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. Introduction

This paper investigates the heterogeneous and asymmetrical effect
f COVID-19 and the Russian–Ukrainian war on the crude oil, S&P
00 index, EUR/USD exchange rate, and the fear index of the U.S.
tock market. In general, these assets reflect the overall health of
he global financial and economic system. For instance, S&P 500 is
he most liquid financial index and partly reflects the development
f the global financial system. Crude oil plays a fundamental role
n a country’s development and economic activities. Elevated prices
f energy commodities lead to higher inflation and production cost,
esulting in declined demand, output, and trade in the economy. The
OVID-19 pandemic has contributed significantly to demand and sup-
ly shocks that have led to an unprecedented decline in crude oil prices.
n addition, the global geopolitical uncertainty primarily caused by
he Russian–Ukrainian conflict has further increased the uncertainty
n the crude oil market. The stability of the crude oil market is not
nly important for oil-exporting countries but also for oil-importing
nd industrialized countries to maintain the price stability of goods.
UR/USD exchange rate is utilized to reflect on the trade and invest-
ent patterns in the global economy. This study adds to the literature

y examining the heterogeneous and asymmetric impact of COVID-19
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E-mail addresses: yarema.okhrin@wiwi.uni-augsburg.de (Y. Okhrin), gazi.salah.uddin@liu.se (G.S. Uddin), muhammad.yahya@nmbu.no (M. Yahya).

and the Russian–Ukrainian conflict on these different asset classes. This
would enable us to understand how different asset classes react to such
unique shocks.

Crude oil, as being a dominant commodity and a source of economic
prosperity, there is a significantly large number of studies examin-
ing the connectedness dynamics between crude oil and other asset
classes (see, for example, Awartani et al., 2016; Bouri et al., 2020;
Charfeddine and Benlagha, 2016; Dutta, 2018; Ji and Fan, 2012; Liu
et al., 2017; Nakajima and Hamori, 2013, among others). Furthermore,
several studies examined the connectedness dynamics among different
asset classes during periods of financial and economic turmoil (see, for
example, Aloui et al., 2011; Baruník et al., 2015; Berger and Uddin,
2016; Chuliá et al., 2019; Du and McPhail, 2012; Kyritsis and Serletis,
2019; Manera et al., 2013, among others). However, there is scarce
evidence related to the development of interconnectedness dynamics
during rare disaster risks.

Interconnectedness or dependence can be conveniently modeled
using copulas. Any joint continuous distribution can be factored as a
product of the corresponding copula and marginal distributions using
Sklar’s theorem. Relying on this idea copula modeling is particularly
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flexible for constructing new distributions since margins and depen-
dence structure are specified independently. This method has, however,

severe practical limitation. Though there are numerous bivariate cop-
las, the majority of their higher-dimensional extensions are controlled
y several parameters and are too restrictive. Pair copula constructions
r vine copulas are designed to solve the problem of scarcity of flexi-
le high-dimensional copulas. The idea is to construct a multivariate
istribution by defining (conditional) copulas for pairs of variables.
recent and extensive review on vine-based modeling can be found

n Czado and Nagler (2022). The selection of the proper vine copula
amily and hierarchy is an important issue with the maximum spanning
ree suggested by Dißmann et al. (2013) being one of the most popular
pproaches. Additionally to pure dependence modeling, the vine cop-
las can be applied for modeling the causal dependence. However, in
ontrast to the classical linear regression, this approach allows to model
he whole conditional distribution of the dependent variable. Thus,
his can be seen as a nonlinear extension of the quantile regression,
ee Kraus and Czado (2017). For recent applications of vines to risk
odeling (see, for example, Barthel et al., 2019; Czado et al., 2019;
ielmann et al., 2021, among others).

We aim to extend the previous literature by evaluating the het-
rogeneous and asymmetric connectedness of different asset classes
uring the period of COVID-19 and the Russian–Ukrainian conflict.
pecifically, we seek to answer the following questions. First, what
s the temporal contribution of shock in crude oil prices to the other
sset classes? Second, whether the dynamic connectedness among these
ifferent asset classes behaves homogeneously or heterogeneously? and
hird, does the magnitude of extreme connectedness behave asymmet-
ically across different asset classes? Answering these questions is of
undamental importance for market participants and policymakers as
nvestors continuously seek alternative investment opportunities for
ortfolio diversification and risk management decisions and policymak-
rs seek to disentangle the negative spillovers from such rare events to
ther asset classes.

Our contribution to the existing literature is four-fold. First, we eval-
ated the impact of the COVID crisis and Russian–Ukrainian conflict on
he interconnectedness of the financial and commodity markets with a
pecial focus on the risk dynamics. Therefore, we consider not a single
napshot of the dependence as is typically done in the literature (see,
or example, Nazlioglu, 2011; Sun et al., 2021, among others), but
nalyze the temporal dynamics and causality of the risks. This is of
articular interest as the uncertainty and connectedness dynamics tend
o significantly alter with the additional observations in the sample.

Second, in contrast to the previous studies, we consider high-
requency intraday data. This allows us to have a deeper insight into
he dependencies compared to the daily level. Several prior studies, Al-
ulescu and Ajmi (see, for example, 2021), Batten et al. (see, for
xample, 2017), Berger and Uddin (see, for example, 2016), Brigida
see, for example, 2014), Dai et al. (see, for example, 2020, among
thers), utilize daily or weekly frequency data to examine the rela-
ionship among crude oil and other asset classes. However, these data
requencies fail to capture the intraday fluctuations in the prices of the
nderlying assets, which may result in a significant alteration in the
onnectedness dynamics in extreme events. Therefore, the utilization
f high-frequency data entails us shedding more light on the extreme
ependence among crude oil and other asset classes during extreme
vents. Avdulaj and Barunik (2015) utilize the high-frequency data and
ncorporate standard copula frameworks to examine the connectedness
mong only two assets (crude oil and S&P 500 futures). Therefore, our
aper extends this study by incorporating several asset classes in our
nalysis and by utilizing vine copulas. Thus, we exploit the available
ata more efficiently without an unnecessary temporal aggregation.

Third, we quantify the dependence and its dynamics using paired
ine copulas. This class of copulas is highly flexible and allows for
convenient visualization and quantification of nonlinear dependen-
2

ies (Dai et al., 2020; Reboredo and Ugolini, 2018). Dai et al. (2020) d
nd Reboredo and Ugolini (2018) utilize the vine copulas on daily data
requencies to examine the connectedness dynamics between crude oil
nd other asset classes. Our study adds to these studies by utilizing
igh-frequency data and by undertaking the extreme event sample
n our analysis. This is of particular interest as the traditional ap-
roaches fail to capture the underlying dynamics among the series
uring extreme market conditions (Dai et al., 2020; Reboredo and
golini, 2018). Therefore, we add to the literature by utilizing a

lexible approach to quantify nonlinear and asymmetric connectedness
y utilizing vine copulas on high-frequency data over extreme market
onditions.

Fourth, unlike previous studies, we put a particular focus on the
rude oil returns as a function of several financial covariates using D-
ines. This is important as the literature emphasizes on the linkage
etween crude oil and other asset classes. Therefore, by utilizing crude
il returns as a function of several financial covariates, we are able to
rovide a more comprehensive overview of the nonlinear and asym-
etric connectedness dynamics among the series. Furthermore, with

his approach, we can model the whole conditional distribution within
single day. Thus, we capture the causal dependence in tails or at

articular quantiles of the return distribution.
To summarize, the way we use the intraday data is unique. There are

apers that use copulas and vine copulas to model crude oil prices, but
hese papers used daily data and could not model the time dynamics.
urthermore, there are also papers that use intraday data on crude
il but do not use copulas for these data. The unique feature that we
mployed is to model the dependence within a single day using vine
opulas for intraday returns within this day. In addition, we do not
ely on historical data and thus measure the momentum dependence.
his approach is also used for approaches such as quantilograms, etc.
nother uniqueness is the employment of D-vines. This means we do
ot just model dependence, but also the causal impact of other assets
n the crude oil in a non-linear way.

The rest of the paper is structured as follows. Section 2 presents a
eview of the literature. Data, preliminary statistics, and the employed
rameworks are presented in Section 3. Section 4 presents the empirical
indings and a discussion of the results. And, Section 5 concludes the
aper.

. Related literature review

With the outbreak of the global financial crisis during 2007/08,
umerous studies have investigated the contagion effect among finan-
ial and commodity markets. Over the recent years, the connectedness
ynamics between crude oil and other major asset classes have received
onsiderable attention from both academics and market participants.
esearchers, in this regard, have utilized several empirical frameworks

o evaluate this relationship. However, to the best of our knowledge,
he examination of connectedness dynamics of crude oil with other as-
et classes using high-frequency data and vine copulas has not received
ny attention in the previous literature.

Existing literature utilizing the high-frequency crude oil data pri-
arily focus on the utilization of various forecasting approaches (see,

or example, Manickavasagam et al., 2020; Chen et al., 2020; Ma et al.,
019, among others) and spillover dynamics (see, for example, Luo
nd Ji, 2018; Zhu et al., 2020, among others). Furthermore, several
tudies examined the connectedness dynamics between crude oil and
ther asset classes using daily or weekly data by utilizing copulas (see,
or example, Dai et al., 2020; Albulescu and Ajmi, 2021; Syuhada et al.,
021; Ding et al., 2021; Echaust and Just, 2021; Zhang and Zhao, 2021;
iwari et al., 2021; Zhang and Hamori, 2021; Salisu et al., 2021; Jia
t al., 2021; Ahmad et al., 2021; Shi, 2021; Cao and Cheng, 2021; Niu
t al., 2021; Salisu et al., 2021, among others). To model relationship
nd interconnectedness structure, the recent literature on the crude oil
mploys various approaches (see notes Table 1). Table 1 provides a

etailed review of the literature.
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Table 1
Review of Literature.

Study Assets and Data Method Key findings

Bouri et al. (2021) Crude oil TVP-VAR Spillover positively increased during
COVID-19Daily (May-11–May-20) spillover

Echaust and Just (2021) OVX and Oil Copula Strong tail dependence behaviorDaily (May-07–Mar-20) frameworks

Zhang and Hamori (2021) Oil and stocks Time-frequency Impact of COVID-19 excceds that of GFCDaily (Jan-06–Aug-20) spillover

Farid et al. (2021) oil, gold, and FA MCS-GARCH Significant effects of COVID-19 on
volatility linkage5-min (Jan-19–May-20) DY

Naeem et al. (2021) OVX and IVs Time-frequency short- and log-term dynamic
connectednessDaily (Aug-08–Oct-19) spillover

Zhang and Broadstock (2020) Oil and commodities DY Increased connectedness during
post-2008Monthly (Jan-82–Jun-17) GC

Hung (2021) Oil and agriculture DY Increased asymmetric connectednessDaily (Feb-14–Jan-19) WC

Huynh et al. (2021) Oil and crypto copula Increased connectedness among assetsDaily (Feb-14–Jan-19) frameworks

Luo and Ji (2018) Crude oil and agriculture DY (2012) asymmetric connectedness between oil
and other commodities5-min (Jan-06–Dec-15) & HAR

Salisu et al. (2021) Oil and gold VARMA-GARCH Increased hedging effectiveness of gold
against risk associated with oilDaily (Jan-06–Aug-20) model

Avdulaj and Barunik (2015) crude oil and stocks DCRG decreasing benefits from diversification
over the past ten years.5-min (Jan-03–Dec-12) GAS

Zhang and Hamori (2021) Oil and stocks DY Impact of COVID-19 exceeds that of the
2008 financial crisisDaily (Jan-06–Aug-20) spillover

Gil-Alana and Monge (2020) Oil and COVID Fractional Inefficiency in oil marketsDaily (May-10–May-20) integration

Wang et al. (2021) Energy futures Optimization Crude oil fails to diversify any portfolioDaily (Jan-11–Jul-20) Techniques

Karanasos et al. (2021) Emerging economies HEAVY financial and health crisis events raises
markets’ turbulenceDaily (Jan-00–Nov-20) APARCH

Akhtaruzzaman et al. (2021) various assets HEAVY Increased connectedness between oil and
other assets during COVID-19Daily (Jan-00–Nov-20) APARCH

Ji et al. (2021) Oil futures DY Asymmetric relationship between various
futures1-hour (Jan-18–Apr-20) DCC

Notes. Time-varying parameter vector autoregression (TVP-VAR), Diebold and Yilmaz (2012) (DY (2012)), financial assets (FA), Granger Causality
(GC), Wavelet coherence (WC), multiplicative component GARCH (MCS-GARCH), heteroscedastic autoregressive (HAR), Vector autoregression
moving average (VARMA), Dynamic copula realized GARCH (DCRG), generalized autoregressive score (GAS), High-frequency-based-volatility
(HEAVY), Asymmetric Power GARCH (PARCH), generalized autoregressive conditional heteroscedasticity model (GARCH)
s
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In the strand of literature focusing on the connectedness dynamics
etween crude oil and other asset classes during the COVID-19 pan-
emic, Echaust and Just (2021) examined the tail dependence among
TI crude oil uncertainty index and WTI crude oil price movements

sing daily data by utilizing static and dynamic copula frameworks.
heir findings indicate strong tail dependence behavior among the
nderlying series. Zhang and Hamori (2021) employs daily data in the
ime-frequency spillover framework to evaluate the impact of COVID-
9 on oil and various stock markets. Their findings provide evidence
f the uncertain impact of the COVID-19 pandemic on the financial
arkets over both the short- and long-run horizon. Bouri et al. (2021)

xamines the daily return dependence among several assets using the
VP-VAR connectedness approach. Their findings indicate that the
onnectedness spikes and alteration in the connectedness with the
utbreak of COVID-19. Salisu et al. (2021) evaluate the safe haven
otential of gold against the oil price risk by utilizing daily data
n an asymmetric VARMA-GARCH model. Their findings indicate an
ncreased hedging effectiveness of gold against the risk associated with
il. Jia et al. (2021) examines the effects and reactions of the COVID-19
andemic on energy, the economy, and the environment in China. They
eport reduced oil prices and demand due to COVID-19. Ahmad et al.
2021) evaluates the relationship between US equity sectors, implied
olatilities, and COVID-19 by utilizing time-frequency spillover anal-
sis. Their findings indicate that the volatility index exhibits a strong
ynamic effect on the various US sectors. Farid et al. (2021) examine
3

he uncertainty transmission between energy, precious metals, and US p
tocks using high-frequency data spanning from January 2019 to May
020. Furthermore, they apply a multiplicative component GARCH and
tilized the conditional volatilities in a spillover framework by Diebold
nd Yilmaz (2012). Their findings indicate a Significant impact of
OVID-19 on the volatility linkages.

To sum up, irrespective of theoretical foundations, the empiri-
al results from the aforementioned literature offer diverse evidence
egarding the best-suited approach to evaluate the connectedness dy-
amics among the crude oil and other asset classes under extreme
arket conditions. Furthermore, previous studies examining the in-

errelationship of crude oil with other asset classes primarily rely on
aily data. However, it is well-documented in the literature that the
tilization of high-frequency data can attain better performance in en-
apsulating the connectedness dynamics (see, for example, Degiannakis
nd Filis, 2017; Phan et al., 2016, among others). Therefore, the current
tudy is an attempt to extend the existing literature by examining the
onnectedness dynamics between crude oil and various other major
ndices during extreme events by utilizing high-frequency data and
ine-copulas.

. Data and methodology

In this section, we begin with a summary of the unique data used
n this paper and provide some motivational preliminary analysis that
ustifies the objectives and the methodology of the study. Then, we

rovide full technical details on vine copulas and on vine regression.
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Table 2
Full sample characteristics of the one-minute returns.

Name Mean Median SD Upper quartile Lower quartile Skewness ACF(1) ACF(2)

CL1 0 0 0.00562 −0.00053 0.00054 12.81472 0.09075 0.01057
NG 0 0 0.00106 −0.00043 0.00044 −0.06485 −0.0304 −0.01299
VIX −2e−05 0 0.00345 −0.0013 0.00125 2.69749 0.09155 0.00522
OVX −4e−05 0 0.01002 −0.00075 6e−04 −1.09542 −0.26311 −0.03674
EX 0 0 0.00017 −8e−05 8e−05 0.35312 −0.03334 −0.004
SPX 0 0 0.00055 −0.00018 0.00018 0.60762 0.06247 −0.00586
o
a

w

𝜏

s
d

3.1. Data and preliminary analysis

To investigate the effects of the COVID-19 outbreak and the Russian–
krainian conflict on financial and commodity markets, we utilize
igh-frequency data for a sample period from January 10, 2020 to June
4, 2022. This sample span is chosen, as the first few cases of COVID-
9 were reported at the beginning of January 2020.1 In addition, the

initial stages of the current escalation in the Russian–Ukrainian conflict
nitiated due to the Russian invasion of Ukraine on February 24, 2022,
re also covered in our sample. Consequently, the US and the EU
ountries have imposed sanctions on the import of crude oil and gas
rom Russia. This has significant implications for the behavior of crude
il prices as Russia is one of the major oil producers.2

The choice of sample span is motivated for the following reasons.
irstly, the primary objective of our study is to examine the impact
f specific crisis periods on the underlying assets, which has occurred
ithin the selected sample span. Therefore, the selected span was essen-

ial to capture the unique connectedness dynamics and characteristics
ver the crisis period under investigation. This facilitates us to provide
more focused analysis of the impact of the COVID-19 and Russian–
krainian conflict on the connectedness dynamics with other economic

ndicators. Secondly, by utilizing the selected sample period, we are
educing the under- or overfitting of the model, which may arise from
he inclusion of data from non-crisis periods that is not relevant to
he research questions of our underlying study. Furthermore, it is well
stablished in the previous literature that the models fail to perform
uring periods of economic and financial turmoil. Therefore, by con-
entrating on the crisis periods, we provide a more comprehensive
nalysis of the impact of the crisis on the underlying assets.

We address the issues discussed in the previous section empirically
y focusing on the following series: VIX (1), NG1 (2), EURUSD (3),
PX (4), and CL1 (5). The VIX is the fear index of the US stock market.
URUSED and S&P500 (SPX) are two financials and crude oil (CL1)
ith natural gas (NG1) build the pair of commodities. Contrary to

he usual setting in the literature, we use not daily data but prices at
he one-minute frequency. We collect all observations falling into the
nterval 09:35:00-16:05:00 (EDT). From the one-minute level values,
e compute log-returns that are used subsequently in the modeling.
he basic statistics of the returns for the full sample are summarized in
able 2. We observe that the crude oil returns have the most skewed
istribution as measured by the skewness. They are less volatile than
he volatility indices but riskier than the financials. The autocorrelation
s negligible for all but the volatility indices, which is also consis-
ent with evidence for daily data. Note that we do not correct for
vernight bias, since the below analysis focuses on the observations
uring trading hours only.

To gain insights into the intraday dependence and its dynamics we
ompute daily values of Kendall’s 𝜏 between the crude oil return and
he remaining covariates. We opt for the rank correlation coefficient

1 We have considered the onset of the COVID-19 pandemic from the first
eek of January 2020 as four different countries (China (278 cases), Thailand

2 cases), Japan (1 case) and the Republic of Korea (1 case)) reported cases of
OVID-19 by 15th of January 2020. Whereas the World Health Organization
WHO) declared COVID-19 as pandemic on 11th Mar 2020 (WHO, 2020).

2

4

https://www.worldstopexports.com/worlds-top-oil-exports-country/
f Kendall for several reasons. First, Kendall’s 𝜏 is typically used as
n intermediate step in more complex dependence models and thus

it is consistent with the copula modeling below. Second, in contrast
to the correlation coefficient of Pearson, it is not restricted to linear
dependence and is capable to capture highly nonlinear monotone rela-
tionships. It is high if the ranks of paired observations tend to be similar
(concordant pairs) and negative if the ranks are different (discordant
pairs). Let 𝑥𝑡,𝑖, 𝑦𝑡,𝑖 denote the 𝑖th intraday observations on the day 𝑡

ith 𝑀 being the number of intraday periods. Then

𝑡(𝑋, 𝑌 ) =
2

𝑀(𝑀 − 1)
∑

𝑖<𝑗
𝑠𝑔𝑛(𝑥𝑡,𝑖 − 𝑥𝑡,𝑗 )𝑠𝑔𝑛(𝑦𝑡,𝑖 − 𝑦𝑡,𝑗 ). (1)

The daily values of the correlations are shown in Fig. 1. We ob-
erve a clear and robust pattern in the dynamics. First, in terms of
ependence between crude oil and the volatility indexes, we observe an

average negative connectedness of these assets with crude oil. Whereas,
the dependence between crude oil and SPX, EURUSD, and NG1 is char-
acterized by positive dependence. The dependence structure among
these assets increased significantly during March with the declaration
of COVID-19 as a pandemic by the WHO. Furthermore, the dependence
structure among the assets remains relatively stable and even drops
to almost zero from the middle (May-2020) to the conclusion (May-
2020) of the first wave. In addition, the dependence structure among
the assets significantly gradually with the beginning of the second
wave of COVID-19 in September. In contrast with the first wave, the
increase in dependence structure with the initiation of the second wave
remains relatively high and stable from September 2020 to December
2020. Moreover, we observe a significant increase in dependence with
the commencement of the third wave of COVID-19 between January
2021 to March 2021. However, with the commencement of vaccination
programs around the globe, the dependence structure among the assets
converges around zero for nearly all the assets between March 2021
to August 2021. Second, we observe a significant change in the con-
nectedness structure among the assets during the last quarter of 2021
and the first quarter of 2022, which is attributed to the Russia–Ukraine
conflict. Notably, this has led to increased uncertainty in the global
crude oil market, affecting the connectedness of the underlying assets
in our study. The interdependence among the assets gradually declines
to zero with increased sanctions by the US and the EU on the Russian
oil and gas import thereby disentangling the impact of crude oil on the
prices of other underlying assets.

Note that Kendall’s 𝜏 is a single measure of dependence for the
whole range of the values. We can, however, suspect that very low
values of a particular dependent variable might have a different impact
on the crude oil return than very high values. To capture this effect,
we additionally consider the cross-quantilogram as popularized in Han
et al. (2016). Let 𝜓𝜏 (𝑢) = 𝐼[𝑢 < 0] − 𝜏 and 𝑞𝑋 (𝜏) = 𝑖𝑛𝑓{𝑣 ∶ 𝐹𝑋 (𝑣) ≥ 𝜏}
is the quantile function of 𝑋. Then the cross-quantilogram on the day
𝑡 at intraday-lag 𝑘 is defined as

𝜌𝑡,𝜏1 ,𝜏2 (𝑘) =
𝐸[𝜓𝜏1 (𝑋𝑡,𝑖−𝑘 − 𝑞𝑋 (𝜏1)) ⋅ 𝜓𝜏2 (𝑌𝑡,𝑖 − 𝑞𝑌 (𝜏2))]

√

𝐸[𝜓2
𝜏 (𝑋𝑡,𝑖−𝑘 − 𝑞𝑋 (𝜏1))]

√

𝐸[𝜓2
𝜏 (𝑌𝑡,𝑖 − 𝑞𝑌 (𝜏2))]

. (2)

1 2

https://www.worldstopexports.com/worlds-top-oil-exports-country/
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Fig. 1. Kendall’ 𝜏 for intraday returns of the crude oil and covariates.
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The corresponding sample counterpart is calculated as

�̂�𝑡,𝜏1 ,𝜏2 (𝑘) =
∑𝑀
𝑖=𝑘+1[𝜓𝜏1 (𝑥𝑡,𝑖−𝑘 − 𝑞𝑋 (𝜏1)) ⋅ 𝜓𝜏2 (𝑌𝑡,𝑖 − 𝑞𝑌 (𝜏2))]

√

∑𝑀
𝑖=𝑘+1[𝜓2

𝜏1
(𝑋𝑡,𝑖−𝑘 − 𝑞𝑋 (𝜏1))]

√

∑𝑀
𝑖=𝑘+1[𝜓2

𝜏2
(𝑌𝑡,𝑖 − 𝑞𝑌 (𝜏2))]

.

(3)

�̂�𝜏1 ,𝜏2 (𝑘) measures the dependency in terms of the direction of de-
viation from quantiles and thus measures the directional predictability
rom one series to another at different quantile levels. Fig. 2 visualizes
he cross-quantilogram for the crude oil return with quantiles 𝜏1 and
he quantiles of OVX, VIX and SPX at the quantile 𝜏2 on two different
ays (10.01.2020 and 03.03.2020). For simplicity, we set 𝑘 = 1 and
hus consider cross-quantilogram with a time lag of one minute. We
bserve that the patterns heavily depend on the day. Very small risk
easured by OVX on 10.01.2020 tends to be followed by higher returns

f crude oil, particularly at modest quantiles of 0.4 and 0.5. If the risk is
igh this impact diminishes. The situation is different on 03.03.2020,
here we observe a very weak correlation at low levels of OVX that

teadily increases with a higher quantile of the energy market volatility.
everal factors contribute to the increased variation in the quantiles.
irst, the plunging demand for crude oil due to curtailed economic
nd transportation activities in China, the largest importer of crude
il, with the outbreak of COVID-19. Second, the positive increase in
upply from OPEC+ countries together with negative demand shock
ead to an increased uncertainty across various quantiles of the return
istribution. These results stress the necessity for a nonlinear model
hat can reflect the specific connectedness between the considered
ariables.

.2. Dependence via paired vine copulas

Vine copulas offer a very flexible approach to modeling both general
nd causal dependence. We begin with the vine copulas as a general
ependence model. Let 𝑋1,… , 𝑋𝑑 be a random vector with the joint
umulative distribution function (cdf) 𝐹 (𝑥1,… , 𝑥𝑑 ), the joint density
(𝑥1,… , 𝑥𝑑 ) and the marginal cdf’s 𝐹𝑖(𝑥𝑖) and densities 𝑓𝑖(𝑥𝑖) respec-
5

ively. Following Sklar’s theorem any continuous can be decomposed d
nto a product of and the copula as the pure dependence measure, i.e.

(𝑥1,… , 𝑥𝑑 ) =
𝑑
∏

𝑖=1
𝑓𝑖(𝑥𝑖) ⋅ 𝑐(𝑢1,… , 𝑢𝑑 ), (4)

here 𝑢𝑖 = 𝐹𝑖(𝑥𝑖). The idea of the vine copulas builds upon the
actorization of the joint density into a product of conditional densities,
.e.

(𝑥1,… , 𝑥𝑑 ) =
𝑑
∏

𝑖=2
𝑓 (𝑥𝑖 ∣ 𝑥1,… , 𝑥𝑖−1) ⋅ 𝑓1(𝑥1). (5)

For example, in a four-dimensional case with 𝑑 = 4, we can obtain
he following representation

(𝑥1,… , 𝑥4) = 𝑓1(𝑥1) ⋅ 𝑓2(𝑥2) ⋅ 𝑓3(𝑥3) ⋅ 𝑓4(𝑥4)

× 𝑐12(𝑢1, 𝑢2) ⋅ 𝑐13(𝑢1, 𝑢3) ⋅ 𝑐14(𝑢1, 𝑢4)

× 𝑐23;1(𝐹2∣1(𝑢2 ∣ 𝑢1), 𝐹3∣1(𝑢3 ∣ 𝑢1))

× 𝑐24;1(𝐹2∣1(𝑢2 ∣ 𝑢1), 𝐹4∣1(𝑢4 ∣ 𝑢1)) (6)
× 𝑐34;12(𝐹3∣12(𝑢3 ∣ 𝑢1, 𝑢2), 𝐹4∣12(𝑢4 ∣ 𝑢1, 𝑢2))

In general, any 𝑑-dimensional distribution can be decomposed into
product of 𝑑(𝑑−1)∕2 conditional and unconditional bivariate copulas.
he problem is obviously, that there are numerous ways how exactly
hese copulas are selected. Two popular fixed structures offer C- and D-
ines. Their basic representation for the case 𝑑 = 5 is shown in Fig. 3.
he C-vines structure assumes a central node with the strongest overall
orrelation with the remaining covariates. This leads to a star-like first
raph. Every edge of this structure becomes a node in the second tree
hat has a similar star-type structure. Every edge of this tree is then
haracterized by a conditional bivariate copula. Further trees are built
y a similar principle. The vine structure can be selected manually or
stimated tree-wise by maximizing the sum of absolute values of some
ependence measure (usually Kendall’s 𝜏) for each edge of a tree. Next,
copula family is selected for each edge by estimating the parameters
f all possible families and choosing the one with the smallest AIC. This
rocedure is often executed in a step-wise manner starting from the first
ree. The resulting parameter estimates are used as starting values for
subsequent full MLE with a fixed structure.

Of particular importance in modeling extreme events in multivariate

ata are the tail dependence, i.e. the probability that two variables take
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Fig. 2. Cross-quantilogram for crude oil returns at quantile 𝜏2 and the respective covariates at time lag 𝑘 = 1 and quantile 𝜏1 on 10.01.2020, 03.03.2020, and 01.03.2022 (top to
bottom).
Fig. 3. The general structure of a C-vine (left) and D-vine (right) for a 5-dimensional data set.
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xtremely large or small values simultaneously. In the context of the
opulas, we can specify the probability of an extreme event for one
andom variable, conditional on the fact the second or other variables
ake extreme values. These concepts are particularly important for
he assessment of market conditions during crisis periods or during
articularly flourishing phases. The lower and upper tail dependence
or a bivariate copula 𝐶(𝑢, 𝑣) of (𝑋1, 𝑋2) are defined as

𝐿 = lim
𝑣→0+

𝑃 (𝑋1 < 𝐹
−1
1 (𝑣) ∣ 𝑋2 < 𝐹

−1
2 (𝑣)) = lim

𝑣→0+
𝐶(𝑣, 𝑣)
𝑣

(7)

𝜆𝑈 = lim
𝑣→1−

𝑃 (𝑋1 > 𝐹
−1
1 (𝑣) ∣ 𝑋2 > 𝐹

−1
2 (𝑣)) = lim

𝑣→1−
1 − 2𝑣 + 𝐶(𝑣, 𝑣)

1 − 𝑣
(8)

If the limits are positive, this implies that the underlying variables have
either upper or lower dependence. Note that if the copula is a Gaussian
opula, then the variables are independent in the tails. This fact is,
owever, frequently criticized and rejected by empirical data. If we fix
he copula family, then the tail dependence indices can be specified
s functions of the copula parameters. Table 3 shows the indices for
he most popular copula families. Having an estimate for the copula
6

arameter one can compute and assess the tail dependence.
able 3
ail dependence coefficients for different copula families.

Gauss Student’s 𝑡 Frank Clayton Joe Gumbel

𝜆(𝐿) 0 2𝑡𝜈+1(−
√

𝜈 + 1
√

(1 − 𝜃)
√

1 + 𝜃
) 0 2−

1
𝜃 0 0

𝜆(𝑈 ) 0 2𝑡𝜈+1(−
√

𝜈 + 1
√

(1 − 𝜃)
√

1 + 𝜃
) 0 0 0 2 − 21∕𝜃

3.3. Vine regression

In the next step, we concentrate on the causal relationship and
im to model the impact of the covariates on crude oil returns using

vine regression. In contrary to the previous section, we focus here
n D-vines, since they offer a more structured inference from the

model. Several important features of the D-vine regression must be
stressed. First, the first tree captures the impact of the covariates on the
dependent variable not directly, but sequentially. Every link between
the nodes reflects the unconditional correlation between the variables.
In contrast, the central starting (root) node of the tree is the crude oil
return and the order of the covariates is determined by our estimation
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procedure discussed below. In lower trees, we switch to conditional
dependencies between the regressors and the pseudo-variable that arise
rom the edges of the previous tree. This is an extension to considering
imple partial correlations. Secondly, the crucial difference is that the
onditional density 𝑓 (𝑥𝑑 ∣ 𝑥1,… , 𝑥𝑑−1) used for predictions is given
or D-vine by an analytic expression. In the case of C-vine, it must be
pproximated numerically. If all bivariate copulas are Gaussian, then
he D-vine parameters equal the simple correlations in the first tree and
he partial correlations in the lower trees.

To illustrate the estimation procedure for an arbitrary R-vine, let
denote an index set 𝐼 = {𝑖1,… , 𝑖𝑛} and 𝐶𝐼 with 𝑐𝐼 are the copula

unction and the copula density of the variables 𝑿𝐼 = (𝑋𝑖1 ,… , 𝑋𝑖𝑛 ).
dditionally, let 𝐶𝐼 ;𝐷 associated with the conditional distribution of
𝐼 given 𝑿𝐷 = 𝒙𝐷 for an arbitrary index set 𝐷. In the special case

hat 𝐼 consists of two indices only, for example, 𝑖 and 𝑗, we obtain
𝐼 ;𝐷 = 𝐶𝑖𝑗;𝐷 as the copula associated with the bivariate distribution
f (𝑋𝑖, 𝑋𝑗 ) given 𝑿𝐷 = 𝒙𝐷. Using a similar notation we can formalize
he conditional univariate distributions. Let 𝑗 ∈ 𝐷 and 𝐷−𝑗 = 𝐷∖{𝑗}.
hen

𝑖∣𝐷(𝑥𝑖 ∣ 𝒙𝐷) = ℎ𝑖∣𝑗,𝐷−𝑗
(𝐹𝑖∣𝐷−𝑗

(𝑥𝑖 ∣ 𝒙𝐷−𝑗
) ∣ 𝐹𝑗∣𝐷−𝑗

(𝑥𝑗 ∣ 𝒙𝐷−𝑗
)) (9)

here ℎ(⋅) denotes the derivative of the underlying conditional copula,
.e.

𝑖∣𝑗,𝐷−𝑗
(𝑢 ∣ 𝑣) =

𝜕𝐶𝑖𝑗;𝐷−𝑗
(𝑢, 𝑣)

𝜕𝑣
. (10)

This structure allows us to determine the bivariate copulas at all
odes recursively. For example, let the bivariate copulas in the first
ree of a C-vine be denoted by 𝐶𝑖,1(𝑢𝑖, 𝑢1). Then

𝑖∣1(𝑢𝑖 ∣ 𝑢1) =
𝜕𝐶𝑖1(𝑢𝑖, 𝑢1)

𝜕𝑢1
for 𝑖 = 2, 3, 4, 5. (11)

Then the copulas 𝐶23;1, 𝐶23;1, 𝐶25;1 of the 2nd tree are determined
sing the pseudo observations

(ℎ2∣1(𝑢2 ∣ 𝑢1), ℎ3∣1(𝑢3 ∣ 𝑢1)),

(ℎ2∣1(𝑢2 ∣ 𝑢1), ℎ4∣1(𝑢4 ∣ 𝑢1)),

and (ℎ2∣1(𝑢2 ∣ 𝑢1), ℎ5∣1(𝑢5 ∣ 𝑢1)). (12)

At the next level of the hierarchy, we have the copulas 𝐶34;12 and
𝐶35;12. The first is determined using the pseudo observations

ℎ3∣1,2(ℎ3∣1(𝑢3 ∣ 𝑢1) ∣ ℎ2∣1(𝑢2 ∣ 𝑢1)), ℎ4∣1,2(ℎ4∣1(𝑢4 ∣ 𝑢1) ∣ ℎ2∣1(𝑢2 ∣ 𝑢1)) (13)

and similarly for the second one.
If the structure of the vine copula is fixed, then it is straightforward

to estimate the copulas and the corresponding parameters. The recur-
sive procedure induces, however, inefficient estimates. To overcome
this problem one uses the recursive parameters as starting values for
full maximum likelihood estimation. In practice, the structure of the
copula or the order of the variables is unknown and must be determined
from the data. In lower dimensions, it is can be done via enumeration
of all possible structures, but this approach infeasible if the dimension
increases. For this reason, we rely on a maximum spanning tree as
suggested in Dißmann et al. (2013). At each level, we select the
spanning tree that maximizes the sum of absolute empirical Kendall’s
taus.

The key objective of the modeling is to explain the intraday crude oil
return. In the classical regression-type tools we typically obtain point
predictions for the expected price conditionally on the values of the
control variables. The vine-based regression offers, however, a forecast
of the complete conditional distribution 𝐹𝑋𝑑 ∣𝑋1 ,…,𝑋𝑑−1 (𝑥𝑑 ∣ 𝑥1,… , 𝑥𝑑−1).
Knowing this conditional distribution allows us to make predictions for
different quantiles of the target variables as follows

𝐹−1
𝑋𝑑 ∣𝑋1 ,…,𝑋𝑑−1

(𝛼 ∣ 𝑥1,… , 𝑥𝑑−1) = 𝐹−1
𝑋𝑑

(�̂�𝑑∣1,…,𝑑−1(𝛼 ∣ �̂�1,… , �̂�𝑑−1)). (14)

In the case of D-vine, this prediction can be established analytically,
7

whereas one relies on numerical approximation in the case of C-vines.
To obtain �̂�𝑖 one needs to estimate the marginal distribution for every
variable. This can be performed either parametrically, by choosing from
the set of standard univariate distributions, or non-parametrically by
using a kernel density estimator to obtain

𝐹 (𝑥) = 1
𝑀

𝑀
∑

𝑖=1
𝐾

(𝑥 − 𝑥𝑖
ℎ

)

. (15)

Here 𝑥𝑖 is a generic observation and 𝐾 is the kernel function. Then
̂𝑖 = 𝐹 (𝑥𝑖).

Predicting conditional quantiles give much deeper insights into
the relationship between the variables compared to classical linear
regression. The idea is similar to that of the quantile regression, but
again extends its framework to nonlinear dependencies.

4. Empirical study

In this section, we apply the above methodology of dependence
modeling to the crude oil return and natural gas as commodities, S&P
500 and EUR/USD exchange rate as financials, and VIX as a fear index
f the US stock market. Our particular setting extends the current
iterature in two ways. Firstly, we analyze the intraday data directly
nd thus are able to estimate momentum dependence on a particular
ay. Secondly, we use vines to model the nonlinear dependence and to

build a nonlinear causal model for crude oil returns.

.1. Intraday dependence

To model the intraday dependence, we fit a C-Vine copula to
intraday returns for every trading day of the considered period. We
select the optimal vine copula using the methodology discussed in the
previous section. Preliminary analysis shows that the correlation in the
lower trees is low and in many cases the collapse to independent copu-
las. This allows us to reduce the computational burden by simplifying
the structure by assuming independent copulas at lower-level trees.
Thus, we concentrate here on the first tree only. It appears that only
two structures arise throughout the whole sample period. One has the
VIX index as the root node and the second one is dominated by the S&P
500 returns. This implies that these variables have the highest total cor-
relation with other covariates as measured by Kendall’s 𝜏. The temporal
dynamics of these structures are shown in Fig. 4. We observe that the
second structure has a strong dominance at the peak of the pandemic in
March 2020. This is primarily attributed to the declaration of COVID-19
as a pandemic by the WHO on March 11 (WHO, 2020). This triggered
various counteractive measures from several economies around the
globe to mitigate the impact of a pandemic. Similarly, we observe
significant fluctuations in Kendall’s 𝜏 over the last quarter of 2021
and the first quarter of 2022, attributing to the heightened geopolitical
uncertainty due to the Russia–Ukraine conflict. In addition, it is reason-
able to assume that the expectations regarding future price fluctuations
in the underlying assets may influence the dynamics of other assets
across other markets owing to the predominance of underlying assets in
the global portfolio of assets. Therefore, expectations concerning future
prices may significantly alter the asset pricing and risk management
decisions for various market participants and thereby further triggering
the shocks in global financial and commodity markets. In addition,
the fear of the second wave of COVID together with the heightened
tension between Russia and Ukraine have added further uncertainty
to the underlying assets, thereby altering the temporal dynamics of
these structures. Else the two structures switch very frequently implying
that both the S&P500 and the VIX index have a similar dependence
on the remaining covariates. Additionally, we plot the time series of
BIC and log-likelihood to assess the fit of the model from the time
perspective. We observe a better model fit during the spikes of the pan-
demic, indicating that flexible distributional modeling is advantageous
in uncertain periods. This is crucial as flexible distribution models are

better able to capture the dependence across various quantiles of the
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Fig. 4. Upper panel: the dynamics of the two realized intraday C vine structures. VIX is the most dominant in the first structure, whereas S&P 500 is the second one. Bottom
panel: the dynamics of the BIC and log-likelihood for the intraday C vine fit.
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istribution. Furthermore, the literature is increasingly favoring the
utilization of flexible distributional modeling in capturing the dynamics
n the underlying series (Patton, 2004; Oh and Patton, 2017; Patton,
009; Okimoto, 2008).

The tail dependence is a key parameter that reflects the chances of
xtreme values observed simultaneously for two covariates. The largest
pper and lower tail indices for all pairs of variables can be directly de-
ived from the vine copula. The time series of these indices are shown in
ig. 5. It reveals several important facts. First, there is a much stronger
ail dependence in the lower tail, e.g. there is a higher probability of
wo extreme negative returns than of two extreme positive returns.
oreover, the upper tail index is zero on the majority of trading dates,

mplying independence in the upper tail. These findings are in line with
he (Reboredo and Ugolini, 2018; Elie et al., 2019; Dai et al., 2020), as
hey report asymmetric connectedness among the assets. In addition,
everal studies highlight the more prominent impact of negative shocks
n assets than a positive shock of equal magnitude (Nelson, 1991;
losten et al., 1993), thereby providing further support to the obtained

esults. The dynamics of the lower tail index well fit the peaks of the
andemic and the Russia–Ukraine conflict. Thus during high uncer-
ainty caused by COVID and geopolitical uncertainty, the probability of
imultaneous extreme negative returns of the covariates increases. This
ndicates that the covariates that pushed price co-movements among
he assets became increasingly connected due to the COVID-19 shock
nd the Russia–Ukraine conflict. One argument could be related to the
eliefs of the short-term investors that are hard to contemplate and
xtremely heterogeneous resulting in the strengthening of the internal
elationship among the underlying covariates under high uncertainty.

Next, we run the D-vine copula regression to estimate the condi-
ional distribution of the crude oil return given the other explanatory
ariables lagged in time for one minute. This is in line with the setting
8

sed for the cross-quantilogram in Section 2. As mentioned above b
e concentrate on the first three only. This implies that the order
f the variables in the first tree corresponds to their importance in
xplaining the oil returns. Fig. 6 shows the first three variables in
he tree for every day of the considered period. Contrary to the pure
ependence modeling, here we observe a slightly different pattern.
he most dominant predictive variable is the returns of the S&P500

ndex. The second most influential variable during the peak becomes
he natural gas price. These findings are in line with earlier studies
ocumenting strong connectedness between crude oil and the S&P500
nd natural gas. Specifically, the relationship between crude oil and
&P500 is well-documented in the previous literature. Both of these
ssets reflect the health of the global commodity and financial mar-
ets (Nazlioglu and Soytas, 2011; Avdulaj and Barunik, 2015; Chen
t al., 2019; Baruník et al., 2015; Awartani et al., 2016). Our findings
n the dynamic connectedness between crude oil and natural gas are
n line with (Batten et al., 2017; Brigida, 2014; Bunn et al., 2017),
ndicating strong uni- and bi-directional explanatory power flowing
etween crude oil and natural gas. We additionally observed that the
it of the model drops during the beginning of the pandemic, indicating
he covariates have lower explanatory power for the crude oil returns
uring a turmoil period.

To get more insights into dependence in the tails, we plot the
uantile predictions on three different days (15.01.2020, 06.03.2020,
1.03.2022 - from top to bottom, respectively) in Fig. 7. The figures
how the nonlinear impact of the explanatory variables on the 10%,
0%, and 90% quantiles of the crude oil return. We observe a clear
ifference between calm and turmoil periods. Specifically, the connect-
dness between the assets is close to zero across different quantiles
f the return distribution during the pre-COVID period (top). How-
ver, close to the date of the announcement of COVID-19 (Middle) as
pandemic, we observe a significant increase in the connectedness
etween crude oil and other assets in our sample. This is primarily
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Fig. 5. Maximal lower and upper tail indices of bivariate copulas building the estimated C vine.

Fig. 6. Upper panel: the dynamics of the rank for the covariates in the D vine regression of the intraday crude oil return on the explanatory variables. Bottom panel: the dynamics
of the BIC and log-likelihood for the intraday D vine fit.
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Fig. 7. Conditional quantiles of the crude oil return derived from the D vine regression on 15.01.2020, 06.03.2020, 01.03.2022 - from top to bottom, respectively.
Y
c

4

o
t
f
a
i
i

attributed to the negative shock due to COVID-19 in the global fi-
ancial and commodity markets, leading to an increased disruption
n the connectedness equilibrium among these assets. Similarly, the
ottom figure emphasizes the connectedness dynamics arising from
he Russian–Ukrainian conflict, showcasing a remarkable increase in
eterogeneous and asymmetric quantile connectedness. The Russian
nvasion of Ukraine intensified geopolitical tensions and magnified the
ncertainty in global markets, which, in turn, amplified the intercon-
ectedness among the underlying assets. Furthermore, the heightened
upply–demand shock in crude oil prices, primarily attributed to sanc-
ions imposed due to the conflict, introduced additional uncertainty
nto the dynamics of these assets, thereby reinforcing the connectedness
mong the underlying assets. These findings add to the findings of Dai
10

t al. (2020), Bouri (2015), Wei and Guo (2017), Sun et al. (2021), 𝑟
ang et al. (2021) and Liu et al. (2021), indicating an increased
onnectedness among the assets during periods of turmoil.

.2. Risk management

The objective of the next part of the analysis is a practical evaluation
f hedging opportunities of risk exposure in crude oil. We go beyond
he classical variance-based approaches to calculating hedge ratios and
ocus on non-linear dependence between the variables as documented
bove. We restrict the discussion to a bivariate setting, i.e. to going long
n one crude oil asset and going ℎ units short in one of the alternative
nvestment opportunities. The return on the portfolio is then given by
𝑝(ℎ) = 𝑟𝐶𝐿1 − ℎ𝑟𝑎,
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where 𝑎 stands for one of the alternatives: VIX, OVX, NG1, EURUSD,
and SPX. Let 𝜌(𝑟) be the risk measure we use for risk quantification.
Then the optimal hedge ratio solves the minimization problem
∗ = argmin

ℎ
𝜌(𝑟𝑝(ℎ)).

The Value-at-Risk and Expected Shortfall are the two most popular
isk measures and are used in this study. Note, that both measures
epend explicitly on the distribution function of the portfolio return.
or example,

𝑎𝑅ℎ𝛼 = 𝐹−1
𝑟𝑝(ℎ)

(1 − 𝛼),

here 𝐹𝑟𝑝(ℎ)(𝑥) is a cdf of a linear combination of two random variables
nd is calculated using the convolution of their joint bivariate cdf.
o reflect the nonlinear dependence documented above, we model the

oint distribution of the crude oil return and the alternative investments
sing a bivariate copula. Contrary to the previous studies on hedging,
e use intraday data and estimate the optimal copula for every trading
ay. We select the best copula in terms of the AIC criterion among
ndependence copula, Gaussian, Student 𝑡, Clayton, Gumbel, Frank, and
oe copula, whereas the margins are estimated non-parametrically. In
he next step, we solve the optimization problem in 4.2 numerically
oth for VaR and ES.

The resulting estimates of the optimal hedging ratio are shown in
ig. 8. Our findings indicate that the hedge ratios among crude oil and
ther asset classes increase significantly with the declaration of COVID-
9 as a pandemic in March 2020. The increased values of hedge ratios
ndicate that hedging the long position with these assets became more
xpensive. This may be attributed to the increased tendency of these
eries tending to exhibit joint extreme movements as that of crude
il. In addition, our findings indicate a significant increase in hedge
atios between crude oil and EURUSD from August 2020 to November
020, which may be attributed to the lockdown measures to control
he spread of COVID-19. Notably, the hedge ratios between crude oil
nd EURUSD decline significantly and remain relatively low during
he first three quarters of 2021. However, the ratios increase sharply
uring October 2021, which may be attributed to the heightened
eopolitical tensions surrounding the Russian–Ukrainian war, adding
ncertainty in the crude oil prices. Similarly, the hedge ratios between
rude oil and SPX increases sharply between July 2021 and October
021 attributing to heightened uncertainty surrounding Russian actions
efore the initiation of the invasion of Ukraine. However, the ratios
ecline gradually from January 2022 to the end of our sample period,
hich may be attributed to the increased decoupling of crude oil prices
nd SPX influenced by the Russia–Ukraine conflict. These findings are
n line with (Wang et al., 2021; Hung, 2021; Ji et al., 2021; Gil-Alana
nd Monge, 2020) as they report an increased inefficiency of crude
il futures in attaining diversification and risk management potential.
imilarly, our findings indicate that the turmoil and geopolitical uncer-
ainties significantly alter the hedging effectiveness and the overall cost
f hedging.

. Conclusion

In light of the outbreak of COVID-19 and the recent Russia–Ukraine
onflict, this paper investigates the asymmetric and nonlinear intercon-
ectedness between the financial and commodity markets by utilizing
igh-frequency intraday data. Specifically, we investigate the hetero-
eneous and asymmetrical connectedness among various underlying
ssets by utilizing the cross-quantilograms (CQ), paired vine-based
opulas, and copulas vine-based regression analysis. The rationale be-
ind the utilization of CQ is to evaluate the intraday connectedness
ynamics among the assets. This is of particular significance when we
re evaluating the impact of underlying assets on any specific dates
nd therefore provides a strong basis to examine the dynamics of
11

onnectedness between two or multiple dates across different quantiles
f the return distribution. Furthermore, we have utilized paired vine
opulas, which offer a very flexible approach to modeling the generic
onnectedness among the underlying assets. In addition, we utilize
he vine-based regression analysis to evaluate the causal relationship
etween the underlying assets on crude oil returns. The vine regres-
ion is of particular interest while modeling the impact of various
ovariates on the explained variable not directly, but sequentially.
econdly, and most crucially, the conditional density used for the
redictions is given by an analytical expression. Utilization of such
nformation is important as the returns of different underlying assets
rom various asset classes behave rather heterogeneously. Therefore,
o accurately capture the conditional density for various covariates,
he employment of D-vine is of high significance. Lastly, we provide
practical evaluation of hedging opportunities for risk exposure in the

rude oil market by considering the non-linear dependence between the
nderlying variable.

Our study has several interesting findings. First, based on the cross-
uantilograms, we observe that the patterns heavily depend on the
ay with a time lag of one minute. Specifically, our findings indicate
hat the connectedness between the assets is close to zero across
ifferent quantiles of the intraday return distribution during the pre-
OVID period. However, close to the announcement of the COVID-19
andemic, the connectedness structure sharply increased. Second, the
uantile connectedness increases significantly as the Russia–Ukraine
onflict introduces additional sources of uncertainty in the crude oil
arket, contributing positively to the connectedness structure and tail
ependence between crude oil and other assets in our sample. Third,
rom the C-vine copula framework, we observe that the structure has a
trong dominance at the peak of the pandemic in March 2020 and with
he Russian invasion of Ukraine in February 2022. Fourth, our findings
how a much stronger tail dependence in the lower tail than the
igher tails indicating asymmetric connectedness among the assets. For
xample, there is a higher probability of two extreme negative returns

than of two extreme positive returns. Moreover, the upper tail index is
around zero on the majority of trading dates, implying independence in
he upper tails of the return distributions. Fifth, based on the findings
rom vine regression, the dynamics of the lower tail index well-fit
he peaks of the pandemic and the Russian–Ukrainian conflict. Thus,

during high uncertainty caused by COVID and geopolitical tensions, the
probability of simultaneous extreme negative returns of the covariates
increases. This indicates that the covariates that pushed price co-
movements among the assets became increasingly connected due to
the COVID-19 shock and the Russian–Ukrainian conflict. Finally, our
findings indicate that the S&P500 and natural gas have a predictive
nfluence on the crude oil market. These results stress the necessity
or a nonlinear model that can reflect the heterogeneous and asym-

metric connectedness dynamics between the considered variables under
extreme market conditions.

Our study presents several interesting findings that contribute to
and extend the prior literature on the connectedness dynamics of
financial and commodity markets. Particularly, our results reveal that
the connectedness among assets, which was initially negligible across
different quantiles of the intraday return distribution, increased sharply
with the outbreak of the COVID-19 pandemic and further intensified
with the Russia–Ukraine conflict. Additionally, we find a stronger tail
dependence in the lower tail, indicating asymmetric connectedness
among the assets. These findings are aligned with the findings in
previous studies, such as the increased spillover effects during COVID-
19 (Bouri et al., 2021), heightened volatility linkages (Farid et al.,
2021), and greater connectedness between oil and other assets during
the pandemic (Akhtaruzzaman et al., 2021). Our research emphasizes
the need for a non-linear framework that can capture the heterogeneous
and asymmetric connectedness dynamics between variables under ex-
treme market conditions, providing valuable insights to complement
and advance the existing literature.
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Our findings of increased asymmetric connectedness patterns across
rude oil and various financial and commodity markets have important
mplications for governmental agencies, policymakers, investors, and
ortfolio managers. The unprecedented decline in prices of financial
nd commodity markets resulted in increased uncertainty across the
arket participants about the pricing of these assets. Governmental

gencies and policymakers should prioritize understanding the under-
ying factors driving the asymmetric connectedness between the under-
ying assets and devise a roadmap to disentangle such behavior in the
inancial and commodity markets. This includes research and analysis
n identifying the key drivers, such as geopolitical measures, macroe-
onomic variables, and global supply–demand imbalances. Portfolio
anagers and investors should accommodate the potential heteroge-
eous and asymmetric connectedness dynamics in their frameworks to
evise relevant and appropriate investment allocation and management
ecisions.

Future research may employ intraday vine copula modeling and
-vine copulas to enhance price dependence forecasting and dynamic
12

ortfolio weight selection among various assets. Developing a dynamic U
ortfolio strategy based on vine copulas presents methodological and
omputational challenges, representing a promising avenue for future
xploration and investigation.
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