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Abstract
The fine-grained visual recognition is to classify several sub-categories affiliated to the same basic-level category, which
is highly challenging because the same sub-category with large variance and different sub-categories with small variance.
Previously approaches generally localize the targets or parts first, then determine which sub-category the image is attached
to. They depend on target or part annotations, which are labor-intensive and a barrier to moving towards practical use. Other
methods indirectly extract recognizable areas from the high-level feature maps, ignoring the spatial relationships between
the target and its parts, which may cause inaccurate recognition. In this paper, we propose a weakly supervised spatial group
attention network (WSSGA-Net) for fine-grained bird recognition. According to the spatial relationships between the target
and its parts, we embed the spatial group attention (SGA) module into the WSSGA-Net to highlight the correct semantic
feature regions by establishing a semantic feature space enhancement mechanism. In addition, we apply moment exchange
(MoEx) to generate new featuremaps by exchanging two input image featuremoments for data augmentation. Comprehensive
experiments indicate that our approach significantly has a better performance than the state-of-the-art approaches on the
standard bird image datasets Bird-65, CUB200-2011 and fine-grained dataset Stanford Cars.

Keywords Classification · Fine-grained image · Bird recognition · Weakly supervised network · Moment exchange ·
Spatial group attention

1 Introduction

Fine-grained visual recognition, in contrast to traditional
visual recognition, is extremely challenging, aiming to rec-
ognize multiple sub-categories under the same basic-level
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category. Birds are one of those basic-level categories with
hundreds of sub-categories, and precise recognition of birds
is crucial for their conservation and scientific study [1]. How-
ever, there are twomain challenges in bird image recognition:

1. High intra-subcategory variance. As illustrated in the
first row of Fig. 1, the left group of four images belongs
to the same sub-category of the Black Footed Albatross,
but they are quite different in poses, views, feathers, and
further more. It is possible for humans to incorrectly
recognize them into different sub-categories. The same
situation exists in the case of the right group of Black
Stork examples.

2. Low inter-subcategory variance. The second row of
Fig. 1 illustrated that four images of the left group belong
to four different sub-categories, but their black appear-
ance look similar. These sub-categories have similar
global appearance, and they only have some discrim-
inable areas of the bodies, such as themouth. It is difficult
for humans to distinguish them apart. The right group
is in the same boat. It is also difficult to access precise

   



          

Fig. 1 Instances of the CUB-200-2011 and Bird-65 datasets. The first line illustrated the same sub-category with large variance, and the second
line illustrated different sub-categories with small variance

classification accuracy by using only the current state-
of-the-art coarse-grained convolutional neural networks
(CNNs), such as ResNet [2], VGG [3] and Inception
[4]. Therefore, instructing model to learn discriminable
representations in detail is important for fine-grained
visual recognition of birds. Fine-grained visual recogni-
tion bears the potential to detect subtle differences (such
as subtle local differences) between sub-categories, then
provide better classification performance than coarse-
grained visual classification.

Currently, existing fine-grained recognition approaches
have achievedgreat advancement.However, these approaches
face an critical issue which needs to be addressed urgently:
high labor consumption on image annotation. The image
annotations (e. g., the image-level sub-category annota-
tion, bounding boxes of the object, and part localization)
are demanded in the training stage of numerous existing
approaches, and even in the testing stage. The manual
labelling are sometimes uncontractual and labor-consuming
in the practical applications. To transform the classification of
fine-grained image into applications, it is the optimal choice
to use as few annotations as possible. This is the first problem.

To address the first problem, researchers start to concen-
trate on how to reach potential performance with the setting
of weakly supervised where only image-level annotations
are applied in both the training and testing stages. Weakly
supervised fine-grained recognition indicates that the net-
work utilizes image-level annotations to find subtle features
of the targets in the images, which are then employed to rec-
ognize the targets. Zheng et al.[5] proposed the progressive
attention convolutional neural network (PA-CNN), which
contained two sub-networks to localize different parts of
the target on multiple scales. Kim et al. [6] boosted the per-
formance of fine-grained visual recognition in three stages:
learning part-wise features, generating hard negative sam-
ple features and fine-grained visual recognition. However,

when the discriminable regions were selected, they neglect
the spatial relationships between parts and the target, but
the spatial relationships were very useful for finding the dis-
criminable regions in an intuitive understanding. This caused
large regions of background noise and inaccurate recogni-
tion. This is the second problem.

To solve the second problem, the spatial group atten-
tion (SGA) module is included in this paper. It is useful to
obtain the equivalent semantic features at the corresponding
spatial location of the raw image in the specific semantic
group. However, since the absence of supervision of region-
specific details and the potential presence of noise in the
image, the spatial allocation of semantic features can be
somewhat confusing, which greatly weakens the represen-
tations of learning. To make each group of features spatially
robust and well allocated, we apply the SGA module that
scales the feature vectors at all locations using an attention
mask within every feature group. We utilize this attention
mask to eliminate possible noise and highlight the corre-
sponding semantic feature areas. This simple and effective
mechanism described above is the named SGA module that
requires few extra parameters and computations.

Due to the rarity of some bird species and the secrecy of
bird activity, there is a lack of their image data. Since lim-
ited data may lead to non-convergence, overfitting or local
optima during model training, limited bird image data is the
third problem. Data augmentation is a common solution that
increases the amount of data for training through creating
larger data variance. Many researches have proven that it
is effective in computer vision field, such as object detec-
tion, image classification and image segmentation. Previous
works usually use random data augmentations such as crop-
ing, droping, cutout, or cutmix to preprocess the original
image. However, random data augmentations generate more
noise, which may reduce the efficiency of training and affect
the quality of feature extraction. Besides, to reduce train-
ing time and increase stability, the moments (i. e., standard
deviation and mean) of potential features are usually elim-
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inated as background noise. But the moments play a more
important role in the image generation field. Researches have
proven that the moments extracted from the normalization of
instance and location can catch style and shape the image
information roughly. These moments are essential for the
generation process of the data augmentation.

To deal with the third challenge, we swap the feature
moments of the two input images in the feature space to
generate feature maps containing information about both the
two images as new training data, and we name this method
Moment Exchange (MoEx) for short. This method does not
introduce background noise nor lose the semantic informa-
tion of the original images. Therefore, it can effectively
achieve the purpose of increasing the number of data for
training to optimise the model performance.

In general, this paper has three main contributions:

1. We design a weakly supervised spatial group atten-
tion network (WSSGA-Net) for fine-grained bird image
recognition.

2. The spatial group attention (SGA) module is applied in
our WSSGA-Net approach to eliminate possible noise
and highlight the key semantic feature regions to boost
the model performance.

3. In the feature extraction stage of the WSSGA-Net train-
ing, we present the MoEx data augmentation approach
to extract a new feature map fusing two input picture
features, increasing the amount of data for training and
improving network performance.

The remainingof the paper is composed as follows. Firstly,
the related works are reviewed, including fine-grained image
classification and data augmentation in Section 2,next the
proposed weakly supervised spatial group attention network
(WSSGA-Net) is described inSection3. InSection4,wecon-
duct extensive experiments to demonstrate the effectiveness
of WSSGA-Net. At last, we draw a conclusion in Section 5.

2 Related work

In this section, the related work of fine-grained image recog-
nition and data augmentation is reviewed.

2.1 Fine-grained Image Recognition

Convolutional neural networks (CNN) were initially pro-
posed for image classification. However, these basic models
have low performance for fine-grained visual recognition,
it is challenging to concern the subtle differences between
the parts of objects without a unique design. Now, various

approaches have been proposed to distinguish such distinct
fine-grained categories.

Many methods use annotations of part locations and
attributes to focus on local features. Zhang et al. [7] designed
Part R-CNN to extend R-CNN [8] to classify targets and
locate partial regions with a geometric prior, and then predict
fine-grained categories from pose-normalized representa-
tions. Branson et al. [9] introduced a graph-based clustering
algorithm for computing local features of the object poses,
which is helpful for classification. Lin et al. [10] introduced a
feedback structure called Deep Localization, Alignment and
Classification (Deep LAC) incorporating localization, align-
ment and classification as three sub-networks. Additionally,
Valve Linking Function (VLF) was designed to reduce align-
ment and classification errors, increasing part locating and
assisting classification.

To reduce the cost of a traditional location annotation,
weakly supervised approaches that require only image-level
annotation have gradually emerged. There are three major
techniques among existingweakly supervised approaches for
fine-grained visual recognition: end-to-end feature coding,
localization-classification subnetworks, and visual attention.
These three classes of approaches are introduced sequentially
in the following.

A. End-to-end feature coding based methods End-to-end
feature encoding-based methods incline to extract discrim-
inable features directly by establishing robust networks for
fine-grained visual recognition. Lin et al. [11] proposed
bilinear CNNs to represent an image as an ensemble outer
product of features exported from two bilinear models, thus
encoding higher-order statistics of convolutional activation
and enhancing mid-level learning. Yu et al. [12] utilized
the hierarchical bilinear pooling method (HBP) to capture
the feature, which had better classification accuracy com-
pared with other bilinear pooling methods. Min et al. [13]
introduced an advanced method which simultaneously nor-
malized the bilinear representation with square root, low
rank, and sparsity called multi-objective matrix normaliza-
tionmethod (MOMN),whichwere three regularizers that not
only compressed the bilinear features and facilitated the gen-
eralization of the model, but also stabilized the second-order
information. However, the above approaches with powerful
models imply that high capacities and computational effort
make them not conducive to applications.

B. Localization-Classification Subnetworks Based Meth-
ods The subnetwork for localization-classification is utilized
to localize the distinctive parts of a region through a localiza-
tion subnetwork. Next, the localization subnetwork located
the features of the targets and then feed back to the classifi-
cation subnetwork. Zhang et al. [14] designed an advanced
CNN architecture which combined semantic part detection
and abstraction (SPDA-CNN) for fine-grained image recog-
nition, which consisted of two subnetworks: the subnetwork
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of detection was utilized for part localization and the sub-
network of classification was utilized to classify fine-grained
image. Yang et al. [15] designed amulti-intelligence collabo-
rative Navigator-Teacher-Scrutinizer Network (NTS-Net) to
pinpoint the discriminative part. The training stage required
no additional annotations, rather, the teacher agent assisted
in locating the discriminative critical information by the
navigation agent, and finally, these features are utilized for
fine-grained recognition. Lin et al. [16] proposed an Increas-
ing Specialized Generative Adversarial Network (IS-GAN),
which was a three-scale framework consisting of a genera-
tive adversarial network for feature extraction and a patch
proposal network for localization on each scale. Guo et al.
[17] suggested a novel framework for progressive sampling
to distinguish parts from coarse to fine scale detail learning,
with three subnetworks for feature extraction at the whole,
object and detail levels respectively. But these approaches
have a problem: High time consumption, since each region
proposal requires to pass two subnetworks respectively, and
thousands of region proposals generally are generated from
each image.

C. Visual Attention Based Methods Since the visual
attention model-based methods can recognize discriminable
targets in images with no extra annotation information, they
have been extensively-used in the field of fine-grained visual
recognition in current years. Fu et al. [18] utilized a recur-
rent attention CNN (RA-CNN) to recognize the position of
an attention region and learn features of this region recur-
sively, while the method focuses on only one part of the
local area. So, they incorporated three scale features, i. e.,
three parts to achieve the final class. To recognize multi-
attention regions simultaneously, Zheng et al. [19] utilized
a Multi-Attention CNN (MA-CNN), which could localize
several parts concurrently. To address heavy computational
cost and a limited amount of parts in existing attention-based
approaches, Zheng et al. [20] suggested a trilinear attention
sampling network (TASN) to extract more fine-grained fea-
tures, which was implemented by knowledge extraction in a
student-teacher approach. Hu et al. [21] introduced a weakly
supervised data augmentation network (WSDAN). This net-
work can improve the recognition performance by generating
an attention map to represent the discriminable part of the
object through weakly supervised learning and performing
data augmentation guided by the attention map. Zhang et
al. [22] designed the Multi-branch andMulti-scale Attention
Learning Network (MMAL-Net) containing two attention
modules (AOLM and APPM) for localizing the objects and
proposing differentiated components, respectively. Liu et al.
[23] proposed a Subtler Mixed Attention Network (SMA-
Net), which used a discriminative region localizationmodule
with a channel attention mechanism for region localization
and amixed attentionmodule with feature extraction to focus
on finer and differentiated regions. Ding et al. [24] designed

an attention pyramidal convolutional neural network (AP-
CNN). This model learnt high-level semantic and low-level
detail features through a pyramidal hierarchy consisting of
top feature paths and bottom attention paths. Wang et al.
[25] presented an end-to-end Distinguished Feature Gaus-
sianMixtureModel (DF-GMM).Thismodel can alleviate the
discriminable area spreading problem in higher-order feature
mappings by adding a low-rank representation mechanism
(LRM) to the model, enabling the discriminative region to
be more accurately located on the new low-rank feature
mapping. Unlike the above methods, the weakly supervised
spatial group attention network (WSSGA-Net) proposed in
our paper uses the SGA module to eliminate possible noise
and highlight the corresponding semantic feature regions,
which may obtain better fine-grained classification accuracy
than the above methods.

2.2 Data augmentation

The existing data augmentation methods are mainly image-
specific augmentation methods. Random space image aug-
mentation approaches have been proposed and shown to
be useful in enhancing the performance of deep learn-
ing networks, such as cropping and dropping.Gong et al.
[26] proposed the KeepAugment method to preserve salient
features and augment non-salient regions of an image to
improve fidelity and increase diversity. Yun et al. [27]
introduced the CutMix data augmentation method to fill
a random region of the current image with a patch of
another image. Yoo et al. [28] presented the CutBlur data
augmentation technique, which improved diversity by cut-
ting blocks of high-resolution images and pasting them to
corresponding low-resolution images. Cubuk et al. [29] uti-
lized Auto Augmentation to provide a search space for data
augmentation strategies. It can utilize concrete strategies
automatically to access the best accuracy for validation of
the target dataset. Compared with data augmentation in the
input space, feature space-based data augmentation meth-
ods can improve model performance more efficiently. Li et
al. [30] designed an implied data augmentation approach
– Moment Exchange(MoEx), which replaces the feature
moments (mean and variance) of original image by another
new image and inserts target labels of two images, forcing the
model to focus on the feature moments (from new image) –
the normalized features (from the original image). We incor-
porate this method into our fine-grained classification model
to demonstrate its effectiveness on multiple datasets.

3 Approach

Weintroduce theproposedWSSGA-Net (illustrated inFig. 2)
in detail in this section. Firstly, the MoEx data augmentation
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Fig. 2 Overview on the structure of the Weakly Supervised Spatial Group Attention Network

method is applied in the feature extraction stage to generate
new feature maps fusing two input image features, resulting
in the increased training data. Then, we deliver the obtained
feature maps to the SGA module to eliminate possible noise
and highlight the corresponding semantic feature regions.
Meanwhile, they are transformed into part attention maps,
which are used for attention-guided data augmentation to
augment the input data. Further, enhanced feature groups are
achieved by the SGA module based on the original feature
maps, which are combined to generate new feature maps.
Bilinear attention pooling (BAP) element-wise multiply fea-
ture maps after the SGA module and part attention maps to
generate the feature vectors. Finally, we obtain predictions
based on the feature vectors. The SGAmodule, BAP, MoEx,
and attention-guided data augmentation are presented in the
following subsections, respectively.

3.1 Attention learning

3.1.1 Spatial group attention module

TheSGAmodule inspired bySpatialGroup-wiseEnhance
[31] is depicted in Fig. 3. It is shown that for C channels, a

H × W convolutional feature map is divided into G groups
along the channel dimension. We first examine a certain
group separately. In feature space, every group at every loca-
tion has a representation vector, namely X = {x1...m} , xi ∈
R

C
G ,m = H ×W . This is based on assuming that this group

catches concrete feature responses (such as bird eyes) grad-
ually during the network learning. In the features, we can
access high-level responses at the location of bird eye, while
other locations almost have little activation and become zero
vectors. But since the existing of similar patterns and the
inevitable noise, it is often challenging for CNNs to access
well-distributed feature responses. To solve this problem, the
entire group space information is used to further improve the
extracting ability of semantic features in important areas. The
spatial averaging functionFgp(·) averages the semantic vec-
tor of the group representation to get the global feature g.

g = Fgp(X ) = 1

m

m∑

i=1

xi (1)

Then, utilizing this global feature, the equivalent impor-
tance coefficient is generated for every feature. Thereby for
each position, we have:

ci = g · xi (2)

Fig. 3 The process of the SGA module
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where ci can also be expanded as ‖g‖ ‖xi‖ cos (θi ), θi is
the angle between g and xi . This represents that a direction
(i. e., θi ) closer to g are more possible to access a larger
initial coefficient and features have a larger vector length.We
normalize c over the feature space in order to eliminate the
biased magnitude of coefficients between different samples,
as is widely represented in:

ĉi = ci − μc

σc + ε
, μc = 1

m

m∑

j

c j , σ
2
c = 1

m

m∑

j

(
c j − μc

)2 (3)

To assure that the insertion of normalization can represent
the identity transformation, parameters γ , β are utilized for
each coefficient ĉi , which scales and shifts the normalized
value:

ai = γ ĉi + β (4)

In an individual SGA module, the amount of groups G is
the same as the amount of γ , β, and the order of their scale is
about tens (typically, 32 or 64), which is basically ignorable
in comparison to the parameters of the whole network. At
last, to access the augmented feature vector x̂i , the original
xi is enlarged bygenerating important coefficients ai through
a sigmoid function gate σ(·) over the feature space:

x̂i = xi · σ (ai ) (5)

and all augmented features from resulting feature group:

X̂ = {
x̂1...m

}
(6)

where x̂i ∈ R
C
G ,m = H × W .

3.1.2 Bilinear attention pooling

Inspired by leveraging bilinear pooling, BAP (See Fig. 4)
extracts features from the two-stream network layer. We
element-wise reproduce the feature map F with every atten-
tionmap Ak to access theM part featuremaps Fk as presented
in Eq.7:

Fk = Ak � F(k = 1, 2, . . . , M) (7)

where � represents element-wise multiplication.
Next, in order to access kth features fk , a distinguishable

part feature is extracted by an extra feature extraction func-
tion g(·), such as Global Maximum Pooling (GMP), Global
Average Pooling (GAP), or convolutions,

fk = g (Fk) (8)

The feature of the object is indicated by part feature vec-
tors P ∈ RM×N which are overlapped by these part features
fk . Let �(A, F) indicate bilinear attention pooling between
feature maps F and attention maps A. It can be indicated in
Eq.9,

P = �(A, F) =

⎛

⎜⎜⎝

g (a1 � F)

g (a2 � F)

. . .

g (aM � F)

⎞

⎟⎟⎠ =

⎛

⎜⎜⎝

f1
f2
. . .

fM .

⎞

⎟⎟⎠ (9)

3.2 Data augmentation

3.2.1 Moment exchange

Similar to Mixup and Cutmix, MoEx [30](see Fig. 5) fuses
the normalized features of two training samples. Since the
MoEx can be applied in each layer, we currently use two

Fig. 4 The illustration of
Bilinear Attention Pooling
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Fig. 5 The process of Moment Exchange (MoEx)

randomly selected features X A and X B as examples. ĥ, μ,
and σ components are decomposed from the features of the
layer inputs X A and X B through the within-instance normal-
ization, respectively.

To motivate the network to take full use of the moments,
we combine the feature of image X A with the moments of
image X B :

h(B)
A = F−1

(
ĥA,μB, σ B

)
= σB

hA − μA

σA
+ μB (10)

Next, we continue the feature extraction process for these
features h(B)

A , which contains the moments of image B, con-
cealed in the features of image A.

3.2.2 Attention-guided Data Augmentation

We can make use of attention maps to conduct data augmen-
tation efficiently. In training stage for every image, one of its
attentionmaps Ak is chosen at random to conduct the process
of data augmentation, and normalize it as kth Augmentation
Map A∗

k ∈ RH×W .

A∗
k = Ak − min (Ak)

max (Ak) − min (Ak)
(11)

More detailed local features are extracted with augmenta-
tion map A∗

k . Specifically, we first obtain the Crop Mask Ck

from A∗
k by setting element A∗

k(i, j) which is greater than
threshold θc ∈ [0, 1], as practised in Eq.12:

Ck(i, j) =
{
1, if A∗

k(i, j) > θc

0, otherwise
(12)

Next, we search one bounding box Bk that can cover the
entire chosen positive area of Ck and expand this area from
the original image as the enhanced data for input. To encour-
age attentionmaps to represent multiple discriminative parts,
we introduce attention dropping. Concretely, we acquire an
attention DropMask Dk by setting element A∗

k(i, j)which is
greater than the threshold θd ∈ [0, 1], as presented in Eq.13:

Dk(i, j) =
{
0, if A∗

k(i, j) > θd

1, otherwise
(13)

The model will be prompted to extract other discriminable
areas because the kth part is removed from the image, which
indicates the target can also be extracted better. Furthermore,
this process will improve the accuracy of classification and
localization.

4 Experiments

We proceed the experiments on two fine-grained bird image
datasets for classification: CUB-200-2011 [32], and Bird-65.
In addition, experiments on Stanford Cars dataset were con-
ducted to demonstrate the generalizability of our approach.
Our proposed WSSGA-Net approach is in comparison to
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Table 1 Implementation Details

Parameter Value

Image size 448×448

Feature extractor ResNet-50

Batch size 32

Initial learning rate 0.001

Epochs 30

Number of attention maps 32

Optimizer SGD

more than ten state-of-the-art approaches to validate its effec-
tiveness and advantages.

4.1 Dataset and evaluationmetric

Two datasets are applied in our experiments as follows.
CUB200-2011 is extensively-used dataset in fine-grained
image recognition tasks, which includes 11788 images of
200 bird sub-categories, among them, training set has 5994
images and testing set has 5794 images. There are an image-
level sub-category label, a bounding box of the bird, and 15
part locations as annotations for every image. We just uti-
lize an image-level sub-category label in the training stage
in our experiments. Bird-65 is a custom dataset from the

bird database of Poyang Lake area, Jiangxi, China. It con-
tains 6543 images of 65 bird sub-categories. There are 4580
images and 1963 images in the training set and testing set
respectively. We only annotated every image with the image-
level sub-category label. The same with CUB200-2011
dataset, we just use image-level sub-category label in the
training stage. Stanford Cars is another widely-used dataset
which contains 16185 images of 196 car subcategories. There
are 8144images in the training set, and 8041images in the
testing set. For each subcategory, 24 84 images are selected
for training and 24 83 images for testing. There are an image-
level sub-category label, a bounding box of the car for every
image. We also only utilize image-level sub-category label
in the training stage in following experiments.

We apply accuracy as the evaluation metric to com-
prehensively measure the classification performances of
our WSSGA-Net method and other approaches, which is
extensively-used for measuring the performance of classi-
fication for fine-grained image. It represents the average
classification result of our model over all classes. It is indi-
cated as follows:

Accuracy = Ra

R
(14)

where Ra counts the amount of images which are classified
properly and R implies the number of testing images.

Table 2 Comparison with other
models on the CUB200-2011
dataset. * represents
experimental results from
existing method papers on the
CUB200-2011 dataset

Methods Train Annotation Test Annotation Accuracy(%) CNN Features
Object Parts Object Parts

Part-based R-CNN*[7] � � � � 76.4 AlexNet

Deep LAC*[10] � � � 84.1 AlexNet

SPDA-CNN*[14] � � � 85.1 VGGNet

Triplet-A*[33] � � 80.7 GoogleNet

Coarse-to-Fine*[34] � � 82.9 VGGNet

B-CNN*[11] 84.1 VGGNet

ST-CNN*[35] 84.1 GoogleNet

RA-CNN*[18] 85.4 VGGNet

NTS-Net[15] 85.8 ResNet-50

MA-CNN*[19] 86.5 VGGNet

DFL-CNN*[36] 87.4 VGGNet

Guided Zoom*[37] 87.7 ResNet-18

SMA-Net*[23] 87.7 ResNet-50

MMAL-Net[22] 88.0 ResNet-50

AP-CNN*[24] 88.4 ResNet-50

DF-GMM*[25] 88.8 ResNet-50

ResNet-50[2] 76.5 ResNet-50

WSDAN(baseline)[21] 87.8 ResNet-50

WSSGA-Net 89.2 ResNet-50
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Fig. 6 Comparison with other models on the different datasets

4.2 Implementation Details

Our experimental platform is a computer with Intel(R)
Xeon(R) Platinum 8255C CPU, Nvidia GeForce RTX 3090
GPU, and Ubuntu 18.04. The experiment setup is shown in
Table 1, GAP is chosen as the feature pooling function g(·).
θc and θd are the attention cropping and dropping threshold,
which are both set to 0.5.

At the training stage of WSSGA-Net, the initial weights
of the RestNet-50 are obtained by pre-training on the Ima-
geNet 1K dataset.We apply a weight decay of 0.00001with a
momentum of 0.9 and set the initial learning rate with expo-
nential decay of 0.9 after every 2 epochs.

4.3 Comparisons with State-of-the-art Approaches

We present the experimental results and analyses of our
WSSGA-Net method on the above mentioned datasets as
well as the state-of-the-art approaches in this subsection.
Table 2 and Fig. 6(a) show the comparison performance on
the CUB-200-2011 dataset. To conduct fair comparison, we
list the target, part annotations, and feature extraction net-
works which all approaches utilize. CNN Features represent
which network this approach applies to extract CNN features,
such as VGGNet and GoogleNet, ResNet.

WSSGA-Net achieves the best performance among other
approaches under the same weakly supervised setting that
no target and part annotations are utilized in both training
and testing stages, and accesses 0.4% higher accuracy than
the best approach accuracy of DF-GMM (89.2% vs 88.8%).
Both the low-rank reorganization representation used in the
DF-GMM and the SGA module used in our WSSGA-Net

approach consider the spatial context of the discriminative
region, but the MoEx module and the attention-guided data
augmentation appliedbyourWSSGA-Net enable us to obtain
more than enough target features to get results ahead of DF-
GMM. Our WSSGA-Net approach improves by 1.4% over
our baseline method (WSDAN), verifying the effectiveness
of the further improvement in our WSSGA-Net method. The
main reason for the accuracy improvement is that the SGA
module focuses on the spatial group features of the targets. So
ourWSSGA-Net method can extract the target features more
comprehensively to improve the classification accuracy. The
secondary reason is that MoEx performs data augmentation
in feature space, complementing the attention-guided data
augmentation of the baseline method (WSDAN). Altogether,
our WSSGA-Net method benefits from two simultaneous
data augmentation methods that can provide enough target
features for the network to improve classification accuracy.

Our approachhasa better performance than the approaches
which are based on the CNN structures, such as ST-CNN
and Bilinear-CNN. ST-CNN adopt GoogleNet with batch
normalization to obtain 82.3% through only conducting
fine-tuning on the CUB-200-2011 dataset. VGGNet and
VGG-M are two different CNNs in Bilinear-CNN. Both two
approaches are proposed earlier using basic CNNs architec-
ture resulting in weak feature extraction and easily disturbed
by background information noise. The SGA module in our
WSSGA-Net approach can guide the network to learn the
target features, thus achieving an accuracy improvement of
5.1%.

Moreover,evenwecomparewithstate-of-the-art approaches
with supervision in both the training and testing stages, such
as Triplet-A, or Coarse-to-Fine, find that our WSSGA-Net
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Table 3 Comparison with other
models on the Bird-65 dataset

Methods Accuracy(%)

ResNet-50[2] 75.7

NTS-Net[15] 81.7

WSDAN[21] 82.8

WSSGA-Net 85.3

approach obtains an improvement by at least 8.2%. Further-
more, our approach superiors to methods that use both object
and part annotations, such as Deep LAC. The experimental
results show that weakly supervised methods do not defi-
nitely lose accuracy owing to the lack of object-level labels,
but that network structure optimization is required to main-
tain accuracy.We apply neither object nor part annotations in
our WSSGA-Net method, which enables fine-grained image
classification tailored to actual applications.

In addition, we comparedResNet-50, NTS-Net,WSDAN,
and WSSGA-Net to analyse the performance on the Bird-65
dataset. The results are presented in Table 3 and Fig. 6(b).
The trend of results on this dataset is similar as on the
CUB-200-2011 dataset: Under the same weakly supervised
setting, our WSSGA-Net method achieves the best perfor-
mances among state-of-the-art approaches, which has a 2.5%
enhancement over compared approach that has the best clas-
sification results.

4.4 Effectivenesses of Components
in OurWSSGA-Net Method

In the following two aspects, specific experiments are con-
ducted to show the effectiveness of components in our
WSSGA-Netmethod: 1. Effectiveness of spatial group atten-
tion: In this subsection, in order to carry out a more in-depth
evaluation of the effectiveness of the SGA, we present the
accuracies of the baseline model (WSDAN) combined with
the SGA and three other commonly used attention modules
in Table 4.We can discover that the SGA in ourWSSGA-Net
method on the CUB200-2011 dataset can improve the classi-
fication accuracy of theWSDANmethod by1.2%. In contrast

Table 4 Comparison with other attention modules

Model Accuracy(%)
CUB200-2011 BIRD-65

WSDAN 87.8 82.8

+CBAM[38] 88.2 83.3

+ECA[39] 88.4 83.6

+SimAM[40] 88.5 84.2

+SGA 89.0 84.6

Table 5 Comparison with other random data augmentation

Model Accuracy(%)
CUB200-2011 BIRD-65

WSDAN 87.8 82.8

+CutMix[27] 87.9 83.1

+MoEx 88.7 84.0

to the convolutional block attention module (CBAM) that
also focuses on image spatial relationship, SGA is improved
by 0.8% over the WSDAN model. Moreover, SGA per-
forms better than the efficient channel attention (ECA)which
focuses on the channel relationship. Besides, there is a sim-
ple, parameter-free attentionmodule for convolutional neural
networks (SimAM) that optimizes an energy function to find
the importance of each neuron. The classification accuracy of
the WSDAN model with SimAM is 88.5%, which is lower
in accuracy than the WSDAN model with SGA by 0.5%.
The SGA focuses on generating the attention factor in each
semantic group for each spatial location, thus enabling each
group to enhance its autonomously learned representations
and boost the classification accuracy. Furthermore, the trends
of results on the Bird-65 dataset are similar to those on
the CUB-200-2011 dataset: the WSDAN method with SGA
achieves the best performances among the other attention
modules.

2. Effectiveness of moment exchange:MoEx is an implied
data augmentation approach that promotes the network to
take full use of the moment information also for recogni-
tion networks. Since our method is fast, conducts wholly in
feature space, and mixes different features, one can effec-
tively integrate it with attention-guided data augmentation
methods in the WSDAN model. As shown in Table 5,
the accuracy improvements of MoEx in our WSSGA-Net
approach over random data augmentation (CutMix) for the
WSDAN method are greater on both datasets. Because both
random data augmentation and attention-guided data aug-
mentation in WSDAN are directly applied on the input
images, the overlap between these two methods results in
an insignificant improvement. However, MoEx is a feature-
space data augmentation that can be used in conjunction with

Table 6 Effectivenesses of components in our WSSGA-Net method

SGA MoEx Accuracy(%)
CUB200-2011 Bird-65

× × 87.8 82.8

× � 88.7 84.0

� × 89.0 84.6

� � 89.2 85.3
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Table 7 Effects of group number G

Group number G WSSGA-Net Acc(%)

8 88.53

16 88.91

32 89.15

64 89.23

128 88.65

attention-guided data augmentation in WSDAN to promote
the network to learn features.

Besides, as demonstrated in Table 6, MoEx is compatible
with the SGA. Both of the modules we added contribute con-
siderably to the final 89.2% accuracy, which is 1.4% higher
as compared to the WSDAN model. As expected, the appli-
cation ofMoEx in ourWSSGA-Netmethod can also increase
the classification accuracy on the Bird-65 dataset, which is
1.2% higher compared with the WSDAN model. And, if
MoEx is not applied in our WSSGA-Net approach, the clas-
sification accuracy declines by 0.7%.

3. Effects of group numberG: In ourWSSGA-Netmethod,
the groupnumberGcontrols the amount of different semantic
sub-features in the SGA module. In case the total number of
channels is fixed, too fewgroupswill limit semantic diversity;
In contrast, toomanygroupswill lead toweaker feature repre-
sentation for each semantic response. It is possible that there
is a suitable hyperparameter G to balance semantic diver-
sity and the ability of representing each semantic to improve
network performance. We can observe that the classification
accuracy of our WSSGA-Net method on the CUB200-2011
dataset shows a trend of increasing first and then decreas-

Fig. 7 Effects of group number G

Table 8 Effects of initialization
parameter γ and β

γ β WSSGA-Net Acc(%)

0 0 89.23

0 1 89.03

1 0 88.91

1 1 89.11

ing in Table 7 and Fig. 7. Based on experimental results we
usually recommend the group number G to be 64.

4. Effects of initialization parameter γ and β: The
parameter γ and β in the SGAmoduel have a slight but non-
negligible impact on experimental results. We assign values
0,1 to γ and β respectively to see the effect of the initial-
ization parameters on the experimental results. During the
initial stage of network training, since the ordinary patterns
of semantic learning has not yet been completely formulated
in convolutional feature maps, it may be suitable to abandon
the attentionmechanism for amoment, but let themodel learn
the basic semantic features first. The attention modules need
to be gradually turned in effect after the initial training phase.
In Table 8 we can discover that the model with both γ and β

set to 0 has the highest classification accuracy. 5. Effects
of normalization layer: Since different samples in the same
semantic group have inconsistent distribution of features, it is
difficult to learn robust importance coefficients without nor-
malization. As shown in Table 9, we carry out experiments
by rermoving the normalization layer from SGAmoduel and
observe that the classification accuracy of our WSSGA-Net
method significantly decreases.

4.5 Visualization analysis

We further explore whether our proposed WSSGA-Net
method can concentrate on the bird in the image through
a heat map visualization. We visualize the feature mapping
in the final convolutional layer by Gradient-weighted Class
Activation Mapping (Grad-CAM) [41]. The maximum con-
nected area with a high response value in the heat map
indicates our intended target object region, since it may show
how various areas in the raw image contributed to the right
categorization. For a direct contrast, we superimpose the
heat maps accessed from the visualization of the ResNet-50,
WSDAN, and WSSGA-Net directly on the original images.
Then, we can identify the focal regions of the networks. As
shown in Fig. 8, the regions of the image that the network is

Table 9 Effects of normalization layer

Normalization WSSGA-Net Acc(%)

� 89.23

× 88.15
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Fig. 8 Heat map visualization of different models

more concentrated on are those that are redder and brighter.
The first line is the original images, the second through fourth
lines are the results of heat map visualization of the ResNet-
50, WSDAN, and WSSGA-Net, respectively. In the images
of the ResNet-50 row and WSDAN row, the focused areas
are mainly on the head of the birds, while in the image of our
method row, the focused areas includes the entire bird objects.
Through comparing the last three columns, it is evident that
although ResNet-50 and WSDAN model focus inappropri-
ately on some parts of the background, our WSSGA-Net
model does not. In conclusion, our WSSGA-Net method

Table 10 Comparison with other models on the Stanford Cars dataset.
* represents experimental results from existing method papers on the
Stanford Cars dataset

Methods Accuracy(%) CNN Features

B-CNN*[11] 91.3 VGGNet

RA-CNN*[18] 92.5 VGGNet

NTS-Net[15] 93.8 ResNet-50

MA-CNN*[19] 92.8 VGGNet

DFL-CNN*[36] 93.8 VGGNet

Guided Zoom*[37] 93.0 ResNet-18

SMA-Net*[23] 94.4 ResNet-50

MMAL-Net[22] 95.0 ResNet-50

AP-CNN*[24] 95.4 ResNet-50

DF-GMM*[25] 94.8 ResNet-50

PMG*[42] 95.1 ResNet-50

WSDAN(baseline)[21] 94.3 ResNet-50

WSSGA-Net 95.6 ResNet-50

allows the model to concentrate on the entire object, which is
critical to locate the target and eliminate background infor-
mation disturbance.

4.6 Generalization studies

To investigate the generalization capability of our WSSGA-
Net method, we conduct experiments on the Stanford Cars
dataset and compare with state-of-the-art approaches. Table
10 and Fig. 9 present the comparison performance on the
Stanford Cars dataset. The classification accuracy of our

Fig. 9 Generalization experiments on the Stanford Cars dataset
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WSSGA-Net method is still highest among state-of-the-
art approaches and has a 1.3% enhancement over baseline
WSDAN method.

In conclusion, our WSSGA-Net method not only outper-
forms state-of-the-art approaches for bird recognition but
also has the best classification accuracy for car recognition.
We demonstrate the superior performance of our method
while taking into account generalization capabilities.

5 Conclusion

In this paper, we proposed a weakly supervised spatial group
attention network (WSSGA-Net) method for fine-grained
bird image recognition. First,we appliedMoExdata augmen-
tation in the feature space to provide more training data for
theweakly supervised network. Then, the SGA facilitated the
weakly supervised learning network to generate an attention
factor for every spatial location to extract more discrimina-
tive image feature. Significantly, in order to fit to practical
application, ourWSSGA-Netmethod avoids the heavy labor-
consumption of annotation. Extensive experimental results
on the Bird datasets(i.e. Bird-65 and CUB200-2011) high-
light the benefits of ourWSSGA-Netmethodwhen compared
to state-of-the-art methods. Furthermore, to confirm that our
method is generalizable, we evaluated it on the Stanford
Cars datasets, where it outperformed state-of-the-art meth-
ods. The efficiency of the SGA and MoEx modules in our
WSSGA-Net method is validated by ablation studies and
parameter-dependent experiments.

Our study focusedon improvingfine-grainedvisual recog-
nition accuracy, however incorporating multiple modules
increases the amount of network parameters and comput-
ing cost, making it challenging to deploy our WSSGA-Net
model directly to edge devices. Therefore, in the future study,
we will enable ourWSSGA-Net to be more generic to satisfy
the classification of multiple datasets. The other is that we
will try to lightweight the WSSGA-Net in order to deploy it
on edge devices for practical applications.
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