agents show similar results 
as before. Only a few observations are recorded for the resource agents because there is 
no  scarceness  of  resources.  From  the  total  number  of  2000  agents,  40%  are  resource  
agent,  which  are  requested  by  40% basic  service  agents.  The  basic  service  agents  have  
the  possibility  to  choose  between  several  resource  agents  in  between  their  3  hop  
broadcast  limit.  The  fitness  of  both  agents  reaches  a  stable  point  slightly  above  0.  The  
agent  strategy  with  higher  acquisitiveness  and  a  higher  price  step  is  more  successful  
according the successful trades. The upper agent is able to trade several resource products 
because  he  has  several  distinct  price  intervals  whereas  the  lower  agent  only  offers  one  
resource  product.  This  also  helps  the  upper  agent  to  adapt  his  genotype  more  often  to  
current situations. 
 
 

3.6.7 Influence of bandwidth on the catallactic approach 
 
This  experiment  analyses  the  effect  of  varying  network  bandwidth  on  the  catallactic  
allocation  approach.  Four  different  bandwidth  scenarios  are  compared  to  each  other.  In  
each scenario, 200 agents (66 CSA, 67 BSA, and 67 RSA) and a topology with 200 nodes 
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are  simulated.  The  agents  are  distributed  on  the  nodes  using  a  uniform  distribution.  
Keeping the scenario simple,  there is  only one complex service type which request  one 
instance of a basic service bs1. A basic service bs1 requests one unit of resource service 
r1. The number of agents equals the number of service and resource instances. Table 20 
shows the scenario configuration. 
 
Description  Configuration  
complex service types and their basic 
service configuration 

cs1 bs1 

basic services and their requested resource 
bundle 

bs1 bs1 bronze r1 1 

resource provider types and available 
resources for each type 

arb1 r1 1 

Table 20: Simple scenario configuration with a 1 to 1 to 1 mapping between complex services, basic 
services and resources 

Depending  on  the  service  configuration,  the  price  configuration  also  simplifies.  Only  
prices  for  one  basic  service  and  one  resource  product  have  to  be  initialized.  The  large  
price interval limits and the same initial price interval for buyers and seller (see Table 21) 
will isolate effects of the price configuration on the simulation runs. 
 
Basic service price configuration Resource price configuration 
bs1.seller.minPrice = 100 
bs1.seller.maxPrice = 160 
bs1.buyer.minPrice = 100 
bs1.buyer.maxPrice = 160 
bs1.hard.lower.limit = 80 
bs1.hard.upper.limit = 200 

bs1.resource.itemids = r1 

r1.resourceids = r1 
r1.baseunit.r1 = 1 
r1.seller.minPrice = 100 
r1.seller.maxPrice = 160 
r1.buyer.minPrice = 100 
r1.buyer.maxPrice = 160 
r1.hard.lower.limit = 80 
r1.hard.upper.limit = 200 

Table 21: Price configuration for basic service bs1 and resource bundle r1 

 
The strategy and learning setup are presented in Table 22. The configuration is similar to 
the  configurations  of  the  simulation  runs  in  the  previous  sections.  Differences  from  
previous strategy setups are the low mutation rate of 0.05 together with a low Gaussian 
width  of  0.01.  This  keeps the change of  the initial  genotype fairly  stable  for  all  agents.  
The  initial  step  size  of  0.3  enables  fast  agreements  between  the  negotiation  partners.  
Again,  this  setup  selection  intends  to  isolate  the  effects  of  the  agent’s  trading  
performance from the different bandwidth scenarios. 
 

Strategy 1 
maturityThreshold = 5 
courterThreshold = 20 
crossoverProbability = 0.20 
mutationProbability = 0.05 
ringSize = 10000 
crossOverSelectionModel = 0 
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gaussWidth = 0.01 
min = 0.001 
max = 0.999 
genotype.randomize = no 
genotype.acquisitiveness = 0.05 
genotype.satisfaction = 0.99 
genotype.priceStep = 0.3 
genotype.priceNext = 0.05 
genotype.weightMemory = 0.9 

Table 22: Strategy configuration for the simulated scenario 

During a simulation run, 1000 complex service requests are submitted to the system with 
a  delay  of  2000  milliseconds.  A  basic  service  execution  guarantees  low  input  queues  
because the system is able to process the requests fast. Again, both markets are connected 
to each other and a dedicated resource model is used. A buyer selects its proposals using 
the  best  price  selection  policy.  For  all  simulation  runs,  the  hop  counters  for  broadcast  
messages are set to 4 hops. The discovery timeout is 500 milliseconds and the negotiation 
timeout 10000 milliseconds. 
 
Table 23 lists the message size and bandwidth parameters. In the first simulation run, it is 
assumed  a  message  size  of  0  which  is  interpreted  by  the  simulator  as  unlimited  
bandwidth. The messages are transported to the receiver without any latency. The second 
simulation run uses a fixed bandwidth of 100 and a message size of 10 whereas the third 
run uses a uniform distribution to assign a bandwidth between 100 and 1000 to the links 
of the network. Finally, the last experiment uses a fixed bandwidth of 1000 keeping the 
message size the same.  
 
Experiment Id Parameter setup 
1190403910890  message.size  =  0;  bandwidth = unlimited 
1190404122296  message.size  =  10; bandwidth = 100 
1190404999250  message.size  =  10; bandwidth = [100, 

1000] uniformly distributed 
1190405643250  message.size  =  10; bandwidth = 1000 

Table 23: Mapping of experiment ids to parameter setup
 
For  each  experiment,  10  simulations  runs  are  performed.  One  characteristic  simulation  
run  is  selected  for  final  analysis  in  Figure  28.  The  best  final  social  utility  achieves  the  
experiment with unlimited bandwidth and no message delay. The instantaneous message 
delivery leads to high infrastructure costs in terms of number of messages and increased 
waiting  times  due  to  the  blocking  of  agents  during  the  discovery  phase.  But,  the  low  
distance between the trading partners and high agent satisfaction (see Figure 29) lead to 
high  on  demand  availability.  The  100  bandwidth  scenario  shows  about  25  %  worse  
system  performance.  Both  infrastructure  costs  and  inverse  on  demand  availability  
increase.  Additionally,  a  higher  standard  deviation  of  the  on  demand  availability  was  
measured.  The  high  delay  on  the  network  results  in  few  successful  allocations  as  
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displayed in Table 24. Compared to the first scenario, the second scenario achieves only 
1.2% of the successful trades. 
 

Experiment Id Observation 
1190403910890 CSA: 66, BSA_seller: 40, BSA_buyer: 40, 

RSA: 23 
1951 observations 

1190404122296  CSA:  14, BSA_seller: 16, BSA_buyer: 4, 
RSA: 4 

24 observations 
1190404999250 CSA: 66, BSA_seller: 51, BSA_buyer: 51, 

RSA: 58 
1871 observations 

1190405643250 CSA: 66, BSA_seller: 38, BSA_buyer: 37, 
RSA: 25 

1109 observations 
Table 24: Observation and involved agents for index computation

 
Surprisingly,  the  scenario  with  varying  delay  on  the  network  links  almost  reaches  the  
performance  of  the  scenario  with  unlimited  network  bandwidth  whereas  the  system  
performance decreases again in the scenario with constant high available bandwidth. The 
reason  for  this  behavior  is  blocking  policy  during  service  and  resource  discovery.  In  
scenario  3,  the  varying  network  bandwidth  controls  the  number  of  proposals  for  the  
requesting agent.  A high number of messages on a  link come along with high message 
latency.  This  high  latency  delays  broadcast  messages  to  be  delivered  on  network  link  
which doesn’t have enough capacity. The services are available to other requestors which 
have a better connection with lower latency to a given node.  
 

 
Figure 28: Final bar graph of 4 different bandwidth configurations 
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The influence of the blocking policy during discovery phase influences again the results 
of scenario 4. The same bandwidth on all nodes leads similar infrastructure costs like in 
the first scenario. The mean radar diagram of Figure 29 evidences better allocation times, 
allocation  rate  and  provisioning  time.  But,  higher  deviations  as  shown  in  Figure  30  
compensate these positive effects. 

 
Figure  29:  Radar  plot  of  normalized  mean  values  for  seven  selected  metrics;  four  simulation  runs  
with different bandwidth configurations are compared. 

 

 
Figure  30:  Radar  plot  of  normalized  standard  deviation  values  for  seven  selected  metrics;  four  
simulation runs with different bandwidth configurations are compared. 
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In scenario 4, the number of observations is 43 % lower than in the best scenario. There 
is no clear evidence for this low number of observations yet because a similar number of 
unique  agents  trade.  After  a  competition  on  the  service  market,  the  basic  services  
compete for resources on the resource market. This could lead to a negotiation timeout on 
the resource market because the discovery timeouts are extended in case of no proposals 
in the inbox queue.  
 
A clearer picture shows scenario 3. The varying delay on the network leads to a higher 
number  of  agents  involved  in  trades  with  complex  services  and  basic  services.  This  
scenario  even  outperforms  the  scenario  1  with  unlimited  bandwidth.  More  than  the  
double  numbers  of  resource  agents  are  involved  in  trades.  Therefore,  scenario  3  shows  
the most distributed behavior. As expected, only a few agents are involved in the trades 
of scenario 2. There is a large gap between the two roles of the basic service. The limited 
bandwidth the basic service seller is able to sell his services, but the basic service buyer is 
not  successful  in  making  agreements  on  the  resource  market.  Only  one  fourth  of  the  
successful service market trades reach an agreement on the resource market. 
 
Summarizing up, varying bandwidth helps the catallactic strategy to achieve good results 
because  it  reduces  the  competition  on  the  service  and  resource  markets.  Higher  
competition leads to lower performance on the investigated scenario.  
 
 

3.6.8 Evaluation of the decentralized approach with different agent 
distributions 

 
The  following  experiments  evaluate  the  decentralized  allocation  approach  for  a  set  of  
agent  distributions.  Different  distributions  of  complex  services,  basic  services  and  
resources  services  are  evaluated  concerning  their  influence  on  the  final  social  utility  
index.  The  topology  for  all  agent  distributions  has  400  nodes.  The  bandwidth  of  the  
network  varies  between  100  and  500.  The  message  size  was  set  to  2.  This  reduces  the  
influence of  the network to  a  minimum. The service and resource market  configuration 
equals  the  configuration  used  the  previous  sections.  Therefore,  the  configuration  is  not  
explained  here  again.  The  complex  service  dispatcher  submits  10000  complex  services  
requests  in  each  simulation  run.  A  total  number  of  300  agents  are  divided  into  100  
complex  service  instances,  100  basic  service  instances  and  100  resource  instances.  The  
build-in  distributions  of  the  automated  scenario  generator  are  used  to  assign  the  agent  
instances  to  network  nodes.  As  described  in  Deliverable  D2.3,  the  automated  scenario  
generator supports the following distributions:  
 

� Uniform. The site for the agent is chosen using uniform probability distribution. 

� Links  (dir).  The site  for  the  agent  is  chosen  with  probability  proportional  to  the  
number of site links. The more the site is connected, the greater the probability to 
hosts agents. 
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� Links (inv). The site for the agent is chosen with probability inverse proportional 
to  the  number  of  site  links.  The  more  the  site  is  connected,  the  smaller  is  the  
probability to host agents. 

� Dist  (dir).  The  site  for  the  agent  is  chosen  with  probability  proportional  to  the  
distance between the site  and a pivot  site  (the more the distance,  the greater  the 
probability). 

� Dist (inv). The site for the agent is chosen with probability inverse proportional to 
the distance between the site and a pivot site (the less the distance, the greater the 
probability). 

It  is  possible  to  assign  a  different  distribution  to  each  agent  role.  Table  25  gives  on  
overview  of  the  selected  distributions.  Experiment  2  uses  uniform  distribution  for  all  
agents  which  is  the  configuration  used  in  all  previous  experiments.  This  experiment  is  
intended  to  be  the  reference.  Experiment  1  and  3  change  the  distribution  for  complex  
service  and  basic  service  agents  whereas  experiments  4  and  5  analyze  the  behavior  of  
different resource distributions. 
 
Experiment Id Parameter setup 
1190458974250 CSA: links (dir), BSA: distance (dir), RSA: 

uniform 
1190464452609 CSA: uniform, BSA: uniform, RSA: 

uniform 
1190469414062 CSA: distance (inv), BSA: links (inv), 

RSA: uniform 
1190470099828 CSA: uniform, BSA: uniform, RSA: links 

(dir) 
1190472995750 CSA: uniform, BSA: uniform, RSA: 

distance (dir) 
Table 25: Mapping of experiment ids to parameter setup

 
Using this setup, two experiments are executed. The first set uses a broadcast hop limit of 
4 and the second set a broadcast limit of 2. The hop limit of 2 will reduce the possibility 
of requestors to receive proposals and increase the influence of the agent distributions. 
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Figure 31: Final bar plot for 5 experiments with different agent distributions and 4 hops broadcast 
limit 

Figure 31 presents the indexes for the different agent distributions and 4 hops broadcast 
limit.  All  experiments  lie  in  between  a  small  value  range.  Experiment  4  with  more  
resources  on  better  connected  nodes  achieves  best  performance.  The  reference  
experiment with all agents distributed uniformly shows worst performance.  

 
Figure  32:  Radar  plot  of  normalized  mean  values  for  7  selected  metrics;  5  simulation  runs  with  
different agent distributions and a hop count of 4 are compared. 
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Similar results show Figure 32. All values are close together, no experiment outperforms 
significantly  another  one.  Deviations  of  the  trading display Figure 33.  The deviation of  
the allocation rate is less than then deviations in any other experiment.  Most deviations 
are measured in experiment 2 with its uniformly distributed agents. 
 
 

 
Figure 33:  Radar plot  of  normalized standard deviation values  for 7 selected metrics;  5  simulation  
runs with different agent distributions and a hop limit of 4 are compared. 

 
 
The  observation  collected  in  Table  26  give  also  no  clear  picture  of  the  agents  
distributions  influence.  The  number  of  observations  slightly  varies  between  the  worst  
value  in  the  uniformly  distributed  agents  experiment  and  the  experiment  4.  Also  the  
unique number of trading agents is best in the experiment 4 by a high number of agents 
involved in trades at the same time. 
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Experiment Id Observation 

1190374885203 CSA: 96, BSA_seller: 79, BSA_buyer: 76, 
RSA: 69 

16785 observations 
1190383507406 CSA: 98, BSA_seller: 89, BSA_buyer: 76, 

RSA: 72 
16398 observations 

1190385618343 CSA: 98, BSA_seller: 73, BSA_buyer: 69, 
RSA: 65 

16958 observations 
1190399266453 CSA: 100, BSA_seller: 89, BSA_buyer: 85, 

RSA: 77 
17951 observations 

1190401744218 CSA: 99, BSA_seller: 81, BSA_buyer: 76, 
RSA: 70 

17118 observations 
Table 26: Observation and involved agents for index computation

 
In  the  experiment  set  with  4  hops  broadcast  limit,  no  clear  evidence  could  found.  
Therefore, the number of hops was reduced to 2. All other parameters remain the same. 
Table 27 gives the overview of the experiments and their parameter setup. 
 
Experiment Id Parameter setup 
1190458974250 CSA: links (dir), BSA: distance (dir), RSA: 

uniform 
1190464452609 CSA: uniform, BSA: uniform, RSA: 

uniform 
1190469414062 CSA: distance (inv), BSA: links (inv), 

RSA: uniform 
1190470099828 CSA: uniform, BSA: uniform, RSA: links 

(dir) 
1190472995750 CSA: uniform, BSA: uniform, RSA: 

distance (dir) 
Table 27: Mapping of experiment ids to parameter setup

 
In general, the reduction of the hop limit increased the final social utility index by a small 
number.  As  indicated  in  the  4  hop  scenario  set,  the  gap  of  on  demand  availability  
between the worst and best case increases. Both, the resource distribution experiments 3 
and 4 increase their on demand availability and decrease their non on demand availability 
respectively.  Also  the  low  deviation  of  the  on  demand  availability  is  emphasized  for  
experiment 4. 
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Figure 34: Final bar plot for 5 experiments with different agent distributions and 2 hops broadcast 
limit 

 

 
Figure 35: Radar plot of normalized mean values for seven selected metrics; 5 simulation runs with 
different agent distributions and a hop count of 2 are compared. 
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Figure 35 and Figure 36 depict the measured mean and standard deviation. The agents of 
experiment  1  achieve  on  average  better  satisfaction  than  the  agent  of  all  other  
experiments.  The  selected  trading  partners  achieve  good  results  mainly  on  the  resource  
market.  As already seen in the last  experiment set,  main deviation shows the allocation 
rate.  The  trading  agents  gain  high  allocation  rates  and  low  standard  deviation  in  
experiment  2.  The  larger  distance  and  number  of  message  deviation  compensate  the  
better allocation rate deviation. 
 

 
Figure 36:  Radar plot  of  normalized standard deviation values  for 7 selected metrics;  5  simulation  
runs with different agent distributions and a hop limit of 2 are compared. 

 
Table  28  shows  significant  influence  of  the  service  and  resource  distributions  on  the  
number  of  agents  involved  in  agreements  and  the  total  number  of  observations.  The  
highest number of observations was measured in the experiment 4, which gives evidence 
for being a good strategy to place resources on good connected nodes. In experiment 1, 
complex services select only a subset of the available basic service agents, whose number 
decrease again on the resource market. Not every successful basic service seller can find 
a resource instance on the resource market. This gap between service and resource market 
is  even  worse  in  experiment  2  with  its  uniform distributions.  A  strong  competition  for  
resources  lead  to  this  result.  The  worst  number  of  observations  shows  experiment  5.  
Choosing  a  pivot  site  right  in  the  center  of  the  network  will  place  the  resources  at  the  
network border.  The basic service agents are not  able to reach enough resources within 
the 2 hop broadcast limit. 
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Experiment Id Observation 
1190458974250 CSA: 81, BSA_seller: 59, BSA_buyer: 45, 

RSA: 45 
12235 observations 

1190464452609 CSA: 84, BSA_seller: 70, BSA_buyer: 44, 
RSA: 46 

12561 observations 
1190469414062 CSA: 80, BSA_seller: 60, BSA_buyer: 43, 

RSA: 44 
11956 observations 

1190470099828 CSA: 100, BSA_seller: 87, BSA_buyer: 85, 
RSA: 79 

16621 observations 
1190472995750 CSA: 77, BSA_seller: 59, BSA_buyer: 39, 

RSA: 42 
11296 observations 

Table 28: Observation and involved agents for index computation
 
In  the  evaluated  scenario,  no  clear  evidence  of  different  agent  distributions  could  be  
found.  Possible  drawbacks  of  an  increasing  distance  to  trading  partners  could  be  
overcome with an increasing  hop limit.  Resources should be placed on good connected 
nodes which increases the number of successful allocations. 
 

3.7 Market mechanism implemented in the prototype  

The prototype has been evaluated with three different decentralized economic agent 
implementations (see Table 29). 
 
 

Mechanism  Description  
Catallactic  Catallactic  agents,  which  maintain  a  

complex  strategy  for  negotiation,  evolved  
trough evolutionary learning. 

ZIP  ZIP  agents,  which  employ  a  token  based  
protocol  to  coordinate  the  issuing  of  
bids/offers,  which  are  then  cleared  upon  
the  token  completing  each  round.  A  
previous  implementation  of  ZIP-based  
agents worked with only local information 
but  considered  the  resource  usage  in  the  
price determination strategy. 

CNet  Basic  Contract-Net  agents  using  a  simple  
offer/demand protocol. 

Table 29. Economic agents implemented in the CATNETS prototype.
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In the following sections the three different agent types are outlined. 
 

3.7.1 Contract-Net (CNet) simple offer/demand agents 

The  Contract-Net  protocol  (Figure  37)  starts  with  a  task  announcement  phase  by  the  
initiator  (the  buyer),  which  can  be  answered  by  one  or  more  participants  (the  sellers).  
This  announcement  is  carried  out  by  a  groupcast  of  a  call  for  proposals  (CFP).   After  
conclusion of this period, the initiator selects from the set of collected proposals the best 
one, informing the winner. In top of this protocol, we apply a simple offer/demand-based 
economic  algorithm:  The  sellers  will  answer  the  CPFs  which  meet  its  current  selling  
price. If the CFP does not meet its requirements, the seller will lower its expectations and 
it will decrease the selling price. As for the buyers, if a seller rejects the CFP, then it will 
lower  its  expectation  by  increasing  the  offer  in  the  next  CFP.  Both  the  buyers  and  the  
sellers  will  increase  their  expectations  in  case of  receiving offers/bids  which meet  their  
expectations. The price updating is done at fixed small price steps. 

 
Figure 37. Contract-Net [taken from FIPA web site]

 

3.7.2 Zero intelligence plus (ZIP) agents 
 
The  bidding  algorithm  is  based  on  extended  ZIP  agents.  This  allows  reaching  the  
equilibrium price  P0,  at  which  the  maximum resources  will  be  exchanged,  with  simple  
agents. Therefore, they have to know the minimum price of the shouted offers from seller 
Smin  and  the  maximum  price  of  the  shouted  bids  from  buyer  Bmax.  The  bidding  
algorithm  calculates  the  new  price  P(t+1)  using  the  Smin  and  Bmax  values.  The  
algorithm  implemented  in  the  ZIP  agents  of  the  prototype  is  listed  in  Figure  38.  A  
datailled description of the algorithm is outlined in deliverable D3.3. 
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Algorithm 1: Bidding algorithm of the BS (seller). 
  
 Input: random1 > 0 and < 0.2 
 Input: random2 > 0 and < 0.2 and not random1; 
 if Smin > Bmax then 
     PT = Smin - ( random1 * P(t) + random2); 
 else 
     PT = Bmax + ( random1 * P(t) + random2); 
 endif 
 priceChange = • * priceChange + (1-•) * • * (PT-P(t)); 
 P(t+1) = maximum (P(T)+priceChange, Pmin) ; 

 
 

Algorithm 2: Bidding algorithm of the CS (buyer). 
  
 Input: random1 > 0 and < 0.2 
 Input: random2 > 0 and < 0.2 and not random1; 
 if Smin > Bmax then 

         PT= Bmax + ( random1 * P(t) + random2); 
 else 
     PT = Smin - ( random1 * P(t) + random2); 
 endif 
 priceChange = • * priceChange + (1-•) * • * (PT-P(t)); 
 P(t+1) = minimum (P(T)+priceChange, budget) ; 

 
Figure 38. Bidding algorithm for BS (buyer) and CS (seller) implemented in ZIP agents.

 

3.7.3 Catallactic Agents 
 
The  catallactic  agents  and  their  implementation  are  described  in  the  deliverbales  D1.1  
and  D1.2.  The  reader  is  referred  to  those  deliverables  for  more  information  about  the  
catallactic allocation approach and its implementation. 
 

3.8 Evaluation of the market mechanism in the prototype 

We have carried out  experiments with the prototype using the three different  economic 
agent types. In the following sections, the experiments and results are explained. 

3.8.1 Experiments with the Contract-Net simple offer/demand agents 
 
The  goal  of  the  experiments  is  to  show  the  performance  of  the  GMM  (Grid  Market  
Middleware5)  as  an automated economic-aware resource management  tool  by means of  
the the DataMining Grid prototype application. We evaluate the ability of the Contract-
Net  based  negotiation  protocol  for  stabilizing  fair  prices  in  the  Grid  service,  trading  in  
different  scenarios.  We  setup  controlled  experiments  by  deploying  several  instances  of  
the GMM in a Linux server farm. Each machine has a 2 CPU Intel Xeon at 2.80GH and 2 
                                                 
5 The middleware of the Catnets prototype is called Grid Market Middleware (GMM) in the context of that 
paper. 
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GB of memory. The server farm nodes are connected by an internal Ethernet network at 
100Mps. The topology is a mesh: All nodes are interconnected. CFPs are transmitted via 
groupcast to all the nodes in the destination groups (in our scenario CFPS are groupcasted 
from CSs to BSs).  
 
We deploy the GMM in 4 nodes. Two nodes host a BS each and the Data Mining Web 
Service and other two nodes host the CSs, access points and clients.  The Web Services 
are  exposed  in  Tomcat  servers.  The  experiments  consist  in  launching  2  clients  
concurrently, which use each one of the CS as broker. Each client makes 100 requests to 
the CS in intervals  of  2  seconds.   Whenever a  CS wins a  bid with a BS,  it  invokes the 
Data  Mining  Service  in  the  selected  node,  and  the  resource  in  the  corresponding  node  
gets locked for the duration of the service execution. We measure the selling prices of the 
BSs and observe the proportion of successful CFPs issued by the CSs. 
 
We have two different scenarios in the dedicated resource model. The demand indicates 
the rate at which new CFPs are issued. If the proportion demand rate/Data Mining Web 
Service execution time is lower than 1, then the resources are potentially able to handle 
all  the  demands.  In  the  contrary  case,  the  demand  exceed  the  offer  of  resources,  hence  
several CFPs will be disregarded even in the case they meet the pricing criteria of the BS. 
 
In a first experiment, we set up a demand rate lower than 1. Resources therefore are able 
to cope comfortably with the demand. We set up two CSs with initial  bidding prices of 
75, and 2 different BSs, with initial offer prices of 60 and 90 respectively. In Time (sec)
Figure 39, it can be seen that the price quickly stabilizes to a “fair” value around 72. This 
result holds true independently of the initial prices on the CSs. As for the initial prices of 
the BSs, the BS1 starting with a lower price trades more in the beginning, but trying to 
increment its surplus it soon reaches the equilibrium price. As for the BS2 starting with a 
higher price, it does not trade in the first CFPs which leads to a continuous price dropping 
towards  the  equilibrium price.  After  stabilization,  the  CSs  get  their  CFPs  for  resources  
granted,  provided the bid equals at  least  the offered price, which is true during most of 
the experiment. 
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Time (sec) 

Figure 39. Evolution of prices vs time for a low demand rate. 

 

 
Time (sec) 

Figure 40. Evolution of prices vs time for a high demand rate. 

 
In a second experiment (Time (sec) 
Figure 40), we set up a high demand. In this case the resources of the providers are not 
enough  to  completely  meet  the  demand.  This  does  however  not  make  the  prices  
increasing indefinitely, since the successful trades make the CSs react trying to decrease 
bids. We set up agents with the same initial prices as in the previous example. The price 
stabilizes also quickly, but in this case to a higher price at around 80, due to the resources 
scarcity (Time (sec)
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Figure 39, right diagram). This result holds true independently of the initial prices on the 
CSs. In this scenario, the CSs gets just half of their CFPs for resources granted, but this is 
evenly distributed between the two CSs, which is a fair resource share. 
 
The  results  of  both  experiments  demonstrate  how  a  simple  decentralized  economic  
algorithm can be plugged into  the GMM infrastructure in  order  to  allocate  resources to  
client  in  service  oriented  applications,  by  achieving  automatic  and  fair  trading  of  
resources between Grid clients  and Grid service providers,  mediated by the CS and BS 
agents, respectively. 
 

3.8.2 Experiments with the ZIP agents 

We setup controlled experiments by deploying several instances of the GMM in a Linux 
server farm. Each machine has a 2 CPU Intel Xeon at 2.80GH and 2 GB of memory. The 
nodes  in  the  farm  are  connected  by  an  internal  Ethernet  network  at  100Mps.  The  
topology is a mesh: All nodes are interconnected. CFPs are transmitted via groupcast to 
all the nodes in the destination groups (in our scenario CFPS are groupcasted from CSs to 
BSs).  
 
We deploy the GMM in 8 nodes. Four nodes host a BS each and the Data Mining Web 
Service and other four nodes host the CSs, access points and clients. The Web Services 
are  exposed  in  Tomcat  servers.  The  experiments  consist  in  launching  4  clients  
concurrently, which use each one of the CS as broker. Each client makes requests to the 
CS and leaves the market after a successful trade. It will re-enter a proceeding round with 
the probability of 1/3.  Whenever a CS wins a bid with a BS, it invokes the Data Mining 
Service in the selected node, and the resource in the corresponding node gets locked for 
the  duration  of  the  service  execution.  We  measure  the  selling  prices  of  the  BSs  and  
observe the proportion of successful CFPs issued by the CSs. 

The  goal  of  the  experiments  is  to  show the  performance  of  the  GMM as  an  automated  
economic-aware resource management tool by means of the Data Mining Grid prototype 
application. The extended ZIP agents are expected to show an effective and fair trading, 
which can be measured with the price and the allocation rate of each agent. Varying the 
technical parameters of the environment, we expect price adaptation of the agents in the 
marketplace. 
 

3.8.2.1 Idealized experiments with idle resources   
 
The experiments are sensitive to a competitive use of other processes, because this might 
cause  an  increase  of  the  Data  Mining  WS  execution  times.  Therefore  we  make  first  
experiments  with  idle  resource,  which  guarantees  the  stability  of  Data-Mining  Services  
execution  times  (Figure  41,  Figure  42).  We  see  how  high  load  in  the  Data  Mining  
Services redues the resource availability, hence rising prices. 
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Figure 41. Price evolution with varying offer with constant demand rate ½ - resource execution time of 
3000ms. 

 
 

 

Figure 42. Price evolution with varying offer with constant demand rate ½ - resource execution time of 
100ms. 

 
 
Besides  the  effect  of  changing  the  offer,  also  the  variation  of  the  demand  for  the  
resources needs to be proved. Therefore we change the probability that a CS re-enter the 
market (by issuing a new demand) after a successful trade. In Figure 43 the demand rate 
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probability  of  re-enter  the  market  is  1/6,  which  keeps  the  amount  of  the  CS  low  and  
decreases the price. Figure 44 shows the price increasing when the CS re-enter the market 
after every successful trade (probability of 1/1). 
 

 

 
 

Figure 43. Price evolution with varying demand rate with constant executionTime 1000 ms – demand rate 
1/6.   

 
 

 
 

Figure 44. Price evolution with varying demand rate with constant executionTime 1000 ms – demand rate 
of 1. 
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3.8.2.2 Adaptation to different constrains 
 
In this section, the experiments illustrate the adaptation of the prototype for a changing 
environment.  Here,  the  execution  time  of  the  Data-Mining  Services  varies,  mapping  to  
real scenarios where input data-sets to be processed might differ in size. Simulating such 
cases,  the  execution  time  of  the  resources  will  vary  during  the  running  time  of  the  
experiment.  Every  200  seconds  it  changes  iteratively  the  executions  time  from  high  
(3000ms) to very low (100ms). 
 

 

 
Figure 45. Varying task load (WS execution times) dynamically. t = 0 – 450 (phase 0): stabilization t = 450 
– 650 (phase 1):   WSexecTime: 100; t = 650 – 850 (phase 2):   WSexecTime: 3000; t = 850 -1050 (phase 
3):   WSexecTime: 100; t = 1050 -1200 (phase 4):   WSexecTime: 3000.

 
In Figure 45, it can be observed that after stabilization phase of about 450 seconds (phase 
0), showing price adaptation to varying market constrains in form of task loads (the WS 
execution times). If the execution time of the resources is short (like 100 milliseconds), 
then the market contains many offers. Consequently the prices of the product decreases. 
Contrarily,  decrementing the  supply  by  setting the  execution time to  3000  milliseconds  
leads to an increasing price.  

3.8.2.3 Process competition 
 
Increasing the realism of the environment, we consider an experiment were the nodes in 
the  cluster  run  other  competing  processes  which  influence  resource  performance.  This  
has an impact on resource offer which should be considered by the agents. We show how 
agents  effectively  react  to  the  process  competition  by  adapting  prices  (Figure  46  and  
Figure 47). In this case, there is not a clear pattern of price evolution, but generally we 
see that process competition reduces the number of matches (and resulting price risings), 
as expected in a more realistic environment.  
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Figure 46. BSs  prices with competing process.

 
 
 
 

 
Figure 47. BSs  prices with competing process.
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Figure 48. Allocation rates in competing process experiment. Allocation rate of CS. 

 

 
Figure 49. Allocation rates in competing process experiment. Allocation rate of BS.

 
The allocation  rate  shows the  distribution  of  over  4000 matched trades.  A nearly  equal  
distribution of the resources to the CS (Figure 48) can be seen as well as the nearly equal 
distribution of the bought resources from the BS (Figure 49) can be seen. Even in a real 
application  under  some  real  process  competition,  an  almost  fair  allocation  is  obtained.  
Figure 48 shows how CSs share almost evenly the trades, and the same pattern applies for 
BSs in Figure 49, which means the algorithm is not isolating agents from the market and 
enables the participation of all the agents in trades. 
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3.8.2.4 Evaluation of ZIP agents 
 
The results  of  the  three  experiments  demonstrate  how a  simple  decentralized  economic  
algorithm based on ZIP can be plugged into the GMM infrastructure in order to allocate 
resources  to  client  in  service  oriented  applications,  by  achieving  automatic  and  fair  
trading of resources between Grid clients and Grid service providers, mediated by the CS 
and BS agents, respectively. 
 
Furthermore,  the  results  show  that  the  agents  react  to  changes  in  the  economical  
environment. The accepted price reflects the variations in demand (trough demand rate) 
and  offer  (trough  varying  execution  time  of  the  services,  which  results  in  varying  
resource availability).  It  can be seen  that  the price  increase when the demand increases  
(Figure 44) and that the price also increase when offer decreases (Figure 41), as a result 
of  the  services  consuming  more  time.  Nevertheless,  the  distribution  of  allocations  
between buyers and sellers remains proportioned (Figure 48 and Figure 49), as it should 
be in a fair market. It follows that the prices will increase in case of large-scale failures or 
delays.  Moreover,  this  automatic  price  correction  behavior  is  able  to  react  to  dynamic  
varying conditions in the underlying Grid resources (Figure 45). 
 

3.8.2.5 Evaluation of reource-usage dependent ZIP-like strategy 
 
In this section, we report on early experiments made with the prototype using a resource 
usage  dependent  price  determination  strategy.  The  agents  were  later  replaced  by  other  
agent  implementation  working  with  a  dedicated  resource-model,  i.e.  the  resource  was  
either  available  for  sale  or  completedly  locked  by  a  service  execution.  Reasons  for  this  
choice were to work both in simulator and prototype with the same model, and secondly, 
from the experiments made it appeared to be difficult to control the experimental results 
due to the feedback introduced from real resource usage (partially by other users working 
on these non-dedicated machines) in the price computation. 
 
In this resource usage depented price strategy, the agents, besides taking into account the 
success  of  previous  sales,  read  the  current  CPU usage  with  was  taken  into  account  for  
computing the price for negotiations. 
 
Clients initiate negotiations with a price lower than the available budget. If they are not 
able to buy at that price, they increase their bids until either they win or reach the budget 
limit.  Services  start  selling  the  resources  at  a  price,  which  is  influenced  by  the  node's  
utilization. Then, the pricing model is combined with the demand. If a service agent sells 
its resources, it will increase the price to test to what extend the market is willing to pay. 
When it  no longer  sells,  it  will  lower  the  price  until  it  becomes competitive  again  or  it  
reaches a minimum price defined by the current utilization of the resource. 
 
We have deployed the Grid Market Middleware in a Linux server farm. Each server has 2 
Xeon processors and 2GB of memory. The machines in the server farm are connected by 
an  internal  Ethernet  network  at  100Mbps.  Three  basic  services  (BS)  are  deployed  on  
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three  servers  (BS-74  on  node  74,  BS-75  on  node  75,  BS-79  on  node 79,  respectively),  
and  two  complex  services  (CS)  are  launched  on  two  other  servers  (CS-72  on  node  72,  
CS-73  on  node  73,  respectively).  On  each  machine  with  a  BS  we  also  deploy  a  web  
service representing the application, which performs a CPU intensive calculation. These 
web  services  are  exposed  in  a  Tomcat  server.  Access  to  execute  these  web  services  is  
what is negotiated between complex services (buyer) and basic services (seller). 
 
We run an artificial background load on two of the nodes (node 79, node 75) configured 
for 50% and 100% CPU usage to simulate background activity.  This is  chosen since in 
such  a  setting  the  behaviour  of  the  agents  should  lead  to  load  balancing  of  the  web  
service executions.  
 
The experiments consist  in launching 2 clients (represented by complex services CS-72 
and  CS-73)  concurrently  as  clients.  Each  client  performs  50  requests  in  intervals  of  15  
seconds.  Whenever a client wins a bid with a service, it invokes the web service in the 
selected  node.  The  data  obtained  from the  experiment  with  the  performance  measuring  
infrastructure has been the following:  
 

1. allocation: an entry by each successful negotiation with a basic service, reported 
by the complex service 

2. price: a periodic report of the price of the basic services 
3. utilization: a periodic report of the CPU utilization given by the resource agents 
4. execution.time:  time  needed  to  actually  execute  the  service,  reported  by  the  

complex service (transaction-based). 
 
The experimental results are illustrated in the following figures. Figure 50 shows the load 
(% CPU usage) on the three nodes (74, 75, 76). A background load of 50% and 100% in 
nodes 79 and 75, respectively, can be observed. The up-going spikes which can be seen 
in  the  load  of  node  79  and  node  74  correspond  to  the  execution  of  the  negotiated  web  
services on these nodes.  

 
Figure 50. Load on nodes 74, 75, and 79. Node 79 and node 75 are with 50% and 100% background load, 

respectively.
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Figure  51  shows a  zoom on the  price  of  the  basic  services.  It  can  be  observed  that  the  
price calculation of the agents takes into account the success of past negotiations, where 
the price rise  is  made after  a  successful  sale.  The configured buyer price is  100 money 
units. 
 

 
Figure 51. Zoom on the price evolution of the basic services in nodes 74, 75, and 79. 

 
 
Figure 52 is to assess the expected load balancing behavior, which we should obtain with 
this setting. It can be seen that effectively the BS-74, which runs on the least loaded node, 
makes  most  of  the  sales.  And  the  BS-75,  which  runs  on  the  node  with  the  highest  
background load, makes less sells than the other two basic services. We can see that the 
performance measuring framework achieves one of our goals which was revealing such 
behavior.  
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Figure 52. Percentage of sales of the three basic services. BS-74 which resides on the least loaded node, makes 
most of the sells. 

 
Finally, we observe two metrics together in Figure 53: the successful sales by BS-74 and 
the  execution  of  the  sold  service  when  invocated  by  the  clients  (the  web  service  is  
executed  on  the  same  node  74).  Successful  sales  by  the  BS-74  are  indicted  with  a  star  
symbol and are normalized here to the value 30 for easier visualization. An execution of 
the web service follows each successful sale and last approximately 4 seconds. 
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Figure 53.  Successful sells of BS-74 and web service execution on node 74.

 
 
The experimental results demonstrate the two contributions we want to emphasize: First, 
the  measurement  framework  achieves  obtaining  multi-level  performance  data  of  the  
distributed  application.  The  data  shown in  the  experiment  is  taken  from the  three  main  
levels  of  the  architecture:  The  time  of  the  web  service  execution  is  measured  at  the  
application level. The evolution of prices is taken at the economics algorithm layer of the 
middleware.  Finally,  the  load  at  each  node  is  taken  from  the  base  platform  layer.  
Secondly, the obtained data is useful for the analysis of the middleware and application 
(the setting was deliberately chosen to force load balancing behavior). We have seen that 
with the obtained data the expected behavior can effectively be observed. 
 

3.8.3 Experiments with the Catallactic agents 

The allocation rate measures for the catallactic agents the number of client request which 
have  been  completely  handled  by  the  GMM.  This  comprises  first  reception  of  the  
Request by the ApplicationProxy and its forwarding to a CS; then, the CFP issuing by the 
CS and the BSs answering collection /selection in the first market; finally, the complete 
negotiation CS-BS to reach a final agreement which fires the trade completion metric. 
 
In  order  to  calculate  the  allocation  rate  for  the  service  market  from  the  prototype  
experimental data, we count all the negotiation_end events containing a CS. This means 
that at least a Complex Service took part in the negotiation, implying that the trade was 
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on the first market. You need to take into account both the negotiation_end metrics fired 
by CSs or BSs. This happens since both CSs and BSs can close the negotiation. 
 
We consider experiments with 1 CS, CS1, and two competing BSs: BS1 and BS2. In each 
scenario the client application issued 100 requests to the market. The application creates 
an applicationProxyAgent for each demand request to the CATNETS market. After each 
creation the application waits for the agent to finish, e. g. for the overall market request to 
finalize.  The  timeout  for  the  market  to  answer  is  set  to  4000ms.  If  the  
applicationProxyAgent did not finish the negotiation is viewed as a failure.The execution 
time determining the time a resource is blocked was 2000ms.  
 
Each  CS is  able  to  sell  one  type  of  service,  e.  g.  a  generic  service  called  cs1,  whereas  
each cs1 service requires an instance of basic service bs1. The basic services are able to 
sell services of the type bs1 and require resources of type CPU for their sold basic service 
on  the  service  market.  This  scenario  is  chosen  due  to  simplicity  reasons.  The  
implemented  agents  and  middleware  infrastructure  is  however  capable  of  trading  more  
complex services as well. 
 
Each agent involved in the CATNETS market was set to have an acceptable price interval 
of 25 – 40. The discovery timeout limiting the time an agent waits for the other market 
participants to answer a cfp was set to 5000ms. 
 
The strategy of the agent was set as follows: 
aquisitiveness: 0,5 
satisfaction: 0,99 
priceStep: 0,3 
priceNext: 0,05 
weightMemory: 0,9 
 
The dynamic in agent evolution is expressed as a probability of mutation (set to 0,05) and 
of crossover (set to 0,2). 
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Figure 54. Experiment 1. Allocation rates.
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Figure 55. Experiment 2. Allocation rates.
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As we can see in Figure 54, in the first experiment a very high percent of the requests by 
the CS got fulfilled, about 96% of success. As for the trade partners, the BSs shared more 
or  less  evenly  the  96 trades  fired.  In  the  second experiment,  Figure  55,  we see  82% of  
success for the CS1, in this case the BS1 got slightly more allocation than BS2.  
 

3.8.4 Comparison of Catallactic agent with ZIP agent 
 
The  two  mechanism  differ  substantially,  since  the  ZIP  agents  are  exchanging  a  token  
between  them  in  each  round,  and  failure  to  fire  trades  in  this  round  are  counted  as  a  
request  failure  by  the  agent.  This  is  quite  different  from  the  allocation  in  Catallactic  
agents, where each request by the CS conveys an iterative negotiation with the selected 
BSs until an agreement/or disagreement is reached. 
 
However we can still compare how the succesfull trades are shared between BSs.For the 
ZIP agents, the allocation rate of Figure 48 and Figure 49 shows the distribution of over 
4000 matched trades. A nearly equal distribution of the resources to the CS can be seen 
as well as the nearly equal distribution of the bought resources from the BS can be seen. 
Even in a real application under some real process competition an almost fair allocation is 
obtained.  If  we compare this  with the Catallactic  agents,  we see that  the allocation rate  
between BSs is shared more or less evenly in both cases between the two BSs (Figure 54 
and Figure 55). However notice that both protocols are very different, since each round 
ZIP  agents  only  perform  one  bidding,  while  each  round  in  the  Catallactic  agents  
encompasses a full negotiation between the CS and the best BS answering the CFP. 
 
A high level comparison between two ZIP agents and Catallactic/C-Net protocols reveals 
that  ZIP agents  encompases few number of  messages (just  an initial  multicast  and then 
the  token  exchange),  while  the  C-Net  agents  require  full  cycles  of  CPF  followed  by  
answers  to  that  CFP  from  all  potential  sellers,  as  well  as  the  answer  from  the  buyer  
selecting/discarding  candidates.  The  Catallactic  agents  further  add  on  top  of  C-Net  
protocol  number  of  messages  the  successive  bilateral  bargainings  required  to  reach  an  
agreement between buyers and sellers. The Catallactic agents ensure in most of the cases 
the reaching of agreements after a number of sequential negotiations between a buyer and 
potential  candidates,  while ZIP agents and C-Net normally reach fewer allocation rates,  
but also generating less overhead. 
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4  Prototype  evaluation  
 
The  assessment  is  on  the  following  aspects:  Implementation  feasibility  and  available  
standards, and secondly performance. 

4.1 Evaluation of prototype development  

4.1.1 Architecture 
 
The prototype has been build based on a layered architecture (see deliverables year 2 and 
year 3 of WP3). This architecture proposing a so-called P2PAgent layer for the technical 
services,  an  EconomicsStrategy  Layer  for  the  economic  agents,  and  an  
EconomicsFramework  layer  for  separation  of  both  layers  has  allowed  developing  the  
prototype.  
 
The benefits of defining this architecture have been the following: 
 

� Following  this  architecture,  the  different  agent  types  could  be  implemented  by  
substituting  mainly  only  the  components  referring  to  the  EconomicsStrategy  
layer.  

� The  communication  between  the  application  and  the  middleware  has  been  
reduced  to  the  communication  to  a  Catallactic  access  point,  which  by  means  of  
the  WS-Agreement  specification  transmits  all  required  information  to  the  
middleware. The protocol describing the order of messages exchanged, however, 
is particular to the prototype. 

 
The architecture has been described in the following papers: [ACC05] and [CCF05]. 
 

4.1.2 Catallactic-enabled applications 
 
The  catallactic  paradigm  as  introduced  in  predecesor  Catnet  project  has  been  
implemented  in  a  concrete  middleware  and  prototype  applications  in  the  scope  of  
CATNETS  project.  The  experience  gained  on  such  endeavor  has  resulted  in  both  
deceiving and promising conclusions, shared in equal proportions. 
 
In the deceiving side, important trouble during prototype calibration has come from the 
requirement of dealing with decentralized decision makers (the trading agents) in a real, 
networked,  infrastructure.  Such  a  development  is  pioneering,  since  state  of  the  art  
approaches  to  fully  decentralized  markets  based  on  bargaining  agents  have  been  based  
purely  in  simulations  [DUA04],[PT98].  In  that  sense,  “touching  the  ground”  of  real  
deployment  has  proven  hard  due  to  the  uncertainty  and  lack  of  control  in  such  



 89

“engeneering with complexity” tasks. Emergent engeneering has been largely coveted by 
large  distributed  systems  engineers  [ECE05],  but  to  date  just  initial  steps  in  form  of  
proposals  [TU05],  [WH05]  have  been  achieved.   In  our  view,  and  summarizing  our  
experience,  more  advances  trough  extensive  testing  in  both  software  lifecycle  
management and practical deployment tips need to be realized in orther to reach maturity. 
 
In the promising side, we have been indeed able to design, implement and deploy a fully 
decentralized prototype incorporating emergence and self-organization using state of the 
art tooling. The GMM implementation has been proven as useful in several applications. 
The  use  of  the  Catallactic  middleware  has  been  shown  by  two  applications:  COVITE  
being available  as  Grid Service and Data Mining tools  given as  Web Services.  Both of 
these  applications  have  been  Catallactic-enabled  within  the  project.  Our  results  are  
documented  in  more  detail  in  the  following  papers:  [JRC+05],  [JRC+06],  [JRC+07].  
From the experience obtained, we have found that applications provided as services can 
be enhanced with reasonable effort to interact with the GMM. Additionally, the GMM is 
being  useful  as  an  infrastructure  root  for  further  development  in  Grid  Markets  research 
project, as in the case of SORMA [SOR07]. The open issue with the catallactic-enabled 
applications  is  to  achieve  improved  system  control,  in  the  form  of  more  predictable  
outcomes out of the emergent properties of the markets.  
 
From the application point of view, the fact of having participants offer and request for 
application  services  and  computing  resources  of  different  complexity  and  value  in  a  
distributed  environment  leads  to  the  creation  of  interdependent  markets.  In  such  
interrelated  markets,  allocating  resources  and  services  on  one  market  inevitably  
influences  the  outcome on  the  other  markets.  A common approach  of  many  other  Grid  
market  concepts  is  to  allocate  resources  and  services  by  relying  on  the  presence  of  
centralized  resource/service  brokers.  However,  the  complex  reality  could  turn  such  
approaches  useless,  as  the  underlying  problem  is  computationally  demanding  and  the  
number of participants in a worldwide distributed environment can be huge. 
 
Different examples of application scenarios can be constructed which benefit from using 
the  Catallactic  markets  in  combination  with  different  auction  mechanisms  in  the  Grid.  
This leads to an advantageous flexibility in terms of fulfilling the requirements and needs 
of services and resources within the applications and hides all the complexity to the users. 
Let us consider an application scenario that requires a highly specialized service such as 
medical simulation service or visualization service,  while another application requires a 
specific mathematical service. The mathematical service is more or less standardized and 
there  are  several  suppliers  offering  this  service,  and  an  instance  of  a  catallactic  market  
could  be  initiated  and  based,  for  example,  on  a  normal  double  auction.  The  medical  
simulation service, however, does not have many service suppliers; therefore the liquidity 
of  the market  trading such services may be low.  In such cases,  an  instance of  a  market  
could  be  initiated  and  be  based  on  English  auction  mechanism.  Other  types  of  
applications enable creation of Virtual Organizations (VOs) for planning, scheduling, and 
coordination phases within specific projects or businesses, and allows the users of a VO 
to interact among them for the duration of VO. The ability of a free-market economy to 
adjudicate and satisfy the needs of VOs, in terms of services and resources, represent an 
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important  feature  that  markets,  through  the  auction  mechanisms,  can  provide  to.  Such  
VOs  could  require  large  amount  of  resources  which  can  be  obtained  from  computing  
systems  connected  over  simple  communication  infrastructure  such  as  Internet.  There  
could  also  be  possibilities  for  these  VOs  to  try  maximizing  their  own  utilities  on  the  
market. 
 
In  conclusion,  catallactic-enabled applications are well  motivated and address real  need 
of current realistic Grid scenarios. We have developed the first prototype available which 
is  able  to  deploy  the  complex  catallactic  behavior  in  real  Grid  applications.  The  
experience gained is valuable as it is, but it can be also profited by engineers in the field 
of “engineering with complexity and emergence”, where prototype implementations and 
deployments in real tesbed applications are increasingly necessary to advance the state of 
the art.  

4.1.3 Standards 
 
Service  Level  Agreements  (SLAs)  provide  a  contract  between  an  application  user  
requiring services/resources, and application providers determining what should be made 
available  for  external  use.  To  enable  service/resource  sharing/usage  in  application  
environments,  SLAs  may  be  used  to  define:  (a)  requirements  that  such  an  application 
would place on services (and resources) owned by a third party; (b) check whether these 
requirements  have  been  met  during  use.  An  SLA  may  also  specify  the  penalty  that  a  
service provider may incur if terms in the SLA are violated. 
 
Currently, SLAs are defined in a static manner, i.e. the terms within an SLA must adhere 
to  strict  constraints,  and  are  monitored  during  application  execution  –  such  as  in  WS-
Agreement.  However,  within  many  applications,  it  is  often  difficult  to  define  such  
constraints  very  precisely,  thereby  leading  to  a  large  number  of  violations.  There  is  a  
need  to  modify  an  agreement  that  had  already  been  established,  especially  if  the  
agreement is used at a time much later than when the agreement had been defined. These 
requirements  relate  to  comparing  the  cost  of  re-establishing  a  new agreement  vs.  being  
able to adapt an agreement that is already in place. Secondly, there is a need to support 
flexibility  in  the  agreement  if  an  agreement  initiator  is  not  fully  aware  of  the  operating 
environment when the agreement is defined. In this case, the agreement initiator may not 
have enough information to determine what to ask for from a provider. This is likely to 
be the case when an agreement initiator or provider operates with imprecise knowledge 
about the other party involved in the agreement. 
 
Specifications which have been applied for the development of the prototype have mainly 
used  the  concept  of  SLA using  the  WS-Agreement  protocol.  The  specification  allowed  
describing the services needed by the users’ application. The protocol for the exchange of 
WS-Agreement messages between the application and middleware needs to be developed 
for  further  negotiation  interaction,  which  has  been  identified  as  a  limitation. A  use  of  
WS-Agreement in the Catnets prototype is reported in [JRC+07]. 
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4.1.4 Implementation 
 
The  implementation  of  the  prototype  took  advantage  of  the  functionalities  already  
provided  by  available  toolkits,  like  Diet  agents,  JXTA,  GT4  (the  middleware  selection  
process  as  well  as  the  GMMs’  early  design  with  them  is  described  in  the  first  year  
deliverable  of  WP3  [Del05a]).  When  running  initial  experiments  with  the  developed  
prototype, however, limitations in the practical use of these toolkits have been observed, 
like  a  limited  number  of  messages  which  could  be  sent  with  Diet,  and the  difficulty  of  
JXTA to work correctly with a small number of nodes.  
 
The observed limitations of the Diet toolkit affected the initial design of the performance 
measuring framework. Another design has been finally implemented which did not rely 
on the messaging mechanism of Diet, such that in the current prototype we do not have a 
limitation concerning this issue.  
 
The limitation of JXTA affects the scope of deployment of the prototype in the sense that 
in  small  scale  scenarios  the  delivery  of  messages  by  JXTA  is  not  reliable.  In  the  
environment  of  the  cluster  where  the  prototype  has  been  used,  the  identified  limitation  
did  not  appear  by  making  use  of  particular  JXTA  messaging  services  for  this  context.  
From  the  experience  obtained,  for  complete  decentralized  scenarios,  DHT  
implementations like Pastry could have been a better choice for the implementation of the 
communication and search.  
 

4.2 Evaluation of prototype performance  

The  prototype  has  been  deployed  in  a  cluster  of  Linux  machines.  Several  experiments  
have  been  made  with  different  type  of  economic  agents,  and  varying  the  different  
parameters  of  the  experiment  configuration.  The  results  of  the  experiments  with  the  
Catallactic agents and other agent types are covered in section 3.8. 
   
The  experiments  showed  the  behaviour  of  the  measured  parameters  for  concrete  
experimental  settings.  The  character  of  the  experimental  results  is  rather  that  of  
confirming  the  implementation  feasibility  in  terms  of  a  prototype.  The  comparison  of  
different  agent  approaches  by  means  of  the  developped  prototype  is  difficult.  A  large  
number  of  parameters  remain  uncontrolled  due  to  the  use  of  a  real  environment.  The  
difficulty  in  configuring  the  Catallactic  agents  in  the  sense  of  being  able  to  chose  the  
most  appropriate  values  for  the  parameters  makes  it  appearing  too  early  for  stable  
quantitative studies.  
 
The level of the prototype imposed certain constraints on the system compared with what 
could be a production-quality implementation. As a consequence, quantitative results are 
only achieved within the scope of the prototype. Our performance results are experiments 
taken  at  different  stages  of  the  prototype  development.  Although  they  revealed  the  
behavior of the system in the current experimental configuration, they gave feedback on 
the implementation and hints on the complexity of applying Catallaxy in real systems.  
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We have developed several scripts for deploying the GMM. These scripts were toroughly 
described in D3.2. Over the last year we have tailored the scripts as a tool for deploying 
the three differente flavours of decentralized economic agents in LANs and cluster. These 
scipts allow for the full deployment, remote experiment execution and metric collection 
of the GMM and application WSs. They have been released with the CATNETS software 
with a companion documentation and tutorial (see WP3 year 4 Annexes). 
 
The  flow  of  a  typical  prototype  experiment  is  quite  simple,  if  we  consider  the  large  
number of automated steps from the original client request till the moment when the EPR 
for service execution is returned back. An example of an expriment with 4 nodes is the 
following: Two nodes host a BS each and the Data Mining Web Service and other two 
nodes host the CSs, access points and clients. The Web Services are exposed in Tomcat 
servers.  Access  for  execution  of  these  Web  Services  on  the  resource  node  is  what  is  
traded  between  BSs  and  CSs.  The  experiments  consist  in  launching  2  clients  
concurrently, which use each one of the CS as broker. Each client makes 100 requests to 
the CS in intervals  of  2  seconds.   Whenever a  CS wins a  bid with a BS,  it  invokes the 
Data  Mining  Service  in  the  selected  node,  and  the  resource  in  the  corresponding  node  
gets locked for the duration of the service execution. We measure the selling prices of the 
BSs and observe the proportion of successful CFPs issued by the Css. The development 
of the prototype has allowed assessing the feasibility of implementation, providing a flow 
of execution from the Client to the GMM access point, and from the Complex Services to 
the Basic Services, in the sequence depicted in Figure 56. 
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  Figure  56.  Flow from Client request till Basic Services trading resources.
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In  general  the  performance  results  have  been  promising  in  the  sense  that  they  show  
coherent  self-oganized  behaviours  in  the  bargaining  agents.  This  includes  coherent  
reaction to offer/demand variations, varying computational size of services to be executed 
and  the  effect  of  background  loads  in  the  Grid.  Improved  control  of  such  behaviours  
could be achieved with further refinements of both multiagent coordination protocols (i.e. 
the  catatllactic  agents  temsleves  and  a  measurement  infrastructure  incorporating  latest  
advances  in  complexity  management.  Another  interesting  property  which  could  not  be  
assessed  in  the  prototype  (given  the  material  limitations  of  the  number  of  physisical  
nodes  available)  is  that  of  scalability.  However,  the  results  from  the  simulator  on  
improved scalability of decentralized catallactic agents over centralized approaches offers 
a good insight on the “nice” scalability properties of the catallactic agents. The results for 
the experiments with Catallactic agents in the prototype are covered in section 3.8.3.  
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5 Discussion of results 
 
Our  discussion  utilizes  the  results  from  simulating  the  centralized  and  catallactic  
allocation approach and the lessons learnt  implemeting the catallactic  approach into the 
prototype. 
 
In general, the CATNETS project has achived the following exploitable outcomes: 

� a specification of decentralized and centralized market protocols, 
� a  simulator  which  is  able  to  compare  the  centralized  and  the  decentralized  

allocation approach, 
� a  framework  for  economic  analysis  of  centralized  and  decentralized  economic  

mechanisms, 
� a prototype of the catallactic mechanism integrated into different applications, and 
� the  Grid  Market  Middleware  (GMM)  which  feeds  into  other  FP6  projects  like  

SORMA. 
 
In Section 5.1, the statements of the simulator are summarized. Section 5.2 discusses the 
statements of the prototype, and Section 5.3 gives a short conclusion on the applicability 
of  the  catallactic  approach  to  application  layer  networks.  Finally,  further  research  
properties for Hayek’s Catallaxy are presented in Section 5.4. 
 

5.1  Statements  for  simulator  

 
The simulator allows carrying out experiments up to a few thousands of nodes. However, 
very  large-scale  experiments  with  several  thousands  of  nodes  consume  lots  of  main  
memory. The automated scenario generator is tested with a scenario up to 10000 nodes 
and 100000 agents. This requires a machine with 8GB of main memory. The simulator is 
able to read a scenario of this size and to start the simulation with 1000000 requests. But, 
it  takes up to weeks to finish such very large simulation runs.  Accessorily,  the memory 
management of the Java Virtual Machine has to be optimized by modifying heap size and 
memory  consumption  parameters,  and  the  Linux  file  system  parameters  have  to  be  
changed to be able to  handle such large simulation runs.  Therefore,  no very  large scale 
experiments  are  evaluated  because  the  computational  resources  are  needed  to  simulate  
the smaller experiments for the scenarios of this deliverable. 
 
In the largest scale simulations, we could only apply the Catallactic mechanism, but not 
the  centralized  mechanism  because  components  of  the  centralized  auction  
implementation  consume  a  large  number  of  resources  depending  on  the  size  of  the  
scenario. We observe that the Catallactic mechanism could principally achieve very good 
service allocation. However, this mainly depends on configuring its parameters correctly. 
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The  development  of  the  simulator  and  the  experiments  show  a  high  complexity  of  the  
agent  strategy  in  catallactic  system.  Agein,  the  performance  depends  on  numerous  
parameters which are not easily configurable appropriately. 
 
In  the  simulations,  a  number  of  advantages  and  disadvantages  of  the  decentralized  
mechanism compared to the centralized catallactic mechanism have been identified: 
 

� Number  of  messages:  The  centralized  mechanism  used  a  significantly  smaller  
number  of  messages  for  communication.  The  bargaining  of  the  catallactic  
mechanism had a significantly higher cost in terms of messages exchanged. The 
number  of  messages  in  the  implemented  auctions  remains  always  the  same  for  
one  allocation,  whereas  the  number  of  messages  varyies  along  the  iterative  
negotiation steps in the decentralized allocation approach. By limiting the number 
of negotiation rounds, a lower number of messages can be achieved. For example, 
a  high  price  step  value  together  with  a  high  aquisitiveness  decreases  the  total  
number of messages for an agreement. 

 
� Negotiation  attributes:  In  the  catallactic  mechanism,  only  single-attribute  

negotiations  could  take  place,  whereas  the  auctioneer  mechanism  of  the  
centralized  approach  could  handle  multi-attribute  negotiations.  In  our  particular  
case,  this  limitation  was  imposed  by  the  agents`  strategy  implementation.  The  
learning and decision algorithms were implemented to cover only single-attribute 
negotiations.  An  extension  to  multi-attribute,  however,  has  several  difficulties,  
like matchmaking of multi-attribute services in a decentralized search. 

 
� Negotiations: The implementation of the agents was based on a model in which 

each  Catallactic  agent  could  only  be  involved  in  one  negotiation  at  a  time.  This  
model  poses  serious  limitations  on  performance.  A  more  efficient  model  with  
parallel negotiations isn’t implemented due to its additional complexity. The same 
limitation  holds  with  the  centrlized  allocation  approach.  Parallel  bidding  is  not  
supported. 

 
The final statement “Catallaxy is more / less efficient than central mechanisms” could not 
be  obtained  from  the  experiments  in  general.  However,  there  is  a  catallactic  strategy  
configuration  which  achieves  equal  or  better  performance  in  terms  of  equal  or  better  
social  utility  values than the centralized  allocation approach of  the simulated  scenarios.  
The following insights have been accomplised: 
 

� The Catallactic mechanism needs to be improved in terms of messages needed. A 
strategy  proposal  using  only  one  negotiation  round  is  presented  in  deliverable  
D2.3. The total number of messages could be reduced be increasing the price step 
value in the current strategy implementation. 

 
� The  configuration  complexity  in  terms  of  the  number  of  parameters  compared  

with other economic mechanisms is  very  high in the Catallactic mechanism. On 
the one hand, this flexibility enables to find a good parameter configuration in all 
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evaluated scenarios. On the other hand, there is no single configuration which can 
be applied in most scenarios. 

 
� Comparison with centralized mechanisms is difficult since the performance does 

depend  on  each  catallactic  agents`  strategy  in  the  catallactic  scenarios.  In  the  
centralized case, the auctioneer`s decisions only depend on the incoming supply / 
demand  messages.  Catallactic  agents  follow  a  heuristic  strategy  whereas  the  
centralized  auctioneer  implements  a  mathematical  algorithm  with  theoretical  
foundations (state-of-the-art matching mechanism). 

 
� Advantages  of  the  centralized  mechanism  originate  in  the  significantly  lower  

number  of  messages  needed  and  the  fact  that  the  catallactic  case  supports  only  
single-attribute  negotiations  can  take  place,  whereas  the  auctioneer  mechanism  
can  handle  multi-attribute  negotiations.  This  limitation  was  imposed  by  the  
agents`  strategy  implementation.  The  learning  and  decision  algorithms  were  
implemented to cover only single-attribute negotiations. For this project a model 
was used in which each agent could only be involved in one negotiation at a time. 
This  model  posed  serious  limitations  on  performance  –  for  a  more  efficient  
system  the  option  of  parallel  negotiations  would  have  to  be  implemented.  This  
model also results in a very restrictive blocking policy of the agents. 

 
� Implementation  aspects  of  the  simulator  were  underestimated.  More  time  was  

spent on testing of the simulator tools and the implemented agents. Therefore, the 
co-allocation  implementation  and  the  shared  resource  model  have  still  
experimental status. No meaningful simulations are evaluated with these features. 

 
� Analyzing the trading agents in the decentralized strategy, two dominant trading 

strategies  lead  to  profit  (positive  fitness)  in  a  bilateral  negotiation.  Either  the  
agents  make  often  concessions  with  small  steps  or  the  agents  follow  a  strategy  
with  a  low  concession  rate  together  with  a  high  step  size.  Weighting  the  last  
agreements with 60% seems a good value for the successful agents. 

 
� No  clear  picture  evidences  the  applied  service  and  resource  distributions  in  

scenarios  with  the  catallactic  strategy.  A  placement  of  resource  on  good  
connected  nodes  results  in  better  social  utility  values.  This  is  an  argument  for  
organizing computing centers in a centralized way. Uniformly distributed service 
and resources lead to good availability of the specific service and resource. But,  
higher  deviations  from  the  mean  values  could  be  observed  than  in  other  
experiments. The competition for several service and resource increases the social 
utility index and the system’s loss. 

 
� In  absolute  numbers,  the  decentralized  allocation  approachis  able  to  achieve  a  

social  utility  index  value  of  around  0.4.  This  value  is  20  %  better  then  the  
measured  value  for  the  centralized  allocation  approach  in  the  comparison  
scenario.  Agein,  this  indicates  the  strong  influence  of  the  configuration  on  the  
allocation performance of the catallactic approach. 
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� In  the  evaluated  scenarios,  the  decentralized  allocation  approach  shows  higher  

allocation rates than the centralized allocation approach. The centralized method 
sacrifices a higher allocation rate the economic outcome of the auction.  

 
� Varying  discovery  timeouts  increase  the  availability  of  the  sellers  and  point  at  

successful refinement of the decentralized search strategy. 
 

� The implemented decentralized bargaining protocol is error-prone which exhibits 
the failure experiments. At the time of development, the main focus was more at a 
sound  and  functional  messaging  structure  and  implementation  than  a  failure-
resistant bargaining protocol. More effort is needed for improving the bargaining 
protocol. 

 
� The  metric  pyramid  and  the  selected  metrics  enable  the  analysis  of  complex  

application  layer  networks.  Changes  in  the  measured  metrics  are  mapped  very  
well  to  the  upper  layers  of  the  pyramid.  The  aggregation  steps  keep  the  
characteristics  of  the  raw  data  and  indicate  different  allocation  performances  in  
the evaluated scenarios. The general applicability of the metrics pyramid offers a 
broad  evaluation  of  resource  allocation  approaches  in  future  application  layer  
networks.  However,  the  metrics  pyramid  exposes  limitiations.  The  number  of  
observations and the agent population should be evaluated in parallel to verify the 
expressiveness of the aggregated indexes. 

 
� The decentralized allocation performance does not decrease in increasing network 

sizes. The hop count and discovery timeout parameters control the accessible area 
of  the  network  for  the  decentralized  allocation  approach.  Only  a  subset  of  
(theoretically) available service and resources can be selected as trading partners. 
This helps achieving good social utility index values in large networks. 

 
� Varying  bandwidth  decreases  the  system  loss  for  the  decentralized  allocation  

algorithm. The bandwidth controls the set of available sellers. Not reachable seller 
can  provide  their  service  to  another  buyer  which is  located  closer  the  requestor.  
Also,  the  set  of  unique  trading  agents  increase.  A  more  distributed  behavior  is  
observed. However, too low bandwidth increases the system’s loss significantly. 

 
� The  hop  count  parameter  which  can  be  seen  as  a  time-to-live  parameter  in  P2P  

networks  shows  significant  influence  on  the  decentralized  allocation  approach.  
The  following  rule  is  derived  from  the  experiments:  The  higher  the  service  
density is, the lower the hop count parameter should be selected. 

 
� Randomizing  the  intital  genotype  values  lead  to  lower  performance  of  the  

decentralized  allocation  approach  because  the  agents  need  time  to  adapt  to  the  
dominant  strategies  described  above.  Compared  to  simulations  runs  with  one  
predefined genotype for all agents, a siginifcant lower performance is measured. 
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� A  crucial  part  of  the  catallactic  strategy  is  the  adaptation  of  the  negotiation  
intervals  for  the  the  next  negotiation  which  depends  on  the  market  price  
estimation.  The  selected  dynamic  strategy  exhibits  good  performance  in  all  
simulation scenarios. It is expected that an improved adaptation strategy can lead 
to  better  performance  in  terms  of  a  decreasing  message  number  and  better  
allocation times. 

 
 

5.2  Statements  for  prototype  

 
The implementation has been achieved in terms of a prototype. This implementation can 
be  considered  as  successful.  For  a  production-quality  implementation  of  the  Catallactic  
approach, however, several identified limitations would need to be solved. 
 

� Handling  of  messages:  In  order  to  handle  the  large  number  of  messages  
exchanged, an efficient implementation of such a component is needed.  

 
� Multi-attribute: Scalable matchmaking of multi-attribute distributed objects is not 

completely solved. 
 

� The  flexibility  of  the  agent  implementation  in  terms  of  handling  parallel  
negotiations would need to be improved. 

 
� Particular components of the architecture, like the Catallactic Access Point (CAP) 

need to be able to handle a high load in terms of messages.  
 

� We  have  designed,  implemented  and  deployed  a  fully  decentralized  prototype  
incorporating emergence and self-organization using state of the art tooling. The 
GMM implementation has been proven as useful in several applications. The use 
of  the  Catallactic  middleware  has  been  shown  by  two  applications:  COVITE  
being available as Grid Service and Data Mining tools given as Web Services. We 
have deployed this prototype in several scenarios. 

 
� 1CS vs. 2BS scenario is working well. Sufficient negotiations finshed. 

 
� 2CS  vs.  4BS  scenario  fewer  negotiations  executed  due  to  implemented  model  

(blocking policy because of not allowed parallel negotiations) 
 

� 3CS vs.  6BS scenario  suffers  the  same problem (worse  than in  2vs4 scenario)  -  
problem of catallactic model that was implemented 

 
� Important  trouble  during  prototype  calibration  has  come  from  the  requirement  

deal with decentralized decision makers (the trading agents) in a real, networked, 
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infrastructure.  This  issues  are  related  to  the  broader  problematic  of  mastering  
complexity 

� The  open  issue  with  the  catallactic-enabled  applications  is  to  achieve  improved  
system  control,  in  the  form  of  more  predictable  outcomes  out  of  the  emergent  
properties of the markets. 

 
� The  middleware  tool  produced  by  the  project  (GMM)  as  well  as  the  prototype  

implementations built on it can be the seed of further advances in the endeavour 
of  egeneering  with  complexity  in  distributed  systems,  paving  the  way  for  more  
prototype implementations and providing a valuable experience.  

 

5.3 Results on the applicability of the Catallactic approach 

In the simulations for the small scale scenarios, the centralized mechanism offers better 
performance than the decentralized catallactic mechanism. The centralized mechanism is 
able  to  handle  small  or  medium  scenarios  very  well.  The  highly  efficient  clearing  
mechanism and the ability to handle bundled goods outperform the catallactic approach. 
 
For large scale scenarios, only the Catallactic mechanism could be simulated. However, 
the  message costs  are  very  high.  At  least  a  redesign  to  reduce the  number  of  messages  
would be needed. Simulations with a reduced number of messages (using high priceStep 
values) reach a total social utility of 0.4 which is better then the measured social utility of 
0.5 of the centralized allocation approach. This emphasizes the importance of the correct 
catallactic strategy setup. 
 
A  Proof-of-Concept  implementation  of  a  Catallactic  enabled  application  and  the  grid  
market  middleware  has  been  achieved.  A  production-quality  implementation  would  
require  substantial  improvements  of  several  components  like  the  communication  layer  
and the distributed matchmaking. 
 

5.4 Further research on properties of Catallaxy applied to 
computer networks 

From  a  computational  and  engineering  perspective,  Hayek’s  Catallaxy  is  successfully  
applied  to  computer  networks  in  the  CATNETS  project.  Explicit  specifications  of  the  
Catallaxy for technical systems should encompass these agent features: 
 

� Adaptivity:  Agents  learn  from  their  own  experience  and  from  previous  
agreements, there is genetic recombination, mutation and selection, and agents are 
reactive  and  opportunistic  being  able  to  adapt  their  goals  to  local  unpredictable  
and evolving environments. The current catallactic strategy implemented the first 
two  adaptivity  topics.  The  third  issue  gives  further  research  prospects.  More  
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parameters could be taken into account for dynamic adaptation by the agent itself 
instead of being predefined at experiment start.  

� Autonomy and initiative: The complex service handles the task to be executed. If 
it finds an opportunity (a seller which fits the requirements) – proactively without 
the direct control of the user application – the agent delegates not only a specific 
task but also an objective to bring out in any way; the agent will find its way on 
the  basis  of  its  own  learning  and  adaptation,  its  own  local  knowledge,  its  own  
comtetence  and  reasoning,  problem  solving  and  discretion.  The  results  of  the  
negtoation  analysis  demonstrate  the  successful  application  of  the  catallacatic  
strategy  to  the  CATNETS  scenario.  Agents  gain  profit  depending  on  their  own  
learning and adaptation capabilities, and their local knowledge. Of course, not all 
agents  are  successful  in  making  profit.  They  haven’t  the  knowledge  for  finding  
satisficing goals. Dissatisfaction is related to the agents’ goals, which Hayek calls 
“the  conscious  purpose”.  The  agents’  level  of  wealth,  knowledge  and  
consumption determines the “conscious purpose” as a function of which the agent 
will  be  more  or  less  satisfied,  and  more  or  less  responsive  to  existing  
circumstances.  If  the  agent  knows  only  other  agents  with  low  fitness  and  is  
unaware of what else is  possible,  the agent will  act  within its  local  environment 
and  isn’t  able  to  escape  from  it.  There  could  be  agents  is  the  application  layer  
network, which never gain profit. Further research should address finding a lower 
bound for the agent success for the catallactic strategy.  

 
� Distribution and decentralization: In CATNETS, the multi-agent systems are open 

and  decentralized.  As  the  results  of  the  simulations  runs  evidence,  it  is  neither  
established nor predictable which agents will be involved in trades. There are no 
regional  analysis  tools  of  the  agents  and  its  trading  partners  available.  Placing  
resource  on  good  connected  and  varying  bandwidth  on  the  links  increase  the  
distribution  and  decentralization  of  the  multi-agent  system.  Further  experiments  
are  needed  to  find  out  more  rules  for  increasing  the  agents’  distribution  and  
decentralization.  The execution times of  the  tasks are  assumed to  be constant  in  
CATNETS.  Agents  may  remain  open  during  execution  by  means  of  being  
reactive to incoming inputs and to the dynamics of its internal state (for example, 
resource shortage or preference change). Further research on the Catallaxy could 
take  this  into  account  increasing  the  reactivity  of  the  agents.  The  workflow  
simulations  with  a  complex  service  requesting  a  sequence  of  basic  service  give  
prospects for further analysis, because nobody in the system knows the complete 
plan.  Even  the  complex  services  don’t  know  to  which  basic  service  a  task  on  
second  or  third  place  could  be  delegated.  Policies  are  needed  to  ensure  that  the  
task  of  long  workflows  could  still  be  executed  because  longer  workflows  come  
along with an increased failure probability.  

 
The  products  traded  on  the  service  market  are  homogeneous  products  which  are  
completely  standardized.  The  experiment  runs  of  the  lessons  learnt  from  CATNETS  
show, the implemented centralized and decentralized allocation approaches handle these 
products  very  well.  The  implemented  Hayek’s  Catallaxy  can  even  outperform  the  
centralized auctions. The introduction of heterogeneous products enables a more realistic 
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service  picture.  Also  the  users  or  applications  of  the  catallactic  market  profit  from  
heterogeneous services. They can specify their workflows with more details like service 
quality  levels,  priorities,  etc.  This  leads  to  a  broader  applicability  of  the  Catallactic  
strategy in new application domains and real world user requests. 
 
As mentioned above, CATNETS assumes an open application layer market implemented 
by an open multi-agent system. The traded quality of the products in terms of execution 
time  is  always  constant.  No  service  quality  changes  are  taken  into  account.  Further  
research  prospects  could  extend  the  CATNETS  model  with  changing  service  quality  
which  is  required  by  future  interactive  Grid  and  P2P  application  based  on  service-
oriented architecture (see Case Study in deliverable D3.3). Additionally, shared resource 
models  have  to  guarantee  certain  quality  levels  to  users.  Hayek’s  concept  of  a  
“spontaneous order” could be eroded by cheating agents in such evironments. There is no 
institution  which  forces  the  agents  to  be  honest.  The  Catallaxy  could  benefit  by  the  
introduction  of  electronic  institution  and  concepts  from  social  control  like  reputation  
mechanisms. This comes along with a change from single attributive decision making to 
multi-attributive decision making and resoning. The agents have to decide how much risk 
they  agree  to  and  how  they  should  adapt  their  preference  structure  in  case  of  risky  
services  and  resources.  Besides  using  social  concepts,  these  risky  assets  can  also  be  
handled  by  economic  risk  management.  Concepts  from  risk  transfer  like  insurances  or  
risk  mitigation like  portfolio  optimization  could  help  to  reduce the  financial  risk  of  the  
agents.  It  would  be  interesting  to  see  how  the  influence  of  the  social  and  economic  
approaches  influences  the  CATNETS  metrics  paramid  for  evaluation  of  Hayek’s  
Catallaxy. 
 
Future  hardware  developments  will  soon  make  possible  the  construction  of  very  large  
scale  (one million of  agents  and above)  models  that  obviate  the need for  representative 
agents. Artificial agent communities and economies of such scale need more research to 
overcome  the  lack  of  understanding  of  realistic  behaviour  of  agents  and  institutions.  
Hayek’s  Catallaxy  is  one  important  concept  to  help  understanding  such  complex  and  
dynamic agent communities. We identified some future research prospects in the field of 
artificial economies: 
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Further research and impact of the CATENTS project is listed in the dissemination and 
use  plan  and  the  technology  implementation  plan.  Several  national  and  international  
projects profit from the results gained by the CATNETS project. The reader is referred to 
those deliverbales for further information. 



 102

 



 103

 
 

6  Conclusions  
 
In  Application  Layer  Networks  like  future  Grid  and  P2P  networks,  optimal  resource  
allocation  has  to  be  carried  out  in  two  dimensions.  One  is  the  maximization  of  the  
utilization  of  technical  resources.  The  aim  in  this  dimension  is  -  independently  of  the  
economic  incentive  structure  -  to  carry  out  a  load  balancing  on  heterogeneous  and  
distributed  computational  resources.  This  guarantees  that  all  resources  are  used  and  no  
resources  are  "wasted"  while  being  idle.  In  contrary  to  this  allocation  paradigm,  the  
economic resource allocation is aligning the deployment of resources along the economic 
utility  of  the  individual  Grid  nodes.  Mechanisms  like  multi-attribute  combinatorial  
exchanges  enable  an  incentive  compatible,  efficient,  individual  rational  and  
computational tractable way of allocating these resources. This may imply that resources 
stay  idle  in  case  the  willingness  to  pay  of  the  resource  requester  does  not  reach  the  
reservation  price  stated  by  the  resource  owner.  This  effect  is  demonstrated  by  the  
experiment  runs:  The  centralized  resource  allocation  approach  shows  lower  allocation  
rates than the catallactic allocation method. However, it  enables an economically sound 
construction of allocation for Grid resources. 
 
Within the CATNETS project,  two dimensions of such markets have been investigated: 
One  is  the  application  of  decentralized  -  catallaxy-based  -  market  mechanisms,  which  
uses  flooding  for  resource  discovery  and  an  iterative  bilateral  bargaining  protocol  for  
negotiation  of  resources.  The  alternative  is  the  application  of  classic  institutional  -  or  
centralized  central  -  market  mechanisms.  If  properly  designed,  markets  implement  an  
economical efficient allocation of resources. Such multi-attribute multi-unit mechanisms 
to  ALN/Grid  allocations  have  been  developed  as  a  benchmark.  They  provide  an  
allocation for Grid resources up to a certain size. Mechanisms are developed that enable a 
two-tiered  allocation  of  Grid  resources,  which  fulfill  most  of  the  above-mentioned  
desiderata. In the first tier of these markets, service consumes, who may not have a clue 
of what kind of computational resources they need, can trade with service providers about 
their service needs. These service providers themselves then act on a second market tier - 
the resource market - where they purchase the resources they need in order to carry out 
the  services.  These  two  markets  are  interrelated  through the  price  that  is  determined  in  
the first tier. State of the art in this research field is that incentive compatible, allocative 
efficient  and  individual  rational  allocation  mechanisms  are  identified.  However,  these  
mechanisms are very complex to compute for large number of market participants (they 
are NP-complete) and hence not applicable on large-scale setups while the decentralized 
market mechanism still achieves performant results in large settings. 
 
The comparison of the two approaches shows that: 
 

� The centralized mechanism used a significantly smaller  number of messages for 
communication.  The bargaining of the catallactic  mechanism had a significantly 
higher  cost  in  terms  of  messages  exchanged.  The  number  of  messages  in  the  



 104

implemented  auctions  remains  always  the  same  for  one  allocation,  whereas  the  
number  of  messages  varyies  along  the  iterative  negotiation  steps  in  the  
decentralized allocation approach. By limiting the number of negotiation rounds, 
a lower number of messages can be achieved. 

 
� In  the catallactic mechanism, only single-attribute negotiations could take place,  

whereas  the  auctioneer  mechanism  of  the  centralized  approach  could  handle  
multi-attribute negotiations. In our particular case, this limitation was imposed by 
the  agents`  strategy  implementation.  The  learning  and  decision  algorithms  were  
implemented to cover only single-attribute negotiations. 

 
� The implementation of the agents was based on a model in which each Catallactic 

agent  could  only  be  involved  in  one  negotiation  at  a  time.  This  model  poses  
serious  limitations  on  performance.  A  more  efficient  model  with  parallel  
negotiations  isn't  implemented  due  to  its  additional  complexity.  The  same  
limitation  holds  with  the  centrlized  allocation  approach.  Parallel  bidding  is  not  
supported. 

 
� The potential  of Catallaxy as resource allocation mechanism has been motivated 

by  observing  its  usage  in  many real  life  situations.  From the  project  results,  we  
have noted that the complex models which are behind this usage, however, have 
not shown to be easily portable into artificial systems. 

 
� The  use  of  Catallaxy  in  daily  live  situations  requires  very  sophisticated  

capabilities,  which  are  not  easily  reproducable  by  technical  implementations.  
Providing  each  artificial  agent  by  the  "intelligence"  needed  to  work  in  such  a  
resource allocation approach has currently a high cost and needs an expert user. 

 
� The  contact  with  the  system,  the  information  dissemination  and  lookup,  the  

interaction with other participantes require very challenging technical solution. It 
is  considered  difficult  to  provide  technical  solutions  based  on  standard  toolkits  
which  could  provide  reliable  a  funtionality  without  limitations  in  large-scale  
scenarios and underrealistic conditions. 

 
� The scenarios which we could consider have shown to be successfully realizable 

with less complex solutions than Catallaxy like a centralized approach based on 
auctions. The limitations of the centralized solution have not been identified in the 
scope of the requirements.  Potential  bottlenecks like the centralized components 
appear to have easier solutions for overcoming them than applying Catallaxy. 

 
� We cannot exclude the possibility that particular scenarios which might arise from 

future  distributed  applications  could  provide  circumstances  in  which  Catallaxy  
remains  an  interesting  option  for  providing  a  solution.  Providing  the  building  
blocks  of  Catallaxy  in  a  useable  way,  achieve  a  feasible  configuration  by  the  
users, however, would ease any practical application of the approach. 
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� A  final  statement  on  the  performance  of  the  Catallaxy  approach  to  centralized  
auction  approach  is  difficult  to  obtain.  A  main  problem  lies  in  the  technical  
aspects of the implementation. Catallaxy works best in large scale scenarios, but a 
sufficient simulation for Catallaxy needs larger technical resources. On the other 
hand,  the  simulation  time  needed  for  the  centralized  approach  increases  
dramatically with growing simulation size. 

 
� From  an  implementation  perspective,  even  the  moderate  complexity  of  the  

heuristic  bargaining  strategy  leads  to  a  noticeable  variance  of  the  simulation  
results, when compared with the predictable results of the auctioneer's algorithm. 
The  calibration  of  the  simulation  and  a  working  prototype  became an  important  
task in the CATNETS project. 

 
� With regard to the Grid market parameters, we have achieved various possibilities 

for  adaptation to  real  world  settings.  Virtualized resources and resource bundles  
are supported. 

 
� The final  statement  "Catallaxy is  more /  less  efficient  than central  mechanisms" 

could  not  be  obtained  from  the  experiments  in  general.  However,  there  is  a  
catallactic  strategy  configuration  which  achieves  equal  or  better  performance  in  
terms  of  equal  or  lower  social  utility  values  (that  means  better  score  for  social  
wellfare) than the centralized allocation approach of the simulated scenarios. 

 
The recommendation for future research in this domain is threefold: 
 

1. More  research  effort  should  be  devoted  to  the  combination  between  the  
communities that do research in the technical allocation and conceptualization of 
application layer networks as well as the economic allocation in future Grid and 
P2P  networks.  Both  sides  can  -  while  commercializing  the  application  layer  
networks - not continue without the other. 

 
2. Besides  technical  standardization,  efforts  for  the  development  of  economic  

standards and interaction schemes, e.g. based on Web Services or other concepts 
from  Service  Oriented  Architectures,  should  be  fostered  for  the  practical  
utilization of future e-Infrastructures and e-Science. 

 
3. Efforts  for  starting  real-life  pilots  for  Grid/P2P  business  models  and  Grid/P2P  

markets should be fostered, where researchers from computer science, economics 
and  business  administration  commonly  work  on  dynamic,  economically  sound  
and  vertically  integrated  business  concepts  for  the  dynamic  utilization  of  
application layer networks and other e-Infrastructures. 
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Annex A – CATNETS Repositories Settings 
 
The metric collector script builds on vxargs to perform remote ssh connections in parallel 
to all the nodes involved in the system, gathering all the raw data into a central 
repository: 
 
------------------- start of collecMetrics script ---------------------
--- 
 
#collectMetrics.sh 
#author: Isaac Chao; ichao@lsi.upc.edu 
#collects metrics and logs from the middleware in a set of machines 
listed in nodeListBS.txt and nodeListCS.txt 
#metrics and logs from an experiment are stored in a file 
metricAndLogsMiddleware_$LABEL 

#edit YOURPATH to change the remote nodes GMM path (this must be 
identical to  the PATH used for GMM deployment)                             
#edit RESULTSPATH in the case you need the experiment results to be 
stored in a different path 

# to run please execute ./collectMetrics yorName 
# this will identify the result of your experiment unambigously and 
store it in RESULTS_HISTORY_PATH 

YOURPATH=$HOME/GMM 
RESULTSPATH=$HOME/results 
RESULTS_HISTORY_PATH=$HOME/resultsHistory 
USER="user" 
TYPE="Catallactic" 

#variables 
LABEL=$(date +%Y-%m-%d-%H-%M)"_"$TYPE"_"$USER 

#erase results from previous collection 
#rm -rf $RESULTSPATH/logs 
#rm -rf $RESULTSPATH/metrics 
rm -rf $RESULTSPATH/ 

# create directories to collect metrics 
mkdir $RESULTSPATH 
mkdir $RESULTSPATH/metrics 
mkdir $RESULTSPATH/logs 
mkdir $RESULTSPATH/metrics/negotiation_start 
mkdir $RESULTSPATH/metrics/negotiation_request 
mkdir $RESULTSPATH/metrics/negotiation_end 
mkdir $RESULTSPATH/metrics/strategy_metric 
mkdir $RESULTSPATH/metrics/executionTime 

# use vxargs to collect remotelly the metrics and logs from the remote 
nodes (BSs and CSs) 
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echo " " 
echo "collecting negotiation_start metric from remote nodes via 
vxargs... " 
./vxargs -p -a nodeList.txt scp 
{}:$YOURPATH/middleware/negotiation_start.txt 
$RESULTSPATH/metrics/negotiation_start/BS{}_negotiation_start.txt 

echo " " 
echo "storing negotiation_start metrics from: 
$RESULTSPATH/metrics/negotiation_start/ into file: 
$RESULTSPATH/metrics/negotiation_start/negotiation_start.txt... " 
cat $RESULTSPATH/metrics/negotiation_start/* >> 
$RESULTSPATH/metrics/negotiation_start/negotiation_start.txt 

echo " " 
echo "collecting negotiation_request metric from remote nodes via 
vxargs... " 
./vxargs -p -a nodeList.txt scp 
{}:$YOURPATH/middleware/negotiation_request.txt 
$RESULTSPATH/metrics/negotiation_request/BS{}_negotiation_request.txt 

echo " " 
echo "storing negotiation_request metrics from: 
$RESULTSPATH/metrics/utilization/utilization.txt 
RESULSPATH/metrics/negotiation_request/negotiation_request.txt ... " 
cat $RESULTSPATH/metrics/negotiation_request/* >> 
$RESULTSPATH/metrics/negotiation_request/negotiation_request.txt 

echo " " 
echo "collecting negotiation_end metric from remote nodes via vxargs... 
"
./vxargs -p -a nodeList.txt scp 
{}:$YOURPATH/middleware/negotiation_end.txt 
$RESULTSPATH/metrics/negotiation_end/BS{}_negotiation_end.txt 

echo " " 
echo "storing negotiation_end metrics from: 
$RESULTSPATH/metrics/negotiation_end/ into file: 
$RESULTSPATH/metrics/negotiation_end/negotiation_end.txt... " 
cat $RESULTSPATH/metrics/negotiation_end/* >> 
$RESULTSPATH/metrics/negotiation_end/negotiation_end.txt 

echo " " 
echo "collecting strategy_metric  metric from remote nodes via 
vxargs... " 
./vxargs -p -a nodeList.txt scp 
{}:$YOURPATH/middleware/strategy_metric.txt 
$RESULTSPATH/metrics/strategy_metric/BS{}_strategy_metric.txt 

echo " " 
echo "storing strategy_metric metrics from: 
$RESULTSPATH/metrics/strategy_metric/ into file: 
$RESULTSPATH/metrics/sellsuccess/strategy_metric.txt... " 
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cat $RESULTSPATH/metrics/strategy_metric/* >> 
$RESULTSPATH/metrics/strategy_metric/strategy_metric.txt 

echo " " 
echo "collecting executionTime metric from remote nodes via vxargs... " 
./vxargs -p -a nodeListCS.txt scp {}:$YOURPATH/executionTime/* 
$RESULTSPATH/metrics/executionTime/ 

echo " " 
echo "storing price metrics from: $RESULTSPATH/metrics/executionTime/ 
into file: $RESULTSPATH/metrics/executionTime/executionTime.txt... " 
cat $RESULTSPATH/metrics/executionTime/* >> 
$RESULTSPATH/metrics/executionTime/executionTime.txt 

echo " " 
echo "collecting  BS_logs from remote nodes via vxargs into file:  
$RESULTSPATH/logs/log_BS{}.txt 
 ... " 
./vxargs -p -a nodeListBS.txt scp {}:$YOURPATH/middleware/log.txt 
$RESULTSPATH/logs/log_BS{}.txt 

echo " " 
echo "collecting CS_logs from remote nodes via vxargs  into file:  
$RESULTSPATH/logs/log_CS{}.txt 
 ... " 
./vxargs -p -a nodeListCS.txt scp {}:$YOURPATH/middleware/log.txt 
$RESULTSPATH/logs/log_CS{}.txt 

#storing all metrics in a single folder 
echo " " 
echo "storing  all metrics txt files in a single folder: 
$RESULTSPATH/metrics  ... " 
cp $RESULTSPATH/metrics/negotiation_start/negotiation_start.txt 
$RESULTSPATH/metrics/negotiation_request/negotiation_request.txt 
$RESULTSPATH/metrics//negotiation_end/negotiation_end.txt 
$RESULTSPATH/metrics/strategy_metric/strategy_metric.txt 
$RESULTSPATH/metrics/executionTime/executionTime.txt  
$RESULTSPATH/metrics 

#METRICS TAR: 
# includes config of the experiment, defininng it unambiguosly 
# includes the vcargs output of all controller script  executions 
(runExperiment.sh stopExperiment.sh clenAllNodes.sh) 
# includes all metrics and logs from remote nodes (BSs and CSs) 
# labels unamboguosly the experiment with user and date   
echo " " 
echo "tar all the results into a single experiment file: 
$RESULS_HISTORY_PATH/metricsAndLogsMiddleware_$LABEL.tar  ..." 
tar -czf $RESULTS_HISTORY_PATH/metricsAndLogsMiddleware_$LABEL.tgz  

BSHostingConfig.properties CSHostingConfig.properties 
$HOME/outputVxargs CatallacticBSHostingConfig.properties 
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CatallacticCSHostingConfig.properties complexService.properties 
basicService.properties resourceAgent.properties strategy.conf 
learning.conf 

------------------- end of collecMetrics script ----------------------- 
 
 

Annex B – Matlab scripts main function behavior of the 
scripts for the analysis of decentral and central 
behaviour
 
 
In order to access to agent adatabase an example could be useful. The command below access the structure 
test where are stored all the data experiment. To accessa t a particular experiment select an experiment 
label as T1184664821646. To do the same for an agent select CSA1Site8, and then one is ready to read the 
database content for the satisfaction metric : 
  
>> test.T1184664821646.CSA1Site8.Satisfaction 
 
ans = 
 
    0.2798 
    0.6084 
    1.0000 
    0.9018 
    0.5906 
    0.8965 

    0.6853 
    0.6917 
    0.8454 
    …. 
 
 
Both for central and decentral scenario agent 
metric are collected as follows: 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
Below one can find a description and motivation for the schema in the table above: 

Metric  CSagent  BSagent  RSagent  
 Allocation_rate  X  X  X  

Satisfaction  X  X  X  
Allocation_Time  X  X   

Provisioning_Time  X    
Distance  X  X  X  
Latency  X  X  X  
Usage  X  X   

Messages  X  X  X  
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Allocation Rate: 
 
CS: It is provided by the simulator as the ratio accepts / requests 
BS: It is evaluated by the scripts offline. Accepts and Rejects are selected from accepts.txt and rejects.txt 
files 
RS: It is evaluated by the scripts offline. Accepts and Rejects are selected from accepts.txt and rejects.txt 
files 
 
Satisfaction: 
 
CS: It is evaluated by the scripts offline. Selection of agent satisfaction for each negotiation ended 
successfully  
BS: It is evaluated by the scripts offline. Selection of agent satisfaction for each negotiation ended 
successfully  
RS: It is evaluated by the scripts offline. Selection of agent satisfaction for each negotiation ended 
successfully  
 
Allocation_Time     
CS: Negotiation id selected from CS_BS_mapping. Negotiation id matching from service_usage_mat. 
Once the pairs of usage are selected, it is evaluated end_time – start _time. 
BS: Selection of pairs of end and start usage time from resource_usage_mat. Usage metric is the the 
difference between end and start. 
RS: not available. 
 
Provisioning Time: 
CS: selection from complex_service_provisioning_time_mat. 
BS: not available 
RS: not available 
 
Distance: 
CS: selection from distance_mat. 
BS: selection from distance_mat. 
RS: selection from distance_mat. 
 
Usage:  
CS: selection usage metric from service_usage_mat 
BS: selection usage metric from resource_usage_mat 
RS: not available 
 
Messages: 
CS: selection from negotiation messages file 
BS: selection from negotiation messages file 
RS: selection from negotiation messages file 
 
 
Agentanalysis2 and Agentanalysis_c 

The scripts select the agent present in the experiment runs. They save the agent lists in the variables: 
final_CSA, final_BSA, final_RSA . The accepts and rejects numbers are selected from the 
accepts.txt and reject.txt files to evaluate the allocation rate for BSA and RSA. (The CSA allocation rate 
are already available in the complex_service_agent_allocation_rate.txt ). The formula is  
 
alloc.rate = accepts / (rejects + accepts) . 
 
For each CSA are selected the remaining variables: 
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Satisfaction.  
From util_satisfaction_service_buyer_decentral.txt the satisfaction’s agent entry are 
selected using the agent_id. 
 
So for example the lines: 
 
M=selcell(util_satisfaction_service_buyer_decentral_mat{k,1}{1,2},final
_CSA{i}); 
agent.Satisfaction=util_satisfaction_service_buyer_decentral_mat{k,1}{1
,5}(M); 

save in the agent.Satisfaction structure array the satisfaction entries stored in the variables
util_satisfaction_service_buyer_decentral_mat (k is the experiment number and 5 is 
the column where are stored the agent id). The exact entry indexes are selected with the selcell 
function, which take as input the 2th column  
util_satisfaction_service_buyer_decentral_mat (where are stored the agent_id) and 
the final_CSA{i} the i-th agent_id. The selcell function behavior is basically a string comparison 
between an array and a single string. 
 
  
complex_service_provisioning_time.  
From the related file the entry are selected using the agent_id. 
 
Distance 
From distance.txt the entry are selected using the agent_id. 
 
Usage 
From service_usage file are selected the agent entries. The final observation is usage = 
end.time_service_usage{i} - start.time_service_usage{i}.  
 
Messages. 
The messages are selected as the metric above, from the file negotiation_messages.txt 
 
Allocation time 
The entries are selected from the basic_service_Allocation_time.txt and as usage the  
time are computed as end.time_bas_alloc_time{i} - start.time_bas_alloc_time{i}.  
 
 
Agent Metrics saving 
 
In the line below: 
 
experiment=setfield(experiment,char(CSA{i}),agent);
 
are stored in the structure array experiment the agent metrics. This is done for all the 
CSagent population. 
 
BSA metrics 

As the CSA the main metrics are selected as below: 
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Satisfaction. 
From util_satisfaction_service_seller_decentral.txt the satisfaction’s agent entry 
are selected using the agent_id. 
 
Provisioning Time 
Not available 
 
 
Distance 
From distance.txt the entry are selected using the agent_id. 
 
Usage 
From resource_usage file are selected the agent entries. The final observation is usage = 
end.time_resource_usage{i} - start.time_resource_usage{i}.  
 
Resource allocation time 
as above for the complex_service_agents, this time entries are selected from 
resource_allocation_time.txt 
 
Messages. 
The messages are selected as the metric above, from the file negotiation_messages.txt 
 
Agent Metrics saving 
 
In the line below: 
 
experiment=setfield(experiment,char(BSA{i}),agent);
 
the agent metrics are stored in the structure array experiment. This is done for all the 
BSagent population. 
 
RSAgent 

For each CSA are selected the remaining variables: 
 
Satisfaction.  
From util_satisfaction_service_buyer_decentral.txt the satisfaction’s agent entry are 
selected using the agent_id. 

Provisioning Time 
Not available 
 
 
Distance 
From distance.txt the entry are selected using the agent_id. 

Usage 
Not available 
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Resource allocation time 
Not available 
Messages. 
The messages are selected as the metric above, from the file negotiation_messages.txt 
 
Agent Metrics saving 
 
In the line below: 
 
experiment=setfield(experiment,char(RSA{i}),agent);
 
the agent metrics are stored in the structure array experiment. This is done for all the 
BSagent population. 
 

Annex C– Matlab scripts for simulator analysis  
 
Agent_analysis2 and Agent_analysis_c 

The scripts has to select and associate the metrics to the agent, in ordet to biuld a 
complete database taking into account the metrics selected for the simualtor. In what 
follow are described the main procedures. Are shown the agentanalysis2 script code 
because the central counterpart it is identical. 
 
 
H=strfind(accepts_mat{k,1}{1,2},'CSA');                  % The command use the strfind function in order to find test 
with ‘CSA’              % string from the 2 column of the accept matrix in 
the k experiment 
     

for i=1:length(H)            % The folowing statements are to find the final list, 
    if isempty(H{i})==1           % of the CSAgents   
        g(i)=0; 
    else
        g(i)=i; 
    end
end
l=find(g); 
CSAgent=accepts_mat{k,1}{1,2}(l); 

clear M H              % Once the CSA list is available, eventually replication are 
deleted and               % saved in the variable final_CSA 
H_com=l; 
j=0; 
for i=1:length(CSAgent) 
    if H_com(i)>0 
        j=j+1; 
         M=selcell(CSAgent,CSAgent(i));         
         final_CSA{j}=CSAgent(i); 
         H_com(M)=0; 
    end
end

number_agent=setfield(number_agent,'CSA',length(final_CSA)) %% This statement set the field in the structure 
number_agent with the        %% number of agent 

 
The next lines are to selet and associate the data to the agent: 
 
 
for i=1:length(final_CSA)  
   M=selcell(complex_service_agent_allocation_rate_mat{k,1}{1,2},final_CSA{i});  %% A) It selects index of 
complexs.alloc.rate                                                                                                                
                         array 
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                                                                                 %%    where is present the 
'final_CSA{i}'
                                                                                  
   agent.Allocation_rate=complex_service_agent_allocation_rate_mat{k,1}{1,4}(M); %% B) It gives to the agent structure 
the selected                  Allocation Rate
                                                                                 %% In what follows are executed the 
same steps as in               A) and B)  
           %% See below for the description of 
selcell function 

   M=selcell(util_satisfaction_service_buyer_decentral_mat{k,1}{1,2},final_CSA{i});  
   agent.Satisfaction=util_satisfaction_service_buyer_decentral_mat{k,1}{1,5}(M); 
   M=selcell(complex_service_provisioning_time_mat{k,1}{1,2},final_CSA{i});  
   agent.Provisioning_Time=complex_service_provisioning_time_mat{k,1}{1,5}(M); 
   M=selcell(distance_mat{k,1}{1,2},final_CSA{i});  
   agent.Distance=distance_mat{k,1}{1,5}(M); 
   M=selcell(latency_mat{k,1}{1,2},final_CSA{i});  
   agent.Latency=latency_mat{k,1}{1,5}(M); 
   M=selcell(service_usage_mat{k,1}{1,2},final_CSA{i});       %% the usage metric evaluation start 
here: M is the            %% array index where one 
can find the Final_CSA 
   usacom=service_usage_mat{k,1}{1,1}(M); 
   o=0; 

%% The usage metric selection is more complicated: It is needed to be
%% selected the usage start and end from service_usage_mat variable. Then
%% the following procedure evaluate the difference for each pair of start
%% and end

if length(M)==1         %% Usually M should be a 2 elements 
array. But in           %% this case length of M =1 
and the end value is           %% substitute 
with the simulation end time 
       usa=simulation_time_mat{k,1}{1,5}(2)-usacom; 

else
       for j=2:2:length(M)        %% Here for each pair of usage 
observation (end and           %% start) the usa 
variable it is creatred. On it are           %% 
stored the usage time obseravtions  
           o=o+1; 
           usa(o)=usacom(j)-usacom(j-1); 
       end

end

if isempty(M)==0   
      agent.Usage=usa; 

else
      agent.Usage=[]; 

end
    
   clear usa usacom
   M=selcell(CS_BS_Mapping_mat{k,1}{1,2},final_CSA{i});  
   Negotiation=CS_BS_Mapping_mat{k,1}{1,5}(M); 

   P=selcell(negotiation_messages_mat{k,1}{1,2},final_CSA{i}); 
   neg=negotiation_messages_mat{k,1}{1,8}(P); 
   agent.Messages=ceil(neg); 
    
   clear neg
    
%% The allocation time metric selection is more complicated: It is needed to be
%% selected the usage start and end from service_usage_mat variable. Then
%% the following procedure evaluate the difference for each pair of start
%% and end
   P=selcell(basic_service_allocation_time_mat{k,1}{1,2},final_CSA{i}); 
   n=0; 

for j=2:2:length(P) 
      n=n+1; 
      csa_alloc_time1=basic_service_allocation_time_mat{k,1}{1,1}(P(j)); 
      csa_alloc_time2=basic_service_allocation_time_mat{k,1}{1,1}(P(j-1)); 
      c_alloc_t(n)=csa_alloc_time1-csa_alloc_time2; 

end
if isempty(P)==0 

   agent.Allocation_Time=c_alloc_t; 
else

   agent.Allocation_Time=[]; 
end

   clear P
   clear c_alloc_t
%% Final CSA metric storage    

   CSA{i}=regexprep(final_CSA{i}, '@', '');         
   experiment=setfield(experiment,char(CSA{i}),agent);   %% This set the experiment structure 
with agent data 
   clear Negotiation
end

Agent_eval, Agent_eval_c 
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The scripts collects all the agent data and aggregate them in the upper level metric 
indicators. 
 
The script asks initially the number of experiment to analyze and if the final comparison 
has to be done (If yes it saves in a folder the main data to compare them with other 
scenarios). For each experiment and agent the script evaluate the total number messages 
for each agent.  
 
Normalization 

for i=2:length(fieldnames(test.(testcom))) 
    agent_allocation_rate{i-1}=test.(testcom).(char(individual(i))).Allocation_rate; 
    agent_allocation_time{i-1}=exp(-test.(testcom).(char(individual(i))).Allocation_Time*0.0001); 
    agent_satisfaction{i-1}=test.(testcom).(char(individual(i))).Satisfaction; 
    agent_provisioning{i-1}=exp(-test.(testcom).(char(individual(i))).Provisioning_Time*0.0001); 
    agent_distance{i-1}=test.(testcom).(char(individual(i))).Distance./(length(fieldnames(test.(testcom)))-1); 
    agent_latency{i-1}=test.(testcom).(char(individual(i))).Latency./simulation_time_mat{1,1}{1,1}(2); 
    agent_usage{i-1}=exp(-test.(testcom).(char(individual(i))).Usage*0.0001); 
    agent_messages{i-1}=test.(testcom).(char(individual(i))).Messages./n_mess(i); 
end

test.(testcom).(char(individual(i))) selects the metrics for the agent
individual(i). In the agent_allocation rate are then saved the values for agent i Allocation rate.
Then the normalization for the time metrics is (WP4 D1 pag.31)

exp(-time*Beta), 

where Beta is a parameter of time. This formula is applied also for Provisioning_Time and 
Usage. 

Finally, Agent Message indicator is normalized taking the ratio with the total message agent number
(n_mess(i)), and The distance is obtained with the total agent number
(length(fieldnames(test.(testcom)))-1).  

Upper level indicators 
for i=1:length(fieldnames(test.(testcom)))-1 
    m_alloc_time(i)=mean(agent_allocation_time{1,i}); 
    m_satisfaction(i)=mean(agent_satisfaction{1,i}); 
    m_provisioning(i)=mean(agent_provisioning{1,i}); 
    m_distance(i)=mean(agent_distance{1,i}); 
    m_latency(i)=mean(agent_latency{1,i}); 
    m_usage(i)=mean(agent_usage{1,i}); 
    m_messages(i)=mean(agent_messages{1,i}); 

    std_alloc_time(i)=std(agent_allocation_time{1,i}); 
    std_satisfaction(i)=std(agent_satisfaction{1,i}); 
    std_provisioning(i)=std(agent_provisioning{1,i}); 
    std_distance(i)=std(agent_distance{1,i}); 
    std_latency(i)=std(agent_latency{1,i}); 
    std_usage(i)=std(agent_usage{1,i}); 
    std_messages(i)=std(agent_messages{1,i}); 

end

The above lines evaluate the standard deviation and mean indicators for the main metrics. This script show 
the indicator for each agent. 

%% Second layer: mean values over agents

    f_allocation_rate(k)=nanmean(a_l_r); 
    f_allocation_time(k)=nanmean(m_alloc_time); 
    f_satisfaction(k)=nanmean(m_satisfaction); 
    f_provisioning(k)=nanmean(m_provisioning); 
    f_distance(k)=nanmean(m_distance); 
    f_latency(k)=nanmean(m_latency); 
    f_usage(k)=nanmean(m_usage); 
    f_messages(k)=nanmean(m_messages); 

    f_std_allocation_rate(k)=nanstd(a_l_r); 
    f_std_time(k)=nanmean(std_alloc_time); 
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    f_std_satisfaction(k)=nanmean(std_satisfaction); 
    f_std_provisioning(k)=nanmean(std_provisioning); 
    f_std_distance(k)=nanmean(std_distance); 
    f_std_latency(k)=nanmean(std_latency); 
    f_std_usage(k)=nanmean(std_usage); 
    f_std_messages(k)=nanmean(std_messages); 

This lines compute the final index mean and standard deviation, giving a single indicator for the 
experiment. It is the value plotted in the spider plots. 
 
Finally the main indicators ODM, IC, std_IC, std_ODM, and the final L 

ODM(k)=1-(f_allocation_rate(k)+f_satisfaction(k)+      f_allocation_time(k)+f_provisioning(k))/4; 
s_ODM(k)=(f_std_allocation_rate(k)+ f_std_time(k)+f_std_satisfaction(k)+f_std_provisioning(k))/4; 
IC(k)=(f_distance(k)+f_messages(k)+f_usage(k))/3; 
s_IC(k)=(f_std_distance(k)+f_std_messages(k)+f_std_usage(k))/3; 
     
%% Final index
final(k)=0.5*(ODM(k))+0.5*s_ODM(k)+0.5*IC(k)+0.5*s_IC(k). 

 

Annex D – setup of the strategy for the experiment 
analyzing the effect on message failure on the catallactic 
strategy
 

cs.conf: 
 
cs1 bs3  
cs2 bs1 bs2  
cs3 bs1 bs4 
 
bs.conf 
bs1 bs1 bronze r1 3 r2 3 
bs2 bs2 gold r4 2 
bs3 bs3 bronze r1 25 r3 10 
bs4 bs4 bronze r4 33 r5 25 
 
arb.conf 
arb1 r1 50 r2 30 r3 30 
arb2 r4 50 r5 50 
arb3 r1 50 r3 44 r4 45 
 
market_decentral.properties 
 
########################## 
# decentral market setup # 
########################## 
 
 
 
################## 
# Basic Services # 
################## 
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################ 
#bs2 
################ 
 
bs2.seller.minPrice = 30 
bs2.seller.maxPrice = 35 
bs2.buyer.minPrice = 30 
bs2.buyer.maxPrice = 35 
bs2.hard.lower.limit = 15 
bs2.hard.upper.limit = 45 
 
bs2.resource.itemids = r4_0 
 
 
################ 
#bs3 
################ 
 
bs3.seller.minPrice = 55 
bs3.seller.maxPrice = 65 
bs3.buyer.minPrice = 55 
bs3.buyer.maxPrice = 65 
bs3.hard.lower.limit = 25 
bs3.hard.upper.limit = 85 
 
bs3.resource.itemids = r1r3_0 
 
 
################ 
#bs1 
################ 
 
bs1.seller.minPrice = 55 
bs1.seller.maxPrice = 65 
bs1.buyer.minPrice = 55 
bs1.buyer.maxPrice = 65 
bs1.hard.lower.limit = 25 
bs1.hard.upper.limit = 85 
 
bs1.resource.itemids = r1r2_0 
 
 
################ 
#bs4 
################ 
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bs4.seller.minPrice = 55 
bs4.seller.maxPrice = 65 
bs4.buyer.minPrice = 55 
bs4.buyer.maxPrice = 65 
bs4.hard.lower.limit = 25 
bs4.hard.upper.limit = 85 
 
bs4.resource.itemids = r4r5_0 
 
 
#################### 
#     Products     # 
#################### 
 
 
 
#################### 
#r1r2_0 
#################### 
 
r1r2_0.seller.minPrice =50.0 
r1r2_0.seller.maxPrice =60.0 
r1r2_0.buyer.minPrice =50.0 
r1r2_0.buyer.maxPrice =60.0 
r1r2_0.hard.lower.limit =20.0 
r1r2_0.hard.upper.limit =80.0 
r1r2_0.baseunit.r1= 1 
r1r2_0.baseunit.r2= 1 
r1r2_0.resourceids = r1 r2  
 
#################### 
#r1r3_0 
#################### 
 
r1r3_0.seller.minPrice =50.0 
r1r3_0.seller.maxPrice =60.0 
r1r3_0.buyer.minPrice =50.0 
r1r3_0.buyer.maxPrice =60.0 
r1r3_0.hard.lower.limit =20.0 
r1r3_0.hard.upper.limit =80.0 
r1r3_0.baseunit.r1= 1 
r1r3_0.baseunit.r3= 1 
r1r3_0.resourceids = r1 r3  
 
#################### 
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#r4_0 
#################### 
 
r4_0.seller.minPrice =25.0 
r4_0.seller.maxPrice =30.0 
r4_0.buyer.minPrice =25.0 
r4_0.buyer.maxPrice =30.0 
r4_0.hard.lower.limit =10.0 
r4_0.hard.upper.limit =40.0 
r4_0.baseunit.r4= 1 
r4_0.resourceids = r4  
 
#################### 
#r4r5_0 
#################### 
 
r4r5_0.seller.minPrice =50.0 
r4r5_0.seller.maxPrice =60.0 
r4r5_0.buyer.minPrice =50.0 
r4r5_0.buyer.maxPrice =60.0 
r4r5_0.hard.lower.limit =20.0 
r4r5_0.hard.upper.limit =80.0 
r4r5_0.baseunit.r4= 1 
r4r5_0.baseunit.r5= 1 
r4r5_0.resourceids = r4 r5  
 
#################### 
#  arb item ids   # 
#################### 
 
arb.itemids =r1r2_0 r1r3_0 r4_0 r4r5_0 
 
parameters_catnets.conf 
#
# This file contains all the parameters required for OptorSim 
# using the Properties class to store this information. 
#
# Aln configuration files 

aln.topology.file = examples/300A_500N_W1/topology.conf 
aln.bs.file = examples/300A_500N_W1/bs.conf 
aln.arb.file = examples/300A_500N_W1/arb.conf 
cs.configuration.file = examples/300A_500N_W1/cs.conf 

#Number of complex services to be submitted 
number.complexservices = 10000 
#
# The categories of users available are: 
# (1) Simple - wait cs delay between submitting CSs 
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# (2) Random - wait uniform random time between 0 and 2 * cs delay 
users = 1 
#
# The choice of the policy for the ComplexServiceDispatcher is: 
# (1) random 
# (2) queue length  
#
policy = 1 
#
# The cs delay is the interval in ms between the 
ComplexServiceDispatcher 
# submitting each CS. 
#
#cs.delay = 600 
cs.delay = 1000 
#
# The choice of access pattern generators is: 
# (1) SequentialAccessGenerator - BSs are accessed in order. 
# (2) RandomAccessGenerator - BSs are accessed using a flat random 
#        distribution. 
# (3) RandomWalkUnitaryAccessGenerator - BSs are accessed using a 
#        unitary random walk. 
# (4) RandomWalkGaussianAccessGenerator - BSs are accessed using a 
#        Gaussian random walk. 
# (5) RandomZipfAccessGenerator - BSs are accessed using a 
#         Zipf distribution 
#
access.pattern.generator = 1 
# Shape parameter for Zipf-like distribution > 0 
shape = 0.85 
#
# The random seed for deciding which cs are chosen can be random or 
# fixed. 
#
random.seed = no 
#
# The maximum queue size is the maximum number of CS the CsHandler 
# will keep in its queue. 
#
max.queue.size = 2000 
#
# The time (in ms) it takes each BS to be executed 
#
#bs.execution.time = 800 
bs.execution.time = 1000 
#
# The choice of market model is: 
# (1) Catallactic 
# (2) Centralised 
market.model = 1 
########################################### 
# central market parameters               # 
########################################### 

# Clearing Policy for the Service Market 
# (1) Call Market 
# (2) Continuous  
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market.central.service.clear = 2 

# Call Market Clearing Interval for the Service Market 
# Defines after how many ms the market will be cleared 
market.central.service.clearinterval = 400 

# Clearing Policy for the Resource Market 
# (1) Call Market 
# (2) Continuous  
market.central.resource.clear = 1 

# Call Market Clearing Interval for the Resource Market 
# Defines after how many ms the market will be cleared 
market.central.resource.clearinterval = 400 

########################################### 
# decentralized market parameters         # 
########################################### 

# market initialisation 
market.decentral.file = 
examples/300A_500N_W1/market_decentral.properties 

# randomize initial price range 
price.range.randomize = 0 

# min price range 
#price.range.min = 5 

# connect the prices of the service market and resource market 
# if swichted on, the basic service seller's outcome is the budget  
# of the basic service buyer on the resource market 
# values: yes/no 
#markets.connect = no 
markets.connect = yes 

# resource model selection (resource) 
# values: shared, dedicated 
resource.model = dedicated 

# how to select proposals 
# 0 = fifo - one shot (working) 
# 1 = fifo - multi-shot (NOT working) 
# 2 = best price - one shot (working) 
# 3 = best price - multi shot (NOT working) 
cfp.selection.model = 0 

# maximum number of co-allocated resources 
max.coallocation = 0 

############################################### 
# negotiation stuff                           # 
# THIS PERHAPS HAS TO BE MODIFIED FOR CATNETS # 
############################################### 

# TODO document this parameter 
negotiation.flag = yes 
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# actually the number of sites contacted 
cfp_ann.hop.count = 3 

# actually the number of sites contacted 
learning.hop.count = 3 

# discovery timeout  
discovery.timeout = 500 

# negotiation timeout 
timeout = 5000 
timeout.reduction.factor = 0.5 

# size of messages (in Kbytes) - size = 0  
# implies instantaneous message delivery 
message.size = 2 
#

 
STRATEGIES: 
 
Strategy 1:  
################## 
# setup learning # 
################## 
 
# send plumages 
maturityThreshold = 5 
#maturityThreshold = 1 
 
# receive plumages  
courterThreshold = 20 
#courterThreshold = 1 
#courterThreshold = 5 
 
# crossover probability 
crossoverProbability = 0.20 
 
# mutation probability 
#mutationProbability = 0.05 
#mutationProbability = 0.25 
mutationProbability = 0.7 
 
 
# ring size 
ringSize = 10000 
 
# crossOverSelectionModel 
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# (0) select plumages which are better than my plumage 
# (1) select best received plumage 
#crossOverSelectionModel = 1 
crossOverSelectionModel = 0 
 
# init float gene 
gaussWidth = 0.1 
min = 0.001 
max = 0.999 
 
################## 
# setup genotype # 
################## 
 
# randomize genotype 
# values: yes/no 
#genotype.randomize = no 
genotype.randomize = yes 
 
# if randomize == no, use this genotype 
genotype.acquisitiveness = 0.05 
genotype.satisfaction = 0.99 
genotype.priceStep = 0.5 
genotype.priceNext = 0.05 
genotype.weightMemory = 0.9 
 
Strategy 2: 
################## 
# setup learning # 
################## 
 
# send plumages 
maturityThreshold = 5 
#maturityThreshold = 1 
 
# receive plumages  
courterThreshold = 20 
#courterThreshold = 1 
#courterThreshold = 5 
 
# crossover probability 
crossoverProbability = 0.20 
 
# mutation probability 
mutationProbability = 0.05 
#mutationProbability = 0.25 
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#mutationProbability = 0.7 
 
 
# ring size 
ringSize = 10000 
 
# crossOverSelectionModel 
# (0) select plumages which are better than my plumage 
# (1) select best received plumage 
#crossOverSelectionModel = 1 
crossOverSelectionModel = 0 
 
# init float gene 
gaussWidth = 0.01 
min = 0.001 
max = 0.999 
 
################## 
# setup genotype # 
################## 
 
# randomize genotype 
# values: yes/no 
genotype.randomize = no 
#genotype.randomize = yes 
 
# if randomize == no, use this genotype 
genotype.acquisitiveness = 0.05 
genotype.satisfaction = 0.99 
genotype.priceStep = 0.5 
genotype.priceNext = 0.05 
genotype.weightMemory = 0.9 
 

Annex F: Scenario config for the “Second experiment” 
 
Scenario config for Brite:  
GUI_GEN.conf 
#This config file was generated by the GUI.  
 
BriteConfig 
 
BeginModel 
 Name =  3   #Router Waxman = 1, AS Waxman = 3 
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 N = 2000   #Number of nodes in graph 
 HS = 1000   #Size of main plane (number of squares) 
 LS = 100   #Size of inner planes (number of squares) 
 NodePlacement = 1  #Random = 1, Heavy Tailed = 2 
 GrowthType = 1   #Incremental = 1, All = 2 
 m = 2    #Number of neighboring node each new node connects to. 
 alpha = 0.15   #Waxman Parameter 
 beta = 0.2   #Waxman Parameter 
 BWDist = 2   #Constant = 1, Uniform =2, HeavyTailed = 3, Exponential 
=4 

 BWMin  =  1024.0  
 BWMax  =  1024.0  

EndModel 
 
BeginOutput 
 BRITE = 1   #1=output in BRITE format, 0=do not output in BRITE format 
 OTTER = 0   #1=Enable visualization in otter, 0=no visualization 
EndOutput 
 
GUI_GEN_OPTROSIM.conf 
#This config file was generated by the GUI.  
BeginOptorSimModel 
 ResNum = 3   #Resources Number 
 ResMaxQuantity = 100   #Resource Max Quantity 
 ARBNumber = 3   #Available Resource Bundle Number 
 ARBMaxResNum = 3   #Available Resource Bundle Max Number 
 BSNumber = 3   #Basic Service Number 

 CSNumber  =  3    #Complex  Service  Number  
 CSMaxCardinality = 3   #Complex Service Max Cardinality 
 FailProbMin = 0.0  #Node Min Failure probability 
 FailProbMax = 0.0  #Node Max Failure probability 
 QualityNumber = 4   #Quantity Number 

 Quality0  =  platinum  
 Quality1  =  gold  
 Quality2  =  silver  
 Quality3  =  bronze  

EndOptorSimModel 
 
BeginOptorSimModel2 
 allocationMechanism = 1   #0 Centralized; 1 Catallactic 

 agentsNum  =  2000    #Agents  Number  
 csSchedule = 0   #CS Schedule 0= All, 1= random set 
 csaPercentage = 20   # Percentage of CSAs 
 bsaPercentage = 40   # Percentage of BSAs 
 raPercentage = 40   # Percentage of RAs 
 bsaDistrProb = 0   # BSA Ditr. of Prob. 
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 csaDistrProb = 0   # CSA Ditr. of Prob. 
 raDistrProb = 0   # RA Ditr. of Prob. 
EndOptorSimModel2 
 
BeginOptorSimModel_BSTable 
 bs1 = 33.0 
        bs2 = 33.0 
        bs3 = 33.0 
EndOptorSimModel_BSTable 
 
BeginOptorSimModel_ARBTable 

 arb1  =  33.0  
        arb2 = 33.0 
        arb3 = 33.0 
EndOptorSimModel_ARBTable 
 
CATNETS Simulator configuration 
 
CS.conf 
cs1 bs2  
cs2 bs1 bs3 bs2  
cs3 bs2 bs3 
 
BS.conf 
bs1 bs1 bronze r1 20 r3 3 
bs2 bs2 bronze r2 52 
bs3 bs3 bronze r2 6 r3 1 
 
ARB.conf 
arb1 r1 21 r3 10 
arb2 r2 25 r3 1 
arb3 r2 59 
 
 
Market_decemtralized.properties 
 
########################## 
# decentral market setup # 
########################## 
 
 
################ 
#bs1 
################ 
 
bs1.seller.minPrice = 55 
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bs1.seller.maxPrice = 65 
bs1.buyer.minPrice = 55 
bs1.buyer.maxPrice = 65 
bs1.hard.lower.limit = 25 
bs1.hard.upper.limit = 85 
 
bs1.resource.itemids = r1r3 
 
 
################ 
#bs2 
################ 
 
bs2.seller.minPrice = 30 
bs2.seller.maxPrice = 35 
bs2.buyer.minPrice = 30 
bs2.buyer.maxPrice = 35 
bs2.hard.lower.limit = 15 
bs2.hard.upper.limit = 45 
 
bs2.resource.itemids = r2 
 
 
################ 
#bs3 
################ 
 
bs3.seller.minPrice = 55 
bs3.seller.maxPrice = 65 
bs3.buyer.minPrice = 55 
bs3.buyer.maxPrice = 65 
bs3.hard.lower.limit = 25 
bs3.hard.upper.limit = 85 
 
bs3.resource.itemids = r2r3 
 
 
#################### 
#     Products     # 
#################### 
 
 
 
#################### 
#r2 
#################### 



 131

 
r2.seller.minPrice =25.0 
r2.seller.maxPrice =35.0 
r2.buyer.minPrice =25.0 
r2.buyer.maxPrice =35.0 
r2.hard.lower.limit =20.0 
r2.hard.upper.limit =40.0 
r2.baseunit.r2= 52 
r2.resourceids = r2  
 
#################### 
#r1r3 
#################### 
 
r1r3.seller.minPrice =50.0 
r1r3.seller.maxPrice =60.0 
r1r3.buyer.minPrice =50.0 
r1r3.buyer.maxPrice =60.0 
r1r3.hard.lower.limit =20.0 
r1r3.hard.upper.limit =80.0 
r1r3.baseunit.r1= 20 
r1r3.baseunit.r3= 3 
r1r3.resourceids = r1 r3  
 
#################### 
#r2r3 
#################### 
 
r2r3.seller.minPrice =50.0 
r2r3.seller.maxPrice =60.0 
r2r3.buyer.minPrice =50.0 
r2r3.buyer.maxPrice =60.0 
r2r3.hard.lower.limit =20.0 
r2r3.hard.upper.limit =80.0 
r2r3.baseunit.r2= 6 
r2r3.baseunit.r3= 1 
r2r3.resourceids = r2 r3 
 
#################### 
#  arb item ids   # 
#################### 
 
arb.itemids =r1r3 r2 r2r3 
 
 
Parameter_catnets.conf 
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# 
# This file contains all the parameters required for OptorSim 
# using the Properties class to store this information. 
# 
# Aln configuration files 
 
aln.topology.file = examples/2000A_2000N_1/topology.conf 
aln.bs.file = examples/2000A_2000N_1/bs.conf 
aln.arb.file = examples/2000A_2000N_1/arb.conf 
cs.configuration.file = examples/2000A_2000N_1/cs.conf 
 
 
#Number of complex services to be submitted 
number.complexservices = 100000 
# 
# The categories of users available are: 
# (1) Simple - wait cs delay between submitting CSs 
# (2) Random - wait uniform random time between 0 and 2 * cs delay 
users = 1 
# 
# The choice of the policy for the ComplexServiceDispatcher is: 
# (1) random 
# (2) queue length  
#  
policy = 1 
# 
# The cs delay is the interval in ms between the ComplexServiceDispatcher 
# submitting each CS. 
# 
#cs.delay = 600 
cs.delay = 1000 
# 
# The choice of access pattern generators is: 
# (1) SequentialAccessGenerator - BSs are accessed in order. 
# (2) RandomAccessGenerator - BSs are accessed using a flat random 
#        distribution. 
# (3) RandomWalkUnitaryAccessGenerator - BSs are accessed using a 
#        unitary random walk. 
# (4) RandomWalkGaussianAccessGenerator - BSs are accessed using a 
#        Gaussian random walk. 
# (5) RandomZipfAccessGenerator - BSs are accessed using a 
#         Zipf distribution 
# 
access.pattern.generator = 1 
# Shape parameter for Zipf-like distribution > 0 
shape = 0.85 
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# 
# The random seed for deciding which cs are chosen can be random or 
# fixed. 
# 
random.seed = no 
# 
# The maximum queue size is the maximum number of CS the CsHandler 
# will keep in its queue. 
# 
max.queue.size = 20000 
# 
# The time (in ms) it takes each BS to be executed 
# 
#bs.execution.time = 800 
bs.execution.time = 1000 
# 
# The choice of market model is: 
# (1) Catallactic 
# (2) Centralised 
market.model = 1 
########################################### 
# central market parameters               # 
########################################### 
 
# Clearing Policy for the Service Market 
# (1) Call Market 
# (2) Continuous  
market.central.service.clear = 2 
 
# Call Market Clearing Interval for the Service Market 
# Defines after how many ms the market will be cleared 
market.central.service.clearinterval = 400 
 
# Clearing Policy for the Resource Market 
# (1) Call Market 
# (2) Continuous  
market.central.resource.clear = 1 
 
# Call Market Clearing Interval for the Resource Market 
# Defines after how many ms the market will be cleared 
market.central.resource.clearinterval = 400 
 
########################################### 
# decentralized market parameters         # 
########################################### 
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# market initialisation 
market.decentral.file = examples/2000A_2000N_1/market_decentral.properties 
 
# randomize initial price range 
price.range.randomize = 0 
 
# min price range 
#price.range.min = 5 
 
# connect the prices of the service market and resource market 
# if swichted on, the basic service seller's outcome is the budget  
# of the basic service buyer on the resource market 
# values: yes/no 
#markets.connect = no 
markets.connect = yes 
 
# resource model selection (resource) 
# values: shared, dedicated 
resource.model = dedicated 
 
# how to select proposals 
# 0 = fifo - one shot (working) 
# 1 = fifo - multi-shot (NOT working) 
# 2 = best price - one shot (working) 
# 3 = best price - multi shot (NOT working) 
cfp.selection.model = 0 
 
# maximum number of co-allocated resources 
max.coallocation = 0 
 
############################################### 
# negotiation stuff                           # 
# THIS PERHAPS HAS TO BE MODIFIED FOR CATNETS # 
############################################### 
 
# TODO document this parameter 
negotiation.flag = yes 
 
# actually the number of sites contacted 
cfp_ann.hop.count = 3 
 
 
# actually the number of sites contacted 
learning.hop.count = 10 
 
# discovery timeout  
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discovery.timeout = 500 
 
# negotiation timeout 
timeout = 5000 
timeout.reduction.factor = 0.5 
 
# size of messages (in Kbytes) - size = 0  
# implies instantaneous message delivery 
message.size = 2 
# 
# Outputs negotiation information to negotiation.log. Can slow the 
# simulation down a little bit. 
# 
negotiation.log = yes 
# 
############## 
# Time Model # 
############## 
# 
# use advanced grid time (yes) or not (no) 
# 
time.advance = yes 
# 
#################################### 
# Output path for metrics log file # 
#################################### 
metrics.path = ./log/ 
# 
# 
########################################################## 
## THE FOLLOWING PARAMETERS COULD BE USELESS FOR CATNETS # 
########################################################## 
############################# 
# BandwidthReader stuff     # 
############################# 
# flag to switch background traffic on or off 
background.bandwidth = no 
# 
# The directory in which your background bandwidth data files are stored 
data.directory = examples/bw_data/edg_testbed/ 
# 
# The datafile to use when no other background data are available.  
# For EDG, lyon_to_cern_ave.numbers is good; for UK dl_to_ncl_ave.numbers is good. 
default.background = lyon_to_cern_ave.numbers 
#  
# The time of day used as starting point. Should be in hours, with minutes after 
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# the decimal point e.g. 22.5 for 22:30, and must be on the hour or half-hour. 
time.of.day = 0.0 
# 
############# 
# GUI stuff # 
############# 
# 
# Options to use the GUI and histogram browser 
# 
# gui = no 
# histogram.browser = no 
# 
# The file with the map information 
# 
# map.info = examples/gui/europe.coords 
# 
############## 
# Statistics # 
############## 
# 
# Level of statistics to be printed out at the end of the simulation 
# (1) None 
# (2) Simple - only stats for the whole grid 
# (3) Full - full stats for all elements on all sites 
# 
# statistics = 3 
# 
# No background traffic 
bandwidth.configuration.file = examples/edg_testbed_bandwidths.conf 
# 
# automatically multiplied by scale factor 
# 
# dt = 1000000 
# 
 
Learning configuration: 
 
################## 
# setup learning # 
################## 
 
# send plumages 
maturityThreshold = 5 
#maturityThreshold = 1 
 
# receive plumages  
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courterThreshold = 5 
#courterThreshold = 1 
#courterThreshold = 5 
 
# crossover probability 
crossoverProbability = 0.20 
 
# mutation probability 
#mutationProbability = 0.05 
#mutationProbability = 0.25 
mutationProbability = 0.7 
 
 
# ring size 
ringSize = 10000 
 
# crossOverSelectionModel 
# (0) select plumages which are better than my plumage 
# (1) select best received plumage 
#crossOverSelectionModel = 1 
crossOverSelectionModel = 0 
 
# init float gene 
gaussWidth = 0.01 
min = 0.001 
max = 0.999 
 
################## 
# setup genotype # 
################## 
 
# randomize genotype 
# values: yes/no 
#genotype.randomize = no 
genotype.randomize = yes 
 
# if randomize == no, use this genotype 
genotype.acquisitiveness = 0.05 
genotype.satisfaction = 0.99 
genotype.priceStep = 0.5 
genotype.priceNext = 0.05 
genotype.weightMemory = 0.9 
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This report describes the work done and results 
obtained in third year of the CATNETS project. 
Experiments carried out with the different 
configurations of the prototype are reported and 
simulation results are evaluated with the 
CATNETS metrics framework. The applicability of 
the Catallactic approach as market model for 
service and resource allocation in application 
layer networks is assessed based on the results 
and experience gained both from the prototype 
development and simulations.
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