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Abstract: This paper provides an overview of techniques of compact modeling via model order
reduction (MOR), emphasizing their application to cooperative microactuators. MOR creates highly
efficient yet accurate surrogate models, facilitating design studies, optimization, closed-loop control
and analyses of interacting components. This is particularly important for microactuators due to
the variety of physical effects employed, their short time constants and the many nonlinear effects.
Different approaches for linear, parametric and nonlinear dynamical systems are summarized. Three
numerical case studies for selected methods complement the paper. The described case studies
emerged from the Kick and Catch research project and within a framework of the German Research
Foundation’s Priority Program, Cooperative Multistable Multistage Microactuator Systems (KOMMMA).
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1. Introduction

Microactuators are the hidden facilitators of everyday life and enable devices ranging
from smartphones, printers and automotives to industrial facilities. Similar diversity is
found in the physical effects deployed for actuation, ranging from shape memory alloys to
electrostatics. In general, these devices convert energy into mechanical motion. However,
regardless of the specific design, the manufacturing of microactuators requires designated
processes and takes several months. In addition, the built hardware usually cannot be
repaired or modified; it can only be replaced. For these reasons, a device should be engi-
neered to the highest extent possible prior to production. Another level of complexity is
added in the case of cooperative microactuators due to the higher number of actuators and
potential cross-coupling. Therefore, reliable models are crucial for this task as they allow
us to study excitations, to design control schemes and to optimize the design. Numerically
investigating these models is a challenging process due to their computational complex-
ity, nonlinearities and the small time constants inherent to microactuators. This issue is
addressed by methods of compact modeling, which aim for computationally efficient yet
accurate surrogate models. This methodology is applicable to various physics, nonlinear-
ities and coupling as found in cooperative microactuators. Focusing on microactuators
and their potential cooperation, this paper provides an overview of a prominent branch of
compact modeling: methods of model order reduction (MOR). MOR generates significantly
smaller surrogate models on the basis of large-scale dynamical systems as arising from,
e.g., the finite element method (FEM). It has been widely applied in the simulation of
microelectromechanical systems (MEMS) and to enhance traditional simulation tools [1].
To reduce a dynamical system, it is projected onto a low-dimensional subspace that captures
most of its dynamics. In a physical sense, the state vector, e.g., a displacement field, is
approximated by a linear combination of inherent patterns, also known as modes, shapes
or the reduced basis.
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1.1. State of the Art: Projection-Based Linear Model Order Reduction for Microactuators

Extensive research has investigated this linear MOR process [2] and several methods
have been proposed [3]. These methods mainly differ in how they identify the patterns,
i.e., how the reduced basis and the projection are computed. More specifically, a reduced
basis may be a local or global approximation, may guarantee certain system-theoretic
properties or may be limited to original systems of small dimension due to the method’s
computational complexity. All these reductions can be nested sequentially to combine
different methods. The interested reader is referred to [4] for an intuitive overview and
to [5–7] for a comprehensive handbook covering methods and a variety of applications.
The following paragraphs consider the most established classes of these methods, namely
modal truncation, substructuring, balanced truncation, Krylov subspaces and proper orthogonal de-
composition (POD). Special emphasis is placed on applications to microactuators to provide
starting points for interested readers.

One of the oldest methods is modal truncation [8]. Well established in structural dy-
namics, it approximates displacements via the superposition of vibration modes. Unlike
many other methods, these modes are not purely numerical constructs but have actual
physical meaning: when excited with an eigenfrequency, the device vibrates in the cor-
responding eigenmode. This reduced basis forms a global approximation and leads to a
diagonal reduced order model (ROM), which allows for even faster computations. The
consideration of modal derivatives qualifies the concept as nonlinear MOR [9,10]. Modal
truncation has been widely used for MEMS, e.g., for electromechanic RF microswitches
with geometrical nonlinearities [11] and fluid structural interactions [12]. Further examples
include micromirror arrays [13] and MEMS gyroscopes [14–17].

Another early branch of MOR from structural mechanics is substructuring [18,19],
which includes Guyan reduction or static condensation [18], Craig-Bampton reduction [20]
and component mode synthesis [21–23]. The general idea is to decompose the domain into
substructures, which are reduced individually. These reduced substructures might be
collected in a library and coupled to represent a full system. Hence, this methodology is
well suited for cooperative microactuators as it emphasizes coupling. For each substructure,
only the degrees of freedom (DOFs) not contributing to the coupling interfaces are reduced.
Therefore, the corresponding ROM’s DOFs comprise two sets: the reduced coordinates
and all interface-related DOFs of the original substructure. As a result, large ROMs are
required for good accuracy [24]. This concept has been applied to MEMS to investigate
gas sensors [25], the failure modes of RF microswitches [26], electrothermomechanical
microgrippers [27] or gyroscopes [28].

A noteworthy system-theoretic method is balanced truncation [29–32], which guaran-
tees an optimal global reduction and, as a rather distinctive property, features an a priori
error bound. Based on the control-theoretic concepts of controllabilty and observability,
the system is transformed into a balanced realization. The transformed states are sorted by
their Hankel singular values, which can be interpreted as the states’ energies. Truncating
insignificant states achieves the reduction. While this method ensures desirable properties,
it carries high computational costs and is therefore limited to small models [33]. Conse-
quently, little research has investigated purely balanced truncation for MEMS, e.g., for a
gyroscope [34]. Instead, it has often been applied as a second reduction step in combination
with, e.g., Krylov-subspace-based methods [35,36].

Methods based on Krylov subspaces [37–39] are among the most efficient and often the
only choice for large-scale models [40]. They are also known as rational interpolation or
moment matching and utilize the concept of transfer functionsThey ensure that the Taylor-
expanded transfer functions of both the original and the reduced model match for the first
r moments. Hence, a corresponding reduced basis forms a local approximation around an
expansion point s0 in the frequency domain. The default expansion point of s0 = 0 focuses
on the steady-state behavior, while dynamic responses require higher expansion points.
Specialized variants have been proposed, e.g., for second-order systems [41] or for the opti-
mal choice of expansion points [42]. This class of methods has been deployed in numerous
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MEMS-related research articles, especially due to its synergy with high-dimensional FEM
models. Examples include simple microstructures [43], electro-thermal MEMS [44–48],
thermomechanical microgrippers [27], piezoelectric devices [49–51], electromechanical
actuators [52], electromagnetic systems [53,54], gyroscopes [55] and accelerometers [56].

Another approach to the construction of a reduced basis is data-driven methods such
as POD. Based on simulated data, POD finds a reduced basis via statistical methods that
cover the variance in these data. While this reduced basis is limited to its training, it is
easy to implement. In addition, it is commonly used for nonlinear systems as concepts
from system theory might be inapplicable. An early application of POD to microactuators
investigated a microswitch with squeeze-film damping [43]. Further examples include
MEMS beams [57,58], resonators [59] and micromirrors [60].

Please note that it is also possible to create parametric ROMs [61,62] to conduct effi-
cient design studies. Parametric influences might originate from, e.g., material properties
or geometry. A parameter’s effect is usually either captured by an affine expression [63,64]
or approximated by interpolation [65]. Additionally, the reduced basis needs to be ex-
tended to capture parametric changes. This methodology has facilitated the design process
of microswitches [66], RF resonators [64], gyroscopes [64,67,68], anemometers [67], mi-
crothrusters [63,68] or thermoelectric generators [48].

1.2. State of the Art: Projection-Based Nonlinear Model Order Reduction for Microactuators

However, all these methods of projection-based MOR are limited to linear systems. In
the case of nonlinearities, they cannot reduce the nonlinear terms or are not even applicable
at all. This poses a major bottleneck because MEMS are often subject to nonlinear effects,
ranging from large deformations, electrostatic forces, hysteresis for piezoelectric devices
or shape memory alloys, to mechanical contact. A remedy is provided by additionally
approximating the nonlinear forces in an efficient way. This second approximation step is
also known as hyper-reduction. The following paragraphs briefly introduce relevant hyper-
reduction methods, such as an approach for systems with few nonlinearities, the trajectory
piecewise-linear (TPWL) approximation, polynomial tensors, discrete empirical interpolation
method (DEIM) and energy conserving mesh sampling and weighting (ECSW). The first two
methods are explained in detail in Section 2.3 and applied to numerical test cases in Section 3.
Please note that while these methods achieve great results, they require individual treatment
for each model and are often limited to load cases considered in their training. Another
common challenge is to obtain the data needed from commercial simulation software, often
limiting the choices.

An approach for systems with few nonlinearities is to transform them into artificial in-
puts [24,69]. This method is straightforward to implement, preserves the physical meaning
and does not rely on training data. Further, larger numbers of nonlinearities can be lumped
into fewer terms to achieve compatibility. However, this approach is limited to nonlineari-
ties that depend on a single or a few DOFs at most, e.g., to one-dimensional electrostatic
forces or mechanical contact. MEMS-related applications range from RF switches [69] and
scanning-probe data storage [24] to electromechanical beam actuators [52].

The TPWL approximation is a robust method for general nonlinear systems [70].
A combination of linearized systems sampled along a training trajectory approximate a
nonlinear system. The combination weights depend on the reduced state and change
throughout the simulation. Therefore, a TPWL-approximated system is still nonlinear,
but the corresponding terms are few and are efficient to evaluate. While the approach
is robust and only requires easily obtainable data, its accuracy strongly depends on the
weighting scheme and the sampling strategy. Furthermore, it relies on data generated
by extensive simulation of the original model. The main work proposing this approach
featured an electromechanical MEMS as a case study [70]. Later work reduced thermal
actuators [71], thermal switches [47,72,73] or solenoid actuators [74] based on TPWL.

Polynomial tensors are another intuitive approach for hyper-reduction. The concept
is to approximate the reduced nonlinear forces by a Taylor expansion [75,76]. However,
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the Taylor series’ coefficients are tensors of increasing order and, thus, the method quickly
becomes inapplicable due to the amount of entries.Therefore, polynomial tensors effectively
only suit nonlinearities that can be approximated by low-order Taylor expansions. One such
nonlinearity is St. Venant–Kirchhoff materials, which describe linear–elastic systems at large
deformations [4]. This method may be deployed to incorporate geometrical nonlinearities
into substructures, as introduced in Section 2.2. A direct application to MEMS is found for
an electromechanical actuator with squeeze-film damping [75].

A commonly used hyper-reduction method is the DEIM [77], which evaluates only
a few of the original nonlinearities. These evaluated nonlinearities serve as weights for
precomputed force patterns to approximate the whole nonlinear force vector. The ap-
proximated force vector is subsequently projected back onto the reduced space. Hence,
the nonlinear vector is approximated by a reduced force basis with state-dependent weights.
This scheme does not ensure stability and leads to asymmetry [4]. Constructing the reduced
force basis and choosing the subset of nonlinearities to evaluate are data-driven processes
and rely on training data, limiting the prediction quality. Applications to MEMS or to
models featuring the same physics comprise electrothermal microgrippers [78], MEMS
switches [79] and transistors [79].

A recently introduced hyper-reduction method is the ECSW procedure [80–82]. This
approach considers the virtual work of the reduced forces over all finite elements. A subset
of elements is determined so that the combination of their weighted energies approximates
the original total work. The weights compensate for the energies of the numerous excluded
elements [81]. This approach has similarities to the transfer of loads from a fine FEM
mesh to a coarser one [81]. In contrast to the DEIM and many other hyper-reduction
methods, stability and symmetry are preserved. Furthermore, the reduced force vector is
approximated directly, instead of approximating the full vector and subsequently projecting
it to the reduced space [81]. Again, training data are needed and this limits the prediction
quality, even though there is some robustness. To our knowledge, this method is yet to be
extended to the microactuator community.

1.3. Alternatives to Projection-Based Model Order Reduction

While projection-based MOR achieves highly efficient and accurate surrogate models
and also preserves the original model’s structure, alternative methodologies exist. These ap-
proaches are also suitable to obtain compact models of microactuators and vary drastically
in their complexity and performance. Commonly deployed methodologies for compact
modeling are look-up tables, meta-modeling, generalized Kirchoffian network (GKN) and machine-
learning-based or data-driven approaches. Please note that these techniques can often be
combined with MOR, e.g., to update a nonlinear stiffness matrix via a look-up table [17] or
to approximate nonlinear forces via artificial neural networks (ANNs) [83,84].

Look-up tables are the most basic solution and consist of precomputed outputs for
sampled input combinations. While they are robust and easy to implement, they strongly
depend on the sampling strategy and, potentially, an interpolation scheme. Furthermore,
they are unsuitable for dynamical systems and drastically lose accuracy as the number of
parameters increases.

Meta-modeling or response surfaces extend the previous approach of look-up tables with
regression analysis [85]. While they also require several sampled solutions of the original
models, they achieve higher accuracy and some extrapolation quality. However, their
performance depends on how well the basic function matches the relation to be modeled.
Usually, they are not deployed to approximate dynamical systems but relations between
design variables and outputs for design optimization.

A prominent branch of compact modeling is GKNs, which transfer the concept of
electrical Kirchoffian networks to other physical domains [86]. Therefore, a microactua-
tor might be represented by a network of lumped elements. This methodology covers
multiphysical problems as well as nonlinear effects while preserving the basic structure
of the original model. Another advantage is the physical meaning of all components and
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the computational efficiency, but accuracy might be sacrificed due to the lumped nature.
Furthermore, it requires expert knowledge to divide a structure into lumped elements and
to fill them with an appropriate mathematical model. Applications to microsystems are
common [87] and include capacitive MEMS transducers [88] and acoustic ultrasonic MEMS
transducers [89], as well as magnetic, electric and acoustic transducers [87].

A novel and promising branch is machine-learning-based and data-driven approaches.
This includes methods such as ANNs [90] or data-driven MOR via operator inference [91–93].
These methods have in common that they rely on vast amounts of training data. In the context
of simulation, these data are easy to obtain without noise or outliers and are available from
commercial software. Solving the original model numerous times to obtain data and subse-
quent training leads to high computational costs. In addition, some methods require expert
knowledge to adjust the hyperparameters or choose architectures. Furthermore, the struc-
ture of the problem and the physical interpretability might not be preserved. Nevertheless,
this class of methods is suitable for a wide range of problems and synergizes well with
simulated data.

1.4. Outline of the Article

This paper reviews the methodology of MOR and emphasizes its application to
microactuators. The aim is to further establish MOR in the microactuator community.
Therefore, a brief methodological overview tailored to the microactuator community is
provided. References for different actuators are intended as starting points for interested
readers. Moreover, three extensive case studies demonstrate the potential of MOR.

The remainder of the paper is structured as follows. Section 2 provides the theory,
describing the process from the numerical modeling of microactuators to reduced order
models. Subsequently, Section 3 applies the theory from Section 2 to three microsystem-
oriented case studies, covering several physics and nonlinear effects. Finally, Section 4
summarizes this work.

2. Compact Modeling by Means of Mathematical Model Order Reduction

This section describes how to derive a highly efficient surrogate model as illustrated
in Figure 1. The starting point is a mathematical model given by the governing partial
differential equation (PDE). Spatial discretization via, e.g., the FEM leads to an accurate but
large-scale system of n ordinary differential equations (ODEs), as described in Section 2.1.
Subsequently, MOR constructs a highly efficient surrogate model, i.e., an ODE system of
the same form, but with much smaller dimensions r << n, as described in Section 2.2.

Figure 1. Workflow of MOR-based compact modeling. Starting from a microsystem and its governing
physics, the FEM assembles a high-dimensional dynamical system. This system is then reduced by
methods of MOR, resulting in a surrogate model of drastically smaller dimensions.

2.1. Mathematical Modeling of Microactuators

Physical laws dictate the behavior of all microactuators. At the continuum level, these
laws can be described by mathematical models (PDEs), which usually comprise two com-
ponents: conservation laws and constitutive relations. The former arise from the universal
conservation of quantities, such as energy or mass; the latter introduce experimentally con-
firmed material relations. This concept applies to numerous physical domains, including
structural, thermal, acoustic and electric, as well as to their multiphysical coupling. This
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section deploys linear elastic dynamics as an example, since it is relevant to all microac-
tuators. The governing PDE is Newton’s second law, which is denoted by the following
second-order PDE for time-independent density:

∇ · σ + f = ρ ẍ. (1)

Here, σ is the stress tensor, f the body force per volume, ρ the density and x the
displacement vector. The relevant constitutive relation is Hooke’s law given by

σ = C ε, (2)

where C is the stiffness tensor and ε is the strain tensor. The following strain–displacement
equation from infinitesimal strain theory completes the mathematical description:

ε =
1
2

[
∇x + (∇x)T

]
. (3)

While the above equations provide the complete mathematical model, they can only
be solved analytically for the most basic scenarios. An established approach to finding a
remedy is numerical methods such as the FEM. The FEM subdivides the computational
domain into smaller subdomains called finite elements and approximates the solution
with element-wise polynomial shape functions. Mathematically, this spatial discretization
converts the initial PDE into a system of linear ODEs Σ in the form of

Σ =

{
M ẍ + E ẋ + K x = B u
y = C x + D u

, (4)

where M, E and K ∈ Rn×n are the system matrices and x ∈ Rn is the state vector. In
contrast to Equations (1) and (3), x comprises numerous nodal displacements at different
positions and not continuous displacement functions. The input vector is denoted by
u ∈ Rp, the user-defined output vector by y ∈ Rq. The inputs are distributed by B ∈ Rn×p

and the outputs are computed from the state vector by C ∈ Rq×n. The feedthrough matrix
D ∈ Rq×p includes the direct effect that inputs may have on outputs. As the system is
linear and all matrices remain constant over time, it is referred to as linear time-invariant.
Systems of this form are common in control theory and several concepts for further analysis
apply. One such concept is the transfer function H(s), which is an equivalent system
representation. It relates Laplace transformations of input and output functions

Y(s) = H(s)U(s), (5)

where s is the complex frequency variable. For the system in Equation (4), the transfer
function is given by

H(s) = C
(

s2 M + s E + K
)−1

B + D. (6)

2.2. Projection-Based Linear Model Order Reduction

Although numerical methods such as the FEM are capable of solving sophisticated
multiphysical problems, they suffer under high computational costs. These high com-
putational costs arise from the fact that FEM-generated dynamical systems reach large
dimensions up to 106. . .108. Therefore, these models’ dimensions impede efficient de-
sign studies and prevent application in control circuits, especially considering the small
time scales of microactuators. A well-established approach to tackling this challenge is
projection-based MOR [94], which creates surrogate models of the same structure but
significantly smaller dimension. These surrogates enable fast prediction, more extensive
analysis options, parametric investigations and feedback control.



Actuators 2023, 12, 235 7 of 21

The basic idea behind MOR is to decompose the solutions into patterns. Restricting
the solution space to the most important of these patterns results in a low-dimensional
surrogate model. These patterns are also known as modes, shapes or reduced basis vectors.
In a mathematical sense, the state vector x becomes a linear combination of predefined
patterns as illustrated in Figure 2. After orthonormalizing the r most important patterns
for numerical reasons, they are assembled as columns of a projection matrix V ∈ Rn×r. The
reduced state vector xr ∈ Rr comprises the weights of all these patterns. Omitting most
patterns as they barely contribute introduces an approximation error xε, and it holds that

x = V xr + xε. (7)

Figure 2. General idea of MOR: approximating the state as a combination of few relevant patterns.
In this example, the state corresponds to the deformation of an electrostatic beam actuator and
it is approximated by three eigenmodes. Here, the color indicates deformation magnitude. The
Eigenmodes are assembled as columnvectors V . The corresponding weights are collected within the
reduced state vector xr . In general, the specific vectors in V depend on the method chosen for MOR.

However, substituting this approximation into the system in Equation (4) results in an
overdetermined system, which also includes an approximation error. To obtain a unique
solution and to eliminate the error from the equation, the system is projected onto V along
null(W T ∈ Rr×n). The pattern-based approximation in Equation (7) and an appropriate
projection reduce the system in Equation (4) to

Σr =


Mr︷ ︸︸ ︷

W T M V ẍr +

Er︷ ︸︸ ︷
W TE V ẋr +

Kr︷ ︸︸ ︷
W TK V xr =

Br︷ ︸︸ ︷
W T B u

y = C V︸︷︷︸
Cr

xr + D u
, (8)

where Mr, Er, Kr ∈ Rr×r, Br ∈ Rr×p and Cr ∈ Rq×r are the reduced system matrices. These
reduced matrices only need to be computed once and can be subsequently deployed in
applications. Please note that the inputs u and outputs y remain unchanged. This ROM con-
tains multiple orders of magnitude less ODEs than the original FEM system in Equation (4)
as r � n. As a result, all subsequent computations are significantly faster. Specific methods
to construct the reduced basis are presented and discussed in Section 1, including modal
truncation, substructuring, balanced truncation, Krylov subspaces and POD.

2.3. Projection-Based Nonlinear Model Order Reduction

In general, real-world physics are nonlinear. In some cases, the nonlinearities barely
contribute within the operating conditions of interest, and a linear model provides sufficient
accuracy. However, the field of MEMS features several potential nonlinear effects, such
as large deformations, electrostatic forces, hysteresis for piezoelectric devices or shape
memory alloys or mechanical contact. Therefore, nonlinear approaches are inevitable for
microactuators. In mathematical terms, a nonlinear problem depends on its solution. Hence,
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the solution process follows an iterative scheme until convergence criteria are eventually
satisfied. Due to these iterations, nonlinearities significantly inflate the omputational
demands. Considering a system Σnl as in Equation (4) but with nonlinear restoring forces
f (x) ∈ Rn leads to

Σnl =

{
M ẍ + E ẋ + f (x) = B u
y = C x + D u

. (9)

Such a nonlinear system as in Equation (9) entails two great challenges for projection-
based MOR. Firstly, many methods to identify reduced bases introduced in Section 2.2
leave their range of validity. Most of the related research deploys the POD because it does
not rely on system-theoretic concepts, which might only be defined for linear systems. The
second challenge is that the nonlinear term cannot be reduced: approximating the state by
patterns and projecting the system as in Equation (8) leads to

Σnl,r =

{
Mr ẍr + Er ẋr + W T f (V xr) = Br u
y = Cr xr + D u

. (10)

Evaluating the nonlinear term W T f (V xr) requires us to project the reduced state
vector xr into the original high-dimensional space, evaluating the full set of nonlineari-
ties, and then project them back onto the reduced space. Obviously, this process is less
efficient than evaluating the original model, especially with respect to the iterative solu-
tion scheme. A well-established approach is an efficient approximation of the nonlinear
term, which is also known as hyper-reduction [95]. In preparation for the numerical case
studies in Sections 3.2 and 3.3, an approach for systems with few nonlinearities [69] and
the TPWL [96] approximation are described.

If a system has only a few nonlinearities, a robust and straightforward approach is
to isolate them and to handle them as additional inputs [24,69]. In mathematical terms,
the nonlinear term is decomposed into

f (x) = K x− BF uF
(
Ĉ x
)
, (11)

where BF is an additional input matrix that distributes nonlinear forces scaled by the
nonlinear inputs uF

(
Ĉ x
)
. To evaluate the nonlinearities in uF, only a small subset Ĉ x of

the full state vector is required. Hence, this approach performs best when the nonlinearities
depend on only a few DOFs, which is the case for, e.g., electrostatic forces or simple
mechanical contact. Inserting this decomposition into the system in Equation (10) gives

Mr ẍr + Er ẋr + Kr xr = W T [B BF
]︸ ︷︷ ︸

B∗r

[
u

uF
(
Ĉr xr

)]︸ ︷︷ ︸
u∗(Ĉr xr)

, (12)

where B∗r collects the input matrices and u∗
(
Ĉr xr

)
summarizes the inputs. Even though

this system is still nonlinear, the relocation into inputs enables the use of linear MOR
methods [69]. Another noteworthy advantage is that the approximation is not limited to
training data. In the case of a higher number of nonlinearities, they can be condensed
by grouping schemes to require significantly fewer nonlinear evaluations. Although this
step introduces another approximation, it minimizes the computational demand. Specific
grouping schemes are, e.g., to approximate distributed electrostatic forces by a single
lumped force [69] or by a force distribution scaled by a single nonlinear term [52].

An early and reliable approach for general nonlinear systems is the TPWL approxi-
mation [70]. The idea is to approximate a nonlinear system by a combination of linearized
systems that are sampled along a training trajectory. The weights of each system depend on
the reduced state and change in the course of the simulation. Due to these state-dependent
weighting scheme, the TPWL-approximated system still contains nonlinearities, but they
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are few and are efficient to evaluate. The nonlinear force vector is expressed as a weighted
sum of N linearizations and reads

f (x) ≈
N

∑
i=1

(
wi(x) (− fi + Ki x)

)
, (13)

where the subscript i indicates the ith sampling point, wi(x) the state-dependent weight
and fi and Ki the linearization. Please note that the sampled systems are linear and,
therefore, can be reduced by methods of linear MOR. However, a global reduced basis
for all systems is required to achieve compatibility. Combining the approximation in
Equation (13) with the system in Equation (10) results in a TPWL-reduced system given by

Mr ẍr + Er ẋr +
N

∑
i=1

(
wi(xr)

Ki, r︷ ︸︸ ︷
W TKi V

)
︸ ︷︷ ︸

Kr(xr)

xr =

 N

∑
i=1

(
wi(xr)

fi, r︷ ︸︸ ︷
W T fi

)
Br


︸ ︷︷ ︸

B∗r (xr)

[
1
u

]
︸︷︷︸

u∗

. (14)

The remaining nonlinear terms are the N weights wi(xr), which only depend on the
reduced state vector xr according to Algorithm 1. First, the distance between the current
state and the sampled states is computed. Based on the minimum distance m, preliminary
weights ŵi are calculated. To obtain the final weights, these are normalized by their sum.

Algorithm 1 Weighting scheme for TPWL.

for i = 1, . . . , N do
di ← ‖xr − xr,i‖

m← mini=1,..,N di
for i = 1, . . . , N do

ŵi ← e−β
di
m

S← ∑N
i ŵi

for i = 1, . . . , N do

wi ←
ŵi
S

3. Exemplary Applications of MOR to Microactuators

This section introduces three numerical case studies of different physical domains with
both linear and nonlinear setups. The first case study in Section 3.1 describes the linear MOR
of a piezoelectric chip actuator based on earlier work [97]. The multiphysical coupling gives
rise to a unique challenge as it potentially introduces instability to the corresponding ROMs.
Applying the designated methods preserves or reintroduces stability. Section 3.2 presents
the second case study, which reduces an electromechanical microactuator as demonstrated
in [52]. This device corresponds to a cantilever beam actuated into electrostatic pull-in.
Electrostatic forces and mechanical contact render the model nonlinear. A novel third
case study in Section 3.3 reduces a geometrically nonlinear beam model via TPWL. The
modeled actuator is the same as in Section 3.2, but the FEM model is coarser and exclusively
composed of three-dimensional elements. All case studies deploy Ansys® Academic Research
Mechanical, Release 2022 R2 for FEM modeling to compute reference solutions and to obtain
system matrices. The process of MOR either uses Model Reduction inside Ansys [98] by
CADFEM® and/or a Python-based implementation [99,100].

3.1. Piezoelectric Chip Actuator

This numerical case study investigates the PA3JEA piezoelectric chip actuator and is
based on earlier work [97] that contains a more detailed description. Figure 3 depicts the
actuator and its symmetry-exploiting FEM model. The ceramic coating houses 33 piezoelec-
tric layers. The modeled geometry excludes the interdigitated silver electrodes since their
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effect on the system is insignificant. However, their electrical behavior is included and the
electrical potentials of each electrode layer are coupled. Further, the cathodes are grounded.
Therefore, the model is composed exclusively of THP51 ceramic [97]. Mechanical boundary
conditions prevent rigid body motion and vertical deformation of the actuator’s base. The
load case considered is a force acting vertically at the top surface’s center. The vertical
displacement at this position and the voltage at the anode constitute the desired outputs.
This model comprises 3395 nodes and corresponds to a system of 9892 differential algebraic
equations (DAEs).

Figure 3. The PA3JEA piezoelectric chip actuator and its symmetry-exploiting FEM model [97].

MOR of piezoelectric devices introduces two additional challenges: the potential loss
of stability and rounding errors sensitive to the chosen unit system. The first challenge is to
preserve the original system’s stability. Instability translates into a potentially unbounded
output for a bounded input and, thus, renders reduced systems useless. Methods to
preserve or to reintroduce stability are Schur after MOR [101], MOR after Schur [101], MOR
after implicit Schur [102] and multiphysics structure-preserving MOR [38,49,101]. They differ
in their approach and vary significantly in their computational efficiency. Recommended
methods are either Schur after MOR or multiphysics structure-preserving MOR. The
second challenge is the chosen unit system as it affects the matrices’ condition numbers,
especially for multiphysical studies. For this reason, preliminary studies are recommended
to determine the best-conditioned setting in order to minimize rounding errors.

The original system of DAEs representing the FEM model in Figure 3 is reduced in
several settings to compare the four stability-preserving algorithms. All reductions deploy
Krylov subspaces to compute the reduced basis. Further, all reduced order models are
evaluated in a harmonic analysis in a frequency range of 0 kHz to 500 kHz for a unit force.
The settings to be varied include the expansion point and the reduced model’s dimension.
The former comprises the values 0 Hz, 250 kHz and 500 kHz, while the latter is either set
to 60 or 120. This setup results in six different combinations, which are evaluated for all
four algorithms.

A comparison of the anode’s voltage for a reduced dimension of 60 and an expansion
point of 0 Hz is shown in Figure 4. As the curves cannot be distinguished, the figure is
extended by corresponding relative errors. In general, the relative error barely surpasses
10−7, but increases towards higher frequencies due to the low expansion point. The least
accurate but most efficient method is Schur after MOR. The best accuracy is achieved by
multiphysics structure-preserving MOR.
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Figure 4. Response of the anode’s voltage to a harmonic unit force computed by the FEM for reference
and four reduced order models stabilized by different algorithms (left). The corresponding relative
errors allow more detailed conclusions (right). This evaluation is one of six setups to compare the
four stability-preserving algorithms [97].

Figure 4 compares the methods in one of the six settings and only for one of the two
outputs. The remaining information is summarized in Figure 5. This plot condenses the
frequency-dependent relative errors as in Figure 4 into a single number by taking the
average magnitude. Although this procedure strongly depends on the chosen frequency
range, it is constant for each combination and, therefore, constitutes a valid procedure.
The findings coincide with the ones for Figure 4. In addition, it can be observed that the
mechanical output is approximated significantly better than the electrical one.

Figure 5. Comparing the average relative error magnitude for both outputs and all six reduction
settings. Multiphysics structure-preserving MOR achieves the best accuracy. MOR after Schur
benefits most from increasing the reduced dimension. In general, a central expansion point leads to
the best approximation quality [97].

The times required for each method with respect to the original model’s dimension are
given in Figure 6. For a more detailed analysis, both the total time and the MOR-exclusive
part are given. The absolute time demand as well as the scaling with model dimension
vary significantly between the methods. Schur after MOR is the most efficient method,
taking the least amount of time and scaling well with larger dimensions. In contrast, MOR
after Schur is limited to small-sized models, as it leads to dense system matrices and high
computational costs. Multiphysics structure-preserving MOR and MOR after implicit Schur
perform similarly, but require more time than Schur after MOR in their stability-preserving
computations. All computations were performed on an Intel® CoreTM CPU 4 × 3.0 GHz
and 64 GB RAM.
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Figure 6. The four method’s computational times vs. the original model’s dimension n. Dashed lines
correspond to elapsed time due to MOR, whereas full lines provide the total demand [97].

In conclusion, MOR significantly reduces the dimension of the original model and,
thus, introduces significant computational benefits. Further, all four methods preserve
the original model’s stability and even the worst achieved accuracy suffices for most
applications. However, Schur after MOR and multiphysics structure-preserving MOR are
the methods to recommend as they are efficient and reliable. In the case of large-scale FEM
models, the recommendation narrows down to Schur after MOR. Further information can
be found in [97].

3.2. Electromechanical Beam Actuator

The subject of this numerical case study is a single actuator of the cooperative mi-
crosystem shown in Figure 7. An extensive description of this study is available in [52]. The
design has been developed within the Kick and Catch project [52,103] and deploys multiple
cooperating actuators to rotate a freely moving body. The overall goal is a multistable,
quasistatic micromirror.

Figure 7. The Kick and Catch actuator system [103] (left) and its operating principle (right). On the
left, the indicated spherical cap rests on the four electrostatic beam actuators and is deflecting an
incident light ray. As illustrated on the right, these beam actuators are actuated into pull-in to launch
the spherical cap. After a free flight phase, the sphere is caught and rests stably. Consecutive flight
phases allow for a high deflection angle.

One of the four electrostatic microactuators with mechanical contact constitutes the
numerical case study. This actuator is highly representative because its physical principles
are commonly found in a large class of microactuators. Figure 8 presents the actuator’s
design, which is composed of three sections: a beam tip, an electrode and a compliant
meander spring. The actuator is mounted 10 µm above its counter electrode, which attracts
the beam when voltage is applied.
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Figure 8. The electrostatic beam actuator and its symmetry-exploiting FEM model side by side.
From left to right, the beam comprises three sections: a tip for leverage, an electrode area marked
in red and a compliant meander spring that enables the pull-in motion. The electrode is subject to
electrostatic forces, which are nonlinear because they depend on the beam’s deformation [52].

In terms of FEM, the actuator is a linear mechanical system as in Equation (4) and
of dimension n = 25, 134. Lumped transducer elements below the electrode introduce
electrostatic forces and mechanical contact. Due to the lumped nature, a nonlinear force
acts on every node of the electrode area. These nonlinear forces depend on the node’s
out-of-plane displacement xk and read

f k = f k
el + f k

cont

with: f k
el =

ε Ak
2

1

(xk + g0)
2 V2

f k
cont =

{
kn |xk + g0| if (xk + g0) < 0
0 else.

(15)

Hence, the force on node k is composed of an electrostatic part f k
el and a contact

force f k
cont. The electrostatic force is based on permittivity ε, the node’s effective area Ak,

the initial gap g0 and the applied voltage V. The contact force has a penalty-based structure
and, thus, occurs upon penetration. Its magnitude depends on the amount of penetration
and the contact stiffness kn.

This setup is well suited for the nonlinear MOR technique for systems with few non-
linearities. As the nonlinearities only depend on a single DOF, they can be evaluated with
acceptable computational costs. Furthermore, the out-of-plane displacement of adjacent
nodes barely deviates. Therefore, the nonlinear forces can be grouped to reduce the number
of nonlinear computations. Each group summarizes its nodes’ effective areas and their
contact stiffness, respectively. In addition, a representative displacement per group is deter-
mined. This grouping procedure drastically reduces the number of nonlinear computations
and can be achieved by geometric groups [69] or by clustering [52].

For the model in Figure 8, the linear part is reduced by a Krylov-subspace-based
approach to a dimension of r = 100. Further, the nonlinear forces on the electrode are
summarized into six groups by two approaches: geometric grouping and agglomerative
clustering. The resulting two reduced order models are evaluated for a transient load
case, which applies a step voltage of 30 V. As a result, the beam is actuated into pull-in
within less than 400 µs. To assess the two methods’ accuracy, the vertical tip displacement
is tracked and compared to an FEM reference solution. This comparison is presented in
Figure 9, in which the contact event is highlighted. Both reduced order models excellently
match their reference and even provide convergence after the contact event. Although the
behavior after contact differs, it cannot be compared as the FEM solution fails to converge.
The speed-up factor due to MOR and the two grouping schemes is more than 250, reducing
from 784 s for the FEM analysis to less than 3 s on an Intel® CoreTM CPU 4 x 3.0 GHz and
64 GB RAM. These computational times only indicate the efficiency, because the evaluation
did not use the same solver but a less optimized one.
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Figure 9. Vertical displacement of the actuator’s tip after applying a step voltage of 30 V, computed
by two reduced order models and the FEM for reference [52].

3.3. Geometrically Nonlinear Beam Actuator

Depending on the load case, analysis of the beam actuator in Section 3.2 requires us to
consider large deformations. These geometrical nonlinearities are common for microactua-
tors and, in contrast to Section 3.2, render the whole system nonlinear. This novel numerical
case study deploys a static and purely mechanical load case of the isolated beam actuator
shown in Figure 8. A new FEM mesh of the homogenized actuator geometry results in a
system of n = 843 ODEs. A downward force on the beam’s tip is gradually increased up to
500 µN in steps of 10 µN.

Two methods are combined to reduce this setup: POD to construct the reduced basis
and TPWL to handle the nonlinearities. Both rely on sampled quantities of the original
model: the former requires samples of the state vector, the latter linearized system matrices.
TPWL dynamically composes the current set of system matrices from a pool of linearized
matrices. State-dependent weights quantify the difference between the current state and
previously sampled ones. Figure 10 visualizes this procedure, illustrating selected states as
deformations of the beam. Please note that TPWL can also be applied independently of
MOR. Hence, this study compares the TPWL-approximated original model and its reduced
version to the FEM reference solution. As a result, sources of deviation can be identified
more clearly.

Figure 10. TPWL approximates a nonlinear system as a weighted sum of linearized ones. These
linearizations are obtained at different states along the trajectory. States correspond to physical
deformations, of which three are illustrated. The color corresponds to deformation magnitude.
The linearized models are valid in the vicinity of the respective linearization states, as indicated
by circles.

The specific TPWL approximation uses a weighting parameter of β = 250 and 11 uni-
formly distributed samples. The process of MOR via POD decomposes 51 snapshots
obtained from the FEM reference solution. The 25 most dominant left-singular vectors form
the reduced basis as the remaining singular values barely contain additional information,
as illustrated in Figure 11. Therefore, they are truncated, resulting in a reduced dimension
of r = 25.
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Figure 11. Descending singular values of the FEM study’s 51 snapshots, normalized by the largest
singular value. The reduced basis of left-singular vectors is truncated at r = 25 indicated by the
vertical line.

The TPWL-approximated model and its reduced version are then evaluated for the
same 51 load steps as the original model. The output quantity assessing their performance
is the beam’s tip displacement analogous to Section 3.2. Figure 12 provides the results
and the relative errors of this analysis. Both models match the reference solution as the
relative error barely surpasses 10−2. As with most interpolation-based methods, the error
peaks between samples. The reduction step introduces negligible additional errors when
compared to the TPWL approximation. Both methods are computationally more efficient
and reduce the original solution time of 1.157 s per load step to 36.68 ms and 443.7 µs,
respectively. Therefore, the reduced order model is faster by a factor of more than 2500.
Please note that the FEM analysis uses a more optimized solver. The study was conducted
on an Intel® CoreTM CPU (4 x 3.0 GHz) and 64 GB RAM.

(a) (b)

Figure 12. (a) Comparison of the vertical tip displacement computed by the TPWL-approximated
model, its reduced version and the FEM for reference. The plot also indicates sampling positions
for TPWL. (b) In addition, the relative errors are shown, including the deviation of the TPWL-
approximated model and its reduced version to the FEM reference solution. Further, the error
between the two TPWL approximations is provided. In general, the minimum error coincides with
the sampling positions and reaches maximum values in between. The coarsely sampled TPWL
approximation is the main source of deviation, in contrast to the excellent match that MOR achieves.

Both the TPWL approximation and its reduced version achieve noteworthy compu-
tational benefits while losing less than 1 % accuracy for this case study. This deviation
predominantly originates from the TPWL approximation, while MOR to a dimension of
only 25 induces a negligible error. Please note that a more sophisticated sampling strategy
improves the accuracy and may even require fewer samples. Furthermore, the weighting
scheme’s settings bear potential for optimization and promise better accuracy at the cost of
several parameter studies. However, the aim of this numerical study is to demonstrate the
basic principle and its potential, without application-dependent finetuning.
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4. Conclusions and Outlook

Cooperative actuators often lead to more complex models than their independent
counterparts. As a result, the model dimensions grow and limit the potential for design
studies or closed-loop control. This work emphasizes the solution that MOR provides to
this challenge. This methodology generates highly efficient surrogate models, as demon-
strated in three numerical case studies, reaching speed-up factors of more than 250 and
excellent accuracy. The gain in efficiency facilitates extensive parameter studies and design
optimization. Furthermore, numerous physical effects, parametric influences and even
nonlinearities can be considered with appropriate MOR methods. Reduced order models
can be coupled to investigate interactions within systems. In addition, they can be con-
veniently combined with different model types, such as look-up tables, lumped element
models or neural networks. The reduction process also preserves the model’s structure
but encrypts the original model, protecting intellectual property when sharing models.
Another advantage is more sophisticated closed-loop control, which becomes more feasible.
However, MOR requires extra work and designated tools. Although several commercial
solutions exist, consistent tool chains are rare. One reason is that most MOR methods are
intrusive and need to access the underlying mathematical model. Nevertheless, the exten-
sive literature on microsystem-related MOR suggests its potential for this field of research,
accelerating if not enabling several applications.

Alternatives to MOR include look-up tables, meta-models, GKNs and data-driven
approaches such as operator inference or ANNs. While look-up tables and meta-models are
easy to implement, they are based on solutions of the original model. Therefore, the number
of full samples grows exponentially with the number of parameters, often leading to coarse
sampling. In addition, they are better suited to model relations between input parameters
and outputs, rather than dynamical systems. However, these two approaches are robust
and require significantly less expert knowledge. GKNs represent an original system as an
equivalent network of lumped elements and are a viable alternative to projection-based
MOR. They preserve the original model’s structure and physical meaning, while being
capable of multiphysics and nonlinear effects. Moreover, they are established in the field of
microactuators. This technique requires expert knowledge and is less accurate and flexible
than MOR, e.g., regarding additional outputs. Data-driven approaches such as operator
inference or ANNs are suitable for numerous tasks, but their prediction quality is limited to
scenarios included in their training. They do not preserve physical meaning or the structure
of the original problem, but work well with simulated data without noise or outliers.

Current trends of MOR include their combination with data-driven approaches such as
ANNs. This synergy enables highly efficient training on reduced data or grey-box models
incorporating physical knowledge. The former approach uses MOR to drastically reduce
the dimensions of training data, which leads to faster training, easier networks and the
more efficient tuning of hyperparameters. The latter concept extends linear ROMs with
ANNs to include parametric influences or nonlinear effects, e.g., by updating matrices for
parametric changes or nonlinearities. The potential is yet to be exploited and diffused into
the microactuator community.
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ANN artificial neural network
DAE differential algebraic equation
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DOF degree of freedom
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FEM finite element method
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MEMS microelectromechanical system
MOR model order reduction
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POD proper orthogonal decomposition
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96. Rewieński, M. A Trajectory Piecewise-Linear Approach to Model Order Reduction of Nonlinear Dynamical Systems. Ph.D.

Thesis, Technical University of Gdansk, Gdansk, Poland, 2003.
97. Schütz, A.; Bechtold, T. Performance Comparison for Stable Compact Modelling of Piezoelectric Microactuator. In Proceedings of

the 2022 23rd International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics
and Microsystems (EuroSimE), Graz, Austria, 25–27 April 2022; pp. 1–8.

98. Rudnyi, E.B.; Lienemann, J.; Greiner, A.; Korvink, J.G. mor4ansys: Generating Compact Models Directly from ANSYS Models;
Routledge: Oxfordshire, UK, 2004.

99. Harris, C.R.; Millman, K.J.; van der Walt, S.J.; Gommers, R.; Virtanen, P.; Cournapeau, D.; Wieser, E.; Taylor, J.; Berg, S.; Smith,
N.J.; et al. Array programming with NumPy. Nature 2020, 585, 357–362. [CrossRef] [PubMed]

100. Virtanen, P.; Gommers, R.; Oliphant, T.E.; Haberland, M.; Reddy, T.; Cournapeau, D.; Burovski, E.; Peterson, P.; Weckesser, W.;
Bright, J.; et al. SciPy 1.0: Fundamental algorithms for scientific computing in Python. Nat. Methods 2020, 17, 261–272. [CrossRef]
[PubMed]

http://dx.doi.org/10.1109/JMEMS.2004.828704
http://dx.doi.org/10.1016/j.jsv.2012.10.017
http://dx.doi.org/10.1137/090766498
http://dx.doi.org/10.1016/j.microrel.2021.114338
http://dx.doi.org/10.1002/nme.4668
http://dx.doi.org/10.1002/nme.4820
http://dx.doi.org/10.1016/j.physd.2020.132614
http://dx.doi.org/10.1007/s10915-022-02001-8
http://dx.doi.org/10.1007/PL00007198
http://dx.doi.org/10.1007/s00542-018-04290-2
http://dx.doi.org/10.1016/j.cma.2022.114764
http://dx.doi.org/10.1016/j.cma.2016.03.025
http://dx.doi.org/10.1016/j.cma.2020.113433
http://dx.doi.org/10.1016/j.jcp.2004.07.015
http://dx.doi.org/10.1038/s41586-020-2649-2
http://www.ncbi.nlm.nih.gov/pubmed/32939066
http://dx.doi.org/10.1038/s41592-019-0686-2
http://www.ncbi.nlm.nih.gov/pubmed/32015543


Actuators 2023, 12, 235 21 of 21

101. Kudryavtsev, M.; Rudnyi, E.B.; Korvink, J.G.; Hohlfeld, D.; Bechtold, T. Computationally efficient and stable order reduction
methods for a large-scale model of MEMS piezoelectric energy harvester. Microelectron. Reliab. 2015, 55, 747–757. [CrossRef]

102. Hu, S.; Yuan, C.; Castagnotto, A.; Lohmann, B.; Bouhedma, S.; Hohlfeld, D.; Bechtold, T. Stable reduced order modeling of
piezoelectric energy harvesting modules using implicit Schur complement. Microelectron. Reliab. 2018, 85, 148–155. [CrossRef]

103. Farny, M.; Hoffmann, M. Kick & Catch: Elektrostatisches Rotieren einer Kugel. In MikroSystemTechnik Kongress; VDE Verlag
GmbH: Stuttgart-Ludwigsburg, Germany, 2021; pp. 274–277.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.microrel.2015.02.003
http://dx.doi.org/10.1016/j.microrel.2018.03.026

	Introduction
	State of the Art: Projection-Based Linear Model Order Reduction for Microactuators
	State of the Art: Projection-Based Nonlinear Model Order Reduction for Microactuators
	Alternatives to Projection-Based Model Order Reduction
	Outline of the Article

	Compact Modeling by Means of Mathematical Model Order Reduction
	Mathematical Modeling of Microactuators
	Projection-Based Linear Model Order Reduction
	Projection-Based Nonlinear Model Order Reduction

	Exemplary Applications of MOR to Microactuators
	Piezoelectric Chip Actuator
	Electromechanical Beam Actuator
	Geometrically Nonlinear Beam Actuator

	Conclusions and Outlook
	References

