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1. Introduction

The ob-gene product leptin is a pleiotropic molecule that regulates
food intake and body weight as well as metabolic and endocrine
functions [1,2]. There is increasing evidence that leptin also exerts
proliferative and antiapoptotic effects in a variety of cell types and
plays a pivotal role in tissue repair. Furthermore, leptin has been
suggested to be involved in fetal and placental development during
pregnancy [3–6]. It is a known fact that maternal plasma leptin
concentrations undergo large changes during pregnancy – out of
proportion with change in maternal adipose tissue mass – returning
to normal levels rapidly after delivery [7,8]. These observations
suggest that leptin is released into the maternal circulation from the
placenta [9]. Estrogens and insulin have been identified as positive
regulators of placental leptin production [10]. In addition to type I
diabetic mothers with markedly increased leptin mRNA and protein
levels in placenta, preeclampsia is another pathological situation with
enhanced placental leptin synthesis.

During placental development, oxygen environment of placental
cells undergoes large changes and cells may face rather hypoxic
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conditions. Such changes in oxygen availability may modulate leptin
synthesis during pregnancy in the placenta [11,12]. Grosfeld et al. and
our group showed a significant induction of leptin transcription via a
hypoxia-inducible-factor 1 (HIF1) dependentmechanism. At least one
hypoxia-responsive element, located −120 bp to −116 bp in the
leptin promoter, is involved in this HIF1 mediated effect on the
transcriptional regulation. These observations are in line with further
studies on cells of placental origin demonstrating that the human
leptin gene is transcriptionally up-regulated by hypoxia [13–15]. In
addition, the fact that leptin and its receptor (Ob-R) are co-expressed
in human placenta suggests auto- and paracrinemechanisms of action
beside leptins endocrine functions [16].

The human leptin receptor has several isoforms resulting from
alternative mRNA splicing during transcription. The long form of the
human leptin receptor (Ob-Rb) shares a large homology to the
intracellular signalling domain of the type I cytokine receptor family,
using the JAK/STAT signal transduction pathway inmost cells [17,18]. In
human placental tissue, however, it seems that leptin signal is
transduced via theMAPK pathway instead of the JAK/STAT cascade [19].

Recent studies were able to show an overexpression of leptin and its
receptor in cells of human endometrial and colorectal cancer [20,21]. In
this tissue, the expressionof leptin and its receptor seem to correlatewith
hypoxia and the abundance of hypoxia-inducible-factor-1α (HIF-1α).
This raised the hypothesis, that the leptin receptormight be regulated by
hypoxia. So far it is unknown, however, if low oxygen tension may
influences the expression of the leptin receptor in the placenta.
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Therefore, the main purpose of this study was to characterize the
effect of hypoxia on leptin receptor transcription and translation in
placental cells. Moreover the influence of low oxygen tension on the
putative leptin signal transduction pathways and the effect on
placental – cell proliferation was investigated. Along with primary
villous trophoblast cells, the BeWo and JAR chorioncarcinoma cell
lines were employed as a model for placental biology due to their
expression of all leptin receptor isoforms as well as leptin [22].

2. Materials and methods

2.1. Cell culture

JAR and BeWo cell lineswere purchased fromDSMZ (Braunschweig,
Germany) and cultured in D-MEM:F-12 (Gibco-BRL, Eggenstein,
Germany) supplemented with 10% FCS, 100 μg/ml penicillin and
Fig. 1. Expression of leptin receptor mRNA under hypoxic conditions. BeWo (A), JAR
cells (B) and villous trophoblasts (C) were incubated for 12 h, 24 h and 48 h hypoxic
(H) conditions (1% O2). Induction of Ob-R mRNA expression was compared and
normalized to normoxic controls (N). The grey, dashed lines represent the normalized
control. Number of experiments n=8 (BeWo/JAR), n=5 (VT). Statistical analysis was
performed using one-way-ANOVA with Bonferroni post test for selected comparisons
(12 h N vs. 12 h H, 24 h N vs. 24 h H, 48 h N vs. 48 h H). p values are indicated if pb0.05.
1000 U/ml streptomycin (Clontech, BD Biosciences, Heidelberg,
Germany) in the presence or absence of stimuli as indicated. Cells
were cultured under normoxic conditions at 37 °C under a humidified
atmosphere containing 5% unless stated otherwise. Before plating, cells
were trypsinized and washed twice in cold PBS, followed by resuspen-
sion in their culturemedium.Human recombinant leptinwaspurchased
from R&D Systems (Minneapolis, MN, USA).

2.2. Placental tissue and cell preparation

Humanplacentaswereobtained in collaborationwith thedepartment
of Gynecology and Obstetrics at the University Hospital of Erlangen from
Fig. 2. Expression of leptin receptor long isoform mRNA under hypoxic conditions.
BeWo (A), JAR cells (B) and villous trophoblasts (C) were incubated for 12 h, 24 h and
48 h under hypoxic (H) conditions (1% O2). Induction of Ob-Rb mRNA expression was
compared and normalized to normoxic controls (N). The grey, dashed lines represents
the normalized control. Number of experiments n=8 (BeWo/JAR), n=5 (VT)
respectively. Statistical analysis was performed using one-way-ANOVA with Bonferroni
post test for selected comparisons (12 h N vs. 12 h H, 24 h N vs. 24 h H, 48 h N vs. 48 h
H). p values are indicated if pb0.05.
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uncomplicated term pregnancies after elective caesarean section in
accordancewith the local ethic committee. Specimens fromplacental villi
were taken immediately after delivery and washed in physiologic saline
solution to remove blood. Villous trophoblasts (VT) were isolated by the
modified trypsin-DNase, Percoll (Sigma,Deisenhofen,Germany) gradient
centrifugation method initially described by Kliman et al. [23]. Further
purification of trophoblast cells was carried out using negative
immunomagnetic bead-separation with a final reduction of CD45- and
HLA-ABC positive cells to less than 1%.

2.3. Hypoxic conditions

Hypoxic treatment was carried out in an incubator (Invivo 400,
Ruskinn Technology Ltd/Ruskinn Life Sciences Ltd, Pencoed, UK)
supplied with 1% O2 and 5% CO2 . Oxygen concentration was
monitored bymeasurement of oxygen partial pressure in cell medium
and an oxygen sensor in the chamber.

2.4. RNA isolation and PCR techniques

Total RNAwas isolated fromcells usingTRIzol (Invitrogen,Karlsruhe,
Germany) after 12, 24 and 48 h under hypoxic (1% O2) and normoxic
(21% O2) conditions. After DNase treatment 1 μg RNA was transcribed
into cDNA usingMMLV-RT (Promega,Mannheim, Germany), Oligo (dT)
and random hexamer primer. DNase treatment and cDNA synthesis
were carried out according to themanufacturers recommendations. The
cDNA expression levels were quantified by real time polymerase chain
reaction (qRT-PCR) using the SYBR-Green incorporation method
(iCycler IQ5, Bio-Rad, Hercules, California, USA) according to the
suppliers protocol. For amplification of all leptin receptor isoforms
(Ob-R) and the long isoform (Ob-Rb) we used the following primers:
Ob-R: forward primer: 5′-GTAAGAGGCTAGATGGACTGGGATAT-3′, re-
verse primer 5′-ATTCTCCAAAATTCAGGTCCTCTCA-3′, Ob-Rb: forward
Fig. 3. Western Blot analysis of Leptin receptor expression under hypoxic conditions. Cells w
lysed and subjected toWestern Blot analysis of Leptin receptor (Ob-R). Lysates of untreated c
on its grade of glycosylation 250 kDa or 130 kDa) and β-Actin as loading control. Bottom: De
shown). Number of independent experiments n=5. The one-way-ANOVA was used for sta
BeWo incubation (48 h) and all hypoxic incubation tested in VT. p values are indicated if p
primer 5′-AGGCTGAGGGTACTGAGGTAACC-3′, reverse primer: 5′-GAT-
CAGCGTGGCGTATTTAACA-3′. Expression levels were normalized to the
expression of the human housekeeping genes HPRT and beta-Actin.
Primer pairs for HPRT were as follows: forward primer: 5′-
CCGGCTCCGTTATGGC-3′, reverse pimer: 5′-GGTCATAACCTGGTTCAT-
CATCA-3′ and for beta-Actin: forward primer 5′-GATGAGATTGG-
CATGGCTTT-3′ and reverse primer 5′-CACCTTCACCGTTCCAGTTT-3′.
All calculationswere based on the ΔΔCt-method as previously described
in detail [24].
2.5. Immunoblot experiments

Cells were incubated in the presence of the indicated stimuli,
washed twice with ice-cold PBS and lysed in modified tris buffer
(50 mM Tris HCl, 150 mM NaCl, 1% Triton X, 0.25% Na-desoxycholate,
1 mM EDTA, 1 mM Phenylmethylsulfonylfluoride, 1 μg/mL aprotinin,
1 μg/mL leupeptin, 1 μg/ml pepstatin-A, 1 mM NaF, 1 mM Na3VO4).
Lysates were immunoblotted by separating the protein by sodium
dodecyl sulphate-polyacrylamide gel electrophoresis. After transfer to
a nitrocellulose membrane (Whatman GmbH, Dassel, Germany) the
activation of p42/p44 (ERK 1/2) and STAT3 was analysed with a
phospho-specific anti ERK 1/2 (Promega, Mannheim, Germany,
Catalogue number V80319, dilution 1:750) and phospho-specific
STAT3 antibody (CellSignaling, Minneapolis, MA, USA, Catalogue
number 9131, dilution 1:1000), visualized by chemoluminescence
using ECL plus (Amersham Pharmacia biotech, Freiburg, Germany).
Equal protein loading was verified after stripping the nitrocellulose
membrane and adding an antibody directed against the total protein
of either ERK 1/2 (Promega, Catalogue number V114, dilution 1:1000)
or STAT3 (Cell Signaling, Catalogue number 9139, dilution 1:1000).
Leptin receptor antibody was purchased from R&D Systems (Cata-
logue Number MAB 389, dilution 1:125).
ere incubated as indicated under hypoxic conditions (H, 1% O2). Afterwards they were
ells were used as normoxic controls (N). Top: Immunoblot analysis of Ob-R (dependent
nsitometric analysis of Western Blots. Similar results were obtained using JARs (data not
tistical analysis. Bonferroni post testing revealed a significant impact of hypoxia in late
b0.05.
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Fig. 4. Release of soluble leptin receptor isoform under hypoxic conditions. After
incubation of BeWo (A) and JAR cells (B) under normoxic (N) and hypoxic conditions
(H) as indicated, concentrations of sOb-R in the supernatants were investigated.
Recombinant sOb-R with a concentration of 1.56 ng/ml was used as positive control
(“Control”). Number of independent experiments n=8. One-way-ANOVA was used for
testing and showed no significant difference between these groups.
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2.6. Densitometry

Densitometric analysis of the bands was performed using Advanced
Image Data Analyzer-Software (Fuji Photo Film Co., Omiyama, Japan)
and normalized to total amount of ß-actin per lane. Pixel densities were
corrected for background staining of the same film.

2.7. sOb-R analysis

After incubating the cells under hypoxia or normoxia, levels of the
soluble leptin receptor (sOb-R) were measured by a sensitive ligand-
immunofunctional assay [25]. For the determination, samples were
dried by vacuum centrifugation and then resolved using cell medium
to only one tenth of the former volume.
Fig. 5. STAT 3 signal transduction in placental cells after leptin incubation. BeWo (left) cells a
hypoxic 1% oxygen (H) conditions for 24 h and lysed after stimulation for 15 min using 1 μg
cells treated with Interferon-alpha were used as positive/negative control (middle). Comp
stimulation or Jar cells. Number of independent experiments n=5.
2.8. Cell proliferation assay

BeWo and JAR cells were transferred to microtiter plates at a
density of 3×103 cells/well. After adhesion medium was changed
to D-MEM:F-12 supplemented with 0.5% FCS to starve the cells.
Experiments were also performed by blocking internal leptin with
anti-leptin antibody (R&D Systems, Catalogue Number AF398) and
goat anti-mouse as control (Promega, catalogue number W402B).
After 24 h cells were stimulated with 0.1 μg/ml, 0.5 μg/ml or 1
μg/ml leptin in the culture medium or left untreated. Afterwards
5-bromo-2′-deoxyuridine (BrdU) was added to the cells and they
were incubated for 24 h or 48 h under normoxic or hypoxic
conditions. The cell proliferation assay was purchased from Roche
(Mannheim, Germany) and carried out according to the manufac-
turers recommendations.
2.9. Statistical analysis

Statistical analyses as indicated were performed using GraphPad
Prism version 5.02 for Windows, GraphPad Software, San Diego
California USA. pb0.05 was considered statistically significant.
3. Results

3.1. Expression of leptin receptor under hypoxic conditions

To analyze if placental cells regulate Ob-R under hypoxic
conditions, the expression of leptin receptor mRNA was investigated
using chorioncarcinoma cell lines as a model of placenta biology and
primary trophoblasts for in vitro assays. Comparing the hypoxic cells
(1% oxygen) to normoxic controls, a time-dependent induction of
Ob-R mRNA was observed in hypoxic primary trophoblasts as well as
the cell lines (Fig. 1). For more detailed analysis, the regulation of the
long isoform of the receptor (Ob-Rb) being responsible for its signal
transduction was investigated. Therefore cells were incubated again
in a time dependent manner under hypoxia following mRNA analysis.
We were able to detect an up to ten-fold induction of Ob-Rb mRNA
expression in the hypoxic placental cells compared to the normoxic
controls (Fig. 2).

In a second approach, we analyzed whether the results obtained
from the mRNA expression analysis were followed by an enhanced
protein synthesis. For this purpose we performed leptin receptor
immunoblots. As shown in Fig. 3, hypoxic induction of Ob-R mRNA
resulted in an increased expression of the protein in primary
trophoblasts as well as the chorioncarcinoma cells lines.

Finally, we investigated if an increased expression of Ob-R results
in an augmented release of the soluble leptin receptor isoform.
Therefore, we collected supernatants of hypoxic as well as normoxic
cell cultures. Interestingly, sOb-R was unaltered comparing hypoxic
cell culture supernatants to those of normoxic controls (Fig. 4).
nd primary villous trophoblasts (right, VT) were preincubated under normoxic (N) and
/ml Leptin (L). Lysates were subjected to a Phospho-STAT3/STAT 3 Western Blot. HeLa
arable results were obtained using different leptin concentrations, different lengths of
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Fig. 6. p42/44 MAPK signal transduction in placental cells after leptin incubation. BeWo (left) cells and primary villous trophoblasts (right, VT) were preincubated under normoxic
(N) and hypoxic (H, 1% oxygen) conditions for 24 h and lysed after stimulation for 15 min using 1 μg/ml Leptin (L). Lysates were subjected to a Phospho-p42/44 MAPK and p42/44
MAPKWestern Blot. Cells were treated with TPA as positive control (middle). Comparable results were obtained using different leptin concentrations, different length of stimulation
or JAR cells. Number of independent experiments n=5.
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3.2. Signal transduction of leptin receptor under hypoxia

Wenext analyzed if p42/p44ERKor STAT3-pathways are recruited in
placental cells after incubation under hypoxic conditions and stimula-
tion with recombinant leptin. First STAT3 phosphorylation in primary
trophoblasts and chorioncarcinoma cell lines was investigated. Here, we
were not able to activate the STAT3 pathway after leptin stimulation,
independently of oxygen tension (Fig. 5). Interestingly, p42/44 MAPK
phosphorylation did not change after addition of 0.1 μg/ml respectively
1 μg/ml or 10 μg/ml leptin, neither in BeWo/JAR cells nor in primary
trophoblasts (Fig. 6) also.

3.3. Effect of hypoxia and leptin on cell proliferation in placental cells

In this study we investigated the effect of leptin on placental cell
proliferation. Cells were incubated under normoxic or hypoxic
conditions in the presence or absence of different leptin concentra-
Fig. 7. BrdU incorporation of leptin stimulated BeWo (A/B) and JAR cells (C/D). Cells were in
the presence or absence of 0.1 μg/ml, 0.5 μg/ml or 1 μg/ml leptin (L). Number of experimen
normoxia or variable leptin concentrations and showed no significant difference between t
tions. When focusing on the effects after 24 and 48 h, no effect of
either leptin or leptin in combination with hypoxia on the
proliferative capacities of cells tested could be detected (Fig. 7).
Incubating the placental cells with anti-leptin antibody (10 μg/ml)
24 h prior to stimulation for blocking internal leptin activity had no
effect on the proliferation rate (data not shown).

4. Discussion

Besides the adipose tissue, the placenta is another side of leptin
synthesis. Increased placental leptin production has been reported in
a number of gestational pathologies resulting in an increased risk for
preterm- and stillbirths [26,27]. Although little is known about the
exact physiological role of leptin during human pregnancy, recent
observations suggest that this hormone could be a key player in the
regulation of embryonic implantation as well as the maintenance of
pregnancy. The presence of leptin receptors in trophoblasts may
cubated for 24 h (A/C) and 48 h (B/D) under normoxic (N) or hypoxic (H) conditions in
ts n=5. Two-way-ANOVA was used for testing the independent variables of hypoxia/
hese groups.
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indicate that placental leptin exerts its biological effects by recruiting
local intraplacentar effectors via auto- or paracrine pathways. Since
leptin gene expression is up-regulated under hypoxic conditions in
placental cells, this raised the hypothesis that low oxygen tension not
only induces leptin production— it may in fact modulate the effects of
leptin on placental cells by induction of its receptor.

Several isoforms of the leptin receptor have been identified
[28,29]. These various isoforms can be divided into three groups: a
single long receptor which has an intracellular domain of 306 amino
acids, several short receptors with intracellular domains of 32 to 40
amino acids, or, lacking a transmembrane domain, being a soluble
leptin receptor. Our data suggest that hypoxia leads to an induction of
the long isoform of the leptin receptor in placental cells but does not
induce a release of the soluble receptor. Therefore, based on our data
the induction of the leptin receptor by hypoxia does not appear to be
involved inmodulation of free active leptinwithin the placentalmilieu
as discussed here [30].

In line with previous findings, we were showed that the JAK/STAT
pathway is not recruited after incubating primary trophoblasts as well
as placental cell lines. Yet, in contrast to reports by Caüzac et al. [19],
no activation of the MAPK-pathway after leptin treatment could be
detected, neither in the chorioncarcinoma cell lines used nor in
primary trophoblasts. As leptin synthesis itself is enhanced in
placental cells due to hypoxia [15], further investigations will be
needed to dissect the question if receptor synthesis is enhanced by the
hormone or by hypoxia-related pathways.

As we found no direct effect of leptin added to our cell culture –

being independent of the augmented leptin receptor expression
driven by hypoxia in our cell culture – several explanations for the use
of the upregulation of leptin receptor under hypoxic conditions may
be discussed:

A) Chorioncarcinoma cells are morphologically similar to their
cells of origin, the trophoblast of the first trimester placenta
and may serve as a valid and convenient model system for
studying the cellular activities and regulation of leptin in vitro.
Studies on BeWo cells from other groups suggest that the
in vivo system is well mimicked by this cell line regarding its
syncytialization and hormone secretion [31,32]. Perhaps it may
be possible that the cell culture model might not reflect in vivo
situation with regard to signal transduction. On the other hand
we could show that the MAPK-pathways itself may be
stimulated in our cell lines using TPA. However, in primary
trophoblasts, we similarly were not able to activate the MAPK-
or JAK-pathway after leptin treatment.

B) Maternal decidual cells, but not trophoblast cells might be the
target of placental leptin. Both leptin-receptor mRNA and
protein have been detected in the decidua [33]. These findings
suggest that the decidua may be target tissue for leptin action
indicating a function in the blastocyst-endometrial-dialogue
[34]. Based on these data one might speculate that leptin may
be a factor being essential for embryonic and fetal development
and less for the development of maternal tissues [35,36].

C) Placental leptin synthesis might preferentially be intended for
executing endocrine functions within the placental milieu and
not as a paracrine factor influencing proliferation. This notion is
supported by previous studies from our group indicating that in
contrast to non placental cells chorioncarcinoma cells do not
show an altered rate of apoptosis after stimulation with leptin
[37].

In conclusion, the presence of leptin and the leptin receptor
isoforms in human placenta from very early stage of development
until term suggests that leptin has definite biological effects within
the feto-placental milieu. We were able to show that hypoxia up-
regulates leptin receptor in placental cells without enhancing the
release of the soluble receptor isoform. It is striking that leptin-
induced signal transduction as well as cell proliferation remained
unchanged in our experimental setting. Further investigations are
needed to redefine the role of placental leptin synthesis.
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