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1. Introduction

A lot of focus in automatic handling tasks for robotic
grasping lies in detecting a suitable grasping position for the 
combination of handling object and gripper. To calculate 
grasping positions, the existing algorithms can be categorized 
as offline algorithms [1, 2], where the grasping points are 
calculated in advance and as online [3, 4] algorithms where the 
grasps are calculated during the handling task. While the offline 
algorithms offer a bigger solution set and often more 
comprehensive evaluation criteria, e.g., friction cone analysis
and load analysis, these methods are computationally 
demanding and restrictive regarding the dynamics of the 
environmental conditions. Often, these methods demand a 
static object and fail if a displacement of the object occurs prior 
to the grasp. In contrast to that, camera-based grasping 
algorithms [5] offer the possibility to dynamically react to 
orientation changes and displacements and are therefore 
suitable for dynamic production scenarios with a high demand 
for flexibility [6]. The drawback of these methods is a lack of 

evaluation criteria since only a fraction of the object is detected 
and not all parameters, e.g., volume, weight and material are 
known. Another unique property of the camera-based methods 
is the identification of possible grasps if no grasp can be 
identified from the initial recording. This occurs if no planar 
areas exist, parts of the objects are occluded or if the size of the 
parts does not fit to the dimensions of the gripper. In these 
cases, a reorientation of the object or camera is necessary to 
generate a different view of the object and perform a new 
calculation. In the case of a necessary reorientation a possible 
infinite solution space exists and offers the challenge to 
determine a practical transformation.

To conquer this problem, we develop a Random Sample 
Consensus (RANSAC)-based Algorithm [7] which calculates 
appropriate transformations for the robotic end tool. Based on 
the data of depth images from a vision sensor, surface clusters 
are derived and a grasp evaluation is performed through the 
positioning of an auxiliary object [8]. If no result can be found 
neighbor surfaces are identified to determine possible 
reorientations. Because the accuracy of depth images can be 
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coarse and noisy at times [9] we adapted a RANSAC 
algorithm to cluster the points of the point cloud. From this set 
the best solution is selected. Therefore, our method contributes 
to the field of camera-based grasping algorithms with an 
efficient reorientation algorithm.

The paper is organized as follows. Section 2 covers the past 
work in the fields of camera-based grasping algorithms. 
Afterwards, the methodology of our RANSAC-based 
reorientation algorithm and the grasping point determination is 
described. An evaluation and validation of our algorithm with 
different objects and in different production scenarios is 
performed in Section 4, where we also discuss our results. 

2. State of the Arts

Because our algorithm can be classified as an online 
algorithm, this Section only convers the relevant literature in 
this scientific field. 

Herzog et al. [10] use a template based algorithm which 
searches the best shape conformity between heatmaps, which 
are derived from the point cloud, and the templates from 
generated training data by demonstration. An empirical 
algorithm is also used by Nieuwenhuisen et al. [11]. In their 
work objects are segmented into primitive shapes and 
represented as graphs. The previously known grasps for these 
shapes are then be applied to the objects in the scene. While 
most algorithms try to identify force closure contacts, Pokorny 
et al. [12] search for form closure contacts to ensure a stable 
grasp. Their grasping algorithm is based on the identification 
of graspable loops i.e., “holes” in a convex hull which is 
derived from the surface mesh of a point cloud. Klingbeil et al. 
[13] search for convex contours, where the shape of the gripper 
has a shape conformity. For their evaluation 2D slices are 
derived from the object and compared to the shape of the 
gripper, which necessities a comprehensive slicing in multiple 
directions of the object. Contrary to approaches only using 
vision data, Schiebner et al. [14] combine visual information
with tactile sensor feedback to generate a reactive grasping 
approach. In their work, the actual grasping point is determined 
via the calculation of its principal axis and the object extension.

Various methods use neural networks to identify grasping 
positions. Mahler et al. [3] developed a CNN based grasping 
algorithm which calculates grasping positions through the use 
of a depth camera. For the training of their CNN, a large 
number of annotated training examples is necessary. Over 80% 
of their grasps are performed with a vacuum gripper and only 
~20% with the parallel jaw gripper. Instead of calculating the 
grasps through a CNN, Varley et al. [15] use a neural network
to generate a complete shape of the object and perform a grasp 
planning in the software GraspIt! [16].

Kleeberger et al. [8] use a hybrid system of offline grasping 
point determination and online 6D-pose estimation. Based on a 
point cloud representation of the object antipodal point pairs,
which satisfy their boundary conditions, e.g., angle, distance
and collision in a circular area, are identified.

Huang et al. [17] perform a partial reorientation of the 
gripper after the initial grasping point determination to 

optimize the alignment of the gripper and the object. The 
calculation of their necessary transformation is based on PCA 
to identify the principal axis of the object.

In summary, the literature shows many different camera-
based grasping approaches which can detect grasps even if only 
partial information of the object is given. Though, most 
algorithms are restricted to a single view for the grasping point 
determination and neglect the efficient search for a 
reorientation of the camera completely. In other cases, e.g. [3],
an evasion strategy (vacuum gripper) is used to perform 
successful grasps.

3. Methodology

Our methodology contains two main tasks, which can be
executed iteratively until a successful grasp is determined. One 
part is the grasping point detection (cf. Section 0) based on a 
geometrical auxiliary object, which is similar to the strategy 
used in [8]. The other part is the end tool alignment (cf. Section 
3.2) of the gripper in the case no successful grasp can be 
determined from the current perspective. Our algorithm starts 
at an initial positioning above an object or multiple objects with 
a top-down view on the scene (cf. Fig. 1 a). From this starting 
position an object of the scene is selected through the value 
𝑧𝑧𝑚𝑚𝑚𝑚𝑚𝑚 , which classifies the nearest object to the end tool and the
center of the vision sensor is aligned with the handling object 
(cf. Fig. 1 b). The alignment is necessary to get an accurate 
representation of the object, otherwise the influence of shadows
increases. From there on, both tasks can be executed in 
succession until a valid grasping position is detected.

3.1. Grasping Point detection

The grasping point detection calculates if a grasp is possible 
and with which orientation the object can be grasped from the 
present perspective.

Fig. 1. Procedure of initial alignment a), nearest object detection through 
𝑧𝑧𝑚𝑚𝑚𝑚𝑚𝑚 b), an aimed reorientation c) and the grasping point determination of 
our proposed algorithm. 
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Through our parallel positioning of the camera in relation to the 
surface of the handling object (cf. Section 3.2) all surface points 
have nearly identical depth values. This depth value z is used 
to cluster all surface points in a plane where the main part of 
the grasping point determination is executed. After clustering 
the points, two sets containing the interior points and the edges 
of the geometry are derived. Because the next steps of the 
grasping point determination are based on the contour of the 
geometry, a good quality of the contour is necessary for an 
accurate calculation. While a simple connection of the edge 
points is successful if the edges are aligned with the grid axis, 
a rotation of the geometry can lead to a bad contour and 
therefore inadequate input data (cf. Fig. 2).

Therefore, we use a set of rules to group the edge points and 
calculate the contour to prevent jagged edges (cf. Fig. 2 20° 
orientation).
Based on the extracted edges of the geometry an actual 
grasping position is identified with the help of a double T-beam
which equals the size of the opened gripper (cf. Fig. 3). The 
auxiliary object is positioned at the center C of every edge. For
a successful grasp, two antipodal edges must fit into the double 
T-beam. After a successful evaluation, an optimized position 
of the double T-beam needs to be performed because the center 
of the double T-beam specifies the plane of the TCP and must 
therefore be set carefully. If positioned decentral, the closing of 
the gripper leads to a movement of the object along the closing 

axis which we want to avoid. To calculate the grasping middle 
point G the following formula is used:

(1)

where 𝛿𝛿 is the angle to the edge of the contour, S the middle 
of an edge, c the distance between two antipodal edges and 𝑑𝑑𝑝𝑝
the distance between two points. In the next step, the center of 
the double T-beam is aligned with the calculated middle points 
G. From the double T-beam 4 points are evaluated if they are 
positioned inside the geometry or outside. If an inside point is 
detected, the position is dismissed because a collision between 
the gripper and object occurs and the grasping position cannot 
be reached. The same evaluation is performed in depth 
direction to confirm a sufficient depth for the gripper. When all
criteria are fulfilled, the position is verified and represents a 
grasping position.

3.2. End Tool Alignment

If the performed grasping point detection finds no solution,
the end tool performs a rotation into a calculated plane to detect 
the object from another angle and perform the grasping point 
detection. To identify the reorientation and detect neighbor 
surfaces, we use eight triangles (cf. Fig. 4) rotated around a
point in the 𝑧𝑧𝑚𝑚𝑚𝑚𝑚𝑚 to cluster the surface points. From the edge
points of the triangles the span vectors of each plane are 
calculated and afterwards the normal vector and the equation 
of each plane are determined. Before these calculations can be 
performed, the units of each axis must be set identical. Initially,
the 𝑥𝑥 and 𝑦𝑦-values are coordinates and the 𝑧𝑧 (depth)-direction 
is given in absolute values, so the z-values are converted into
the dimension of the 𝑥𝑥,𝑦𝑦-grid. For the transformation, the

absolute distance 𝑑𝑑𝑝𝑝between two points is calculated with
the following equation:

(2)

where z denotes the distance between the camera and the 
edge of the object, 𝜃𝜃 denotes the opening angle in the x-
direction and 𝑟𝑟𝑟𝑟𝑟𝑟𝑥𝑥 the number of pixels after downsampling
the original data. Next, the 𝑧𝑧-values can be converted through 
a division with 𝑑𝑑𝑝𝑝. After converting the 𝑧𝑧-values and deriving
the equations of the neighbor planes, the idea of a RANSAC-
algorithm is used to identify the optimal surface for the next 
grasping point evaluation. The basic idea of the RANSAC-
algorithm is to create random models and evaluate if all 
remaining objects fit into the model [7]. Instead of using 
randomly created models, we use the equations for the derived 
planes. The assignment of each point to a plane is done through 
the calculation of its distance to the plane.
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Fig. 2. Classification of surface points and contour points with 0°, 20° 
and 45° orientation. 

Fig. 3. Positioning of various double t-beams for the grasping point 
determination at a detected object surface. 
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The basic idea of the RANSAC-algorithm is to create 
random models and evaluate if all remaining objects fit into the 
model [7]. Instead of using randomly created models, we use
the equations for the derived planes. The assignment of each 
point to a plane is done through the calculation of its distance 
to the plane. Only clustering the points in a plane can lead to 
false assignments (cf. Fig. 5) because points of other objects or 
the ground from the point cloud can be assigned to the plane.

Therefore, another restriction was implemented so only 
points close to the center (point A in Fig. 5) are considered. 
Performed tests with different distances showed the best results 
for 15 pixels, so this value is used as the default value. The 
classification of the points to a plane 𝑃𝑃𝑖𝑖 , where i = 1,…,8
denotes the number of planes can be summarized with the 
following formulation:

(3)

where 𝑑𝑑 denotes the distance between the point 𝑛𝑛𝑗𝑗 and
plane 𝑃𝑃𝑖𝑖 and A the centroid of the auxiliary object. The
resulting clusters are ranked through the number of its point 
entries and from this set, the first cluster is selected for the 
reorientation. While at this stage it is not known which of the 
selected clusters offers the best option to find a successful 
grasp, selecting the plane with the most entries usually led to 
the best results in the considered test cases. After choosing the 
cluster, the tip of the robot is oriented in negative direction of 
the normal vector of the selected plane. Thus, both are aligned 

parallel and the grasping point detection (cf. Section 3.1) can 
be performed again.

4. Evaluation

In order to test our grasping point detection and reorientation 
algorithm we use the robotic simulation CoppeliaSim (v. 3.6.2)
[19]. As Hardware models already integrated models of the 
UR5e from Universal Robots, a standard parallel jaw gripper 
and a Microsoft Kinect as the vision sensor are used. The initial 
data from the vision Sensor is downsampled to reduce the 
number of pixels and therefore in turn reduce the computation 
time. For our initial tests, we use a total of 12 objects (cf. Fig.
6). Six objects (a-f) are self-created and represent basic 
geometries. The remaining objects (g-l) were selected from a 
Fraunhofer IPA dataset [18] which was originally adapted from 
the Sileane dataset [20]. In contrast to the basic geometries of 
the self-created objects, objects g-l are a mixture of industrial 
and everyday objects with concave and curved geometries. 
From the latter six objects some had to be scaled to even fit into 
the dimension of our parallel jaw gripper.
In our test setup all objects are placed on a table in front of the 
robot and for all objects a pick & place task is performed. To 
evaluate the performance in different production scenarios we 
performed the tests with varying distances between the objects 
(cf. Fig. 7).
In Setup 1, the objects are placed individually on the pickup 
table. In Setup 2 all objects are placed next to each other with 
a distance of a few centimeters between each object. The last 
Setup resembles a bin picking scenario, so the objects are 
positioned close to each other within minimal distance and 
sometimes even have overlapping. Objects a-f were evaluated 
in setup 1,2 and 3 and objects g-l were only evaluated in setup1. 
For each setup, we performed 10 tests and positioned the 
objects randomly to evaluate the procedure with different 
orientations.
While our setup (cf. Section 3.1 and Section 3.2) offers the 
possibility to perform the grasping point determination and 
reorientation in an infinite loop until a valid grasping point is 
detected, we restricted the algorithm to one reorientation in our 
evaluation settings.

𝑃𝑃𝑖𝑖   𝑛𝑛𝑗𝑗 𝑑𝑑 𝑑 𝑑𝑑𝑑𝑑𝑑𝑑 𝑥𝑥  𝑛𝑛𝑗𝑗𝑗𝑥𝑥 𝑑   
𝑑   𝑛𝑛𝑗𝑗𝑗 𝑑   𝑑   𝑛𝑛𝑗𝑗𝑗     ,

Fig. 4. Positioning of the triangles and its edge points A, B, C at 𝑧𝑧𝑚𝑚𝑖𝑖𝑚𝑚 to 
detect adjacent surfaces. 

Fig. 5. Partly incorrect clustered points of the floor for a specific plane 
due to a selection without further restrictions. 

Fig. 6. Used test objects for our evaluation. Objects a-f represent self-
created objects and objects g-l are selected from the data set in [18]. 

Clustered Points

a) b) c) d) e) f)

g) h) i) j) k) l)
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4.1. Results of the Grasping Point Evaluation

As common with detailed grasping simulations with force 
interaction, the contact can sometimes be unstable and lead to 
a movement or slipping of the object during the handling task.
Therefore, we classified a successful grasp when the object was 
successfully grasped and lifted from its initial position. Also, 
for objects g-l the grasps had to be manually classified from the 
calculated grasping positions due to special simulation 
features. The import of STL data and the assignment of detailed 
physical properties can be difficult for complex geometries in 
V-Rep. So, the only physical property which was activated for 
these objects was the “rendering” option which made the 
objects visible for the vision sensor, while preserving the 
original shape. The results of our algorithm for objects a-f in 
setup 1,2 and 3 are displayed in table Table 1:

Table 1. Grasp success rates in setup 1,2 and 3 for objects a-f.

Object

a) b) c) d) e) f)

Success 
Setup 1

90 % 60 % 100 % 90 % 100 % 100 %

Success 
Setup 2

90 % 70 % 70 % 80 % 100 % 100 %

Success 
Setup 3

60 % 50 % 70 % 50 % 50 % 70 %

In setup 1, where all objects are freestanding without any 
obstacles, the success rate of objects a, c, d, e, f was at or above 
90 %. Object c could be grasped with a success rate of 60 %. 
In setup 2 the success rate of objects a, e, f was unchanged in 
comparison to setup 1. Object b and c had a success rate of 
70 % and object d had a success rate of 80 %. The total success 
rate for setup 2 is 85 %. During the 10 runs, in 3 cases all 
objects where successfully grasped, 5 times all but one object 
was successfully grasped and 3 times for two objects a failed 
grasp occurred. In setup 3, the success rate decreased for all 
objects but was still at or above 50 percent for all objects. 
Objects b, d, e had a success rate of 50 percent, while object a
had a success rate of 60% and objects c and f a success rate of
70%. The total success rate of setup 3 for objects a-f was ~58 %
while in all runs 2 or more failures occurred.

As we had already seen the performance development for 
different production scenarios at objects a-f and expected a 
similar trend for other objects, we only evaluated objects g-l in 
setup 1 (cf. Table 2).

Table 2. Evaluation of the grasp success for objects g-l in setup 1. 

Object

g) h) i) j) k) l)

Success 
Setup 1

60 % 30 % 60 % 70 % 50 % 40 %

The objects from the Sileane dataset (g-l) all had significantly 
lower success rates compared to the self-created objects. Here,
most of the objects had a success rate of around 50 % with a 
maximum of 70 % for object j and minimum of 30 % for object 
h. The total success rate for objects g-l was ~52 %.

4.2. Discussion

While the results showed the succession of our grasping point 
determination and reorientation, a more detailed discussion is 
needed in some aspects. Comparing the two data sets, a clear 
performance difference is noticeable (90 % vs 52 %), which 
leads to the conclusion that our setup performs significantly 
better for basic shaped geometries. As basic geometries often 
have unique defined edges and plane surfaces, the clustering of 
the points is more accurate and leads to better results compared 
to complex shapes. However, the gap between the two data sets 
was exaggerated through several reasons. The utilized gripper 
had a very small opening and is better suited for smaller objects 
and even though we scaled the objects g-l to fit to the 
parameters of our gripper, a greater grasping space of the 
gripper would lead to a higher success rate. The results show a 
good performance with high success rates for basic geometries 
(objects a-g) and if the objects are positioned individually.
When executed in a bin picking scenario the success rate of our 
methodology decreases noticeably from 85 % to ca. 58 %. In 
this scenario the objects often overlap with each other and
therefore the positioning and depth evaluation of the auxiliary 
object is influenced.
As mentioned in Section 4, we restricted the algorithm to 
perform only one reorientation to enhance the runtime of our 
algorithm. If this threshold is set at a higher value a more 
elaborate analysis of the objects is possible and therefore with 
great likelihood higher success rates.
Further analyzing the unsuccessful grasps shows that the 
positioning of the auxiliary object at the edge and the contour 
itself caused the failures sometimes. In our setup, both steps are 
based on relatively simple analytical models and therefore in 
some cases do not detect the whole contour of the surface. 
Combined with a single positioning of the auxiliary at the 
middle of the edge this led to some failures (cf. Fig. 8). A 
possible way of improving success rates in this case would be 
a more frequent positioning of the double T-beam to enhance 
the reviewed area.

Fig. 7. Different setups used for the evaluation. Setup1: Detached 
placement of a single object. Setup2: Groups of multiple objects with a few 
cm between each object. Setup3: Dense cluttered scenes with multiple 
overlapping objects. 

Setup 1 Setup 2 Setup 3
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The performance decrease in a bin picking scenario can also be 
explained with our grasping determination framework. In 
cluttered scenes, the clustering of surface points is extremely 
difficult and therefore failures during the contour extraction 
occur.
Processing times ranged from a few seconds to a minute. The 
time increases significantly if a reorientation is necessary from 
the initial position, as the clustering and reorientation of the 
point clouds often accounts for more than 50% of the overall 
processing time. While a comparison with other strategies is 
difficult due to differences in hardware and computing power, 
computation times in [8] where comparable to ours only 
considering the grasping point determination. In comparison, 
the CNN based Dex-Net architecture [3] takes only a few 
seconds to calculate the grasping positions but mainly uses a 
vacuum gripper.

5. Summary and Conclusion

In this paper, we developed a RANSAC-based algorithm to 
perform efficient reorientations and determine grasping points 
for unknown objects with only partial object information 
available. The grasping point determination is performed in our 
setup with a double T-beam as an auxiliary object. The validity 
of our reorientation calculation and grasping point 
determination was shown through different setups where we 
reached a success rate of 90 % for basic geometries in a 
detached setting. For slightly cluttered scenes with multiple 
objects the performance was comparable (85 %). Tests for 
dense cluttered scenes (bin picking scenarios) and complex 
object geometries showed a significant performance decrease,
58 % for the former and 52 % for the latter. It can be concluded 
that the existing setup of our algorithm is better suited for pick 
and place applications with basic objects in slightly cluttered 
scenes. To further enhance the performance in all settings a few 
points will be optimized in the future.
Besides performing more cycles between the reorientation and 
grasping point determination, we plan to optimize the contour 
detection and generate the full contour through an extension of 
the original ruleset. Also, a more frequent division and 

positioning of the auxiliary object will be implemented which
will enlarge the solution set further and enhance the success 
rate. Finally, we want to evaluate our setup on a real robot in a 
physical production setup.
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Fig. 8. False and correct alignment of the double T-beam at an extracted 
surface. 

Failed grasp

Successful grasp


