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Abstract

The formal development of large-scale software systems is a complex and time-
consuming effort. Generally, its main goal is to prove the functional correctness
of the resulting system. This goal becomes significantly harder to reach when the
verification must be performed under adverse conditions. When aiming for a realistic
system, the implementation must be compatible with the “real world”: it must work
with existing system interfaces, cope with uncontrollable events such as power cuts,
and offer competitive performance by using mechanisms like caching or concurrency.

The Flashix project is an example of such a development, in which a fully verified
file system for flash memory has been developed. The project is a long-term team
effort and resulted in a sequential, functionally correct and crash-safe implementation
after its first project phase. This thesis continues the work by performing modular
extensions to the file system with performance-oriented mechanisms that mainly
involve caching and concurrency, always considering crash-safety.

As a first contribution, this thesis presents a modular verification methodology for
destructive heap algorithms. The approach simplifies the verification by separating
reasoning about specifics of heap implementations, like pointer aliasing, from the
reasoning about conceptual correctness arguments.

The second contribution of this thesis is a novel correctness criterion for crash-safe,
cached, and concurrent file systems. A natural criterion for crash-safety is defined in
terms of system histories, matching the behavior of fine-grained caches using complex
synchronization mechanisms that reorder operations.

The third contribution comprises methods for verifying functional correctness and
crash-safety of caching mechanisms and concurrency in file systems. A reference
implementation for crash-safe caches of high-level data structures is given, and a
strategy for proving crash-safety is demonstrated and applied. A compatible concur-
rent implementation of the top layer of file systems is presented, using a mechanism
for the efficient management of fine-grained file locking, and a concurrent version of
garbage collection is realized. Both concurrency extensions are proven to be correct
by applying atomicity refinement, a methodology for proving linearizability.

Finally, this thesis contributes a new iteration of executable code for the Flashix file
system. With the efficiency extensions introduced with this thesis, Flashix covers all
performance-oriented concepts of realistic file system implementations and achieves
competitiveness with state-of-the-art flash file systems.
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Chapter 1
Introduction

Summary This chapter motivates the application of formal methods to real-
istic and safety-critical software systems. In order to be manageable, the formal
development of large-scale software systems requires a methodology for modular-
ization and incremental verification. When targeting a realistic implementation,
considering efficiency aspects like caching or concurrency becomes inevitable. This
thesis covers the integration of mechanisms geared towards efficiency into existing
formally verified systems and contributes techniques for proving the correctness of
these extensions modularly. These techniques are applied to the Flashix case study,
a verified file system for flash memory, to realize several caching and concurrency
extensions. As a central aspect, all these extensions must retain crash-safety, i.e.,
must guarantee successful recovery from power failures.

Contents
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Formal Development of Large Software Systems 3
1.3 Mechanizing Proofs: The KIV System . . . . . . 4
1.4 Contributions of this Thesis . . . . . . . . . . . . 5
1.5 Outline . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.1 Motivation

Formal Development of Software Systems This thesis is located in the re-
search area of developing correct software systems by the application of formal meth-
ods. In the software engineering process, various methods are usually employed to
ensure a certain quality of developed software. These comprise, for example, the
application of extensive requirements engineering and documentation, or exhaustive
testing techniques. However, all these methods have a certain residual risk of over-
looking errors (bugs), for example, by missing rare edge cases in the design and
testing process. In the context of safety-critical systems, programming errors can
have catastrophic consequences, e.g., the incident of the Ariane 5 rocket in 1996
[78, 9].

As an alternative approach, formal methods apply mathematical techniques to
formally prove the correctness of software. The term correctness has several facets

1



2 CHAPTER 1. INTRODUCTION

in this context: it ranges from guaranteeing terminating executions of programs
over showing the absence of runtime exceptions, like dereferencing a null -pointer,
to proving a program’s input/output behavior matching an abstract specification.
Often, formal methods are applied to existing programs or libraries in order to prove
their correctness afterwards, which can occasionally bring unexpected bugs to light,
like with OpenJDK’s TimSort [53]. A more constructive approach is to use for-
mal methods during the development of a software system to guarantee correctness
by construction. While this approach is generally very costly, it gives much stronger
correctness guarantees than traditional software development processes when applied
diligently. For that reason, the application of formal methods to software develop-
ment is becoming increasingly popular in industry in recent years [116, 71], e.g.,
formal specification and model checking is employed at Amazon Web Services [88].

Flash Memory and its Problems Flash memory, in contrast to magnetic disks,
does not have random access for writing. Instead, memory is partitioned into blocks
consisting of pages, where pages can be written in ascending order only (no overwrit-
ing). Deleting old, obsolete data is possible only by erasing entire blocks, which is
slow. Erasing also wears out blocks: they become unreadable after 104 to 106 erases,
depending on the hardware. Therefore erasing has to be distributed evenly over all
blocks: the use of an algorithm achieving wear leveling becomes necessary. The spe-
cific writing characteristics require a specialized file system for use in applications
like the Mars rovers, which use raw flash for efficiency: problems with flash memory
on these [101] were one of the motivations for NASA to propose a challenge to build
a verifiable flash file system [72, 45], which is a pilot project of the Grand Verification
Challenge [62]. An alternative to a dedicated Flash file system used in today’s SSDs
is an intermediate file translation layer (FTL) that simulates an ordinary file system.
This approach requires additional hard- and firmware and is somewhat less efficient.

Correctness of File Systems Developing a correct file system implementation
requires a strictly modular discipline that allows verifying individual components
separately due to the scale of the resulting system, e.g., realistic file system imple-
mentations often comprise tens of thousands of lines of code. However, there is an
important cross-cutting concern: power failures (crashes) can interrupt a system run
anywhere in the middle of running operations, deleting the state still stored in RAM.
A file system, therefore, not only has to be shown to be functionally correct but also
to be crash-safe: a reboot must lead to a consistent state that contains “no surprises”,
e.g., no new files that were not created before the crash should appear in this state.

Flashix The Flashix project [13] takes on the challenge of [72] with the goal to
develop a verified, realistic file system for flash memory that adheres to the POSIX
standard [100].

In the first phase of the Flashix project, a sequential implementation was devel-
oped, structured as a refinement tower containing ten main layers, where a layer is
again partitioned into several modular components. Each layer consists of a spec-
ification component that is realized by an implementation component, where the
implementation code calls operations from specifications of other (sub-)components.
To be realistic, we have taken the concepts realized in UBIFS [63] and UBI [51] as
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a blueprint. UBIFS is the newest existing file system for flash memory integrated
into the Linux kernel. The sequential implementation already contains a modular
implementation of all important concepts of UBIFS: a journal and an index are used
for efficiency, algorithms for garbage collection and wear leveling are implemented.
A write-buffer is used to queue data until a full page can be written to flash mem-
ory. The top-level specification is an abstract POSIX specification defining directory
trees and file content. An indirection is used to accommodate hard links to files.
The refinement tower ends with a specification of MTD, which is the generic Linux
interface for flash hardware.

However, a purely sequential implementation of a file system is not efficient since
the user has to wait for operations to finish. Waiting is necessary for three reasons.
First, internal operations such as wear leveling and garbage collection, which are
executed in between operations called by the user, cause waiting. Second, the top-
level of POSIX operations can be used sequentially only, so one process has to wait for
the other even when disjoint directories and files are addressed. Third, the user also
has to wait for reads and writes to files to be performed on Flash memory, which are
two orders of magnitude slower than writing to RAM. Therefore, the second phase
of the project was mainly concerned with making the file system efficient.

Extending Formally Developed Systems Adaptations or extensions to existing
software systems always have the drawback that other systems, modules, functions,
etc., could be affected unintentionally by the changes applied to the system, poten-
tially harming its correctness. While common software engineering principles like
SOLID [82] can reduce this problem, they can usually not be avoided altogether.
This is especially true for large-scale formally verified systems like Flashix. Here, ex-
act specifications of operation and component behavior are necessary to prove desired
properties of the system. As soon as one small part of the system changes, high-level
properties or their corresponding proofs often become invalid, requiring extensive
specification and proof work to fix. This is why maintainability and expandability
are a major challenge in the development of verified software.

Caching or concurrency extensions are particularly challenging, especially when
crashes are considered. When caches are integrated into a hierarchical system, this
should usually be done transparently for the layers above, i.e., higher abstraction
layers should ideally not notice the additional caches. However, when write-back
caches are used, i.e., caches that defer the persistence of updates, data is lost in
the event of a crash, affecting crash-safety of the upper layers. By contrast, when
operations are executed concurrently on a particular layer of the hierarchy, this
concurrency propagates to the layers below. When these layers are not designed to
be used concurrently, they have to be adapted to either cope with concurrent calls
or to restrict the concurrency accordingly. Therefore, a sophisticated approach is
required to realize such extensions while maintaining as much of the original proof
work as possible.

1.2 Formal Development of Large Software Systems

The basic methodology for developing verified software systems used in this thesis is
about decomposing a system into manageable, interchangeable parts, called compo-
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nents. Components are state-based and provide well-defined interfaces. The state of
a component is encapsulated, i.e., it is hidden and can only be accessed indirectly via
its interface operations. State is given in form of algebraic data types and operations
are specified by programs of a simple imperative programming language, including
loops and recursion.

Ai

Ci Ai+1

Figure 1.1: Modularization of
software systems.

Component hierarchies are constructed by re-
peated application of the recursive pattern of
Fig. 1.1. A specification component Ai (depicted
as white rectangle) specifies the requirements of
a (sub-)system. These requirements are typically
given in a very abstract, easy-to-understand, and
concise way, using algebraic operations and non-
determinism. An implementation component Ci
(depicted as gray rectangle) realizes the require-
ments stated by Ai. For this, Ci uses another specification Ai+1 as subcomponent
(depicted by ), i.e., it uses the functionality provided by Ai+1 by calling its
interface operations. From there on, the pattern is continued: Ai+1 is realized by
another implementation Ci+1, which uses a specification Ai+2 and so on. Each im-
plementation Ci implements a certain concept or functionality only while the sub-
component Ai+1 serves as abstraction for the remaining part of the system. The
complete system implementation is then built by combining all implementations
C0 C1 . . . Cn.

Correctness of the implementation w.r.t. a top-level system specification A0 is
shown incrementally by proving a refinement (depicted by dotted lines in Fig. 1.1)
for each layer. A implementation Ci (together with its subcomponent Ai+1) refines
its specification Ai if clients cannot distinguish between using Ci or Ai by looking at
the input/output behavior of operations. Refinement is transitive, so proving each
refinement individually guarantees correctness of the combined system implemen-
tation. Thus, the approach facilitates the formal development of large systems by
splitting an otherwise unfeasible verification task into several manageable verification
problems.

For the Flashix case study, the correctness requirements are given by a top-level
specification of the POSIX standard [100], which defines the expected behavior of
file system operations. At the bottom of the hierarchy, a specification of the Linux
MTD interface for flash memory specifies assumptions about the flash hardware. We
use a code generator to produce executable C and Scala code from implementation
components. While the latter is used primarily for testing purposes, the former can
be integrated in Linux via the FUSE library (Filesystem in USErspace).

1.3 Mechanizing Proofs: The KIV System

The models and proofs presented in this thesis were created resp. conducted using
the KIV system [39, 107]. KIV is a verification tool for the formal development of
large-scale, hierarchical software systems. It is actively developed by the Chair of
Software and Systems Engineering at the University of Augsburg. Starting as a tool
with support for the verification and synthesis of sequential programs using Dynamic
Logic in the 80s, it has evolved into a general-purpose theorem prover focusing on
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developing verified software.
Over the years, KIV has been employed in several major

case studies like the WAM compiler for Prolog [105] or the
Mondex Challenge [55] or the Flashix project [13]. KIV is also
used regularly in courses teaching students the application of
formal methods at the University of Augsburg. Furthermore,
the research group participated in various international ver-
ification competitions, most notably in the VerifyThis Com-
petition series [115], winning multiple awards.

The KIV system is implemented entirely in Scala [92] and is available publicly as a
plugin for the Eclipse platform [35] on the KIV website [74]. It provides modern IDE
features for editing specifications, such as syntax highlighting, error marking, and
the comfortable navigation through projects (via commands like go to definition). A
similar plugin for the IntelliJ IDEA platform [65] is currently in the making.

At its core, KIV is an interactive theorem prover. The user can conduct proofs
manually by interacting with a graphical user interface that allows the context-
sensitive application of rules and rewriting. Proofs are saved by storing explicit
proof trees, which the user can view visually and manipulate directly. Typically, the
proving process is highly automated. To achieve this, KIV uses automated rewriting
and powerful heuristics.

The KIV logic is based on a polymorphic higher-order logic, including different
formalisms for sequential and concurrent programs. Software systems are developed
with a component- and refinement-based approach, using, for example, a weakest-
precondition (wp) or Rely-Guarantee (RG) calculus. KIV supports multiple theories
developed and applied during the Flashix project by generating specifications and
proof obligations, thus reducing the risk of errors.

1.4 Contributions of this Thesis

This thesis is a continuation of the work of Ernst [38] and Pfähler [96]. Consequently,
the methodologies for specifying, modularizing, and verifying large-scale and concur-
rent systems developed by them are taken up and developed further in this thesis,
aiming to improve the formal development of efficiency-critical software systems. In
particular, the following main contributions are made.

Extensions to Formally Developed Software Systems As one of its main
challenges to overcome, this work gives methodologies for performing modular ex-
tensions to formally developed systems. Functionalities and concepts can be added
to an existing component hierarchy without losing modularity and without having
to start verification from scratch. Focusing on the pervasive concepts of caching and
concurrency, it is shown how major parts of existing specification and verification
work can be kept by introducing additional proof obligations that can be proved sep-
arately and by restricting the impacts of extensions to certain parts of the hierarchy.

Modular Verification Methodology for Destructive Heap Algorithms An
approach for simplifying the verification of destructive, heap-based algorithms is
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given. Reasoning about algorithms manipulating heap data structures is often diffi-
cult since complicating concepts like aliasing have to be considered. Methods tailored
to heap-based programs, such as Separation Logic [102], support the reasoning. How-
ever, verification usually still suffers from the complexity of conceptual correctness
arguments being intertwined with questions about pointer aliasing and side effects.
This thesis gives an approach for Separating Separation Logic which allows to reason
about functional correctness and the correctness of heap modifications separately.

Correctness and Crash-Safety of Cached and Concurrent Systems The
component model of Ernst [38] and Pfähler [96] is adapted for the use in highly
cached and concurrent systems. The operations-based approach for specifying crash
behavior of Pfähler is extended to cover the integration of more fine-grained caches
using complex synchronization mechanisms that reorder operations. This thesis gives
the novel, history-based correctness criterion Write-Prefix Crash Consistency for the
use of such caches and provides compatibility of the criterion with the use of other
caching mechanisms and concurrency.

Verification of Caching Mechanisms and Concurrency in File Systems
This thesis contributes methods for the verification of functional correctness as well
as crash-safety of caching mechanisms and concurrency in file systems. A reference
implementation for crash-safe caches of high-level data structures is given, adher-
ing to the requirements implied by Write-Prefix Crash Consistency. A respective
proof strategy is demonstrated and applied to the case study. A mechanism for the
efficient management of fine-grained file locking is presented, which is used for a
concurrent implementation of the top layer of file systems, the Virtual File System
Switch, allowing concurrent calls to the file system interface. Furthermore, a con-
current realization of garbage collection is presented. Both concurrency extensions
are proven to be correct by applying atomicity refinement, a methodology for prov-
ing linearizability [60] (including termination and deadlock-freedom) adopted from
Pfähler [96].

Iteration of the Flashix File System Implementation Finally, this thesis
contributes a new iteration of working C and Scala code for the Flashix file system.
The code is generated from the implementation models developed in this thesis,
based on the models developed by Ernst [38] and Pfähler [96]. It contains all the
efficiency extensions presented in this thesis and shows significant improvements in
terms of performance in comparison to earlier versions, achieving competitiveness
with state-of-the-art file systems like UBIFS [63].

Publications The following publications were created in the context of the work
presented in this thesis.

1. J. Pfähler, G. Ernst, S. Bodenmüller, G. Schellhorn, and W. Reif. Modular Verification
of Order-Preserving Write-Back Caches. In Proc. of International Conference on
Integrated Formal Methods (IFM), volume 10510 of LNCS, pages 375–390. Springer,
2017
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2. G. Schellhorn, G. Ernst, J. Pfähler, S. Bodenmüller, and W. Reif. Symbolic Execution
for a Clash-Free Subset of ASMs. Science of Computer Programming (SCP), 158:21–
40, 2018

3. G. Schellhorn, S. Bodenmüller, J. Pfähler, and W. Reif. Adding Concurrency to a
Sequential Refinement Tower. In Proc. of International Conference on Rigorous State-
Based Methods (ABZ), volume 12071 of LNCS, pages 6–23. Springer, 2020. Invited
Paper

4. S. Bodenmüller, G. Schellhorn, and W. Reif. Modular Integration of Crashsafe Caching
into a Verified Virtual File System Switch. In Proc. of International Conference on
Integrated Formal Methods (IFM), volume 12546 of LNCS, pages 218–236. Springer,
2020

5. S. Bodenmüller, G. Schellhorn, M. Bitterlich, and W. Reif. Flashix: Modular Veri-
fication of a Concurrent and Crash-Safe Flash File System. In Logic, Computation
and Rigorous Methods: Essays Dedicated to Egon Börger on the Occasion of His 75th
Birthday, volume 12750 of LNCS, pages 239–265. Springer, 2021

6. S. Bodenmüller, G. Schellhorn, and W. Reif. Verification of Crashsafe Caching in a
Virtual File System Switch. Formal Aspects of Computing (FAC), 34(1), 2022

7. G. Schellhorn, S. Bodenmüller, M. Bitterlich, and W. Reif. Software & System Ver-
ification with KIV. In The Logic of Software. A Tasting Menu of Formal Methods:
Essays Dedicated to Reiner Hähnle on the Occasion of His 60th Birthday, volume
13360 of LNCS, pages 408–436. Springer, 2022

8. G. Schellhorn, S. Bodenmüller, M. Bitterlich, and W. Reif. Separating Separation
Logic – Modular Verification of Red-Black Trees. In Proc. of International Conference
on Verified Software: Theories, Tools, and Experiments (VSTTE), volume 13800 of
LNCS, pages 129–147. Springer, 2022

1.5 Outline

The remainder of this thesis is structured as follows.
Chapter 2 provides some theoretical background required for this thesis. It covers

the fundamental logic, the specification of algebraic data types and operations, an
imperative programming language together with a calculus for sequential reasoning,
and the modeling of and reasoning about heap data structures.

Chapter 3 introduces the methodology for constructing large-scale, hierarchical
systems based on components. It provides details on the syntax and semantics of
components and a proof method for the refinement of sequential components. Fur-
thermore, a methodology for the modular verification of destructive heap algorithms
is presented based on a pointer-based implementation of red-black trees [54].

Chapter 4 gives an overview of the Flashix file system, including a summary of
the main layers forming the component hierarchy. The extensions performed in the
second project phase and, in particular, in this thesis are highlighted. Furthermore,
the models of the top layer are presented as a recap of the work of Ernst [38], as the
basis for the following chapters.

Chapter 5 introduces retractions to the semantics of components in order to de-
scribe the crash behavior of buffered systems and gives a short recap of its application
to a buffer cache integrated into Flashix as part of Pfähler’s work [96]. The semantics
of [96] are adapted to be able to express crash effects of high-level caches.
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Chapter 6 presents the extension of Flashix with high-level caches. It shows how
an additional caching layer can be integrated into an existing component hierarchy
and how the functional correctness can be verified modularly. An expressive and
intuitive crash-safety criterion for cached file systems is given, and a strategy for
proving crash-safety of such systems is proposed and applied to the Flashix reference
implementation. Finally, it is shown that, when realized correctly, such high-level
caches can be combined safely with low-level buffer caches.

In Chapter 7, the method for introducing concurrency into a component hierarchy
is described, based on the work of Pfähler [96]. The semantics of components are
adapted to allow interleaved executions of operations, and a methodology for proving
the correctness of concurrent components with respect to an atomic specification is
presented.

Chapter 8 then applies the methodology of Chapter 7 to introduce concurrency
on the top levels of Flashix. In order to enable concurrent access to files, a mechanism
for managing dynamically allocated locks efficiently is provided. It is employed in the
realization of a concurrent Virtual File System Switch. Furthermore, a concurrent
implementation of the garbage collection algorithm is presented. Proofs for both
concurrency extensions are outlined as well.

To evaluate the efficiency extensions presented in this thesis, Chapter 9 demon-
strates how the resulting implementation of the Flashix file system compares to
previous versions as well as a real-world flash file system implementation, namely
UBIFS.

Finally, Chapter 10 summarizes and gives an outlook on possible future work.



Chapter 2
Theoretical Background

Summary This chapter summarizes the basic logical foundations for this thesis.
They are all supported by the interactive verification system KIV, which was used
for the specification and verification work of this thesis. In the context of this work,
the underlying higher order logic was extended from monomorphic to polymorphic
types. The models are built upon structured specifications of algebraic data types
and operations. An imperative programming language is used to model software
systems, and a sequent-based weakest precondition calculus is used to reason about
properties of sequential programs. The programming language and calculus were
extended to support exceptions so that the absence of runtime exceptions in pro-
grams can be proven. Reasoning about pointer structures is done with Separation
Logic using an explicit heap model.

Contents
2.1 Polymorphic Higher Order Logic . . . . . . . . . 9
2.2 Structured Specifications of Algebraic Data Types 11
2.3 Imperative Programs with Exceptions . . . . . . 13
2.4 Weakest Precondition Calculus . . . . . . . . . . 19
2.5 Heaps & Separation Logic . . . . . . . . . . . . . 22

Publications Most of the logical foundations presented in this chapter are
based on [107].

2.1 Polymorphic Higher Order Logic

The logical basis of this thesis is higher order logic (HOL) using polymorphic types
[52, 107]. The definition of the set of types Ty is based on a finite set of type
constructors tc:l ∈ Tc with fixed arity l and a countable set of type variables ′a ∈ Tv.

9
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Definition 1 (Polymorphic Types). The syntax of types ty ∈ Ty is given by the
following grammar.

ty := ′a type variable
| tc:l(ty1, . . . , tyl) type constructor application
| (ty1, . . . , tyn) n-nary tuple type
| ty1 × . . .× tyn → ty′ n-nary function type

Type sequences must have l elements in the application of a type constructor tc:l,
at least two elements for tuples, and at least one element for function types. Type
constants are applications of type constructors tc:0 with arity 0. Types that do not
contain type variables are called monomorphic, types containing type variables are
called polymorphic. It is assumed that the boolean type constant is predefined, i.e.,
bool:0() ∈ Tc. Usually, the arity of type constructors as well as the parenthesis of
type constants are left implicit when writing types, so for example, the boolean type
is written bool.

Expressions e ∈ Expr are defined over a set of (typed) variables x :ty ∈ X and
a signature Σ = (Tc,Op) which in addition to type constructors contains (typed)
operations op:ty ∈ Op. Op always includes the usual boolean operations like true :
bool, ¬ . : bool → bool (written prefix), or . ∧ . : bool× bool → bool (written infix),
equality . = . : ′a× ′a → bool, an if-then-else-operator ⊃: bool× ′a× ′a → ′a, as well
as tuple constructors (written (e1, . . . , en)) and tuple selectors for every arity (e.g.,
written e._3). For predicates, i.e., operations with a type ty1 × . . .× tyn → bool, the
target type bool is typically omitted.

Definition 2 (Higher Order Expressions). The syntax of higher order expressions
e ∈ Expr is given by the following grammar.

e := x :ty variable
| op:ty operation
| e0(e1, . . . , en) application
| λ x :ty. e lambda abstraction

| ∀ x :ty. φ universal quantifier

| ∃ x :ty. φ existential quantifier

In the definition, φ denotes a formula, i.e., an expression of type bool. Expressions
without quantifiers are called terms (typically denoted by t), quantifier-free formulas
are denoted by ε. x :ty denotes a sequence x1 :ty1, . . . , xn :tyn of typed variables (in
this thesis, sequences of any kind will be signified by an underline throughout), the
variables of x :ty must be pairwise disjoint. The typing rules are standard, e.g., in an
application, the type of e0 must be a function type where the argument types are
equal to those of e1, . . . , en. Most types can be inferred by type inference, so in the
following, the types of variables and the instance types of operations are left implicit
in formulas. Application of the if-then-else-operator is written as (φ ⊃ e1; e2). Its
result is e1, when φ is true, and e2 otherwise.

The semantics of an expression JeK is based on algebras A = (U , {tc:lA}, {op:tyA}),
following the semantics of HOL defined in [52].
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The first component of an algebra is the universe U , which is a set of non-empty
(potential) carrier sets. The semantics tc:lA : U l → U of a type constructor maps
the carrier sets of its argument types to the one of the full type. The semantics
of booleans, functions and tuples is standard, i.e., U is assumed to contain the set
B = {tt,ff} that interprets booleans, and to be closed against forming Cartesian
products and functions to interpret function and tuple types. Given a type valuation
w : Tv → U , that maps each type variable to a carrier set, an algebra fixes the
semantics JtyK(A, w) of a type ty as one of the carrier sets in U .

Definition 3 (Semantics of Types). Given an algebra A and a type valuation w,
types ty ∈ Ty are evaluated as follows.

J′aK(A, w) = w(′a)

Jtc:l(ty1, . . . , tyl)K(A, w) = tc:lA(Jty1K(A, w), . . . , JtylK(A, w))
J(ty1, . . . , tyn)K(A, w) = (Jty1K(A, w), . . . , JtynK(A, w))

Jty1 × . . .× tyn → ty′K(A, w) = Jty1K(A, w)× . . .× JtynK(A, w) → Jty′K(A, w)

The interpretation op:tyA of an operation over an algebra yields an element of
JtyK(A, w) for every possible type valuation w. Fixing such an interpretation to a
type valuation w is denoted by op:tyA(w). Similarly, a valuation v maps each variable
x:ty to an element of JtyK(A, w) for every possible w. Fixing the type valuation of
a valuation is written v(w). Finally, the semantics JeK(A, w, v) of an expression of
type ty yields an element of the carrier set JtyK(A, w).

Definition 4 (Semantics of Expressions). Given an algebra A, a type valuation w,
and a valuation v, expressions e ∈ Expr are evaluated as follows.

Jx :tyK(A, w, v) = v(w)(x :ty)

Jop:tyK(A, w, v) = op:tyA(w)

Je0(e1, . . . , en)K(A, w, v) = Je0K(A, w, v)(Je1K(A, w, v), . . . , JenK(A, w, v))
Jλ x :ty. eK(A, w, v) = a 7→ JeK(A, w, v(x :ty 7→ a) for ai ∈ JtyiK(A, w)
J∀ x :ty. φK(A, w, v) = tt iff JφK(A, w, v(x :ty 7→ a)) = tt

for all ai ∈ JtyiK(A, w)
J∃ x :ty. φK(A, w, v) = tt iff JφK(A, w, v(x :ty 7→ a)) = tt

for some ai ∈ JtyiK(A, w)

A formula φ is valid in A for given w and v (written A, w, v |= φ) when the
semantics of φ evaluates to tt. An algebra is a model of an axiom φ (A |= φ) iff the
formula evaluates to true for all w and v.

In the following we are interested in valuations v that are used as (the changing)
states of programs, while A and w are fixed. In this case, these arguments are often
dropped and the semantics of an expression is written JeK(v). Similarly, v |= φ
abbreviates in this work that a formula is valid for a given valuation v.

2.2 Structured Specifications of Algebraic Data Types

Structured algebraic specifications are used to build a hierarchy of data type and
operation definitions. A specification contains a signature Σ and a set of axioms
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Ax: the former contains the type constructors and operation symbols (cf. Sec. 2.1)
that are available, the latter defines the properties of the operations. An algebra
A is a model of a specification iff it is a model for all its axioms Ax (written A |=
Ax). Specifications can be augmented by additional operations and can be combined
using the usual structuring operations like enrichment, union, and renaming. A
generic instantiation concept allows to replace an arbitrary subspecification P (the
“parameter”) of a generic specification G with an actual specification A using a
mapping. A mapping is a generalized morphism that renames types and operations
of P to types and expressions over A. For a correct instantiation, it must be proven
that the axioms of P instantiated by the mapping are theorems over A.

Algebraic data types are generated using constructor functions, a data type can
be either free or non-free. For a free data type tyf , the semantics Jtyf K(A, w) is given
directly by the semantics of all terms only containing constructor functions (called
constructor terms). Thus, the axiomatization of the type is evident and can typically
be performed automatically. On the other hand, non-free data types are specified by
giving suitable axioms to guarantee that a proper quotient type is defined.

A frequently used (polymorphic) free data type is list(′a) (free data types are
introduced with the keyword data).

data list(′a) = [] | . + . (. .head : ′a ; . .tail : list(′a))

A list list(′a) is defined using a constant constructor [] (representing the empty list)
and a non-constant infix constructor +. Non-empty lists consist of an head element
of generic type ′a and and a remaining tail list. These fields can be accessed via the
postfix selector functions .head and .tail, respectively. Similarly, update functions
(written e.g. x.head:= newhead) yield a list with one field replaced.

Selector (and update) functions are underspecified in the sense that they are not
given axioms for all arguments: [].head is left unspecified (as is [].tail). The
semantic function in a model then is still a total function, and [].head may be
any value, following the standard loose approach to semantics. However, for use in
programs, a domain is attached to the function, here given as λ x. x ̸= []. Calling
.head outside of its domain in a program (here: with [], where it is “undefined”)
will raise an exception, explained in detail in Sec. 2.3 and Sec. 2.4.

Other relevant list operations are # . : list(′a) → nat (length of a list, nat denotes
the type of natural numbers N), . ∈ . : ′a × list(′a) (a list contains an element), and
. ++ . : list(′a)× list(′a) → list(′a) (concatenation of two lists).

One of the most relevant non-free data types in this thesis is map(′a, ′b), represent-
ing a partial function from keys of type ′a to values of type ′b. Maps can be accessed
with . [ . ] : map(′a, ′b) × ′a → ′b for retrieving a value stored under a key (written
mixfix, e.g., mp[k]) or with . [ . ] : map(′a, ′b)× ′a× ′b → map(′a, ′b) for storing resp.
updating a key-value pair (e.g., mp[k , v]). The predicate . ∈ . : ′a×map(′a, ′b) is used
to determine if there is an entry for a key in the map. Similarly, . ∈v . :

′b×map(′a, ′b)
determines if at least one key-value pair with the requested value exists. The opera-
tion . -- . : map(′a, ′b)× ′a → map(′a, ′b) deletes the pair stored under a key from the
map.

Further commonly used non-free data types are (unordered) sets set(′a) and arrays
array(′a). Elements can be added to and removed from a set with the operations
. ++ . : set(′a) × ′a → set(′a) and . -- . : set(′a) × ′a → set(′a), respectively. The
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empty set is denoted by ∅, the typical set operators (∪,∩, . . .) are used as usual. An
array of fixed size is constructed with mkarray : nat → array(′a). Arrays are indexed
with natural numbers and zero-based, and elements can be read or updated using a
notation similar to maps (. [ . ] : array(′a)×nat → ′a and . [ . ] : array(′a)×nat× ′a →
array(′a)). The prefix operation # . is used uniformly to denote the cardinality of a
set, the length of an array, and the size of a map, i.e., the number of stored key-value
pairs.

Like for lists, some array and map operations are undefined for some arguments.
For example, the result of accessing an array location outside of its bounds (ar[n]
for #ar ≤ n) or looking up a value for an unallocated key (mp[k] for ¬ k ∈ mp)
is not specified. Therefore, a domain is also added to these operations to be able
to reason about the occurrence of runtime exceptions, as shown in the following
sections.

Together with basic types like nat, bool, string, . . ., the data types introduced in
this section form a fundamental collection of types for this thesis. This collection is
extended with more specific types in the respective chapters.

2.3 Imperative Programs with Exceptions

Software systems in this thesis are modeled using an imperative programming lan-
guage with recursive procedures, similar to the rules of Turbo ASMs [16].

Definition 5 (Syntax of Programs). The syntax of programs α, β is given by the
following grammar.

α := x := t parallel assignment
| α;β sequential composition
| if* ε then α else β conditional
| choose* x with φ in α ifnone β nondeterministic choice
| while* ε do α iteration
| proc#(t ; u; v) procedure call
| throw op exception throwing
| atomic ε {α} atomic block
| forall∥ x with φ do α weak-fair interleaving

Assignments x := t assign each variable xi the value of term ti simultaneously.
This allows for swaps of the form x , y := y , x in a single statement with no additional
variables necessary. Assignments to functions f := f [a 7→ b] are usually written
f [a] := b. A similar notation is used for assignment to locations of indexed data
types like arrays or maps, e.g., ar[n] := a and mp[k] := v . The program skip, that
does nothing, is used as an abbreviation for an empty assignment (skip ≡ ⟨⟩ := ⟨⟩).

Two programs α and β can be executed in order by sequential composition (;).
Conditionals evaluate the (quantifier-free) formula ε: if the evaluation yields tt, α is
executed, otherwise β is executed. choose* introduces new local variables x with a
random valuation that satisfies a condition φ, and executes α using these variables. If
there is no valuation satisfying φ, β is executed instead. When no restriction on the
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valuation of x is made, i.e., φ is true, the condition can be omitted. while*-loops
execute their body α as long as the loop condition ε is satisfied. The non-terminating
program while* true do skip is abbreviated by the program abort.

A procedure proc# can be called with input arguments t , reference arguments
u, and output arguments v by the statement proc#(t ; u; v), where the different
argument vectors are separated by semicolons. Input arguments may be arbitrary
terms, while only variables are allowed to be passed as reference and output argu-
ments. Typically, a procedure has a declaration of the form proc#(x ; y ; z ){α} with
disjoint formal parameters x , y , and z . When calling a procedure, the types of the
actual arguments of the call must match those of the formal parameters. The body
α may only use variables of the formal parameters or local variables (introduced
by choose*). Thus, a procedure call cannot implicitly manipulate any global state
unless it is passed as an argument and, consequently, syntactically visible to the
caller. Furthermore, α must set all output parameters z , and updates to the input
parameters x are invisible to the caller of proc#.

Program statements may raise an exception if a partial function (see Sec. 2.2) is
applied to arguments outside of its domain. Each exception is thus coupled with an
operation op. For example, the subtraction operation − on natural numbers throws
its exception in the program m := n0−n1 when n0 < n1. Additionally, the exception
of operation op can be thrown explicitly by the throw program.

The atomic and forall∥ constructs are only relevant when considering programs
in a concurrent context (cf. Chapter 7). An atomic statement (passively) waits for
the environment to make the guard ε true. While ε is false, the program is blocked.
A program where the environment never enables the guard is deadlocked. When the
test becomes true, the program α is executed in a single, indivisible step, i.e., there
is no interleaving of steps of other threads with α. The typical use of the construct is
to model locking, where a thread must wait until the lock is free before it atomically
acquires the lock. The program forall∥ interleaves instances of α for all values that
satisfy φ bound to local variables x . The steps of all instances are interleaved non-
deterministically, where the interleaving is only blocked if all instances are blocked.
It has a weak-fairness constraint: if an instance of α is enabled continuously (i.e., it
is never blocked), it will eventually execute a step, even if other instances are always
enabled. A typical use would be forall∥ n with n < m do α where the body α
uses variable n as the thread identifier.

Besides this base set of program constructs given in Def. 5, some abbreviations
are used. For both conditionals and choices, the β clauses are dropped if they are
irrelevant.

if* ε then α ≡ if* ε then α else skip
choose* x with φ in α ≡ choose* x with φ in α ifnone abort

We use the let* program to introduce new variables x initialized with values t and
the or* program for an indeterministic choice between two programs α and β. Both
constructs can be expressed using choose*.

let* x = t in α ≡ choose* y with y = t in α
y
x ifnone skip

α or* β ≡ choose bv in {if* bv then α else β}
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Evaluating the conditions of the constructs marked with an asterisk (*) does not
take an extra step, instead the evaluation takes place in one atomic step with α or β.
While this behavior helps specifying (concurrent) systems or modeling instructions
like CAS (compare-and-swap), it generally does not match the expected behavior of
common executable programming languages. Therefore, additional constructs (if,
choose, while, let, or) are introduced as abbreviations for the right hand sides of
the following equations.

if ε then α else β ≡ if* ε then {skip;α} else {skip;β}
choose x with φ in α ifnone β ≡ choose* x with φ in {skip;α}

ifnone {skip;β}
while ε do α ≡ {while* ε do { skip;α}}; skip
let x = t in α ≡ let* x = t in {skip;α}

α or β ≡ {skip;α} or* {skip;β}

The semantics of programs JαK is defined as a set of finite or infinite state se-
quences called intervals, following the terminology of interval temporal logic (ITL)
[84]. Formally, an interval is of the form

I = (I(0), I(0)b, I
′(0), I(1), I(1)b, I

′(1), I(2), . . . , ζ)

where every I(k) and I ′(k) are valuations (states) which map variables to values.
The transitions from I(k) to I ′(k) are system transitions and the transitions from
I ′(k) to I(k + 1) from a primed to the subsequent unprimed state are environment
transitions. Hence, intervals alternate between system and environment transitions,
similar to the reactive sequence semantics in [31].

The length of an interval #I is defined as the number of system transitions (which
is equal to the number of environment transitions) if the interval is finite, otherwise
#I = ∞. Thus, an interval with length #I has 2 ·#I + 1 states, and notably, the
smallest interval with #I = 0 consists of only a single state. The suffix of an interval
after n system and environment steps is denoted I|[n..]. I.first selects the first state
I(0) of an interval, the last state I ′(n) of a finite interval I = (I(0), . . . , I ′(n), ζ) is
written as I.last .

To model passive waiting, the boolean flag I(k)b denotes whether the program
transition from I(k) to I ′(k) is blocked, i.e., the program waits to continue its execu-
tion. In this case, when I(k)b = tt, then I ′(k) = I(k).

To model exceptions when running a program, the final state of a finite run
carries information ζ whether an exception has occurred. This may be either ⊤ to
indicate regular termination without exception or the information that an operation
op ∈ Op has thrown its exception. To have uniform notation, it is assumed that
ζ = ∞ for infinite (non-terminating) runs, so ζ ∈ Op ∪ {⊤,∞}. The extraction of
this information from an interval I is written ζ(I).

Two intervals I0 and I1 can be concatenated, written I0 o
9I1, if they agree on their

last and first states, respectively, i.e., if I0.last = I1.first . If I0 is infinite or ends
with an exception (ζ(I0) ∈ Op ∪ {∞}), I0 o

9I1 is equal to I0. If ζ(I0) = ⊤, the
concatenated interval I0 o

9I1 contains the duplicate state I0.last/I1.first only once.
The semantics of programs is compositional, i.e., the semantics of complex pro-

grams can be constructed by combining intervals that are members of the semantics
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of its parts. This has been explained in detail for programs without exceptions in
[110], Pfähler added the atomic construct to the semantics in his thesis [96]. Def. 6
extends the semantics to include exceptions and the throw program.

Definition 6 (Semantics of Programs). The semantics of a program I |= α is given
by the greatest fixed point of the following derivation system.

I |= throw op
iff I(0) |= ωop(t)

I |= x := t (2.1)

iff #I = 1, I(0)b = ff , I(0) |= δ(t), ζ(I) = ⊤,
and I ′(0) = I(0){x 7→ JtK(I(0))}I |= x := t (2.2)

I0 |= α I1 |= β
iff I = I0 o

9I1
I |= α;β (2.3)

I |= throw op
iff I(0) |= ωop(ε)

I |= if* ε then α else β (2.4)

I |= α
iff I(0) |= δ(ε) and I(0) |= ε

I |= if* ε then α else β (2.5)

I |= β
iff I(0) |= δ(ε) and I(0) ̸|= ε

I |= if* ε then α else β (2.6)

I |= throw op
iff I(0) |= ∃ x . ωop(φ)

I |= choose* x with φ in α ifnone β (2.7)

I{x 7→ σ} |= α
iff I(0) |= ∀ x . δ(φ)

and I{x 7→ σ}(0) |= φI |= choose* x with φ in α ifnone β (2.8)

I |= β
iff I(0) |= ∀ x . δ(φ)

and I(0) |= ∀ x . ¬ φI |= choose* x with φ in α ifnone β (2.9)

I |= throw op
iff I(0) |= ωop(ε)

I |= while* ε do α (2.10)

iff #I = 0, I(0) |= δ(ε), ζ(I) = ⊤,
and I(0) ̸|= εI |= while* ε do α (2.11)

I |= α;while* ε do α
iff I(0) |= δ(ε) and I(0) |= ε

I |= while* ε do α (2.12)
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I |= {let* x = t in α{y 7→ u}}; v := z
for

procedure declaration
proc#(x ; y ; z ){α}I |= proc#(t ; u; v) (2.13)

iff #I = 1, I(0)b = ff , I ′(0) = I(0),
and ζ(I) = opI |= throw op (2.14)

I|[1..] |= atomic ε {α}
iff I(0) ̸|= ε and I(0)b = tt

I |= atomic ε {α} (2.15)

I0 |= α
iff

I(0) |= ε, I(0)b = ff , #I = 1, I(0) = I0(0),
I ′(0) = I ′0(#I0 − 1), ζ(I) = ζ(I0) ̸= ∞,
and I0 with empty environmentI |= atomic ε {α} (2.16)

I0 |= α I |= α
iff I(0) |= ε, I(0) = I0(0), ζ(I0) = ∞,

and I0 with empty environmentI |= atomic ε {α} (2.17)

I |= throw op
iff I(0) |= ∃ x . ωop(φ)

I |= forall∥ x with φ do α (2.18)∧
a ∈Θ

Ia |= let* x = a in α

iff

I(0) |= ∀ x . δ(φ),
Θ = {a | I(0){x 7→ a} |= φ},
and I ∈

f

a ∈Θ

IaI |= forall∥ x with φ do α (2.19)

The semantics of programs are non-atomic, i.e., each update or condition test is
executed in a separate step. I |= α means that the interval I is a possible execution
of the program α. I |= α is derived by a recursive derivation system using the greatest
fixed point in order to derive infinite intervals. These are necessary to capture non-
terminating runs of while-loops or recursive calls.

Intervals complying to assignments must be of length 1, so all updates happen
within one step. A parallel assignment evaluates all terms t in the first state I(0)
of the interval and overwrites the values of x in the state I ′(0) with the resulting
values (rule 2.2). However, this rule only applies if the evaluation of t is defined
I(0), i.e., all partial operations are applied to arguments within their respective
domains. Therefore, I(0) |= δ(t) must hold for the applicability of rule 2.2, where the
definedness condition δ(e) describes that an expression e is defined (the definedness
condition for a vector of expressions e = (e1, . . . , en) is given by the conjunction of
all conditions δ(ei)). For example, the term ar[n, a][m], that updates a location n
and then reads a location m of an array ar (see Sec. 2.2), produces the definedness
condition

δ(ar[n, a][m]) ≡ n < #ar ∧ m < #ar[n, a]

Conversely, rule 2.1 applies if the evaluation of t yields an exception. Then the
exception condition ωop(t) of some operation op must hold in I(0). The exception
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conditions for all partial operations are calculated following a bottom-up approach:
the exception is thrown if and only if an application of op violates the domain of
op, and the evaluation of its arguments does not throw an exception. For the term
above, the exception conditions of the two array operations are

ω[ ]:array(′a)×nat×′a→array(′a)(ar[n, a][m]) ≡ #ar ≤ n

ω[ ]:array(′a)×nat→′a(ar[n, a][m]) ≡ n < #ar ∧ #ar[n, a] ≤ #m

For all other operations, the exception condition is false. The exception conditions
of vectors e are calculated using the standard left-to-right strategy for evaluating
arguments and a shortcut semantics for boolean connectives (like Java and Scala).
So an ej may only throw an exception if δ(ei) holds for all 0 < i < j. This guarantees
the definedness of expressions like x ̸= [] ∧ x.head = . . ., which are often used
as conditions in programs, while switching the conjunction would throw the .head
exception when x = []. Another typical example would be the test y ̸= 0 ∧ x/y = 1,
where the order in the conjunction avoids throwing the division exception for y = 0.

Rule 2.1 reduces the interval of an assignment with raised exception to an interval
of the throw program (rule 2.14). Throwing an op takes one step but does not alter
the state, but the corresponding interval must signal the occurrence of the exception
(ζ(I) = op).

Conditionals, choices, and iterations evaluate a condition at the beginning of its
first step. These evaluations can also raise exceptions similar to evaluating terms
in assignments. Hence, there are also specific rules for this case (rules 2.4, 2.7, and
2.10). Assuming that the nondeterministic choice construct selects a valuation for
x satisfying φ by trying all possible values, rule 2.7 is applicable if there is some
valuation for which an ωop(φ) is satisfied (as choose could try this valuation before
finding a suitable valuation). Accordingly, rules 2.8 and 2.9 are only applicable if φ
is defined for all possible valuations of x .

Note that the condition evaluation of conditionals, choices, and iterations does
not take an extra step if they are defined: the conditions are evaluated in I(0), and
the complete intervals I must correlate to α or β, respectively. Rule 2.8 requires a
sequence of values σ = (a0, a1, a2, . . .) with the length 2 ·#I + 1, where the length
and types of each ai must correspond to x , and φ must be valid for I(0){x 7→ a0}.
σ fixes the values of x for each step of the execution of α: I{x 7→ σ} denotes the
substitution of x in each state of I with the corresponding values of σ.

If the condition ε of a while-loop holds in the first state of the interval, the loop
is unfolded once: α is executed first, and then (if α terminates) the loop is executed
again (rule 2.12). As soon as ε does not hold anymore, the loop is exited without a
step (rule 2.11). So effectively, I = I0 o

9I1 o
9 . . . is a concatenation of intervals Ii |= α

with Ii.first |= ε, and either #I = ∞ or I.last |= ¬ ε.
A procedure call unfolds the procedure declaration, and thus the semantics of a

call reduces to the semantics of the procedure body α. The input arguments t are
bound locally to the formal input parameters x so that updates to x in the body
do not have any side effects on t . The reference parameters y are substituted with
the arguments u in α, so updates to them are directly visible to the environment
(and vice versa, updates by the environment to u are also visible to the system).
An assignment sets the values of the output arguments v after the body has been
executed entirely. Thus, if α does not terminate, v is never set. Note also that the
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assignment of the outputs takes an extra step while the binding of the inputs does
not.

There are two main rules for the atomic construct: the program is blocked (and
thus, I ′(0) = I(0)) if the guard ε does not hold in I(0) (rule 2.15), or the guard holds
and α is executed in one step, i.e., #I = 1 (rule 2.16). For the latter case, there must
be an interval I0 |= α whose first and last states match I(0) and I ′(0), respectively.
I0 has an empty environment : all environment steps do not modify the state, i.e.,
I0(k+1) = I ′0(k). While I0 and I may end with an exception, atomic programs are
not designed for non-terminating programs α, and hence, rule 2.16 does not apply
to infinite intervals. Instead, the construct is considered misused if α has a non-
terminating run in a initial state satisfying ε. In this case, rule 2.17 allows arbitrary
runs of α to prevent arbitrary behavior for non-terminating programs. It is worth
mentioning that the guards of atomic blocks are not supposed to throw exceptions
as the construct is used for specification purposes only. Thus, there is no associated
executable program construct, and as a result, ε is never actually evaluated.

The semantics of forall∥ reduces to weak-fair interleaving of intervals (cf. [110]).
For all possible value vectors a, an interval Ia is part of the interleaving: Ia is a
possible execution of α with x bound to a in the initial state. Similar to choose, the
rule 2.19 is only applicable if φ is defined for all possible values of x . Otherwise, an
exception is thrown (rule 2.18). An interleaved interval ends with an exception if one
Ia does. Unlike in programming languages where exceptions are thread-local, excep-
tions are therefore global and abort the whole interleaved program. If necessary, the
global effect can be avoided by using exception handlers in the interleaved programs.
However, in this thesis, exception handlers are not relevant since the programs are
designed not to throw any exception, and thus, the absence of exceptions is proved
for all programs.

2.4 Weakest Precondition Calculus

The proof system underlying this thesis is a sequent-based calculus [49, 50]. A
sequent Γ ⊢ ∆ abbreviates the formula ∀x .

∧
Γ →

∨
∆ where Γ (the antecedent)

and ∆ (the succedent) are lists of formulas and x is the list of all free variables in ∆
and Γ. Intuitively, Γ ⊢ ∆ states that assuming all formulas of Γ, one of the formulas
of ∆ must hold. The rules of the calculus follow the structure of the formulas and
are applied backward to reduce the conclusion to simpler premises until they can be
closed using axioms. As an example, consider the following rules for disjunctions:
when assuming a disjunction of φ and ψ, the proposition has to be proven for the
cases that either φ or ψ holds; to prove that a disjunction of φ and ψ holds, one has
to prove either φ or ψ.

Γ, φ ⊢ ∆ Γ, ψ ⊢ ∆

Γ, φ ∨ ψ ⊢ ∆

Γ ⊢ φ,ψ,∆
Γ ⊢ φ ∨ ψ,∆

Reasoning about sequential programs is done with a weakest-precondition cal-
culus [33], borrowing notation from Dynamic Logic (DL) [58, 56] including its two
standard modalities: the formula [α]φ (box ) denotes that for every terminating run
the final state must satisfy φ, corresponding to the weakest liberal precondition
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wlp(α,φ); the formula ⟨α⟩φ (diamond) guarantees that there is a terminating exe-
cution of α that establishes φ. Finally, the formula ⟨|α|⟩φ (strong diamond) states
that the program α is guaranteed to terminate and that all final states reached sat-
isfy φ, which corresponds to the weakest precondition wp(α,φ). For deterministic
programs the two formulas ⟨α⟩φ and ⟨|α|⟩φ are equivalent. As a sequent, partial
and total correctness of α with respect to pre- and postconditions pre and post are
written as pre ⊢ [α] post and pre ⊢ ⟨|α|⟩ post .

To handle exceptions the modalities are extended by exception specifications

ξ ≡ op1 :: φ1, . . . , opk :: φk, default :: φdefault

which yields program formulas of the form [α](φ ; ξ), ⟨α⟩(φ ; ξ), and ⟨|α|⟩ (φ ; ξ),
respectively. The exception specifications allow to give additional postconditions
(called exception postconditions) for executions that terminate with a specific ex-
ception, e.g., φ1 must hold if α terminates with exception op1. Additionally, an
obligatory generic exception postcondition φdefault handles executions of α that ter-
minate with an exception op /∈ op1, . . . , opk. For exceptions specifications ξ, the
exception postcondition for an op is denoted ξ(op), yielding either φξ of a matching
op :: φξ ∈ ξ or φdefault . If one wants to show the absence of exceptions, the excep-
tion specifications ξ ≡ default :: false can be chosen, which is the default and is
typically omitted from program formulas.

Given the interval semantics of programs in the previous section, the semantics
of sequential program formulas can be stated as follows.

v |= [α] (φ ; ξ) iff ∀ I0. I0 has empty environment , I0(0) = v, ζ(I0) ̸= ∞,

I0 |= α implies I0.last |= φ iff ζ(I0) = ⊤
or I0.last |= ξ(op) iff ζ(I0) = op

v |= ⟨α⟩ (φ ; ξ) iff ∃ I0. I0 has empty environment , I0(0) = v, ζ(I0) ̸= ∞,

I0 |= α, and I0.last |= φ iff ζ(I0) = ⊤
or I0.last |= ξ(op) iff ζ(I0) = op

v |= ⟨|α|⟩ (φ ; ξ) iff ∀ I0. I0 has empty environment , I0(0) = v, I0 |= α

implies ζ(I0) ̸= ∞
and I0.last |= φ iff ζ(I0) = ⊤

or I0.last |= ξ(op) iff ζ(I0) = op

Note that (sequential) program formulas are evaluated over a valuation v like the
expressions defined in Sec. 2.1. In Chapter 7, concurrent program formulas will be
introduced that are evaluated over intervals instead of single states. However, the
semantics given here can simply be lifted to intervals I by using I(0) as the valuation
v.

The main proof technique used in this thesis for verifying program correctness
is symbolic execution. Basically, a symbolic execution proof step executes the first
statement of the program and calculates the strongest postconditions from the pre-
conditions. When the symbolic execution of the program is completed, the proof of
the postcondition is performed purely in predicate logic. Similar to rules for logical
connectives like the ones shown for disjunctions above, the calculus contains rules
for all program constructs given in Def. 5.
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Γ
x ′
x , δ(t

x ′
x ), x = t

x ′
x ⊢ ⟨|α|⟩ (φ ; ξ), ∆

x ′
x where x ′ fresh Exc(Γ,∆, t , φ, ξ)

Γ ⊢ ⟨|x := t ;α|⟩ (φ ; ξ), ∆

Figure 2.1: Calculus rule for assignments.

Fig. 2.1 shows exemplarily the rule for parallel assignments for total correctness
(the rule is identical for the other modalities). The rule uses a vector x ′ of fresh
variables to store the values of x before the assignment. The assignment is removed
and instead the formula x = t

x ′
x is added to the antecedent (tx

′
x denotes the renaming

of x to x ′ in t). Note that renaming is possible on all program formulas, while
substitution of x by general terms t in ⟨|α|⟩φ is not possible and just yields ⟨|x :=
t ;α|⟩φ. Only when the assignment is the last statement of the program and α is
missing, the standard premise of Hoare calculus, which replaces the program formula
in the premise with φt

x , can be used.
Since the expressions t can contain partial operations, the evaluation of t could

raise exceptions. Therefore, exception premises Exc(Γ,∆, t , φ, ξ) need to be shown
for all potential violations of δ(t), i.e., additional premises for all partial operations
op1, . . . , opm in t are added.

Exc(Γ,∆, t , φ, ξ) ≡
(1) Γ ⊢ ωop1(t) → ⟨|throw op1|⟩ (φ; ξ), ∆
...

...
...

(m) Γ ⊢ ωopm(t) → ⟨|throw opm|⟩ (φ; ξ), ∆

For example, the assignment b := ar[n, a][m] would yield the following two excep-
tion premises.

Exc(Γ,∆, ar[n, a][m], φ, ξ) ≡
(1) Γ ⊢ #ar ≤ n → ⟨|throw [ ]|⟩ (φ; ξ), ∆
(2) Γ ⊢ n < #ar ∧ #ar[n, a] ≤ #m → ⟨|throw [ ]|⟩ (φ; ξ), ∆

Recall that the operation symbol [ ] is overloaded for updating and retrieving a
value in an array ([ ] : array(′a)× nat× ′a → array(′a) vs. [ ] : array(′a)× nat → ′a).
According to this, premise (1) throws the former operation while premise (2) throws
the latter.

The rules for throw are quite simple. If an operation is thrown for which a
specific exception specification op :: φξ is given in ξ, the program formula is discarded
and replaced by the exception postcondition φξ (Fig. 2.2 on the left). If there is
no exception specification in ξ for the thrown operation op, the default exception
postcondition φdefault must hold (Fig. 2.2 on the right).

The calculus rules for the remaining sequential program constructs function as
expected by following the structure of the program, extended with exception premises
where necessary. For example, the if rules produce premises for the then- and else-
branches, as well as exception premises for evaluating the condition ε. Sequential



22 CHAPTER 2. THEORETICAL BACKGROUND

Γ ⊢ φξ, ∆

Γ ⊢ ⟨|throw op|⟩ (φ ; ξ), ∆

Γ ⊢ φdefault, ∆

Γ ⊢ ⟨|throw op|⟩ (φ ; ξ), ∆

Figure 2.2: Calculus rules for throw with op :: φ ∈ ξ (left) and op /∈ ξ (right).

(1) Γ ⊢ inv , ∆ (2) Exc(inv , ⟨⟩, ε, φ, ξ) (3) inv , ¬ ε, δ(ε) ⊢ φ
(4) inv , ε, δ(ε), z = t ⊢ ⟨|α|⟩ (inv ∧ t≪ z ; ξ)

Γ ⊢ ⟨|while ε do α|⟩ (φ ; ξ), ∆

Figure 2.3: Invariant rule for while loops.

composition is resolved by exploiting that the postcondition of a program formula
can again be a program formula, e.g., ⟨|α|⟩ (⟨|β|⟩φ).

Proofs about recursive procedures are typically done using (well-founded) induc-
tion. For while-loops, typically the invariant rule shown in Fig. 2.3 is used, though
the more general induction rule occasionally leads to simpler proofs.

The rule requires an invariant formula inv as an input from the user from which
multiple premises need to be proven: the invariant must hold at the beginning of the
loop (1), inv must be stable over the loop body α (4), and inv must be strong enough
to prove the postcondition φ after the loop was exited (3). Similar to the assignment
rule, exception premises are generated for the loop condition ε (2). These cannot
include Γ or ∆ as ε is evaluated again after each iteration. Instead, the invariant
inv can be assumed as well as δ(ε) for premises (3) and (4). The figure shows the
rule for total correctness which requires to give a variant t that decreases with every
iteration of the loop (t ≪ z in premise (4)). The rule functions analogously for
diamond formulas, for box formulas (partial correctness) no decreasing variant is
necessary.

When reasoning about sequential programs using the wp-calculus presented in
this section, the asterisk (*) program constructs are interchangeable with their non-
asterisk counterparts. For example, the rule given in Fig. 2.3 is identical for while*
programs. However, the rules for the two versions of programs will differ when
reasoning about programs in a concurrent context (see Chapter 7).

2.5 Heaps & Separation Logic

Most programs and components presented in this thesis work on algebraic represen-
tations of standard data structures. Correctness properties are proven over these
algebraic data types, assuming that a straightforward translation to correct imple-
mentations is used when generating code from the models. For example, the algebraic
lists presented in Sec. 2.2 can be realized as linked lists in C.

On the other hand, there are also more complex data structures whose correct
implementation is non-trivial since they are primarily performance-oriented. These
include, for example, red-black trees, for which a verified implementation is presented
in Sec. 3.2. The algorithms necessary for accessing the data structures are typically
destructive and involve explicit manipulation of heap locations and pointers. Thus,
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verifying programs is usually significantly more difficult when pointer structures are
used instead of algebraic data types, as aspects such as memory management or
aliasing have to be considered.

Separation Logic (SL) [102] targets the verification of such pointer-based pro-
grams. It is best used when there is little aliasing as its basic idea is to separate
the heap into disjoint parts. When a data structure is updated, SL facilitates local
reasoning about the modified part of the heap while the remaining (unaltered) parts
of the heap can be neglected. The central operator used in SL is the separating
conjunction: the formula φ * ψ denotes that the heap can be split into two disjoint
parts, i.e., two parts with disjoint domains of references, where one part satisfies the
property φ, and the other part satisfies ψ. As a core rule, the frame rule enables
local reasoning by focusing on the parts of the heap accessed by a program α (here
given in the original notation following the notation of Hoare triples).

{φ} α {ψ}
{φ * χ} α {ψ * χ}

Most verification tools supporting Separation Logic, like VeriFast [68] or VerCors
[12], integrate the heap as part of the semantics of SL formulas. However, in this
thesis, heaps are specified as an algebraic data type, based on which SL formulas are
axiomatized. This explicit specification is necessary since the used logic requires all
parameters of procedures to be explicit. Hence, when reasoning about pointer-based
programs, the heap must be an explicit parameter of the program as well.

Heaps are defined as polymorphic non-free data type heap(′a). Similar to maps
(cf. Sec. 2.2), a heap can be considered as a partial function mapping references
of type ref to objects of a generic type ′a. But unlike for maps, the allocation of
references is explicit, and the reference type contains a distinguished element null
that is never allocated (representing the null pointer). The heap(′a) data type is
generated by the constant ∅ representing the empty heap, by allocating an new
reference with . ++ . : heap(′a) × ref → heap(′a) (written h ++ r), or by updating
an allocated location to store an object with . [ . ] : heap(′a) × ref × ′a → heap(′a)
(written h[r , obj]). A predicate . ∈ . : ref×heap(′a) is defined for checking whether
a reference is allocated in a heap, and a function . [ . ] : heap(′a)× ref → ′a is used
for looking up objects in the heap (this corresponds to dereferencing a pointer).
References can also be deallocated by the function . -- . : heap(′a)× ref → heap(′a).

The constructor functions as well as lookup and deallocation are declared as
partial functions in order to specify valid accesses to the heap. Hence, the functions
are augmented with respective domains: accesses to the heap with the null reference
are always undefined (r ̸= null); allocation is only allowed for new references (¬ r ∈
h); lookups, updates, and deallocations require the references to be allocated (r ∈ h).

SL formulas are encoded using heap predicates hP : heap(′a) → bool. A heap
predicate describes the structure of a heap h. At its simplest, h is the empty heap
emp:

⊢ emp(h) ↔ h = ∅

The maplet r 7→ obj describes a singleton heap, containing only one reference r
mapping to an object obj . It is defined as a higher-order function of type (ref× ′a) →
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heap(′a) → bool:

⊢ (r 7→ obj )(h) ↔ h = (∅ ++ r)[r , obj ] ∧ r ̸= null

More complex heaps can be described using the separating conjunction hP0 * hP1

asserting that the heap consists of two disjoint parts, one satisfying hP0 and one
satisfying hP1 , respectively. Since it connects two heap predicates, it is defined as a
function with type (heap(′a) → bool)× (heap(′a) → bool) → (heap(′a) → bool):

⊢ (hP0 * hP1 )(h) ↔ ∃ h0, h1. h0 ⊥ h1 ∧ h = h0 ∪ h1 ∧ hP0 (h0) ∧ hP1 (h1)

Analogously, the separating implication (or magic wand) is defined:

⊢ (hP0 -* hP1 )(h) ↔ ∀ h0. h0 ⊥ h ∧ hP0 (h0) → hP1 (h0 ∪ h)

Common non-sharing pointer data structures like singly-/doubly-linked lists or bi-
nary trees can be specified using these basic SL definitions. With straightforward
abstractions to their algebraic counterparts, the functional correctness (incl. memory
safety) of algorithms using such pointer structures can be verified with significantly
reduced effort.



Chapter 3
Modular Construction of Sequential
Systems

Summary In order to facilitate the formal development of large-scale software
systems, a concept for modularization is required. This chapter introduces such
a concept in the form of state-based, hierarchical components. A hierarchy of
components can be created by connecting them via subcomponent and refinement
relationships. The semantics of components are defined in terms of intervals and
histories, and a compositional variant of data refinement is given for proving the
correctness of components by changing their internal data representation. The
methodology is extended by a state-based approach for reasoning about crash-
safety.
This chapter also presents a non-trivial application of the approach: an efficient, de-
structive implementation of red-black trees (a form of self-balancing binary search
trees). Correctness of the implementation is shown by modularizing the implemen-
tation into multiple components and proving two data refinements, starting from an
abstract specification of sets, over an algebraic representation of trees, to a heap-
based pointer implementation. Due to this modularization, high-level red-black
tree properties could be proven solely on algebraic trees, while complex reasoning
about pointer structures using Separation Logic could be limited to fine-grained
operations on the tree.

Contents
3.1 Hierarchical Components & Data Refinement . 25
3.2 Verification of Destructive Red-Black Trees . . 43

Publications Different aspects of the formalisms presented in this chapter were
published in [97, 13, 15, 107]. These formalisms are largely based on the work of
Ernst [38] and Pfähler [96]. The verified version of red-black trees described in this
chapter is based on the submitted paper [106].

3.1 Hierarchical Components & Data Refinement

For the formal development of complex software systems, a concept for modular-
ization is necessary. This section presents such a concept: state-based components
similar to abstract data types [57, 32] are extended with specifications of the effect

25
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of power failures (crashes) and connected by data refinements and subcomponent
relationships.

Hierarchical, Crash-Aware Components

Def. 7 gives the full-featured version of components, though not all features are rel-
evant for every system, module, or library. The components presented in this thesis
will incrementally use more and more parts of the definition: Sec. 3.2 describes a
library for red-black trees, consisting of sequential, in-memory components which do
not require specifying crash behavior; Chapter 4 shows some components of the upper
layers of Flashix in their initial form, i.e., without any caches and purely sequential,
but with actual crash behavior since the components are built upon persistent stor-
age; in Chapter 6, caches are added to the Flashix component hierarchy, and thus,
their effects on the crash behavior become relevant; finally, Chapter 7 introduces
concurrent executions within the component hierarchy, resulting from executions of
internal operations or concurrent calls to the file system interface.

Definition 7 (Components). A component C = (St, Init, (Opj )j∈J , (IOpk )k∈K , Sync
Crash, Rec, (Cl )l∈L) consists of a set of states St, a set of initial states Init ⊆ St,
interface operations Opj with index set J , internal operations IOpk with index set
K, a set of synchronized states Sync with Init ⊆ Sync ⊆ St, a crash relation
Crash ⊆ St× St with Sync ⊆ dom(Crash), a recover relation Rec ⊆ St× Sync, and
a set of subcomponents Cl with index set L.

The state St of a component is given in the form of a duplicate-free sequence st
of typed state variables.

state st1 : ty1 . . . stn : tyn

The state is encapsulated, so clients of a component cannot access its state variables
directly. Instead, state variables can only be read or updated via the operations of a
component. Operations are specified with contracts using the operational approach
of ASMs [16].

Definition 8 (Operations of Components). The operations of a component are given
as extended procedure declarations. The declarations of interface operations Opj and
internal operations IOpk over the state variables st have the form

opj#(x ; y , st ; z ) iopk#(; st)

interface internal

precondition pre j (x , y , st) guard guardk (st)

{ α } { α }

The state variables are treated as reference parameters in both types of declarations,
interface operations may have additional input parameters x , reference parameters y,
and output parameters z . Interface operations have a precondition given as a formula
pre j signalizing when it is allowed to call the operation. Similarly, internal operations
have a guard formula guardk determining when the execution of the operation is
triggered.
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Recall that the bodies α of the operation declarations in Def. 8 are only allowed
to use the variables of their parameters and local variables. Thus, internal opera-
tions work only on the component’s state and do not accept any inputs or produce
outputs. Furthermore, they cannot be called explicitly; instead, an internal oper-
ation is assumed to be triggered randomly whenever the state satisfies its guards.
Internal operations are typically used to perform administrative tasks, which need to
be performed regularly to keep the system usable but should not need to be explic-
itly triggered by the user. For example, a flash file system requires performing wear
leveling to extend the lifetime of the flash memory and garbage collection to reclaim
storage space filled with outdated data. Both precondition and guard clauses are
omitted if there are no restrictions, i.e., pre j = true or guardk = true, respectively.

To enable code reuse, parts of the body of interface or internal operations may be
outsourced to auxiliary operations (they will be tagged with the auxiliary keyword
in this work). These operations are not part of the component’s interface but can
only be called from other operations of the component. Hence, they are not listed
in Def. 8, but they are often used when modeling components in practice.

Instead of defining the set of initial states Init directly, a initialization procedure
is used. The procedure must be called before any other operation of the component
is called and must not interleave with any other operation execution.

Definition 9 (Initialization of Components). The initial states Init of a component
are produced by an initialization operation, given as procedure declaration.

init#(x ; ; st , z )

initialization if φ(st , z )

{ α }

An initialization procedure may have input parameters x determining the initial state
and output parameters z that indicate whether initialization was successful or has
failed. A restriction condition φ specifies when an execution of the initialization op-
eration has been successful. Init consists of all possible final values of st of successful
init# executions.

Note that, compared to the declarations of Def. 8, the state variables st are not
added as reference parameters but as output parameters to init#. Consequently, α
cannot access any old values of st unless it has initialized them before.

Although initialization operations often do not require additional arguments, it
is useful to parameterize the initialization for some systems. For example, when
initializing a file system, i.e., when formatting a partition, one might want to define
the size of pages used in the Virtual File System Switch. This information is then
used to create the core administration data structures and kept for the whole run of
the system. In order to take into account that the initialization may also fail, output
parameters can be used to signalize such failures to the user. This can be when
invalid initialization parameters were given, e.g., a page size of 0, or when hardware
errors occur, e.g., the underlying storage refuses to write a page. Formally, successful
executions are specified by the restriction condition φ based on the output or the
produced component state. From a practical point of view, the system user has to
retry initializing the system before using it if φ is false after the first attempt. In the
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context of verification, invariant and refinement properties need only to be shown if
φ is true, as we will see in the corresponding proof obligations later in this section.

During or in between the execution of operations, power cuts can occur at any mo-
ment. Such crashes have an impact on components: running operations are aborted
instantly and state stored in volatile memory is lost. Sync and Crash specify the
effects on the state of a component; syntactically, they are given in the form of
formulas over the state variables st and the back-primed state variables st ‵.

synchronized predicate synced(st)

crash predicate crash(st ‵, st)

The synchronized predicate characterizes synchronized states in which crashes have
(nearly) no effects on the system’s state, in the sense that almost all relevant data
can be reconstructed from persistent storage. In an unsynchronized state, a crash
has intuitively the effect of jumping back to the last synchronized state by reverting
whole operations. This crash behavior is usually present when an underlying buffer
cache is used, as we will see in Chapter 6. Without such caches, true is typically used
as synchronized predicate, stating that crashes cannot retract completed operations.
In this case, the explicit declaration of the predicate is omitted.

Definition 10 (Retracting Components). A component C is retracting if its syn-
chronized states are a proper subset of its state space, i.e., Sync ⊂ St. Otherwise,
when Sync = St, C is non-retracting.

The crash predicate specifies residual effects of a crash, i.e., the effects a crash has
on synchronized states. The predicate describes a relation between a state before the
crash, denoted by st ‵, and a potential crashed state st . Note that the crash predicate
can be partial if the synchronized predicate is not true. As a result, states in which
the effects of a crash are hard to express can be left aside when reasoning about
correct crash behavior.

On the other hand, Crash also determines whether parts of St are kept in volatile
memory (these parts are called RAM state in the following). Intuitively, the values
of volatile state variables are lost during a crash, so Crash must not restrict the
volatile parts of St.

Definition 11 (RAM State and RAM Components). A state variable sti of a com-
ponent C is part of the RAM state of C iff

∀ st , st ′. crash(st , st ′) → ∀ sti
′′. crash(st , st1

′, . . . , sti−1
′, sti

′′, sti+1
′, . . . , stn

′)

C is a RAM component iff all its state variables st are part of its RAM state.

It follows directly from the definition that the crash predicate of a RAM compo-
nent is equivalent to true. Again, we use this as the default case and hence omit
the declaration of the crash predicate for RAM components.

Power failures can result in inconsistent states as operations could be interrupted
in the middle of their executions. A component can attempt to restore a consistent
state after a crash with a recovery Rec to handle these situations. Furthermore, the
recovery is responsible for re-initializing the RAM state of the component. Similar
to initialization, a recovery procedure is used to define the recovery mechanism.
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Definition 12 (Recovery of Components). The recovery relation Rec of a compo-
nent is defined by the possible executions of a recovery operation, given as procedure
declaration.

recover#(x ; st ; z )

recovery if φ(st , z )

{ α }

A recovery procedure may have input parameters x specifying runtime options and
output parameters z indicating whether recovery was successful or has failed. A
restriction condition φ specifies when an execution of the recovery operation has been
successful. Rec consists of all possible pairs of initial an final values of st of successful
recover# executions.

An alternative to the relational approach of Rec would be to have recovery as a
distinguished operation of the component (similarly, this could be done for Init).
However, recovery is only executed in a sequential context, so there is no need to
consider executions of recovery in terms of intervals as we do for regular operations
of components (see Def. 24 and following later this section).

The declarations of recovery and initialization procedures are alike in many ways.
As recovery can also fail, e.g., due to hardware errors, output parameters can be
used to signal so, and a restriction condition is used to specify successful executions.
However, unlike initialization procedures, the state is passed as a reference parameter
since recovery typically tries to keep as much data from the crashed state as possi-
ble. In the context of file systems, the recovery operation corresponds to mounting a
initialized file system. This file system could have been unmounted unsafely before,
potentially due to a power failure, and so the mounting mechanism tries to recon-
struct the version of the file system just before the crash, for example, by replaying
a log. The input parameters of recovery operations usually correspond to runtime
options of the system, e.g., whether a file system should be operated in synchronous
or asynchronous mode.

C Cl

Figure 3.1: Component C
with a subcomponent Cl .

A component C can use one or more components Cl as
subcomponents, written C(Cl ). C is then called a client of
Cl . Visually, such a relation is depicted borrowing nota-
tion from UML component diagrams [104, 114], as shown
in Fig. 3.1: the socket ( ) depicts a required interface
of component C and the lollipop ( ) depicts the cor-
responding provided interface of Cl . A subcomponent can then again be a client of
other components, which can also have subcomponents, and so on. However, a com-
ponent cannot be used by multiple clients simultaneously, and no cyclic dependencies
are allowed either, so the resulting structure is of a tree-like shape. Note furthermore
that a component structure is static, i.e., it is established before the initialization of
a system and cannot be altered dynamically during the system’s runtime, which is
a major distinction to object structures in object-oriented programming.

In order to distinguish between elements of multiple (potentially connected) com-
ponents, we mark parts of a component C with a superscript _C, e.g., the state
variables of C are denoted by stC.
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The combined state space of a hierarchy of components is built using the Carte-
sian product. The corresponding combined state variable sequence must be duplicate-
free to be well-defined, so it is defined using the disjoint union operator.

Definition 13 (Combined State of Components). The combined state space SC and
the combined set of initial states INITC of a component C with subcomponents (Cl )l∈L
is determined by the Cartesian product of the respective state set of C with the ones
of its subcomponents.

SC ≡ StC × ×
l∈L

SCl INITC ≡ InitC × ×
l∈L

INITCl

The combined state variable sequence sC is given by the disjoint union of the state
variables of C with the combined state variables of its subcomponents.

sC ≡ stC ∪·
⋃
·

l∈L
sCl

Using subcomponents allows C to outsource the realization of partial tasks to
one of its subcomponents Cl . The access to subcomponents is restricted, however.
C is not allowed to access (read or update) the state of Cl directly. Instead, C
can only interact with Cl by calling its interface operation. This complies with a
strict application of the information hiding resp. encapsulation principle, which is
what makes incremental refinement of subcomponents possible in the first place (see
Thm. 2 later in this section). When successful, the initialization operation of C must
produce a combined state that is contained in INITC. Therefore, the initialization
operation must call all its subcomponents’ respective initialization operations, and
similarly, recovery must call all subcomponent recoveries to establish a combined
recovered state. Besides that, there are some more properties a component must
satisfy to integrate it correctly in a refinement hierarchy.

Definition 14 (Modularizable Components). A component C is modularizable if it
uses subcomponents (Cl )l∈L such that

1. C does not read or write to the state variables sCl of any of its subcomponents
Cl ,

2. the operations of C only call interface operations of its direct subcomponents Cl ,

3. the initialization and recovery operations of C call the respective operations of
each subcomponent Cl , and they do so before any other operation of Cl is called,
and

4. each subcomponent Cl is modularizable.

Note that interface operations are only allowed to be called externally by clients
of C. This limitation is relevant for defining the semantics of components later in
this section, as calls to interface operations within a component should not be part
of the observable behavior of a component. However, this restriction can be easily
overcome by moving the respective functionality of an interface operation to an
auxiliary operation that multiple interface operations can call.

When crash behavior comes into play, i.e., when there are non-RAM compo-
nents, components must account for additional constraints. In particular, retracting
components cannot be integrated arbitrarily into the hierarchy.
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Definition 15 (Crash-Modularizable Components). A component C is crash-modular-
izable if it is modularizable according to Def. 14 and uses subcomponents (Cl )l∈L such
that

1. successful executions of the initialization and recovery operations of C must
produce synchronized states,

2. at most, one component of the hierarchy starting at C may be retracting accord-
ing to Def. 10, and if there is one, it must be a leaf of the hierarchy,

3. if there is a retracting component, all other components of the hierarchy must
be RAM-components according to Def. 11, and

4. if there is no retracting component, the crash predicate of all components must
be total.

Components are distinguished between specifications and implementations. The
former are used to model the functional requirements of a (sub-)system and are
typically kept as simple as possible by heavily utilizing algebraic functions and non-
determinism. The approach is as general as specifying with pre- and postconditions,
since choose st′, out′ with post(st′, out′) in st, out := st′, out′ can be used to estab-
lish any postcondition post over state st and output out.

On the other hand, implementations are typically deterministic and only use
constructs that allow generating executable Scala- or C-code from them with our
code generator.

Definition 16 (Implementation Programs). A program is a valid implementation
iff it only uses the following subset of program constructs.

x := t α;β if ε then α else β let x = t in α

while ε do α proc#(t ; u; v)

Basically, implementation programs are built from sequential and determinis-
tic program constructs only. Parallel assignments are limited to executing just one
assignment at a time since a semantics-preserving sequentialization of parallel assign-
ments might not be possible in some cases, particularly in a concurrent setting. For
example, swapping values of state variables would require multiple assignments and
the use of additional local variables in real code, which could invalidate correctness
properties proven for an atomic swap. So multiple assignments have to be combined
via sequential composition. Only the non-asterisk versions of conditionals and it-
erations are allowed, and the non-deterministic choice construct is restricted to the
deterministic introduction of local variables with the let abbreviation. 1 Note that,
contrary to assignments, multiple local variables can be introduced in let because
the terms t cannot refer to variables of x . Procedure calls can be used as before.

The atomic is not used in implementations but is only a specification instrument,
as we will see in Chapter 7. Within the scope of this thesis, implementations will

1There is one exception: we use the choose construct in implementations of heap-based compo-
nents to model the allocation of new heap locations by choosing an arbitrary unused reference. It is
then up to the code generator to translate these occurrences to according statements, e.g., malloc
in C.
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also not use the forall∥ construct for spawning new threads dynamically. Instead,
each internal operation of a component is executed in a dedicated thread that is
active for the complete runtime of the system. Explicit throws are not used as well
since the concepts presented here are tailored for systems typically implemented in
programming languages without native exceptions, for example, C.

Besides using a suitable subset of program constructs, implementation compo-
nents must use RAM state only.

Definition 17 (Implementation Components). A component C is an implementation
component iff it is a non-retracting RAM component and its operations only use
implementation program constructs as defined by Def. 16.

If a component is not an implementation component, it is considered a specifica-
tion component. Note that as a consequence of Def. 17, only specification components
can have persistent state. In order to access persistent storage, like flash memory,
an implementation therefore has to use a specification component that models the
persistent storage as (part of) its state and has suitable interface operations for
reading/manipulating the state. For example, on the bottom layer of the Flashix file
system, a simple specification of the Linux MTD subsystem is used to access flash
memory (see Sec. 4.1).

Semantics of Components

The behavior of components can be considered as runs of a labeled transition system
or IO-Automata [81] where the labels correspond to invocation and response events of
operations, together with a distinguish crash event. Histories describe the observable
behavior of components by tracking the events of component runs, as is common for
concurrent systems [60].

Definition 18 (Events & Histories of Components). The event set LC of a component
C consists of

• invocation events invCtid (i, inp) of the interface or internal operation i ∈ J ∪K
of C by thread tid with inputs inp,

• response events resCtid (i, out) of the interface or internal operation i ∈ J ∪K
of C by thread tid with outputs out , and

• a crash event  .

A history hC = l0l1l2 . . . of a component C is a sequence of labels li ∈ LC. The history
hC is crash-free iff it does not contain a crash event, i.e., ∀ li.li ∈ hC → li ̸=  .

Invocation and response events are marked with the identifier tid ∈ Tid of the
thread calling the operation and record passed input values inp and returned output
values out . Reference parameters of operations are treated as both input and output
values, so for a reference parameter y , inp contains its initial value, and out contains
its updated value. Note that LC and thus histories hC contain operation events only
of C and no events for operations of any of its subcomponents Cl . This definition
is used so that histories match the observable behavior of components better, as it
will become relevant for the definition of refinement. On the other hand, histories ĥC
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that additionally contain events of subcomponent calls are built over the extended
event set L̂C ≡ LC ∪

⋃
l∈L L̂Cl 2.

Similar to (durable) linearizability [60, 66], operations in histories are completed
or pending.

Definition 19 (Completed and Pending Operations). A completed operation in a
history hC is any pair (einv , eres) of invocation einv = invCtid (i, in) and following
matching response eres = resCtid (i, out). A pending operation is an invocation einv =
invCtid (i, in) where einv has no matching response in hC.

Pending operations einv can be completed by appending a response eres to hC

such that (einv , eres) is a completed operation in hC eres . The completed part
completed(hC) of a crash-free history hC is the maximal subsequence of hC consisting
only of invocations and matching responses.

We distinguish between sequential and concurrent histories.

Definition 20 (Sequential Histories). A non-empty history hC of a component C is
sequential iff

• it is crash-free,

• it starts with an invocation event,

• every invocation event invCtid (i, . . .) is immediately followed by a matching re-
sponse event resCtid (i, . . .), except if it is last event in hC, and

• every response event resCtid (i, . . .) is directly preceded by its matching invocation
event invCtid (i, . . .).

The restriction of a history hC to the events of a thread tid (including crash
events) is denoted by hC|tid . We only want to consider concurrent histories that
originate from interleaving sequential histories of multiple threads. Such histories
are called well-formed.

Definition 21 (Well-formed Concurrent Histories). A concurrent history hC is well-
formed iff hC|tid is sequential for every tid ∈ Tid .

Definition 22 (Equivalent Concurrent Histories). Two concurrent histories hC0 and
hC1 are equivalent iff hC0 |tid = hC1 |tid for every tid ∈ Tid .

In order to define the semantics of components in terms of chained (or interleaved)
operation executions, histories are combined with the semantics of programs. We
consider intervals I with an empty environment and without blocking steps in the
following. Thus, intervals are treated as sequences of states I = (s0, s1, s2, . . .),
omitting the stuttering steps of the environment and the blocked flags.

For a program α, the interval semantics of Def. 6 can be extended with a history
hC that tracks the invocations and responses of calls to operations of C.

2Contrary to the definition of the combined state sC, the regular union operator is used since L̂C

should contain only a single global crash event  .
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Definition 23 (Observable Histories of Program Executions). A history hC is the
observable history of a program execution I |= α w.r.t. to component C, iff hC records
all invocation and response events of interface and internal operations of C in the
execution I |= α. The judgement I, hC |= α is called an observable execution of α.

Having observable executions of programs, observable operation executions can
be defined: an interval I and a history hC describe the execution of an operation of
component C if they are an execution of a procedure that defines one of C’s interface
or internal operations.

Definition 24 (Observable Executions of Operations). An interval I together with a
history hC form an observable operation execution of a component C, written I, hC |=
OPC, iff there is

• an interface operation Opj with j ∈ JC and a declaration of a corresponding
procedure opj#(x ; y , sC; z ) with precondition φ(x , y , sC) so that

– I(0) |= φ(x , y , sC) and I, hC |= opj#(x ; y , sC; z ) or

– I(0) ̸|= φ(x , y , sC), I is arbitrary for the state variables stC, and hC consists
of the invoke event for Opj and the corresponding response event if I is
finite

or there is

• an internal operation IOpk with k ∈ KC and a declaration of a corresponding
procedure iopk#(; sC) with guard φ(sC) so that I(0) |= φ(sC) and I, hC |=
iopk#(; sC)

Operation executions of internal operation are restricted to intervals in which the
guard of the corresponding operation holds as it would not be triggered otherwise.
Similarly, interface operations should only be called by clients when its precondition
is satisfied. If an interface operation is called in a state in which the precondition
does not hold, the remaining interval can be arbitrary (in particular, non-termination
of the operation is allowed) since the caller violated the contract of the operation.
Nevertheless, the history hC should contain the matching events of the operation call
so that observable behavior is as expected.

Definition 25 (Interrupted Executions of Operations). An interval I together with
a history hC forms an interrupted observable operation execution of a component C,
written I, hC |= OPC , iff there is an interval I0 and a history hC0 such that I o

9I0, h
C ·

hC0 |= OPC. The pair (I0, h
C
0 ) is then called a completion of the execution.

Interrupted operation executions are required to model the occurrence of crashes
during the execution of an operation. Naturally, an interrupted operation only pro-
duces a prefix of the state transitions and a prefix of the history of a complete
operation execution (h0 ·h1 denotes the concatenation of two histories h0 and h1). In
particular, the response event of an operation is typically missing if it has been in-
terrupted. The definition, however, also comprises operation executions with crashes
directly before the invocation or just after the response since I and hC resp. I0 and
hC0 can be empty.
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The judgements I, hC |= OPC and I, hC |= OPC denote (interrupted) executions of
an arbitrary (interface or internal) operation of C. For a particular operation OpC of
C, a regular execution is written I, hC |= OpC and an interrupted execution is written
I, hC |= OPC .

Given histories and executions of operations, a transition system describing the
semantics of components can be defined. In this section, we give a basic semantics for
sequential, non-retracting systems, see Def. 27. This basic definition will be extended
for retracting components with Def. 34 in Chapter 6 and for concurrent components
with Def. 40 in Chapter 7.

Definition 26 (Labeled Transition System). A labeled transition system LTS =
(St, Initial,L,→) consists of a set of states St, a set of initial states Initial ⊆ St, a
set of labels L, and a state transition relation → ⊆ St × L× St.

In the following, a state transition (s, l , s′) ∈ → will be written s
l−→ s′. Mul-

tiple state transitions can be combined to (potential infinite) runs r = s
l0−→ s0

l1−→
s1 . . . sn−1

ln−→ s′, where system runs start in an initial state s ∈ Initial. The labels
of a run r form histories: h(r) extracts the full label sequence l0l1l2 . . . ln; hC(r)

extracts the history of r containing only labels li ∈ LC. Conversely, s h−→ s′ abbrevi-
ates a run from s to s′ that produces the history h = l0l1 . . . ln, implying there exist
states s0, s1, . . . sn−1 ∈ S that form a run r = s

l0−→ s0
l1−→ s1 . . . sn−1

ln−→ s′. The
state sequences of runs can be considered as intervals: we write I(r) for the interval
(s, s0, s1, . . . , s

′) of the run r . Combining histories and intervals of runs, the tuple
(I, h) is called an observable run of LTS , written (I, h) ∈ runs(LTS ), if there is a
system run r of LTS with I = I(r) and h = h(r).

Definition 27 (Semantics of Sequential, Non-Retracting Components). The seman-
tics of a sequential, non-retracting component C is given by the labeled transition
system C = (SC, INITC,LC ∪ {τ},→seq). The state transition relation →seq is deter-
mined by the set of observable system runs (I, hC) ∈ runs(C) satisfying the following
conditions.

1. I.first ∈ INITC.

2. hC = hC0 · 1 ·hC1 · 2 · . . . · n ·hCn consists of crash-free era histories hC0 , h
C
1 , . . . , h

C
n

separated by crash events  1, 2, . . . , n.

3. I = I0 o
9(I0.last , I1.first) o

9I1 o
9(I1.last , I2.first) o

9 . . . o
9(In−1.last , In.first) o

9In is
built by the sequential composition of era intervals I0, I1, . . . , In connected with
interrupt steps (I0.last , I1.first), (I1.last , I2.first), . . . , (In−1.last , In.first).

4. Each era Ii, hCi with i < n forms an interrupted run of the sequential system,
i.e., Ii, hCi |= { OPC }∗ ; OPC .

5. The last era In, hCn forms an uninterrupted system run In, h
C
n |= { OPC }∗.

6. Each crash transition Ii.last
 i+1−−−→ Ii+1.first with i < n results from applying

the crash and recovery relations, i.e., (Ii.last , Ii+1.first) ∈ CRASHCo9REC
C.
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7. All internal transitions, i.e., transitions that do not correspond to an event of
hC, are labeled with the internal label τ .

Condition 1 of Def. 27 ensures that only actual system runs are considered, i.e.,
runs starting in an initial state. Conditions 2 and 3 introduce eras: crashes partition
an observable run into crash-free sub-runs.

Eras are only allowed to consist of sequential executions of the components inter-
face and internal operations (conditions 4 and 5). The _∗ operator is used to denote
finite or infinite iteration, i.e., α∗ abbreviates the statement α;α;α; . . . executing α
finitely or infinitely often. All eras but the last are assumed to consist only of finitely
many executions of OPC since the run is interrupted by a crash at some point. This
crash may occur during the execution of an operation, so the interrupted eras end
with an interrupted execution OPC . Recall, however, that OPC also covers crashes in
between operation executions. The last era is not interrupted by a crash so that it
may consist of infinitely many operation executions.

Condition 6 of Def. 27 determines the allowed crash transitions, i.e., how eras
are connected. The transition captures the application of the crash effect given
by CRASHC and a subsequent application of the recovery mechanism given by RECC

(R0 o
9R1 denotes the composition of two relations R0 and R1). The relations CRASHC

and RECC in the definition result from combining the respective relation of C with the
ones of its subcomponents to a relation over SC× SC. In practice, CRASHC is given by
the conjunction of the crash predicates, and RECC is determined by the execution of
C’s recovery procedure, which must call the recovery procedures of all subcomponents
according to Def. 14.

Finally, the remaining transitions with no invocation, response, or crash label
assigned are labeled with the label τ representing non-observable internal steps.

Correctness of Components: Invariants & Data Refinement

The functional correctness of a sequential implementation component is typically
proven by a data refinement of the corresponding specification component.

A

C

Figure 3.2: Refinement
of a specification A by
an implementation C.

Informally, a component C can be considered a refine-
ment of another component A, written C ≤ A, if both have
the same interface and the input/output behavior of C is
also a possible behavior of A. If this is the case, clients of
A cannot distinguish if they actually use A or if A has been
exchanged with the implementation C.

Fig. 3.2 shows how a typical refinement relationship is
depicted graphically. The abstract component A and its
refinement C are connected by dotted lines. The two com-
ponents are also color-coded: throughout this thesis, implementation components
are colored gray while specification components are white. Of course, refinement
is not restricted to this scenario; in principle, any combination of specification and
implementation components is possible. Since refinement is transitive, it can also be
applied incrementally: the refinement of a component A with a component C can be
divided into a sequence of smaller refinements C ≤ An ≤ . . . ≤ A0 ≤ A.

The basic requirement for a refinement relationship between two components is
that the are compatible.
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Definition 28 (Compatibility of Components). A component C is compatible with a
component A iff they have the same index set of interface operations, i.e., JC = JA,
the index set of internal operations of C contains all internal operations of A, i.e.,
KA ⊆ KC, and all shared operations have the same input and output parameters.

For the formal definition of refinement, the observable behavior of a component
is defined in terms of histories produced by runs of its labeled transition system.

Definition 29 (Observable Behavior of Components). The observable behavior Obs(C)
of a component C is given by the set of histories hC of observable runs (I, hC) ∈
runs(C) of the corresponding labeled transition system C.

It is crucial that the observable behavior of component C only contains events
of its interface/internal operations and crash events but no events of C’s subcom-
ponents. Otherwise, refinement would be restricted to components using identical
subcomponents in the same way.

Definition 30 (Refinement). A component C refines a component A, written C ≤ A,
iff C is compatible with A and the observable behavior of C is a subset of the observable
behavior of A, i.e., Obs(C)|L(A) ⊆ Obs(A), where Obs(C)|L(A) restricts the operation
events of Obs(C) to the index sets JA and KA of A3.

A common form of refinement is data refinement, where a refinement step changes
the internal data representation of a component. As shown later in Thm. 1, proofs
for such refinements are done with a forward simulation using commuting diagrams.
Before that, it must be shown that individual components use their subcomponents
correctly, i.e., call their interface operations only within their preconditions. Addi-
tionally, invariant formulas can be given for each component, which all its interface
and internal operations must maintain. Establishing such invariants simplifies (or
even makes it possible in the first place) to prove the forward simulation of a refine-
ment since the invariants of both the abstract and the concrete component can be
added as assumptions to the proof obligations.

The invariant of a sequential component C is given in the form of a formula inv
over its combined state variables s.

component C

invariants inv(s)

The proof obligations of Lem. 1 are generated for all components and ensure that
given invariant holds.

Lemma 1 (Invariants of Sequential, Non-Retracting Components). For a sequential,
non-retracting component C, the following proof obligations ensure termination and
the absence of exceptions, establish the sequential invariant inv(s), and guarantee
that C calls its subcomponents’ interface operations only if their preconditions are
satisfied.

3The restriction is necessary as C may introduce additional internal operations which would
be visible in the observable behavior. So strictly speaking, Obs(A) would also have to contain
corresponding events for these operations to achieve matching observable behavior. We circumvent
this technical detail here with the restriction, however, the discrepancy could also be overcome by
introducing a dummy operation in A with the guard true and the body skip.
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1. ⊢ ⟨|init#(x ; ; s, z )|⟩ (φ(s, z ) → inv(s))

2. pre j (x , y , s), inv(s) ⊢ ⟨|opj#(x ; y , s; z )|⟩ inv(s) for all j ∈ J

3. guardk (s), inv(s) ⊢ ⟨|iopk#(; s)|⟩ inv(s) for all k ∈ K

4. inv(s0), crash(s0, s) ⊢ ⟨|recover#(x ; s; z )|⟩ (φ(s, z ) → inv(s))

Recall that initialization and recovery procedures may have restriction conditions
φ. Thus, inv must only be established in the proof obligations 1 and 4 of Lem. 1 if
φ is true after the execution of the procedures. Otherwise initialization respectively
recovery have to be rerun before the system can be used.

Component operations with preconditions are treated specially in the weakest-
precondition calculus. When a procedure opj# with body α and precondition pre j
is called, the call is replaced with the (instantiated) body α, however, wrapped inside
an if statement: if pre j then α else abort. Since the obligations of Lem. 1 all use
strong diamond formulas, it has to be shown that the respective precondition holds
for each call (a formula ⟨|abort|⟩φ always reduces to false). Thus, the obligations
implicitly ensure that clients always use their subcomponents safely, which is why
the precondition can be assumed in obligation 2.

The absence of exceptions is guaranteed by not giving explicit exception specifica-
tions, which comes down to the default exception specifications ξ ≡ default :: false
(see Sec. 2.4).

For a refinement proof of C ≤ A, a forward simulation R ⊆ SA × SC is required. R
(called abstraction relation in the following) is given in form of a formula abs over
the state variables sA and sC.

data refinement C ≤ A

abstraction relation abs(sA, sC)

The proof obligations Thm. 1 ensure a valid refinement of two compatible sequential,
non-retracting components.

Theorem 1 (Data Refinement of Sequential, Non-Retracting Components). The
refinement C ≤ A of sequential, non-retracting components A and C, where C is com-
patible with A, is implied by the forward simulation abs(sA, sC) satisfying the following
conditions.

1. ⊢ ⟨|initC#(x ; ; sC, z 0)|⟩(
φC(sC, z 0) → ⟨initA#(x ; ; sA, z 1)⟩(abs(sA, sC) ∧ z 0 = z 1)

)
2. abs(sA, sC), preAj (x , y , s

A), invA(sA), invC(sC), y
0
= y

1
⊢ ⟨|opC

j #(x ; y
0
, sC; z 0)|⟩ for all j ∈ J(

⟨opA
j #(x ; y

1
, sA; z 1)⟩(abs(sA, sC) ∧ y

0
= y

1
∧ z 0 = z 1)

)
3. abs(sA, sC), guardC

k (s
C), invA(sA), invC(sC)

⊢ ⟨|iopC
k#(; sC)|⟩

(
⟨iopA

k#(; sA)⟩abs(sA, sC)
)

for all k ∈ KC ∩KA

4. abs(sA, sC), guardC
k (s

C), invA(sA), invC(sC)
⊢ ⟨|iopC

k#(; sC)|⟩ abs(sA, sC) for all k ∈ KC \KA
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5. abs(sA0, s
C
0), invA(sA0), invC(sC0), crashC(sC0, s

C), sC = sC1
⊢ ⟨|recoveryC#(x ; sC; z 0)|⟩( (

φC(sC, z 0) →

∃ sA. crashA(sA0, s
A)

∧ ⟨recoveryA#(x ; sA; z 1)⟩(abs(sA, sC) ∧ z 0 = z 1)
)

∧
(
¬ φC(sC, z 0) → crashC(sC, sC1)

))
The proof obligations of Thm. 1 are quite similar to those of standard data

refinement [32]. Additional proof obligations arise from dealing with crashes (5) and
having internal operations (3 and 4).

Obligations (1) and (5) also cope with potential low-level errors occurring dur-
ing initialization or recovery: both obligations only require to show that related
states have been (re-)established when the operation of C signals a successful exe-
cution via the restriction condition φC. When the initialization of C fails, nothing
has to be shown about the initialization of A (it may produce an arbitrary state)
since initialization has to be rerun. Similarly, the final state of a failed recovery is
irrelevant. However, the proof obligation has to ensure that recovery can be retried
after a failed attempt. One must show that a crash from the state produced by
the failed recovery execution to the initial crashed state is possible (the equation
sC = sC1 in the antecedent of obligation (5) fixes the values of sC before the execution
of recoveryC#), which enables applying obligation (5) in the resulting state again.
Intuitively, this restricts C’s recovery to manipulating only RAM state while leaving
persistent state unaffected. This behavior is reasonable as the recovery task is to
reconstruct in-memory data structures from persisted data, e.g., one main objective
of the Flashix recovery routine is to restore the latest version of the RAM index by
loading the last committed version from flash and replaying the uncommitted log
entries.

Ai

Ci Ai+1

Ci+1 Ai+2

Figure 3.3: Building
a modularized refine-
ment hierarchy.

Obligation (2) gives the transitions for interface opera-
tions as expected. Informally, one has to prove that, when
starting in abs-related states, for each execution of an op-
eration OpCj of C there must be a matching execution of OpAj
of A that maintains abs(sA, sC) with the same inputs and
outputs. Note that only the abstract precondition preAj is
assumed, so the obligations also require to show that the
precondition preAj is strong enough to establish the concrete
precondition preCj if abs holds.

The obligations (3) and (4) give the analog transitions
for internal operations. If C introduces an internal oper-
ation IOpCk , i.e., there is no corresponding operation in A,
an execution of IOpCk commutes with a no-op of A, given by (4). Otherwise, IOpCk
commutes with the corresponding operation IOpAk of A as given by (3). Conversely
to preconditions of interface operations, the guard guardC

k of the concrete operation
is assumed, so guardC

k and abs must imply guardA
k .

Proof of Thm. 1. As usual, the proof composes commuting diagrams, starting from
two related states resulting from successful executions of (1). For executions of
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A

C

M A

M C

Figure 3.4: Compositionality of Data Refinement.

internal or interface operations, the obligations (2), (3), and (4) give the respective
commuting diagrams.Finally, obligation (5) gives the commuting diagram for crash
transitions.

Using subcomponents and refinements, a system is composed of multiple compo-
nents connected by refinements and subcomponent usages, resulting in a hierarchy
like the one shown in Fig. 3.3.

A specification component Ai is refined by an implementation Ci that uses a
specification Ai+1 as a subcomponent. This pattern then repeats in the sense that
Ai+1 is refined further by an implementation Ci+1 that again uses a subcomponent
Ai+2 and so on. Ai may also be used as a subcomponent of an implementation Ci−1 if
it is not the top-level specification. The complete implementation of the system then
results from composing all individual implementation components C0(C1(C2(...))).

The central requirement for the correct use of such a modularization approach
is compositionality : substituting a subcomponent A of a client M by a correct im-
plementation C must not affect the correctness of M. In other words, C ≤ A must
imply M(C) ≤ M(A) for a client component M that uses its subcomponents accord-
ingly (cf. Fig. 3.4). This ensures that the composed implementation of a refine-
ment hierarchy is in fact a correct refinement of its top-level specification A0, i.e.
C0(C1(C2(...))) ≤ A0. This allows us to divide a complex refinement task into multi-
ple, more manageable ones.

Theorem 2 (Compositionality of Non-Retracting Data Refinement). Given two se-
quential, non-retracting components C and A with C ≤ A, i.e., where C is a valid
refinement of A, and a crash-modularizable component M(A) that uses A as a subcom-
ponent, then A can be substituted by C in M without affecting M’s correctness, i.e.,
M(C) ≤ M(A) holds.

Proof of Thm. 2. See the first case of the proof of Thm. 1 in [96].

Crash-Atomic Operations & Crash-Neutrality

The proof obligations of Lem. 1 and Thm. 1 consider crashes only in between oper-
ations (the crash/recovery obligations always assume states in which the sequential
invariants and the abstraction relation hold). This simplification is possible due to
a criterion called crash-neutrality4.

Definition 31 (Crash-Neutral Operations). An operation OpC of a component C is
crash-neutral if every interrupted execution I, hC |= OpC has a completion (I0, h

C
0 )

4The term crash-neutrality is adopted from the work of Ernst [38]. Pfähler [96] uses the term
crash-introducible for this criterion and repurposes crash-neutrality for a slightly different, stronger
criterion.



3.1. HIERARCHICAL COMPONENTS & DATA REFINEMENT 41

s0 s1
inv(. . .)

s2
τ

si
τ sn−1

τ
sn

res(. . .)

I, hC I0, h
C
0

s  

Figure 3.5: Crash-neutrality of operations.

s0 s
 

s′
OpC  

Figure 3.6: Full crash-
neutral operation execu-
tion.

with I o
9I0, h

C · hC0 |= OpC, such that (I0.last , s) ∈ CRASHCo9REC
C holds for every state

s ∈ SC with (I.last , s) ∈ CRASHCo9REC
C.

As depicted in Fig. 3.5, crashes during the execution of crash-neutral operations
can be viewed as crashes that occur directly after the respective operation. An ar-
bitrary interrupted execution (I, hC) of an operation of C ends in some intermediate
state si, i.e., I.last = si, and a crash transition  from this state yields to a crash-
recovered state s. Crash-Neutrality now guarantees that the interrupted execution
can be completed to a state sn which also has a  -transition to s. Intuitively, this
means that a crash-neutral operation can always “decide” to make only steps that do
not alter the persistent state. For a flash file system, this property typically holds
trivially for its operations since the flash hardware can always refuse to perform an
operation if an error is detected, e.g., when too many bit errors occurred (which may
indicate that the degradation of a requested block reaches a critical level). As a con-
sequence, it is possible to “push” a crash that occurs during a crash-neutral operation
to the back of it and only consider crashes in between crash-neutral operations. Such
operations are considered as crash-atomic.

As a special case of crash-neutrality, complete operation executions can be intro-
duced before a crash transition, as shown in Fig. 3.6. Given a crash transition from
a state s0 to a state s, crash-neutrality of an operation OpC guarantees that there
exists a complete execution of OpC starting from s0 to some state s′, from which s
can be reached via a crash transition. This follows directly from Def. 25 since the
interval and history of an interrupted operation execution can be empty.

Definition 32 (Crash-Neutral Components). A component C is crash-neutral iff all
of its interface operations OpCj with j ∈ J are crash-neutral.

The crash-neutrality property is lifted from single operations to whole compo-
nents by Def. 32. If all interface operations of a component, i.e., all operations a
client can call explicitly, are crash-neutral, the component is as well. Using only
crash-neutral subcomponents directly propagates the property to an implementation
client component, as stated by Lem. 2.

Lemma 2 (Crash-Neutrality of Implementation Components). An implementation
component (and thus RAM component) C with subcomponents (Cl )l∈L is crash-neutral
if each subcomponent Cl is crash-neutral.

Fig. 3.7 shows the basic argumentation for Lem. 2 (a detailed proof is given
in [38] and [96]). A regular execution of an operation OpC of an implementation
component C(A) consists of steps accessing the RAM state of C (labeled “RAM ops”
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s0
RAM ops OpAj

si
RAM ops RAM ops OpAk

sn
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OpC
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Figure 3.7: Crash-neutrality of an implementation component C(A) using a crash-
neutral subcomponent A.

in the figure) and of calls to interface operations OpA of its subcomponent A. Since
C is an implementation component, accesses to persistent state are performed only
via the A. Given an interrupted execution OpC ending in some intermediate state
si and a crash-recovered state s, crash-neutrality of the operation (and thus of C)
follows again from a completion of OpC where a crash-recovery from the final state to
s is possible. Such a completion can be constructed by adding crash-neutral steps
of the form of Fig. 3.6 incrementally. Steps accessing RAM state are by definition
crash-neutral as the complete RAM state is lost during a crash (see Def. 11). Thus,
RAM ops can be added to the interrupted execution, and the crash transition can
be postponed until after these steps. For calls to interface operations of the crash-
neutral subcomponent, like the call of OpAk in the example, a crash-neutral transition
can be added as well, and the crash can be pushed further back. This can be repeated
until a complete execution of OpC is constructed.

Note that the execution constructed this way may produce a different call se-
quence than a regular, uninterrupted execution of OpC. Crash-neutral executions of
operations are typically executions in which the requested task could not be com-
pleted successfully. So the client component could, for example, employ a retry
mechanism or cancel the execution preliminarily, which would result in fewer or
additional calls.

Lem. 2 requires all subcomponents of C to be already crash-neutral in order to
be applicable. While this seems quite restrictive at first, this can be achieved with
relatively less effort in practice. Therefore, we only consider atomic components,
i.e., components whose operations cannot be interrupted by a crash, as subcompo-
nents. Then only a wp proof obligation remains to be proved for each component’s
operations individually.

Lemma 3 (Crash-Neutrality of Atomic Specification Components). An atomic com-
ponent C is crash-neutral if the following proof obligation holds for all its interface
operations OpCj with j ∈ J .

preCj (x , y , s
C), invC(sC), crashC(sC, sC0) ⊢ ⟨opC

j #(x ; y , sC; z )⟩ crashC(sC, sC0)

The obligation of Lem. 3 corresponds directly to the transitions depicted in
Fig. 3.6. However, instead of proving the property for full  transitions (deter-
mined by the relation CRASHCo9REC

C), the obligation is reduced to CRASHC transitions.
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This simplifies the obligation significantly as no additional executions of the recovery
procedure recoveryC# need to be considered. The restriction is justified because a
crash alone is usually sufficient to mask the effect of one possible execution of the
operation.

In Flashix, for example, most operations of specification components are speci-
fied so that an execution satisfying the obligation exists trivially: the body chooses
non-deterministically between a successful execution, potentially making persistent
updates, and a no-op execution. This behavior emerges from the underlying hard-
ware model of flash memory. An operation on flash memory is either performed
successfully returning a success code or fails without altering the state and returns
an error code signalizing the reason for the failure, e.g., ENOSPC if there is not enough
space left on the flash memory for performing the operation.

{ . . . ; err := ESUCCESS } or { err := ENOSPC }

Specification components on higher levels of the hierarchy adopt this behavior by
potentially failing with a low-level error code if their implementations could access
the flash hardware. Of course, not all operations on each level can fail that way,
e.g., specifications often also provide operations that are performed purely on RAM
state by their implementations and therefore are expected not to fail. Hence, the
crash predicates must be chosen appropriately to ensure crash-neutrality of these
operations.

The hardware model also justifies the restriction to atomic specification compo-
nents in Lem. 3. Operations on flash memory are guaranteed to be executed atomi-
cally with respect to crashes, e.g., writing a flash page either writes the whole page
or no byte at all. Due to this underlying atomicity, Lem. 3 can be applied bottom-up
to a refinement hierarchy like the one shown in Fig. 3.3, yielding crash-neutrality on
all levels.

3.2 Verification of Destructive Red-Black Trees

Red-black trees [54, 112] are typically used as an efficient data structure for ordered
sets (or multisets). They are also used in the Flashix file system in various places.
For example, two red-black trees are employed in the Erase Block Manager (EBM)
to grant efficient access to free and used erase blocks. As a non-trivial in-memory
data structure, red-black trees are a well-suited case study for illustrating the core
concept introduced in Sec. 3.1, including the modularization approach but omitting
advanced topics like crash-safety or concurrency.

In order to abstract from the complex implementation details of red-black trees
(traversal, rotations, . . . ), a simple specification component RBSet is used that ab-
stracts the tree data structure to a algebraic set (cf. Sec. 2.2) of ordered elements.
Other components then can use RBSet as a subcomponent, which simplifies formal
reasoning about the client component while the resulting system still uses an efficient
heap implementation.

component RBSet

state rbs : set(tord)
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The element type tord of rbs is a generic element for which a total order . < . :
tord× tord → bool is defined. The order relation is specified by the usual properties
of strict total orders.

irreflexivity: ⊢ ¬ a < a

transitivity: ⊢ a < b ∧ b < c→ a < c

totality: ⊢ a < b ∨ a = b ∨ b < a

The order properties are a sufficient characterization of the elements stored in the
red-black tree to implement and prove the correctness of the algorithms. For the
actual use of the implementation, one can instantiate the generic element type with
a concrete type by giving a suitable order relation, e.g., with natural numbers nat
and the less predicate . < . : nat×nat → bool. In Flashix, a slightly more complex
type is used, which stores physical erase block numbers (abbreviated PNUMs) and
erase counts (abbreviated ECs) indicating the wear of an individual block.

data blockcounter = block-counter(. .pnum : nat ; . .ec : nat)

This information is stored persistently on flash, but for an efficient implementation
of wear leveling, it is also kept and updated in main memory using the red-black tree
implementation given in this section. Wear leveling needs to find the blocks with the
lowest resp. highest erase count, so consequently, the order relation for blockcounter
is defined as the order of the erase count field.

⊢ block-counter(pnum0, ec0) < block-counter(pnum1, ec1) ↔ ec0 < ec1

Figure 3.8 shows a complete listing of RBSet’s procedure declarations. Note
that all procedure names have a prefix “rbset_” indicating the component they are
defined in. In the remainder of this thesis, all component procedures will have such
a prefix for a better distinction between the procedures of different components.

RBSet

RBTree RBTBasic

RBTHeap

Figure 3.9: The refinement hier-
archy for red-black trees.

Initially, rbs is empty (∅) and it can be mod-
ified by inserting or removing elements elem (by
rbset_insert#and rbset_remove#). Both
insertion and removal have an additional output
parameter exists signaling whether elem was in
the rbs before the update and, thus, whether the
operation changed the set. Additional interface
procedures check whether the set is empty and
whether an element is in the set. The minimal
and the maximal5 element can be selected as re-
quired by wear leveling. The red-black tree implementation given here is a pure
in-memory data structure, so it does not use an underlying persistent storage. Ac-
cordingly, all components presented in this section are RAM components (cf. Def. 11)
with the crash predicate true. After a crash, clients of the component are respon-
sible for repopulating the data structure, so the recovery procedure of RBSet simply
initializes rbs with ∅.

5The actual model selects the maximum below a threshold, which is used to achieve a better
distribution in wear leveling. However, this technical detail is abstracted here since it is not relevant
for the implementation and verification of red-black trees.
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rbset_init#()
initialization

{
rbs := ∅

}

rbset_recover#()
recovery

{
rbs := ∅

}

rbset_insert#(elem; ; exists)
interface

{
exists := elem ∈ rbs,
rbs := rbs ++ elem

}

rbset_remove#(elem; ; exists)
interface

{
exists := elem ∈ rbs,
rbs := rbs -- elem

}

rbset_isEmpty#(; ; empty)
interface

{
empty := rbs = ∅

}

rbset_lookup#(elem; ; exists)
interface

{
empty := elem ∈ rbs

}

rbset_getMin#(; ; elem)
interface
precondition rbs ̸= ∅

{
elem := rbs.min

}

rbset_getMax#(; ; elem)
interface
precondition rbs ̸= ∅

{
elem := rbs.max

}

Figure 3.8: Abstract representation of red-black trees: the component RBSet.

This component is refined by a pointer-based implementation of red-black trees.
However, this refinement is split into two parts to reduce the complexity of the nec-
essary reasoning about the heap done with Separation Logic. The result is the re-
finement hierarchy shown in Fig. 3.9. The first refinement step RBTree(RBTBasic) ≤
RBSet shows that the set abstraction can be implemented by a red-black tree and
that this implementation actually maintains all red-black tree properties. However,
this is done using an algebraic datatype instead of a heap data structure.

In the second refinement step RBTHeap ≤ RBTBasic, it is then proven that a heap
implementation conforms to this algebraic datatype. The goal of this partition is to
keep the operations of RBTBasic (and hence those of RBTHeap) as simple as possible.
The more complex algorithmic parts are handled in RBTree while RBTBasic only
provides an interface for primitive manipulations of the algebraic tree. This includes
for example the insertion of an element at a given point within the tree, or a single
left- or right-rotation of one particular subtree.

When used directly, these operations are of course inefficient, but note that code
can already be generated from RBTree(RBTBasic), which is useful for testing invari-
ants and results of example runs.

Since the interfaces of RBTBasic and RBTHeap must be identical, one difficulty
that arises from this intermediate abstraction is that RBTree cannot use a uniform
notion to describe a location within the tree. While using references is the natural
way for a heap implementation like in RBTHeap, this is not possible for the algebraic
representation of RBTBasic. Instead, a practical method for navigating within an
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algebraic tree is using paths, i.e., lists of left or right flags. Since data refinement
can refine state only (not inputs or outputs), the states of RBTBasic and RBTHeap
are augmented with auxiliary paths and references, respectively, to circumvent this
restriction. As a consequence, the interfaces of RBTBasic and RBTHeap are extended
by operations for navigating through the tree, like “move up one node” or “move to
the left child ”, and tree manipulations are performed at the locations of the auxiliary
paths/references only.

Correctness of Algebraic Red-Black Trees

Red-black trees can be specified algebraically as polymorphic free data type rbtree(′a),
using a constant constructor SENTINEL (representing the leaves of the tree) and a
non-constant constructor node.

data rbtree(′a) = SENTINEL | node(.elem : ′a ; .color : rbcolor ;

.left : rbtree(′a) ; .right : rbtree(′a))

data rbcolor = RED | BLACK

Nodes have a color (either RED or BLACK, defined by the enumeration type rbcolor),
a left and a right subtree, and an element of generic type ′a. These fields can be
accessed via the postfix selector functions .elem, .color, .left, and .right. A
type variable ′a for the type of elements stored in the tree is used in the definition.
So in principle, the data type can be used with any element type.

However, to express the properties of binary search trees, the generic, totally
ordered element type tord is used like in RBSet. The complete algebraic state is
encapsulated in the RBTBasic component, which is used by the client component
RBTree.

component RBTBasic

state rbt : rbtree(tord), curPath : list(lrdesc), auxPath : list(lrdesc)

Besides the algebraic red-black-tree rbt , the state contains two paths curPath and
auxPath to store locations within rbt . Most of the time curPath is used only, but for
removal, it is necessary to store a second path auxPath that points to the element
after the deleted one. The implementation in RBTHeap replaces these paths by two
references that point to a heap storing individual tree nodes, as we will see later in this
section. Paths are modeled as lists (see Sec. 2.2) instantiated with an enumeration
type lrdesc.

data lrdesc = LEFT | RIGHT

Various operations are defined for accessing an rbtree with paths, for example p ∈ rbt
for checking a path p to be in a tree rbt (and pointing to an actual node), rbt[p] for
selecting the subtree at a path p, or rbt[p, rbt ′] for updating the tree at a path p
with a new tree rbt ′. All these operations are defined recursively over the structure
of the tree resp. the path, e.g., the predicate p ∈ rbt is defined by the following
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axioms.

⊢ ¬ p ∈ SENTINEL

⊢ [] ∈ node(elem, col , left , right)

⊢ LEFT + p ∈ node(elem, col , left , right) ↔ p ∈ left

⊢ RIGHT + p ∈ node(elem, col , left , right) ↔ p ∈ right

Initialization and recovery of RBTBasic just sets rbt to a SENTINEL and curPath
resp. auxPath to the empty path []. The reading operations (on the right of Fig. 3.8)
are implemented by checking the tree’s root, performing a standard binary search,
or traversing to the leftmost or rightmost element, respectively. The more complex
operations are inserting or removing an element, as they manipulate the tree and
thus require performing fixup mechanisms to ensure the balance of the tree.

Figure 3.10 lists the implementation of rbtree_insert# in the RBTree compo-
nent and shows how the state is modified via the interface of RBTBasic. For primitive
RBTBasic operations, the comments in green show the statements of the operation
in front of it. All operations start by resetting the paths to point to the root, i.e., to
the empty list [] (line 1). Then the tree is traversed to an element (or a position)
of interest (the loop at lines 5-17); for insertion, a binary search for the element to
be inserted (elem) is performed. For this purpose, the element at curPath is read
(line 6) and compared with elem in each iteration. If elem is found (line 7), the
operation can be aborted with exists := true since no duplicates are inserted into
the tree. Otherwise, curPath is extended by either LEFT or RIGHT depending on the
comparison between elem0 and elem (line 9-13). When a SENTINEL is reached, the
search is stopped (line 15). If elem was not found in the tree, it is added at the
current position inside of a new node without children (line 20). Finally, the routine
rbtree_insertFixup# is called to fix up the tree as the insertion may have broken
the red-black tree properties and the tree may need to be re-balanced (line 21).

During the traversal of the tree, auxPath is updated alongside curPath to point
to the parent of the current position (lines 10 and 13). Although this is unnecessary
for the implementation on algebraic trees (the parent path can simply be obtained
by dropping the last element of curPath), it is required for the pointer-based imple-
mentation. Since curRef has reached a null reference, the add# of RBTHeap could
not link the new node at the right place as no information about the parent of the
leaf is available. This is why the binary search stores the reference to the parent of
curRef in auxRef (lines 10 and 13) so that add# can update the child references of
the parent to point to the new node.

The implementation of rbtree_remove# in the RBTree component is shown in
Figure 3.11. Again, the paths are reset initially (line 1) and the tree is traversed. For
removal, the element to be removed (elem) is searched and curPath will be updated
to point to elem if it is found using an auxiliary procedure When a leaf is reached
(checked in line 3), the search is stopped and the removal is aborted with exists :=
false as there is no element to delete (line 31). If elem was found, the element must
be replaced in order to restore the red-black tree properties. In case the node has a
leaf as left or right child, substitution of the node is performed simply by replacing it
with the other child (line 8 resp. 14). Otherwise, curPath is stored in auxPath (line
16) and is then updated by rbtbasic_right# and rbtree_leftmost# to point to
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rbtree_insert#(elem; ; exists)
interface
postcondition elems(rbt) = elems(rbt ‵) ++ elem

∧ (exists ↔ elem ∈ rbt ‵);
{

rbtbasic_reset#(); // curPath := [], auxPath := []
exists := false;
let stop = false, elem0 = ? in {

rbtbasic_isEmpty#(; ; stop); // stop := (rbt = SENTINEL)
while ¬ stop ∧ ¬ exists do {

rbtbasic_getElem#(; ; elem0); // elem0 := rbt[curPath].elem
if elem = elem0 then exists := true
else {

if elem < elem0 then
rbtbasic_leftWithParent#()
// auxPath := curPath, curPath := curPath + LEFT

else
rbtbasic_rightWithParent#();
// auxPath := curPath, curPath := curPath + RIGHT

rbtbasic_isLeaf#(; ; stop); // stop := (rbt[curPath] = SENTINEL)
}

};
if ¬ exists then {

rbtbasic_add#(elem); // add new node with elem at curPath
rbtree_insertFixup#();
// restore balance and red-black tree properties

}
}
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Figure 3.10: RBTree procedure for inserting an element elem.

the next greater element. This element is the minimal element of the right subtree
of elem and thus cannot have a left child (curPath + LEFT points to a SENTINEL).
Therefore, the element can be moved to auxPath (line 21) and the tree at curPath
can be replaced with its right child (line 20). Depending on the specific situation
before the replacement, the tree may need to be fixed afterward: the operations
rbtbasic_replLeft# and rbtbasic_replRight# return via doFix whether fixing
is necessary. The routine rbtree_removeFixup# is then called to restore the
balance of the tree starting at curPath.

The removal algorithm is essentially the same as the one in [28]. However, we
implement SENTINEL nodes as null pointers instead of using a dummy node that
would be necessary to get the parent of a leaf. This results in our operations already
working on the parent node, which is why we have to pass certain information explic-
itly, for example, isLeftChild in Figure 3.11 signals whether the left or right child has
been deleted. On the other hand, we can omit certain cases by detecting them before
an operation is performed. As an example of this, our rbtree_removeFixup# is
not called if curPath points to a leaf or if there is nothing to fix. Otherwise the
various cases and rotations are identical to [28].
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rbtree_remove#(elem; ; exists)
interface
postcondition elems(rbt) = elems(rbt ‵) -- elem

∧ (exists ↔ elem ∈ elems(rbt ‵));
{

rbtbasic_reset#(); // curPath := [], auxPath := []
rbtree_search#(elem); // sets curPath to position of elem or to a leaf
rbtbasic_isLeaf#(; ; exists); // exists := (rbt[curPath] = SENTINEL)
if ¬ exists then {

let doFix = ?, isLeftChild = ?, cond = ? in {
rbtbasic_hasLeft#(; ; cond); // cond := curPath + LEFT ∈ rbt ;
if ¬ cond then {

rbtbasic_replRight#(; ; doFix , isLeftChild);
// replace node at curPath with its right child
// and move curPath up one node

} else {
rbtbasic_hasRight#(; ; cond); // analogous to hasLeft
if ¬ cond then {

rbtbasic_replLeft#(; ; doFix , isLeftChild);
} else {

rbtbasic_initAux#(); // auxPath := curPath
rbtbasic_right#(); // curPath := curPath + RIGHT
rbtree_leftmost#(); // extend curPath to leftmost inner node
rbtbasic_getElem#(; ; elem); // elem := rbt[curPath].elem
rbtbasic_replRight#(; ; doFix , isLeftChild);
rbtbasic_setElemAux#(elem); // rbt[auxPath].elem := elem

}
};
if doFix then {

rbtree_removeFixup#(isLeftChild);
// restore balance and red-black tree properties

};
exists := true;

}
} else {
exists := false // element was not found

}
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Figure 3.11: RBTree procedure for removing an element.
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For verification, the functional properties must be specified as invariant of RBTree.
In between interface calls, rbt must be a valid red-black tree and must be a valid
search tree, i.e., its elements must be ordered.

component RBTree using RBTBasic

invariants isRbtree(rbt) ∧ isOrdered(rbt)

A non-empty red-black tree is characterized by three main properties: the root of
the tree is colored BLACK, both children of a RED node have to be BLACK, and each
path of any node to a leaf must contain the same number of BLACK nodes.

⊢ isRbtree(rbt) ↔
rbt = SENTINEL ∨

(
redCorrect(rbt , RED) ∧ sameBlacks(rbt)

)
The predicate redCorrect(rbt , col) (col is the color of the parent node) specifies the
first two properties, sameBlacks(rbt) the last. Both are defined recursively over the
structure of the tree, as is isOrdered(rbt). The definition of redCorrect is given by
the following axioms.

⊢ redCorrect(SENTINEL, col)

⊢ redCorrect(node(e, BLACK, left , right), col) ↔
redCorrect(left , BLACK) ∧ redCorrect(right , BLACK)

⊢ redCorrect(node(e, RED, left , right), col) ↔
col = BLACK ∧ redCorrect(left , RED) ∧ redCorrect(right , RED)

For sameBlacks, the black heights of the children of a node are compared.

⊢ sameBlacks(SENTINEL)

⊢ sameBlacks(node(e, col , left , right)) ↔
countBlacks(left) = countBlacks(right)

∧ sameBlacks(left) ∧ sameBlacks(right)

The function countBlacks calculates the number of black nodes on the path to the
minimal element. Note that this path is chosen arbitrary and any other path could
be used for the calculation when used within the recursive definition of sameBlacks.

⊢ countBlacks(SENTINEL) = 0

⊢ countBlacks(node(e, col , left , right)) =

countBlacks(left) + (col = BLACK ⊃ 1 ; 0)

While isOrdered(rbt) is maintained quite easily by the operations of RBTree,
e.g., insert# adds the new element directly at a position that maintains the order
property, the fixing mechanisms for re-establishing isRbtree(rbt) after insertion or
removal are complex. So the main proof effort is to show that these mechanisms
are actually correct. In order to keep the proof size manageable, the procedures are
split into several subroutines, which are augmented with contracts to prove their
correctness in isolation.
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rbtree_insertFixup#()
auxiliary
precondition curPath ∈ rbt ∧ isRbtreeI(rbt , curPath) ∧ isOrdered(rbt);
postcondition isRbtree(rbt) ∧ isOrdered(rbt) ∧ elems(rbt) = elems(rbt ‵);

{
let continue = ?, left = ?, parLeft = ?, uncleRed = ? in {

rbtbasic_parentIsRed#(; ; continue);
// continue := (curPath ̸= [] ∧ rbt[curPath.butlast].color = RED)
while continue do {

rbtbasic_isLeft#(; ; left); // left := (curPath.last = LEFT)
rbtbasic_parentIsLeft#(; ; parLeft);
// parLeft := (curPath.butlast.last = LEFT)
if parLeft then {

rbtbasic_setRightUncleBlack#(; ; uncleRed);
// uncleRed := (rbt[curPath.butlast.butlast].right.color = RED)
// rbt[curPath.butlast.butlast].right.color := BLACK)
if uncleRed then

rbtbasic_insertFixup1L#()
else

rbtbasic_insertFixup2L#(left);
}
else {

. . . // symmetric case for right parent
};
rbtbasic_parentIsRed#(; ; continue);
// continue := (curPath ̸= [] ∧ rbt[curPath.butlast].color = RED)

};
rbtbasic_setRootBlack#(); // rbt.color := BLACK

}
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Figure 3.12: RBTree procedure for restoring the red-black tree properties after an
insertion.

As an example, Figure 3.12 lists the procedure rbtree_insertFixup# that
fixes the tree after an insertion. It is an auxiliary procedure, so it cannot be called
by client components but only by procedures of RBTree. The routine starts at the
insertion point (at curPath) and traverses the tree step by step upwards to the root,
rotating and recoloring nodes along the way. This is done with a loop (lines 4-
22) as long as the parent of curPath is RED or the root is not reached (line 2 and
20, p.butlast returns the path p without its last segment, which in turn can be
selected via p.last). In each iteration different modifications around curPath are
made depending on whether the node at curPath is a left child (lines 5 and 15), its
parent is a left child (lines 6 and 8), or its uncle is RED (lines 9 and 12).

Basically each case performs different recolorations and rotations as shown ex-
emplary in Fig. 3.13 for the case when the parent is a left child and the uncle is
BLACK. In this case up to two rotations are performed: potentially a left-rotation at
the parent of curPath (lines 1-4) and then a right-rotation of its grandparent (line
9) alongside recolorations of the parent and grandparent (lines 5 and 7). A rotation
rearranges a subtree as shown in Fig. 3.14. Here, the situation before and after the
execution of line 9 in Fig. 3.13 is depicted. The parent P and grandparent GP of
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rbtbasic_insertFixup2L#(left)
auxiliary
precondition isRbtreeI(rbt , curPath) ∧ isOrdered(rbt) ∧ . . .
postcondition isRbtree(rbt) ∧ isOrdered(rbt)

∧elems(rbt) = elems(rbt ‵)∧curPath = curPath ‵.butlast;
{

if ¬ left then {
rbtbasic_up#(); // curPath := curPath.butlast
rbtbasic_rotateLeft#(); // left-rotation at curPath

};
rbtbasic_setColorParent#(BLACK);
// rbt[curPath.butlast].color := BLACK
rbtbasic_setColorGrandparent#(RED);
// rbt[curPath.butlast.butlast].color := RED
rbtbasic_rotateRightGrandparent#();
// right-rotation at curPath.butlast.butlast
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Figure 3.13: Exemplary insertion fixup procedure of RBTree.

Figure 3.14: Right-rotation at the grandparent (GP) of the current node (Cur).

the node Cur at curPath have already been recolored accordingly, and now a right-
rotation at GP is performed. This moves Cur up one level (curPath is shortened by
one as well) and makes P to the new root of the rotated subtree. In this example,
the loop body of rbtree_insertFixup# would end with a parent of curPath that
is already BLACK and thus the fixing of rbt is completed.

For the verification of rbtree_insert#, the auxiliary routines in Fig. 3.12 and
Fig. 3.13 are augmented with contracts. When rbtree_insertFixup# is called, the
tree hast to be in order (isOrdered(rbt)) and curPath must point to a node within
the tree (curPath ∈ rbt). The tree may violate the red-black tree properties, i.e.,
isRbtree(rbt) does not have to hold, but only at the insertion point. To express this
circumstance, a weaker version of isRbtree is specified for the insertion invariant



3.2. VERIFICATION OF DESTRUCTIVE RED-BLACK TREES 53

proofs (the corresponding predicates are indicated with an attached I).

⊢ isRbtreeI(rbt , p) ↔
sameBlacks(rbt) ∧ redCorrectI(rbt , (p = [] ⊃ BLACK ; RED), p)

After insertion, the sameBlacks property is still valid since rbtbasic_add# (line
19 in Fig. 3.10) adds the new node colored RED. On the other hand, the redCorrect
property might have been violated by the insertion (if the parent of the inserted
node is RED, then there are two consecutive RED nodes). The weaker predicate
redCorrectI(rbt , col , p) states that rbt complies with redCorrect except for the
node at path p, which is RED and might have a RED parent.

⊢ redCorrectI(SENTINEL, col , p)

⊢ redCorrectI(node(e, col , left , right), col0, []) ↔
col = RED ∧ redCorrect(left , RED) ∧ redCorrect(right , RED)

⊢ redCorrectI(node(e, BLACK, left , right), col , LEFT + p) ↔
redCorrectI(left , BLACK, p) ∧ redCorrect(right , BLACK)

⊢ redCorrectI(node(e, RED, left , right), col , LEFT + p) ↔

redCorrectI(left , RED, p) ∧ redCorrect(right , RED) ∧ col = BLACK

// symmetric cases for the path RIGHT + p

The col argument is again used to pass the color of the parent for the recursive
definition of the predicate. For the case when p = [], i.e., when p points to the root,
the value BLACK is used for col as the root is then RED and needs to be recolored.
Otherwise the value RED enforces that the root node is colored BLACK.

The proof then involves showing that after each iteration of the insertion fixup
loop, isRbtreeI(rbt , curPath) holds again for the shortened curPath or that con-
sistency of rbt is restored and isRbtree(rbt) holds, e.g., after the execution of the
procedure in Fig. 3.13. Note that isOrdered(rbt) is maintained by all auxiliary
procedures as rotations do not affect the order of the tree.

Fixing up the tree after removal performs similar tasks, however, more cases have
to be considered. For the invariant proofs, analogous predicates must be defined
that allow the tree to be characterized during removal when some red-black tree
properties are violated at a specific location in the tree. In contrast to isRbtreeI, the
corresponding predicate isRbtreeD(rbt , p) also allows a violation of the sameBlacks
property at path p besides the violation of redCorrect.

In order to show that the red-black tree implementation can be used as an im-
plementation of sets, the refinement RBTree(RBTBasic) ≤ RBSet is proven by the
following forward simulation.

data refinement RBTree(RBTBasic) ≤ RBSet

abstraction relation rbs = elems(rbt)

where the function elems calculates the set of elements stored in the red-black tree.

⊢ elems(SENTINEL) = ∅

⊢ elems(node(e, col , l , r)) =
(
elems(l) ∪ elems(r)

)
++ e
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This simple abstraction allows to encode the set modifications of RBSet into the con-
tracts of RBTree. For example, the contract of rbtree_insert# in Fig. 3.10 states
that elem is added to the elements of the tree (elems(rbt) = elems(rbt ‵) ++ elem
where rbt ‵ denotes the value of rbt just before the execution of the procedure). This
modification happens within rbtbasic_add#, the contracts of all other modifying
auxiliary procedures, e.g., rbtree_insertFixup#, ensure that they do not change
set of elements stored in the tree (elems(rbt) = elems(rbt ‵)). Similar contracts are
given for the other interface procedures which allow to prove the refinement mainly
by applying these contracts. Note that the refinement proofs do not require the
invariant isRbtree(rbt) (an unbalanced tree would also refine a set correctly) but
do require isOrdered(rbt) since it could not be proven that the search within the
tree is correct (and thus the correctness of rbtree_remove#, rbtree_lookup#,
rbtree_getMin#, and rbtree_getMax# could not be shown).

Proving the refinement proof obligations of Thm. 1 together with the invariant
proof obligations according to Lem. 1 ensures that the component RBTree(RBTBasic)
is a correct red-black tree implementation maintaining all properties of red-black
trees.

Theorem 3 (Correctness of Algebraic Red-Black Trees). The sequential component
RBTree(RBTBasic) is a correct non-destructive implementation of red-black trees.

For none of the proofs it is necessary to reason about the heap implementation. In
particular, the main invariant properties isOrdered and isRbtree are proved solely
over algebraic trees. What remains to prove is that a pointer-based implementation
is a correct refinement of RBTBasic.

Exchanging Algebraic Red-Black Trees with a Heap Implementation

Since the component RBTHeap is a refinement of RBTBasic, it implements the same
interface for fine-grained manipulations of the tree data structure. While RBTBasic
uses two paths to point to the locations tree manipulations are performed, the im-
plementation in RBTHeap uses references that point to a heap storing individual
tree nodes. The nodes of the implementation use parent pointers, so shortening or
lengthening one of the two paths by one (which are operations of RBTBasic) can be
implemented by simply dereferencing a pointer.

More precisely, the state of RBTHeap contains a heap rbh (see Sec. 2.5) and a
pointer rootRef to the root of the tree, together with pointers curRef and auxRef
matching curPath and auxPath, respectively.

component RBTHeap

state rbh : heap(rbnode), rootRef : ref, curRef : ref, auxRef : ref

The heap stores nodes of type rbnode, which contain an element and a color like
the nodes of rbtree but use references that point to their left and right subtrees. A
parent pointer is added to allow efficient traversal upwards in the tree.

data rbnode = node(. .elem : tord; . .color : rbcolor; . .parent : ref;

. .left : ref; . .right : ref)
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rbtbasic_rotateRight#(p)
auxiliary
precondition p + LEFT ∈ rbt ;

{
let rbt0 = rbt[p] in
let rbt1 = rbt0.left in
let rbt2 = node(rbt0.elem, rbt0.color, rbt1.right, rbt0.right) in
rbt[p] := node(rbt1.elem, rbt1.color, rbt1.left, rbt2)
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Figure 3.15: Procedure for right-rotations at a path p of component RBTBasic.

Most of the operations of RBTBasic are just single assignments, for example recol-
orings of the node at curPath or one of its relative, or changes of curPath or auxPath.
RBTHeap implements these operations analogously with lookups at curRef and up-
dates of curRef or auxRef by following the parent- or child-pointers. So instead
of selecting a subtree at curPath, which requires a traversal of the complete path,
the node at curRef is accessed by dereferencing the pointer (rbh[curRef ]). Anal-
ogously, instead of adjusting the paths, e.g., with curPath := curPath + RIGHT,
pointers are updated by following the references of the current node, e.g., with
curRef := rbh[curRef ].right. The only more complex operations are rotations
used in the fixing routines like the one shown in Fig. 3.14. The RBTBasic inter-
face provides operations for rotations at different locations (at curPath, auxPath,
or one of their relatives), all of which use the auxiliary procedure listed in Fig. 3.15
or a symmetric version for left-rotations. The operation takes a path p as an ar-
gument and performs a right-rotation at this location. For example, the procedure
rbtbasic_rotateRightGrandparent# used in Fig. 3.13 calls this operation with
the argument curPath.butlast.butlast. It selects the subtree at p and builds the
rotated subtree which is then inserted at p again (the program rbt[p] := rbt0 is an
abbreviation for rbt := rbt[p, rbt0], which replaces rbt[p] with rbt0 in rbt).

Figure 3.16 shows the corresponding implementation of RBTHeap. Instead of a
path, it takes a reference ref as an input, so rbtheap_rotateLeftGrandparent#
calls the operation with rbh[rbh[curRef ].parent].parent. The heap implemen-
tation performs the rotation by updating the pointers of the node at ref as well as
those of its parent and left child. First, the link between the node at ref and its
new left child is established (lines 2-4). Then the link between the new root of the
subtree (lRef ) and its new parent is created (lines 6-14). And finally, ref is linked
to lRef as its new right child (lines 16 and 17). In contrast to the algebraic variant
in Fig. 3.15 (the assignment in line 4 would copy the whole tree rbt), all updates are
destructive. For example in C, the assignment in line 2 corresponds to a statement
ref->left = lRef->right where both ref and lRef as well as the fields left and
right are pointers to a struct rbnode.
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rbtheap_rotateRight#(ref )
auxiliary
precondition ref ∈ rbh ∧ rbh[ref ].left ∈ rbh;

{
let lRef = rbh[ref ].left in {
rbh[ref ].left := rbh[lRef ].right;
if rbh[lRef ].right ̸= null then {
rbh[rbh[lRef ].right].parent := ref ;

};
if lRef ̸= null then rbh[lRef ].parent := rbh[ref ].parent;
if rbh[ref ].parent ̸= null then {

if ref = rbh[rbh[ref ].parent].right then {
rbh[rbh[ref ].parent].right := lRef ;

} else {
rbh[rbh[ref ].parent].left := lRef ;

};
} else {
rootRef := lRef ;

};
rbh[lRef ].right := ref ;
if ref ̸= null then rbh[ref ].parent := lRef ;

}
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Figure 3.16: Procedure for right-rotations at a reference ref of component RBTHeap.

The refinement is proven using Separation Logic (see Sec. 2.5) and the following
abstraction that does not refer to any red-black tree properties.

data refinement RBTHeap ≤ RBTBasic

abstraction relation abs(rootRef , null, rbt)(rbh)

∧ rbh[rootRef , curPath] = curRef

∧ rbh[rootRef , auxPath] = auxRef

The references curRef and auxRef must point to the same locations in tree as
curPath and auxPath (rbh[ref , p] returns the reference that is reached when the
pointer structure in rbh is traversed following the path p, starting at ref ). The heap
predicate abs : (ref× ref× rbtree(tord)) → heap(rbnode) → bool abstracts the pointer
tree in rbh starting at rootRef to the algebraic tree rbt . The second ref argument
is used to specify the parent of the root, for the complete tree the parent pointer of
the root node should be null. abs is defined recursively over the structure of rbt :

⊢ abs(rootRef , pRef , SENTINEL)(rbh) ↔ rootRef = null ∧ rbh = ∅

⊢ abs(rootRef , pRef , node(e, col , left , right))(rbh) ↔
∃ lRef , rRef .(

(rootRef 7→ node(e, col , pRef , lRef , rRef ))

* abs(lRef , rootRef , left)

* abs(rRef , rootRef , right)
)
(rbh)
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For a SENTINEL, the heap rbh must be empty. This strong condition ensures the
absence of memory leaks since one has to prove that all nodes have been deallocated
when they are removed from the tree. For a node, the heap is separated into three
disjoint parts as usual: a root node containing the same element and color as the
algebraic node as well as two trees that abstract to the left and right algebraic
subtree, respectively.

The proof exploits that each operation modifies at most one location inside of
the tree. This allows to split up the abstraction at this location, prove that the
operation has the expected local behavior (e.g., that it rotates the referenced subtree
correctly), and then merge the abstraction again with the updated subtree. For this,
two fundamental theorems were formulated. The first theorem splits the abstraction
of a tree rbt at a path p.

⊢ p ∈ rbt → (abs(rootRef , pRef , rbt)(rbh) ↔
∃ pthRef , pPthRef .(

abspath(rootRef , pRef , rbt , p, pthRef , pPthRef )

* abs(pthRef , pPthRef , rbt[p])
)
(rbh))

The auxiliary heap predicate abspath is a weaker version of abs: the tree represented
in rbh must match rbt except for the subtree starting at p. The references pthRef
and pPthRef are used to fix the references of the root of the subtree and its parent.
Thus, the split off subtree rbt [p] can be abstracted separated using abs with pthRef
as root and pPthRef as parent reference. Conversely, the second theorem reconnects
a detached subtree rbt0 at path p with the original tree rbt .

⊢
(

abspath(rootRef , pRef , rbt , p, pthRef , pPthRef )

* abs(pthRef , pPthRef , rbt0)
)
(rbh)

→ abs(rootRef , pRef , rbt[p, rbt0])(rbh)

The theorem allows to attach arbitrary trees rbt0 (they do not necessarily have to
be related to the originally separated subtree rbt[p]), however, rbt0 typically results
from a simple modification of rbt[p] like a recoloration or a rotation.

The abstraction relation uses ordinary conjunctions, which supports updating the
second and third conjuncts on heap updates via suitable rewrite rules: modifications
happen either at one of the two paths or below them (in the latter case no update is
necessary at all). Using the abspath heap predicate, rules like the following can be
defined for assignments to the heap (here given for the case that path p is a prefix
of path p0 and p0 ∈ rbt).(

abspath(r0, r1, rbt , p0, r2, r3) * r 7→ nd * hP)(rbh), rbh[r0, p] = r ⊢ ⟨|α|⟩φ(
abspath(r0, r1, rbt , p0, r2, r3) * r 7→ nd0 * hP

)
(rbh),

rbh[r0, p] = r
⊢ ⟨|rbh[r] := nd ; α|⟩φ

The rule propagates the formula rbh[r0, p] = r (which typically corresponds to the
second or third conjunct of the abstraction relation) over an assignment to the heap
location r , exploiting that the location is separated from the part of the tree that p
points into. On the other hand, most Separation Logic based provers, e.g., VeriFast
[68] or Viper [86], support separating conjunction only, which would require to define
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several versions of abs with additional paths and references as arguments, depending
on which of them is contained in a subtree.

Proving the refinement RBTHeap ≤ RBTBasic with the forward simulation given
above guarantees memory-safety of the heap implementation (the lookup and update
operations of heaps are partial with domains λ h, r . r ̸= null ∧ r ∈ h, so the
program proofs also ensure the absence of invalid pointer dereferencing), and by
compositionality of refinement (Thm. 2) together with Thm. 3 we get the correctness
of the destructive red-black tree implementation RBTree(RBTHeap).

Theorem 4 (Correctness of Destructive Red-Black Trees). The sequential compo-
nent RBTree(RBTHeap) is a correct, memory-safe destructive implementation of red-
black trees.

Related Work

There are several other works that do verification of red-black trees. [5, 44, 95]
are complete verifications of algebraic (nondestructive) implementations, that corre-
spond to the upper refinement RBTree(RBTBasic) ≤ RBSet.

Partial verifications, where the emphasis is on automation, are [22] (insertion
without establishing sameBlacks) and [89] (just proving the isOrdered property).

The only complete verification of destructive code we are aware of is described
in [7]. The implementation is directly in Java, the main routines use recursion and
no parent pointers, so it is somewhat less efficient than our C implementation which
does not need a recursion stack. In addition to verifying the main operations shown
in the RBSet interface, a concurrent routine for merging red-black trees, which is
part of the NLNet Labs Name Server Daemon [90] and uses lists as an intermediate
representation, was verified with VerCors [12]. Verification is directly done using
Separation Logic, so the proof has to mix red-black tree properties and properties
of pointer structures. The proofs of the recursive implementation in VerCors require
fewer auxiliary functions and predicates than we needed for proving our iterative
implementation in KIV: we have to give loop invariants over the whole tree rbt and
hence use auxiliary predicates to express something like “rbt is valid except for a
violation of redCorrect at path p” while the recursive contracts in VerCors only
have to consider the (sub-)tree that is passed as an argument. Hence, we have also
given plenty of inductive lemmas, while almost none were necessary for the proof in
VerCors.

With VerCors being an automatic verifier backed by an SMT solver, proofs are
guided by adding suitable annotations to the programs instead of directly interacting
with a GUI during a proof as in KIV. Overall, the user input necessary for the
final proof seems less in VerCors than in KIV. From the data given, the effort was
somewhat higher than with our approach, however, the authors do not mention
how this effort is distributed between the core red-black tree verification and the
verification of the merging algorithm, which makes an exact comparison difficult.

Partial verification of destructive code can also be found in [36] (C-Code), [8] (au-
tomatic analysis of a specific encoding as graph transformations) and [34] (SPARKS,
a subset of Ada). All three of these have analyzed insertion only and left away the
sameBlacks property. The last is interesting since it uses an array-representation
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of red-black trees that would be suitable for real-time use (the array only needs to
be large enough to hold all tree nodes). It should not be too difficult to replace
our heap-based representation in the lower refinement with their array-based one,
exploiting that we do not have to re-verify any of the invariants of red-black trees to
do this.
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Chapter 4
Flashix: A Verified File System for
Flash Memory

Summary Flashix is a long-term project with the goal of developing a verified,
crash-safe file system for flash memory. In the course of development, a deep
component hierarchy with over a dozen major refinements was created, using the
modularization approach presented in the previous chapter. The file system was
purely sequential in the first project phase and did not use any caches. Thus, the
second phase of the project was mainly about adding such performance-oriented
aspects in the aftermath.
This chapter gives an overview of the complete component hierarchy. It emphasizes
the non-local extensions, i.e., extensions that affect multiple layers of the hierar-
chy, this thesis contributes as part of the second project phase. Furthermore, the
original models of the top layers of the hierarchy are introduced as a basis for the
extensions presented in the following chapters.

Contents
4.1 The Flashix Component Hierarchy . . . . . . . . 61
4.2 The POSIX Specification . . . . . . . . . . . . . . 66
4.3 The Virtual File System Switch . . . . . . . . . . 77
4.4 Related Work . . . . . . . . . . . . . . . . . . . . . 91

Publications The Flashix model summary in this chapter is based on [13].
Parts of the individual layer presentations were published in [14, 13, 15], never-
theless, the detailed models in this chapter - shown in their original state - are
primarily based on the work of Ernst [38].

4.1 The Flashix Component Hierarchy

The Flashix file system is structured into a deep hierarchy of components, connected
by incremental refinements and subcomponent relationships following the approach
presented in Sec. 3.1. The pattern of Fig. 3.3 has been applied extensively to build
a hierarchy containing over ten major data refinement steps (dashed lines) as shown
in Fig. 4.1. Specification components are depicted in white and implementation
components in gray. Combining all implementation components then results in the

61
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POSIX

VFS AFS

Cache AFS

FFS FFS-Core

Journal ∥ GC Index

B+-Tree Persistence
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δ2
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(a) Upper layers of Flashix.

Persistence

Node Encoding abstract Blocks

Write Buffer logical Blocks

Superblock AEBM

EBM ∥ WL ∥ Erase EBM Headers

Header Encoding MTD Interface
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δ3

(b) Lower layers of Flashix.

Figure 4.1: Component hierarchy of the Flashix file system with extensions δi: δ1:
order-preserving caching; δ2: non-order-preserving caching; δ3: concurrent wear lev-
eling & erase; δ4: concurrent garbage collection; δ5: external concurrency.

final implementation of the file system.
As a starting point for this work, the basic hierarchy of Flashix, including most

of the components and refinements of Fig. 4.1, was already given. The main focus
of the work was to add multiple extensions, mainly comprising caching and concur-
rency, to this existing hierarchy while invalidating as little proof work as possible.
This goal is contrasted by the fact that most extensions are non-local, i.e., while they
can be implemented primarily locally in a component, they also impact surround-
ing components. For example, they can change the crash behavior of higher-level
components or they result in lower-level components being called concurrently.

Fig. 4.1 additionally shows these non-local extensions as black bars, ranging over
the affected layers and labeled with an identifier δi. All layers and the non-local
extensions of these layers will shortly be introduced in this section. The remaining
sections of this chapter will then present the models of the upper layers in more detail
(in their initial form), which gives a basis for Ch. 6 and Ch. 7, where the non-local
extensions are presented and discussed.

POSIX The top layer POSIX of Fig. 4.1a is a formal specification of the POSIX
standard [100]. It defines the interface and the functional correctness requirements
of the file system. Here, the state of the file system is given by a directory tree where
leaves store file identifiers, and a mapping of file identifiers to the corresponding file
contents, represented by a sequence of bytes. An indirection between file identifiers
and file content is necessary to allow hard links, where the same file is present in sev-
eral directories. Structural operations, i.e., operations that modify the directory tree
like creating/deleting directories or (un)linking files, are defined on paths. Content
operations, such as reading or writing parts of the content of a file, work directly on
file identifiers.

MTD Interface The bottom layer MTD Interface of the hierarchy in Fig. 4.1b
is a formal specification of the Linux MTD Interface (Memory Technology Devices)
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[51]. It acts as a lower boundary of the file system and provides low-level operations
to erase flash blocks and to read or write single pages within flash blocks. Precon-
ditions ensure that calls to these operations comply with the characteristics of flash
memory, i.e., that pages are only written as a whole and that pages are only written
sequentially within a block. Additionally, it formalizes assumptions about hardware
failures or the behavior of the flash device in the event of a crash. More details on
the formal model of MTD Interface can be found in [98].

Virtual File System Switch In a first refinement step, the POSIX model is re-
fined by a Virtual File System Switch (VFS) that uses an abstract specification of
the core file system (AFS). Similar to the Linux Virtual Filesystem, the VFS compo-
nent implements the resolution of paths to individual file system objects, permission
checks, and the management of open files. Basically, the AFS provides an interface
analogous to the POSIX interface but on the level of file system objects instead of
paths. This specification abstracts completely from any flash-specific concepts and
thus the VFS is not limited to be used exclusively with flash file systems. Details of
the POSIX specification are given in Sec. 4.2, and the sequential models of VFS(AFS)
are explained in Sec. 4.3. Both sections are based on the earlier publications [41, 42].

The most recent non-local extension to Flashix was to allow concurrent calls to
the file system interface, which required implementing a locking concept for the VFS
(δ5 in Fig. 4.1). The approach taken focuses on enabling parallel access to file con-
tents, in particular we want to allow arbitrary concurrent reads as well as concurrent
writes to different files. Therefore, we chose a fine-grained locking strategy for files,
whereas we applied a coarse-grained strategy for the directory tree. This means that
each file is protected by an individual reader-writer lock while a single reader-writer
lock is used for the entire directory tree. It should be noted, that parallel traversal
of the directory tree is still possible as long as no structural operation is performed.
Thus, we think this is a good trade-off between development or verification effort and
performance gain. The existing sequential versions of VFS and AFS were augmented
with locks and ownerships respectively and it was proven that the interleaved im-
plementation of VFS is linearizable and deadlock-free using atomicity refinement as
explained in Sec. 7.2. Specifics of this extension are presented in Sec. 8.2.

High-Level Cache AFS is refined by the actual Flash File System (FFS). Addi-
tionally, AFS is refined by a Cache component that caches data structures used at
the interface of the core file system. This layer was introduced as another non-local
extension (δ2 in the figure). The cache is integrated as a decorator [48], i.e., it wraps
around the AFS in the sense that it uses AFS as a subcomponent and also imple-
ments the interface of AFS. This allows the file system to be used both with and
without Cache. The main goal of this integration was to allow write-back caching of
content operations. However, write-back caching can have significant effects on the
crash behavior of a system. Using this sort of file system caches required to define
a novel correctness criterion (given in Sec. 5.1) and significant proof work to show
that Flashix complies with it (presented in Sec. 6.1 together with the new models).
The extension was also published in [14] and [15].
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Flash File System, Journal & Index The FFS was the layer at which the
development of the Flashix file system started in [111]. It introduces concepts specific
to flash memory and to log-structured file systems. Updates to file system objects
must be performed out-of-place and atomically. For this purpose, the FFS is built
upon an efficient Index, implemented by a wandering B+-Tree, and a transactional
Journal. Both are specified abstractly in the component FFS-Core. Updates are
encapsulated in nodes and grouped into transactions that are then written to a log.
To keep track of the latest versions of objects, the locations of them on the flash
memory are stored in the Index. The index exists in two versions, one persisted on
flash and one in RAM. Updates on the index are initially performed only in RAM in
order to improve performance as these update are quite costly to perform on flash.
Only during commits, which are executed regularly, the latest version of the index
is written to flash. The transactional Journal ensures that, in the event of a crash,
the latest version of the RAM index can be reconstructed. This can be done by
replaying the uncommitted entries in the log starting from the persisted index on
flash. In doing so, incomplete transactions are discarded to comply to the atomicity
properties expected by the VFS.

Another crucial mechanism implemented in this layer is garbage collection. Due to
their out-of-place nature, updates to the file system leave garbage data behind. This
data must first be deleted before the storage space it occupies can be used again.
But since flash blocks can only be erased as a whole, garbage collection chooses
suitable blocks for deletion (preferably blocks with a high percentage of garbage),
transfers remaining valid data of that block to another one, and finally triggers the
erasure of the block. This mechanism is not triggered explicitly by calls to the file
system, instead it must be performed periodically to ensure that the file system does
not run out of space. In earlier versions of the file system, garbage collection was
triggered by the FUSE integration after each top-level POSIX call. With extension
δ4, garbage collection was extracted into a separate thread (indicated by the ∥ symbol
in Fig. 4.1). This (internal) concurrency extension is presented in Sec. 8.3.

Node Encoding Both the transactional Journal and the B+-Tree write nodes
on the flash device. The Node Encoding component is responsible for serializing
these nodes to bytes before they can be written to flash. It also keeps track of the
allocation of erase blocks and, for each block, the number of bytes still referenced
by live data, i.e., by nodes of the index or nodes that store current versions of file
system objects. This information is used to determine suitable blocks for garbage
collection. Besides that, the layer ensures that writing of nodes appears to be atomic
to the Journal and Index. It detects partially written nodes that may occur through
crashes or hardware failures and takes care of them. A more in-depth view on these
components and the sequential garbage collection is given in [40].

Write Buffer All serialized nodes pass a Write Buffer, representing the first non-
local extension δ1 of Flashix. This buffer cache tackles the restriction that flash pages
can only be written sequentially and as a whole. It caches all incoming writes and
only issues a page write once a page-aligned write is possible, i.e., the write requests
have reached the size of one flash page in total. Otherwise, padding nodes would
have to be used in order to write partially filled pages, which both would increase
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the absolute number of writes to flash and the amount of wasted space on the flash
device. Introducing such an order-preserving write-back cache (written data leaves
the cache in the same order as it entered it) also affects the crash behavior of the
file system. In [97] we gave a suitable crash-safety criterion as well as a modular
verification methodology for proving that systems satisfy this criterion. While this
extension is already covered in detail by the work of Pfähler [96], Chapter 6 recaps
the most important points of this extension in the context of the extension δ2.

Superblock The Superblock component is responsible for storing and accessing
the internal data structures of the file system. A specific part of the flash device
is reserved for this data. They are written during a commit only, since persisting
each update would have a significant negative impact on the performance of the
file system. A critical task of this layer is to ensure that commits are performed
atomically using a data structure called superblock.

Erase Block Manager Finally, the Erase Block Manager (EBM) provides an in-
terface similar to the one of MTD Interface (read, write, erase). However, the EBM
introduces an indirection of the physical blocks of the flash device to logical blocks
and all of its interface operations address logical blocks only. These logical blocks are
allocated on-demand and mapped to physical blocks. The indirection is used to move
logical blocks transparently from one physical block to another one which is neces-
sary to implement wear leveling. Wear leveling ensures that within some bounds all
blocks are erased the same number of times. This is necessary to maximize the life
time of the flash memory, as erasing a flash block repeatedly wears it out, making it
unusable. To ensure a bound, the number of performed erases is stored in an erase
counter. Wear leveling finds a logical block that is mapped to a physical block with
low erase count and re-maps it to a block with high erase count. Since a logical block
with low erase count typically contains a lot of stale data that has not been changed
for some time and therefore is not likely to change soon, the number of erases is kept
at the same level and the lifetime of the flash device increases.

The EBM uses the Header Encoding component for the serialization and deseri-
alization of administrative data, most important an inverse mapping stored in the
physical blocks containing the numbers of the logical blocks they are mapped to.

A sequential version of the Erase Block Manager is explained in detail in [98].
But similar to garbage collection, wear leveling has to be performed regularly with-
out being triggered by the user. So we adjusted the EBM to run wear leveling in
a separate thread as well, and another thread is used to perform the erasure of
blocks asynchronously, too (extension δ3). This was the first concurrency extension
in Flashix and triggered the development of a verification methodology for introduc-
ing concurrency to a sequential refinement hierarchy. [108] illustrates the general
approach using a simplified version of the concurrent EBM. Pfähler performed the
actual extension as part of his thesis [96], in which the full version of the models is
presented.

As part of this extension, red-black trees were also introduced to the EBM. Now,
two trees are used to give efficient access to the erase counters of the flash blocks;
particularly, the blocks with the highest and lowest erase counts can be found very
quickly (O(log n)). Before, this information was stored in an array (with the length
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Figure 4.2: POSIX representation of the file system.

being the number of erase blocks of the flash hardware), so it was required to search
the whole array each time to find the minimum/maximum (O(n)). Verification was
attempted for the initial, non-modularized version, but it has never been finished due
to the complex nature of the pointer implementation. Therefore, the implementation
was modularized lately using an approach for Separating Separation Logic which
allowed to prove the correctness with reasonable effort (see Sec. 3.2 and [106]).

4.2 The POSIX Specification

The Portable Operating System Interface (POSIX) [100] is a collection of standards
for maintaining compatibility between operating systems, particularly UNIX-like op-
erating systems. It defines various C-APIs for system- and user-level applications,
including file systems. This section describes a formal model for file systems, ex-
tracted from the POSIX standard. The model originates from earlier work of the
research group [41, 42] and defines the functional correctness requirements for the
Flashix file system.

Modeling the File System Tree & File Contents

On an abstract level, the core part of a file system can be seen as a tree structure
containing links to file contents, see Fig. 4.2. Starting from the root, the tree is built
from nested directories, where each directory has named entries: an entry is either
another directory or a link to a file containing data. Since files cannot link back to
the tree, directories form the inner nodes of the tree while files form the leaves.

File systems typically allow references from multiple directories to the same file,
called hard links. In order to model this circumstance, an indirection between the
leaf nodes and the actual data has to be introduced. Instead of storing file contents
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directly in the tree, they are kept separately and can be accessed via a unique file
identifier (FID).

Algebraically, the tree can be specified as a free data type tree, similarly to the
rbtree type in Sec. 3.2.

data tree = fnode(. .fid : fid)

| dnode(. .meta : metadata; . .entries : map(string, tree))

Directories are represented by dnodes (“Directory Nodes”) that contain a finite map-
ping from entry names (given as strings) to corresponding subtrees. Unlike red-black
trees, a directory tree is not a binary tree, so each directory node can contain an
arbitrary number of entries. Links to files in the tree are modeled by fnodes (“File
Nodes”) containing just the file identifier fid of the linked file. As the fid type is
only used internally in the POSIX model, it is not specified further except that its
carrier set is infinite, so the creation of new files is not restricted.

The content of files is given by a sequence of bytes, stored in an array. An alias
type buffer is introduced to abbreviate the instantiation of the polymorphic type
array with byte and the constructor mkarray is renamed to mkbuf.

type buffer ≡ array(byte) with mkarray 7→ mkbuf

Again, it is not necessary to give a detailed specification of the byte type since a file
system implementation does not have to manipulate individual bytes of user data.
Only a dedicated constant ZERO of type byte is used for filling unoccupied ranges
within buffers. The content buffer of a file is wrapped into a object of type fdata.

data fdata = file(. .meta : metadata; . .content : buffer)

Directories and files also contain some metadata, stored in dnodes and files, re-
spectively. The abstract type metadata is used as a placeholder for administrative
information of a file system node. For example, it is used to store the owner of a file,
together with read, write, and execute permissions. We also use some placeholder
predicates pr(user ,md), pw(user ,md), and px(user ,md) to state if a user user (of
unspecified type user) has the respective permission to access a node with metadata
md . This formalization is inspired by [61] and is sufficient to implement correct
permission checking within the file system.

For accessing file contents as a user, file handles store the file identifier fid of
a file together with an access mode mode and the current position pos withing the
content buffer. The mode determines how the file content can be accessed via this
handle: it can be either read-only, write-only, or both read and write.

data fhandle = fh(. .fid : fid; . .mode : mode; . .pos : nat)

data mode = MODE_R | MODE_W | MODE_RW

File handles are created when a user opens a file. The user can then access the file via
the handle multiple times, i.e., perform several reads or writes, until the user closes
the file again (see the following subsections). Open file handles are exposed to users
of the file system via file descriptors, which are unique natural numbers assigned to
the handles.
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Altogether, this results in a state consisting of a directory tree root , a file store
fs storing file data under the corresponding file identifier, and open file handles ofh
using file descriptors as keys (cf. Fig. 4.2).

component POSIX

state root : tree, fs : map(fid, fdata), ofh : map(nat, fhandle)

Manipulating the File System Structure

Individual nodes of the directory tree are accessed via paths. A file system path is
sequence of directory entry names, so an alias type path abbreviating lists of strings
is introduced. For better distinction, the empty path is represented by the constant
ε renaming the empty list [].

type path ≡ list(string) with [] 7→ ε

In the following, valid paths, i.e., paths that lead to a node within the directory
tree, are of particular interest, since path accesses to a tree are only well-defined for
such paths. A valid path is described by the predicate . ∈ . : path × tree, defined
recursively by the following axioms.

⊢ ε ∈ t

⊢ ¬ str + p ∈ fnode(fid)

⊢ str + p ∈ dnode(md , entries) ↔ str ∈ entries ∧ p ∈ entries[str]

Manipulations of the directory tree by structural operations use paths as inputs
to determine which part(s) of the tree should be modified. The set of structural
operations comprises creating new directories or files, removing existing directories,
creating or deleting hard links to files, or moving files or directories to other locations
within the tree. In order to model these operations, three algebraic functions . [ . ] :
tree× path → tree, . [ . ] : tree× path× tree → tree, and . -- . : tree× path → tree
are defined to select the subtree at a path, to exchange the subtree at a path, and
to remove a subtree at a path, respectively. All three functions are defined similarly,
e.g., the following axioms define the update function.

⊢ t[ε, t0] = t0

⊢ dnode(md , entries)[str’, t0] = dnode(md , entries[str , t0])

⊢ p ̸= ε ∧ str ∈ entries → dnode(md , entries)[str + p, t0] =

dnode(md , entries[str , entries[str][p, t0]])

Note that the operation here is defined over the structure of paths, however, fur-
ther distinguishes between a path with one segment (second axiom, str’ abbreviates
the singleton path str + ε) and a path with at least two segments (third axiom, the
precondition p ̸= ε ensures that the axiom does not clash with the second axiom as
str + p would also match on str + ε otherwise). Furthermore, note that the operation
is only defined for paths p that are either valid or “nearly” valid in the sense that
the parent path, i.e., the path with the last segment dropped (written p.parent),
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posix_mkdir#(p, md , user ; ; err)
interface

{
root[p] := dnode(md , ∅);

}

posix_rmdir#(p, user ; ; err)
interface

{
root := root -- p;

}

posix_readdir#(p, user ; names; err)
interface

{
names := dom root[p].entries;

}

posix_rename#(p0, p1, user ; ; err)
interface

{
let t0 = root[p0], t1 = root[p1],

exists = p1 ∈ root
in
root := (root -- p0)[p1, t0];
if exists ∧ ¬ t1.dir?

∧ ¬ t1.fid ∈ ofh.fids
∧ ¬ t1.fid ∈ root.fids

then
fs := fs -- t1.fid;

}

posix_create#(p, md , user ; ; err)
interface

{
choose fid with ¬ fid ∈ fs in
root[p] := fnode(fid);
fs[fid] := file(md , mkbuf(0));

}

posix_link#(p0, p1, user ; ; err)
interface

{
let fid = root[p0].fid in
root[p1] := fnode(fid);

}

posix_unlink#(p, user ; ; err)
interface

{
let fid = root[p].fid in
root := root -- p;
if ¬ fid ∈ ofh.fids

∧ ¬ fid ∈ root.fids
then
fs := fs -- fid ;

}

Figure 4.3: Structural operations of the POSIX component (without error handling).

points to a directory within the tree. Otherwise, the lookup on entries in the third
axiom would be undefined. Allowing such paths results in the operation not only
overwriting existing subtrees but also attaching trees to the existing structure (when
¬ str ∈ entries in the second axiom).

Fig. 4.3 lists the complete set of structural operations of the POSIX component.
The operations do not have any preconditions as they form the user-level interface
of the file system, and hence it could not be assured that preconditions hold every
time an operation is called. Instead, operations return an error code err of type
error as output, signaling whether the operation was successful, a hardware error
occurred, or some given inputs were invalid (which corresponds to the violation of
an implicit precondition). The exact error handling will be omitted in the following
listings. However, the POSIX component uses a generic non-deterministic approach
for handling such errors, respectively precondition violations, introduced later in this
section.

Due to the use of an algebraic tree for the directory structure combined with
the algebraic operations given above, most declaration bodies consist of a handful of
assignments. The creation of directories (procedures posix_mkdir#) simply adds
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a new dnode with given metadata md and without any entries to the directory tree
at the path p. Similarly, posix_rmdir# removes the directory node at path p
from the tree. The operation posix_readdir# reads the names of all entries of a
directory at path p (the algebraic function dom mp returns the domain of a map mp)
and returns them to the caller.

Files are created by the operation posix_create#, which adds a new fnode at
p analogously to posix_mkdir#. Additionally, a new entry must be allocated in
fs to store the content of the file (initialized with the empty buffer mkbuf(0)) and
the given metadata md . The file identifier is chosen non-deterministically, with the
only restriction being that it is fresh, i.e., currently not allocated in fs. Existing files
can be linked from other locations within root with posix_link#. It takes a path
p0 pointing to an existing file and creates an fnode at another path p1 containing
the same file identifier fid . Since this allows multiple hard links to point to the
same file, there is no explicit operation for removing a file. Only individual links can
be removed via posix_unlink#. As posix_rmdir#, the operation removes the
fnode at p from the tree. However, it also checks if this was the last link pointing
to the file (root.fids collects all file identifiers of fnodes in rootRef ) and if the file
therefore needs to be removed from fs.

One small detail that needs to be considered (and Fig. 4.2 also hints at) is that
both root and ofh can link to files in fs. If a link to a currently opened file is removed
(indicated by the red cross in the figure), the file must be kept in the files store, even if
there is no link from the directory tree left. Such files are called orphans or orphaned
files. As long as an orphaned file is not closed, its content must be accessible via the
file handle since an application could still read (or even write) it. A typical example
would be a package upgrade of an application that is still running. When the binary
file of the running application is overwritten, the process still references to the old
version of the file so that the file system is prevented from deleting its content on
disk. So posix_unlink# deletes the entry of fid from fs only if there is no link from
the directory tree (¬ fid ∈ root.fids) and there is no open file handle left pointing
to fid (¬ fid ∈ ofh.fids). Consequently, the operation for closing a file acts the
same way and potentially removes a file from fs (see Fig. 4.5 later this section).

Arguably the most complex structural operation is posix_rename#. The op-
eration takes a subtree at a path p0, which could be a single file or a whole directory
including entries, and moves it to another location given by the path p1. This is
modeled by selecting the tree at p0, removing the tree from root , and inserting the
tree at p1 again. However, the path p1 is allowed to point to an existing file or direc-
tory at the beginning of the operation, so moving the tree at root[p0] to this path
overwrites the old tree root[p1]. This is explicitly allowed by the POSIX standard
when some conditions are respected, e.g., files can only overwrite files or directories
can only be overwritten by other directories and if they are empty (have no entries).
Thus, posix_rename# must also consider the case that the move has overwritten
a fnode and that this node was the last link to the file. Then the file is removed
from the file store, too.

Accessing Metadata and File Contents

Since both files and directories store metadata, the operations for fetching and updat-
ing them are used uniformly for both types of nodes. Figure 4.4 lists the respective
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posix_writemeta#(p, md , user ; ; err)
interface

{
if root[p].dir? then
root[p].meta := md ;

else let fid = root[p].fid in
fs[fid].meta := md ;

}

posix_readmeta#(p, user ; md ,
nlink , sz ; err)

interface
{

if root[p].dir? then
md := root[p].meta;
nlink := # root[p].subdirs

+ (p = ε ⊃ 1; 2);
sz := # root[p].entries;

else let fid = root[p].fid in
md := fs[fid].meta;
nlink := count(fid , root.fids);
sz := # fs[fid].content;

}

Figure 4.4: Metadata operations of the POSIX component (without error handling).

operations posix_readmeta# and posix_writemeta#, again using a path p as
input for identifying a file system node.

Updating the metadata of a node with posix_writemeta#just writes the input
md to the respective field of the node. As directories store their metadata in the
tree while files store them in the file store, the operation must distinguishes between
the type of node p points to (t.dir? checks whether t is a dnode). For directories,
the metadata is replaced directly in the root[p]. For files, the metadata is updated
in the entry of fs referenced by the file identifier in root[p].

Retrieving metadata of a file or directory with posix_readmeta# returns the
metadata md of the node, but also some additional information (in Linux, the op-
eration corresponds to the operations getattr resp. getxattr, which also require some
structural information about the node): the outputs nlink and sz return the number
of links to the node and its size. While the metadata is read directly from the cor-
responding node in root or the file in fs, nlink and sz are not stored explicitly but
must be calculated. The size of a directory is defined by the number of its entries,
and the set of links to a directory is given by the reverse links of its subdirectories
as each directory has a link to its parent via “..” (t.subdirs selects all entries of t
that are directories), a reflexive link via “.”, and the link from the parent directory
(each directory has precisely one parent directory1, except the root directory, which
has none). The size of a file is given by the length of its content buffer, i.e., by
the number of bytes stored in the file, and the number of links to a file is given by
counting all hard links pointing to it, i.e., by all fnodes in root containing the file
identifier fid .

Contrary to structural and metadata operations, the contents of files are not
accessed via paths but via file descriptors referencing file handles managed in ofh.
The operations for creating, destroying, and manipulating file handles are listed in
Fig. 4.5.

Before the content of a file can be read or written, the file must be opened to
create a file descriptor using the operation posix_open#. Opening a file takes a
path p pointing to a fnode of the file to be opened and allocates a new file handle

1Flashix does not support multiple hard links on directories.
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posix_open#(p, mode, user ; fd ; err)
interface

{
let fid = root[p].fid in

choose n with ¬ n ∈ ofh in
ofh[n] := fh(fid ,mode, 0);
fd := n;

}

posix_close#(fd , user ; ; err)
interface

{
let fid = ofh[fd].fid in
ofh := ofh -- fd ;
if ¬ fid ∈ ofh.fids

∧ ¬ fid ∈ root.fids
then
fs := fs -- fid ;

}

posix_seek#(fd , whence, n, user ; ; err)
interface

{
let fh = ofh[fd] in

if whence = SEEK_CUR then
n := fh.pos+ n;

else if whence = SEEK_END then
n := # fs[fh.fid].content+ n;

ofh[fd].pos := n;
}

Figure 4.5: File handle operations of the POSIX component (without error handling).

with the corresponding file identifier. The handle is stored in ofh under a fresh
descriptor n, which is chosen non-deterministically and returned to the caller (the
implementation of POSIX will resolve this non-determinism). The handle is initialized
at position 0, i.e., at the beginning of the file content, with the mode passed by the
caller determining how the file can be accessed via the file descriptor n (it can be
either MODE_R, MODE_W, or MODE_RW).

During the lifetime of a file handle, its fid and mode cannot be changed. What
does change, however, is its position pos: reading from or writing to a file auto-
matically moves the current position forward (see Fig. 4.6 later this section), but it
can also be changed explicitly with the posix_seek# operation. While the former
mechanism is useful when a file is read or written entirely from the beginning to the
end, setting the file handle to a custom location enables, for example, appending
writes to files without overwriting existing content. Therefore, seeking takes a file
descriptor fd , an offset n, and a seek flag whence as input. The seek flag determines
the position in the file where the offset n should be applied.

data seekflag = SEEK_SET | SEEK_CUR | SEEK_END

The position can either be set absolutely to n when whence = SEEK_SET, the offset
n can be added to the current position of the handle when whence = SEEK_CUR,
or it can be added to the end of the file, i.e., the length of its content buffer
# fs[fh.fid].content, when whence = SEEK_END. Note that in all cases, the posi-
tion of the file handle is set to n at the end of the operation, but in the latter two
cases, the value of n is updated locally beforehand (these updates are not visible to
the caller as n is an input parameter).

Finally, a file is closed with the operation posix_close# by removing the entry
of the passed file descriptor fd from ofh, thus deleting the corresponding file handle.
Since the file could have become an orphan during the time it was opened, the
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posix_write#(fd , buf , user ; n; err)
interface
precondition n ≤ # buf

{
let fh = ofh[fd], fdata = fs[ofh[fd].fid] in

choose m with m ≤ n in
n := m;
fdata.content := splice(buf , 0, fdata.content, fh.pos, n);
fs[fh.fid] := fdata;
ofh[fd].pos := fh.pos+ n;

}

Figure 4.6: Write operation of the POSIX component (without error handling).

operation checks this circumstance and also removes the file from the file store fs if
necessary.

Writing to a file is done with the operation posix_write# shown in Fig. 4.6.
It takes a file descriptor fd and a buffer buf containing the data to be written as
input. The referenced parameter n is used twofold: it gives the requested number of
bytes as an input and returns the number of actually written bytes as output. This
distinction is necessary as the POSIX standard allows writes (and similarly reads)
to write only a prefix of bytes. Such partial writes can, for example, occur when
there is insufficient space available on the disk or flash device. Then the operation
signals success via err nevertheless, but the caller can detect incomplete writes by
the value of n. This behavior of writes is particularly interesting for adding caches to
the file system as it can be exploited to formulate suitable crash-safety criteria (see
Chapter 6). The declaration implements this characteristic by choosing a value m
less or equal to n non-deterministically and copying m bytes from the input buffer
buf to the content of the file referenced by fd .

Copying bytes from one buffer to another is modeled with the algebraic function
splice, which effect is depicted in Fig. 4.7. splice(buf 0,m0, buf 1,m1,n) yields the
buffer buf 1 in which, starting from position m1, n bytes have been overwritten by
the bytes of buf 0 starting from position m0. The function splice considers two
special cases: first, if the bytes to copy reach beyond the size of the target buffer,
i.e., # buf 1 < m1 + n, the buffer is resized to m1 + n to fit all copied bytes (this
situation is shown in Fig. 4.7); and second, if the target offset is larger than the
target buffer size, i.e., # buf 1 < m1, the buffer is resized as in the first case but the
gap between # buf 1 and m1 is filled with ZERO bytes.

posix_write# uses splice to copy the first n (resp. m) bytes from the in-
put buffer (the source offset is 0) to the content buffer of the file, starting from
the current position of the file handle fh. Thus, the position has to be set with
posix_seek# properly before calling posix_write#. Finally, the position of the
handle is incremented by the number of bytes copied so that a subsequent write can
directly append data.

The read operation posix_read# functions nearly symmetrical. Bytes are
copied from the content buffer of the file referenced by the descriptor fd to the
output buffer buf . Again, the POSIX standard allows the operation to read fewer
bytes than requested, modeled by a non-deterministic choice. In particular, it is
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Figure 4.7: Extending copy between buffers with splice(buf 0,m0, buf 1,m1,n).

posix_read#(fd , user ; buf , n; err)
interface
precondition n ≤ # buf

{
let fh = ofh[fd], fdata = fs[ofh[fd].fid] in

choose m with m ≤ n ∧ fh.pos+m ≤ # fdata.content in
n := m;
buf := copy(fdata.content, fh.pos, buf , 0, n);
ofh[fd].pos := fh.pos+ n;

ifnone
n := 0;

}

Figure 4.8: Read operation of the POSIX component (without error handling).

not possible to read bytes beyond the size of the file content, so reading has to
stop when this boundary is reached (specified by the additional choice condition
fh.pos + m ≤ # fdata.content). Note that no bytes can be read for an invalid
position of the file handle (when # fdata.content < fh.pos). Then n is set to 0,
and buf is not modified. Furthermore, the simpler function copy is used instead of
splice since the size of the target buffer does not need to be altered (and should
not).

Besides increasing the file size via appending writes, the size of a file can also be
changed by the operation posix_truncate# listed in Fig. 4.9. Although it modifies
the content of a file, it uses a path p as input instead of a file handle2. A truncation
resizes the content buffer of the a file at p to the new absolute size n. If the file
previously was larger than n, the extra data beyond the new size is lost. If it was
shorter, it is extended, and the extended part is filled with ZEROs.

2Linux also supports an operation ftruncate that works on file handles, however, the FUSE
library used for the integration of Flashix into Linux does only support the path variant.
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posix_truncate#(p, n, user ; ; err)
interface

{
let fid = root[p].fid in
fs[fid].content := resize(fs[fid].content,n);

}

Figure 4.9: POSIX operation for resizing of files (without error handling).

Error Model & Crash Behavior

All POSIX operations return an error code err indicating whether the operation was
executed successfully, the operation was called with invalid arguments, or a low-level
error occurred. Thus, the error type is defined as an enumeration type, where each
(non-successful) enumeral indicates the cause for a failing operation.

data error ≡ ESUCCESS | ENOSPC | EIO | EROFS | . . .

With ESUCCESS signaling the successful execution of an operation (non-failing exe-
cutions always return ESUCCESS), the remaining error codes can be partitioned into
two categories. High-level errors are typically returned when an operation could not
be performed because the execution would yield an inconsistent file system state,
or the outcome of the operation is not determined for a given input. For example,
creating a file at a path that already points to an existing node would unintentionally
overwrite the node, and reading from a file with an already closed file handle does
not provide a definitive position within the file content. Such situations are often
detected in the upper layers of the file system as they require an abstract view of
the file system state. On the other hand, low-level errors usually emerge from the
underlying flash hardware, e.g., when no space is left on the storage medium, when
writing or reading a flash page fails, or when the lower file system levels switch to a
read-only mode due to a failed transaction. Since these errors are independent of the
arguments of operation calls, the higher levels of the Flashix hierarchy (which are
relevant for this thesis primarily) assume that any subcomponent operation can ran-
domly return an error code. Therefore, the class of low-level errors ⌊err⌋ is specified
as all errors that are not exclusively returned by the upper layers.

⊢ ⌊err⌋ ↔ err ̸= ESUCCESS ∧ err ̸= EEXISTS ∧ err ̸= ENOENT

∧ err ̸= EISDIR ∧ err ̸= ENOTDIR ∧ err ̸= ENOTEMPTY

∧ err ̸= EBADFD ∧ err ̸= EACCESS

Using this error model, the approach for specifying the error behavior of POSIX
requires giving a precondition predicate pre-op(inp, err) for each operation op that
defines possible errors err in the current state for given inputs inp. At the beginning
of the operation, an error code satisfying this predicate is chosen, and the actual
operation is only performed if it is ESUCCESS. Fig. 4.10 shows the posix_create#
operation of Fig. 4.3 but extended with this mechanism.
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posix_create#(p, md , user ; ; err)
interface

{
choose err0 with pre-create(p,md , user , root , fs, ofh, err0) in err := err0;
if err = ESUCCESS then

choose fid with ¬ fid ∈ fs in
root[p] := fnode(fid);
fs[fid] := file(md , mkbuf(0));

}

Figure 4.10: POSIX operation for creating files with error handling.

The definition of the precondition predicate is given by axioms covering every
error, e.g., the axioms for pre-create include the following ones (besides others).

⊢ pre-create(p,md , user , root , fs, ofh, ESUCCESS) ↔
¬ p ∈ root ∧ p.parent ∈ root ∧ root[p.parent].dir?

∧ pw(user , p.parent, root , fs) ∧ px(user , p.parent, root , fs)

⊢ pre-create(p,md , user , root , fs, ofh, EEXISTS) ↔ p ∈ root

⊢ ¬ pre-create(p,md , user , root , fs, ofh, EBADFD)

⊢ ⌊err⌋ → pre-create(p,md , user , root , fs, ofh, err)

The first axiom defines successful operation runs where all input arguments are
valid for the current state. For file creation, the target path must not point to an
existing node, but the parent of the target must point to an existing directory and
the user must have write and execute permissions on the parent. Other axioms, like
the second, define error cases when one condition is violated: file creation returns
an EEXISTS error if the path points to an existing node. Some error will never
be returned by an operation, e.g., file creation cannot return EBADFD since no file
descriptor is accessed during the operation (third axiom). And finally, low-level errors
can always occur (last axiom). Implementations of the posix_create# operation
must then respect these specification and are only allowed to return errors when the
predicate evaluates to tt, as otherwise, the refinement cannot be proven.

The crash behavior of the uncached version of POSIX is given by the crash pred-
icate posix-crash, defined over the state root , fs, and ofh.

component POSIX

crash predicate posix-crash(root ‵, fs ‵, ofh ‵, root , fs, ofh)

Basically, the directory tree should be immune to crashes, i.e., the root after a crash
(and subsequent recovery) should be identical to the tree root ‵ before the crash. On
the other hand, all open file handles in ofh ‵ are lost during the crash since they
are only kept in main memory, so ofh is empty after the crash. Like the directory
tree, file data in fs ‵ should not be lost due to a crash. However, as there may be
orphaned files at the moment of the crash and the links from the open file handles
are lost, these files must be removed since they are no longer accessible. Together,
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this behavior can be defined by the following axiom.

⊢ posix-crash(root0, fs0, ofh0, root1, fs1, ofh1) ↔
ofh1 = ∅ ∧ root1 = root0

∧ (∀ fid . fid ∈ fs1 ↔ fid ∈ root1.fids ∧ fid ∈ fs0)

∧ (∀ fid . fid ∈ fs1 → fs1[fid] = fs0[fid])

The predicate combines the effect of the crash (data in volatile memory is lost)
and recovery mechanisms (on reboot, an implementation must actively search and
delete orphaned files from persistent storage). Consequently, the recovery procedures
of POSIX is in principle a no-op. Note that this specification approach is justified
since POSIX is a specification component, and hence there is no need to model com-
plex recovery mechanisms algorithmically when a simple algebraic specification is
sufficient.

4.3 The Virtual File System Switch

The task of VFS is to implement POSIX operations, like creating or deleting files and
directories or opening files and writing buffers to them, by elementary operations
on individual nodes that represent a single directory or file. Each of these nodes is
identified by a natural number ino ∈ ino, where ino ≃ N. The operations on single
nodes are implemented by each file system separately and we specify them via the
AFS (“abstract file system”) interface.

AFS: The Interface of VFS to File Systems

The state of AFS is specified as abstractly as possible by two heaps with disjoint
domains to store directories and files.

component AFS

state dirs : iheap(dir), files : iheap(file)

where

type iheap ≡ heap with ref 7→ ino, null 7→ 0

data dir = dir(. .meta : metadata; . .nlink : nat; . .size : nat;

. .nsubdirs : nat; . .entries : map(string, ino))

data file = file(. .meta : metadata; . .nlink : nat; . .size : nat;

. .content : map(nat, buffer))

Both directories and files store metadata meta that is mainly used to handle access
rights (cf. Sec. 4.2), an explicit counter nlink of their hard links (for directories,
this is always 1 except for the root directory), and their size (for directories, this
is the number of directory entries). The entries of a directory are contained in the
directory itself in the form of a mapping from entry names to inode numbers, and
the nsubdirs field additionally stores how many entries are directories. These inode
numbers identify another directory or file in the file system, so they also identify a
dir or file in dirs or files, respectively.
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Figure 4.11: Representation of file contents in POSIX and in VFS.

This linking between nodes is the reason that heaps are used for dirs and files as
they form a tree pointer structure similar to the red-black trees presented in Sec. 3.2.
Thus, the refinement VFS(AFS) ≤ POSIX can also be proven using Separation Logic,
as shown later this section. The heaps use inode numbers instead of references (AFS
is not an implementation component, so the algebraic heap nodes do not have to be
transformable into an actual heap data structure for generating code for Flashix), so
a type iheap is used for dirs and files where the ref type is instantiated with the ino
and the null constant is instantiated with 0.

Figure 4.12: VFS representation
of the file system tree.

Details on the representation of a file are shown
in Fig. 4.11. The uniform representation as a se-
quence of bytes is broken up into an explicit file
size and several pages stored in the content map.
Each buffer is an array of size PAGE_SIZE. Byte k
of a file is accessed via offset(k) in page(k), which
are the remainder and quotient when dividing k by
PAGE_SIZE. The function rest(k) is used to denote
the length of the rest of the page above offset(k).
We have rest(k) = PAGE_SIZE− offset(k), when
the offset is non-zero. Otherwise, rest(k) = 0,
k is (page-)aligned, and predicate aligned(k) is
true. The start of page pno is at pos(pno) =
pno ∗ PAGE_SIZE. The pages are stored as a map,
a missing page, e.g., page pno − 1 in the figure,
indicates that the page contains zeros only. This
sparse representation allows the creation of a file
with large size without allocating all the pages im-
mediately (which is important, e.g., for streaming
data). Another important detail is that there may
be irrelevant data beyond the file size. It is possible

that the page page(sz ) at the file size sz contains random junk data (hatched part
of the page) above offset(sz ) instead of just zeros. Extra (hatched) pages with a
page number larger than page(sz ) are possible as well. Allowing such junk data is
necessary for efficient recovery from a crash: writing data at the end of a file is always
done by writing pages first, and finally incrementing the size. If a crash happens in
between, then removing the extra data when rebooting would require to scan all files,
which would be prohibitively expensive.
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With this data representation, AFS offers a number of operations that are called
by VFS, using parameters of type inode (“Index Node”) and dentry (“Directory Entry”)
as input and output (passed by reference). These data structures are used to build
the file system tree representation of VFS as shown in Fig. 4.12. An inode represents
an existing node of the tree (it is used for both directories and files) and has the form

data inode = inode(. .ino : ino; . .meta : metadata; . .isdir : bool;

. .nlink : nat; . .size : nat)

Each inode contains the inode number ino of the represented file or directory node
and its metadata meta. The boolean isdir distinguishes between directories and
files, and the nlink-field gives the number of hard links for a file (nlink = 1 for a
directory). The size-field stores the file size for files and the number of entries for a
directory.

Dentries form the edges of the file system tree by linking a parent directory to
one of its children. Normal dentries store the name of the entry and the inode number
target of the corresponding child. Negative dentries, on the other hand, are used
to indicate that an entry with name does not exist in the directory.

data dentry = dentry(. .name : string; . .target : ino)

| negdentry(. .name : string)

Directories are only affected by structural operations, and hence dirs is only mod-
ified by those as well. For example, the operation afs_create# shown in Fig. 4.13
is used to add a new file node to the file system tree. The operation creates this
file with the parent node pinode under the name dent.name and with metadata md .
For this, a fresh inode number cino is allocated in files (cino must not be allocated
in either dirs or files), and a new empty file file(md , 1, 0, ∅) is stored under cino.
After creation, the file has exactly one hard link (from the parent directory pinode),
size 0, and empty content. The parent directory must also be updated: a link from
dent.name to cino is added to the entries of the parent directory and its size is
increased by 1. To ensure that existing inodes and dentries are still valid after the
operation for the use in VFS, the operation also updates affected data structures at
the end of the operation: the target of dent is set to the new cino and the size of
the parent inode pinode is increased accordingly. In addition, the inode cinode of
the created directory is also created and returned.

Fig. 4.13 also shows the approach for specifying errors in AFS. All AFS operations
are allowed to non-deterministically (or) fail, i.e., return a low-level error ⌊err⌋ (cf.
error model of POSIX in Sec. 4.2). The procedure fail# is used for this purpose.

fail#(; ; err) { choose err0 with ⌊err0⌋ in err := err0 }

This allows the implementations in the lower layers to return suitable errors, which
cannot be specified on this level of abstraction. The implementation will resolve the
nondeterminism to success whenever possible.

Of course, it must be ensured that the operation does not have some unwanted
side effects, e.g., accidentally overwriting an existing file or directory (if there is al-
ready an entry with dent.name in dirs[pino].entries), hence suitable preconditions
are checked when the operation is called. For file creation, the passed parent inode
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afs_create#(md ; pinode, cinode, dent ; err)
interface
precondition valid-negdentry(pinode.ino, dent , dirs,files)

∧ valid-dir-inode(pinode, dirs,files)
{

{
let pino = pinode.ino in

choose cino with ¬ cino ∈ dirs ∧¬ cino ∈ files ∧ cino ̸= 0 in
files := (files ++ cino)[cino, file(md , 1, 0, ∅)];
dirs[pino].entries[dent.name] := cino;
dirs[pino].size := dirs[pino].size+ 1;
dent := dentry(dent.name, cino);
cinode := inode(cino,md , false, 1, 0);
pinode.size := pinode.size+ 1;

} or {
fail#(; ; err);

}
}

Figure 4.13: AFS operation for creating a file.

pinode must match a directory in dirs (given by the predicate valid-dir-inode)
and dent must be a valid-negdentry for the directory pinode, i.e., dent must be a
negdentry containing a name that is not in the entries of dirs[pino]. These pre-
conditions are established by the surrounding VFS operations (here vfs_create#).

afs_iget#(ino; inode; err)
interface
precondition ino ∈ dirs ∨ ino ∈ files

{
{
inode := getinode(ino, dirs,files);
err := ESUCCESS;

} or {
fail#(; ; err);

}
}

Figure 4.14: AFS operation for reading
inodes.

In order to for VFS to get the required
inodes and dentries for AFS operations, AFS
must also provide interface operations for
reading the respective data structures from
the file system. Fig. 4.14 shows the opera-
tion afs_iget# that retrieves an inode for
a requested inode number ino. The opera-
tion may only be called when it is ensured
that ino is a valid inode number, i.e., there
is a node allocated under ino in either dirs
or files. In the successful case, it uses the
algebraic function getinode to retrieve the
necessary data from the respective heap.

⊢ getinode(ino, dirs,files) =

(ino ∈ dirs ⊃ inode(ino, dirs[ino].meta, true, dirs[ino].nlink,

dirs[ino].nsubdirs, dirs[ino].size)

; inode(ino,files[ino].meta, false,files[ino].nlink, 0,

files[ino].size))

On the other hand, afs_lookup# listed in Fig. 4.15 is used to look up entries
within a directory. Given the inode number pino of a valid parent node, i.e., a
directory node allocated in dirs, the operation checks whether there is an entry in
the parent directory with the requested name. The reference parameter dent is used
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afs_lookup#(pino; dent ; err)
interface
precondition valid-parent-ino(pino, dirs,files)

{
{

if dent.name ∈ dirs[pino].entries then
dent := dentry(dent.name, dirs[pino].entries[dent.name]);
err := ESUCCESS;

else
dent := negdentry(dent.name); err := ENOENT;

} or {
fail#(; ; err);

}
}

Figure 4.15: AFS operation for looking up dentries.

to pass the requested entry name (usually as a negdentry when called) and return
a valid dentry with the inode number of the child node if the entry was found.
Otherwise, a negdentry and the error code ENOENT are returned to signal that there
is no corresponding entry in the directory.

The core content operations of AFS, i.e., the operations for modifying file content,
are listed in Fig. 4.16. Recall that, unlike structural operations, they only access
files and do not read or update dirs.

afs_readpage# reads the content of the page with number pno into a buffer
pbuf . The file is determined as the inode number of a file inode inode. If the page
does not exist, the buffer is set to all zeros (abbreviated as ⊥), and the exists flag is
set to false. The flag is ignored by VFS but will be relevant when caches are added
(see Chapter 6).

afs_writepage# writes the content of pbuf to the respective page pno. Note
that the page is allowed to be beyond the current file size (which is not modified in
this operation). Both page operations are only defined for valid files (thus, inode
must represent an existing file node in files) and must be called with a pbuf of
suitable size (all pages in the file system must have equal size PAGE_SIZE).

The file size is updated with the operation afs_writesize#. The operation is
only called during VFS writes when the content is extended. Hence, it is only allowed
to be called when the given sz is greater than the current files size (the precondition
valid-file-inode ensures that inode.size is the current size of the file in files).
Furthermore, the operation does not consider whether potential junk pages become
visible by the size increase.

With the truncation operations shown in Fig. 4.18, the file size can be updated
(both increased or decreased), including removing potential junk pages. The opera-
tion afs_truncate# is used for implementing posix_truncate#. It changes the
file size to an explicit value n, checking that there is no junk data that would end
up being part of the file below the new file size. This operation first discards all
pages above the minimum szT of n and the old sz : The expression content upto szT
keeps pages below szT only. For efficiency, the operation is asymmetric and distin-
guishes two cases, shown in Fig. 4.17. The first case in Fig. 4.17a is when the new
size n is at least the old size sz . In this case, the page page(sz ) may contain junk
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afs_readpage#(inode, pno; pbuf , exists; err)
interface
precondition valid-file-inode(inode, dirs,files)∧# pbuf = PAGE_SIZE

{
{
exists := pno ∈ files[inode.ino].content; err := ESUCCESS;
if exists then
pbuf := files[inode.ino].content[pno]

else
pbuf := ⊥;

} or {
fail#(; ; err);

}
}

afs_writepage#(inode, pno, pbuf ; ; err)
interface
precondition valid-file-inode(inode, dirs,files)∧# pbuf = PAGE_SIZE

{
{
files[inode.ino].content[pno] := pbuf ; err := ESUCCESS;

} or {
fail#(; ; err);

}
}

afs_writesize#(inode, sz ; ; err)
interface
precondition valid-file-inode(inode, dirs,files) ∧ inode.size < sz

{
{
files[inode.ino].size := pbuf ; err := ESUCCESS;

} or {
fail#(; ; err);

}
}

Figure 4.16: AFS operations for reading and writing pages, and updating the file size.
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(a) Growing truncation (sz ≤ n). (b) Shrinking truncation (n < sz ).

Figure 4.17: Effects of a truncation to n on a file with size sz .

data, which must be overwritten by zeros since this range becomes part of the file.
Overwriting the part above szT = sz with zeros is the result of the function call
truncate(content[pno], sz ). This call can be avoided if the part is empty or if the
old size was aligned. The second case in Fig. 4.17b is when the new file size is less
than the old. Then, the page above the new file size simply becomes junk, and it
does not need to be modified. The implementation of the afs_truncate# opera-
tion, therefore, avoids writing pages to persistent storage whenever this is possible3.

afs_writebegin# is an optimized version of afs_truncate# for the case
n = sz . It is called at the start of writing content to a file in VFS and makes
sure that writing beyond the old file size will not accidentally create a page that con-
tains junk. By having a dedicated operation (which is typically called significantly
more often than afs_truncate#), the implementation FFS of AFS can avoid writing
unnecessary inode updates to the journal.

VFS: Implementing Path Lookup, Permission Checks & Paging

Most VFS operations, in particular all structural operations, must traverse the direc-
tory tree using paths to the involved nodes before the respective AFS operation can
be invoked. This is done by the auxiliary operation vfs_walk# listed in Fig. 4.19.
Starting from an ino, it incrementally steps down one segment p.head of the path
at a time by calling the AFS operation afs_lookup# (see Fig. 4.15). Before call-
ing afs_lookup#, vfs_maylookup# verifies that the required permissions for
reading the entries of ino are present. This includes to read the inode of ino from
AFS using afs_iget# (see Fig. 4.14) in order to access its metadata. If the access
is granted, afs_lookup# checks whether an entry with the name of the requested
dentry exists in the current directory ino and updates dent with the inode number
of the entry cino if so. After successful traversal, the required inodes are loaded (for
example, the parent inode pinode for afs_create#), checks specific to the operation
are performed, and the AFS operation is invoked.

Note that the operation is declared with an extensive contract, specifying all
possible outcomes of the operation: a low-level error ⌊err⌋ could occur; ENOENT is
returned if the requested path is not a valid path starting from the initial inode
number (recall that ino ‵ denotes the value of the reference parameter ino at the time
the operation was called); EACCESS is returned if the requested path runs through a

3Deleting a page does not write it, but adds a ”page deleted” entry to the journal.
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afs_truncate#(n; inode; err)
interface
precondition valid-file-inode(inode, dirs,files)

{
{

let ino = inode.ino, sz = inode.size in
let content = files[ino].content, szT = min(n, sz ), pno = page(sz ),

aligned = aligned(sz ), modify = false
in
modify := sz ≤ n ∧ pno ∈ content ∧ ¬ aligned ;
if modify then
content[pno] := truncate(content[pno], sz );

files[ino].content := content upto szT ;
files[ino].size := n, inode.size := n; err := ESUCCESS;

} or {
fail#(; ; err);

}
}

afs_writebegin#(inode; ; err)
interface
precondition valid-file-inode(inode, dirs,files)

{
{

let ino = inode.ino, sz = inode.size in
let content = files[ino].content, pno = page(sz ), aligned = aligned(sz )
in

if pno ∈ content ∧ ¬ aligned then
content[pno] := truncate(content[pno], sz );

files[ino].content := content upto szT ; err := ESUCCESS;
}

} or {
fail#(; ; err);

}
}

Figure 4.18: Truncation operations of AFS.
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vfs_walk#(p, user ; ino; err)
auxiliary
precondition valid-parent-ino(ino, dirs,files)
postcondition ⌊err⌋

∨ (err = ENOENT ∧ ¬ ispath(p, ino‵, dirs,files))
∨ (err = EACCESS

∧ ∃ p0. p0 ⊑ p.parent
∧ ispath(p0, ino‵, dirs,files)
∧ ¬ px(user , p0, ino‵, dirs,files))

∨ (err = ESUCCESS ∧ ispath(p, ino‵, ino, dirs,files)
∧ px(user , p.parent, ino‵, dirs,files))

{
err := ESUCCESS;
while p ̸= ε ∧ err = ESUCCESS do

choose inode in { vfs_maylookup#(ino, user ; inode; err) };
if err = ESUCCESS then let dent = negdentry(p.head) in

afs_lookup#(ino; dent ; err);
if err = ESUCCESS then
ino := dent.target; p := p.tail;

}

Figure 4.19: VFS operation for traversing the directory tree, i.e., walking along a
path.

node for which user has not the required execute permissions (p0 ⊑ p1 denotes that
p0 is a prefix of p1); and ESUCCESS is returned if p is a valid path, starting from ino ‵

and leading to ino, and user has execute permissions for all nodes along the path.
This contract is formulated in such a way that it can be applied in all main VFS
operation proofs, which avoids that an complex invariant proof has to be performed
for each operation that uses vfs_walk#.

Figure 4.20 shows how a complete structural operation of VFS is composed, ex-
emplary for file creation. The tree is traversed with vfs_walk#, starting from
the root identified by the constant ROOT_INO and targeting the directory in which
the file should be created (p.parent). If walking was successful, the operation
vfs_maycreate# checks if the file can be created in the reached directory and
returns a respective error when this is not the case (matching the possible errors of
the POSIX precondition predicate pre-create from the last section). The operation
works similarly to vfs_maylookup#, and VFS contains a handful of such auxiliary
operations (vfs_may...) for checking if an operation of VFS can be executed suc-
cessfully (provided that no low-level error occurs). However, most of them can be
used for multiple operations, e.g., vfs_maycreate# is also used for vfs_mkdir#.
Finally, the corresponding AFS operation is called to perform the actual file creation.

Besides structural operations, VFS also has to implement content operations.
Like for POSIX, these operations do not work on paths but on file descriptors, which
identify file handles storing access modes and positions for opened files. VFS uses a
data structure very similar to ofh of POSIX for managing opened files.

component VFS using AFS

state of : map(nat, fhandle), maxfd : nat

The state variable of maps file descriptors (represented by natural numbers) to file
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vfs_create#(p, md , user ; ; err)
interface

{
if p = ε then err := EEXISTS
else let ino = ROOT_INO, dent = negdentry(p.last), p0 = p.parent,

inode = ?, cinode = ?
in

vfs_walk#(p0, user ; ino; err);
if err = ESUCCESS then

vfs_maycreate#(ino, dent , user ; inode; err);
if err = ESUCCESS then

afs_create#(md ; inode, cinode, dent ; err);
}

Figure 4.20: VFS operation for the creation of files.

handles: the type fhandle is nearly identical to the analogous type used in POSIX,
however, it uses inode numbers ino as identifiers instead of the anonymous fid type.

data fhandle = fh(. .ino : ino; . .mode : mode; . .pos : nat)

Hence, the file handle operations (opening and closing a file, or seeking within a file)
are implemented quite similar to their specification counterparts in POSIX. Consider
the vfs_open# operation given in Fig. 4.21 as an example. Traversing the tree is
again done using vfs_walk#, starting from ROOT_INO. When walking was success-
ful, the operation vfs_mayopen# checks if the reached node is a file and if user
has the permissions to open the file with mode.

vfs_open#(p, mode, user ; fd ; err)
interface

{
let ino = ROOT_INO, inode = ? in

vfs_walk#(p, user ; ino; err);
if err = ESUCCESS then

vfs_mayopen#(ino, mode, user ;
inode; err);

if err = ESUCCESS then
of [maxfd] := fh(ino,mode, 0);
fd := maxfd ;
maxfd := maxfd + 1;

}

Figure 4.21: VFS operation for opening
a file.

Instead of choosing the file descriptor fd
non-deterministically, the VFS implementa-
tion uses an additional state variable maxfd
to ensure that no file descriptor is used
twice. File descriptors are issued in as-
cending order, and maxfd stores the de-
scriptor that will be used next. Therefore,
vfs_open# increments maxfd after it was
used for the current request.

Writing a buffer buf of length n to an
opened file is implemented in VFS with the
operation vfs_write# shown in Fig. 4.22.
Like posix_write# (see Fig. 4.6), the op-
eration takes a file descriptor fd , a user ,
and a buffer buf as input. The parameter
n contains the requested number of bytes to
write. But since the POSIX specification also allows to write only an initial segment
of buf , the operation modifies n at the end to return the number of bytes that were
actually written (lines 19 and 21, respectively). Note that the operation does not
perform any permission checks for user as these have already been performed when
the file was opened. Thus, the operation only checks whether fd is a valid file de-
scriptor created with a mode that allows writing (lines 2 and 3). After these checks,
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vfs_write#(fd , user , buf ; n; err)
interface
precondition n ≤ # buf

{
err := ESUCCESS;
if ¬ fd ∈ of then err := EBADFD
else if of [fd].mode ̸= MODE_W ∧ of [fd].mode ̸= MODE_RW then err := EBADFD
else choose inode in

afs_iget#(of [fd].ino; inode; err);
if err = ESUCCESS then

if inode.isdir then err := EISDIR
else let start = of [fd].pos, end = of [fd].pos+ n, written = 0 in

afs_writebegin#(inode; ; err);
if err = ESUCCESS then

vfs_writeloop#(inode, start , end , buf ; ;written, err);
if written ̸= 0 then err := ESUCCESS;

if err = ESUCCESS then let sz = inode.size in
end := start + written;
if sz < end then

afs_writesize#(inode, end ; ; err);
if err = ESUCCESS then n := written
else
n := (start ≤ sz ⊃ sz − start ; 0);
err := ESUCCESS;

of [fd].pos := start + n;
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Figure 4.22: Write operation of the VFS component.

the inode of the file identified by fd is loaded using afs_iget# (line 5). The inode
is necessary for further calls to AFS and to determine the file’s current size, which is
used to determine if the file size must be increased at the end of the write (lines 15
and 17). As final preparation, afs_writebegin# is called to ensure that junk data
above the file size is removed.

Writing data then is done by splitting up the the buffer (from start to end) into
pieces that align with page boundaries in the auxiliary operation vfs_writeloop#
(listed in Fig. 4.23). The start and end positions are extracted from the file handle
of [fd], and the variable written keeps track of how many bytes have been written
already. For each page-aligned piece of the buffer, vfs_writepage# is called. This
operation still has the full buffer buf as input and writes n bytes of the buffer,
starting at position written. The n bytes are placed into the page pno, starting at
offset . vfs_writeloop# calculates the arguments for vfs_writepage# using the
offset and rest functions, so that the sum of n and offset always is less or equal to
PAGE_SIZE (see lines 4 and 5 of Fig. 4.23 and the precondition of Fig. 4.24). If the
sum is less than the page size (i.e., when either offset ̸= 0 or n ̸= PAGE_SIZE), the
old page must be loaded into a page buffer pbuf by calling afs_readpage# (lines 2
and 3 in Fig. 4.24), and the relevant part of buf must be copied into the page using
the function copy before the page is written via afs_writepage# (lines 6 and 7).
Note that offset is set to offset(curPos) and can thus be non-zero only in the first
iteration of the loop since subsequent iterations will always write full pages (except
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vfs_writeloop#(inode, start , end , buf ; ;written, err)
auxiliary
precondition valid-file-inode(inode, dirs,files)

∧ start < end ∧ end − start ≤ # buf
{
err := ESUCCESS, written := 0;
while err = ESUCCESS ∧ start + written ̸= end do

let curPos = start + written in
let offset = offset(curPos), pno = page(curPos), rest = rest(curPos) in
let n = min(end − curPos, rest) in

vfs_writepage#(inode, pno, buf ,written, offset ,n; ; err);
if err = ESUCCESS then written := written + n;
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Figure 4.23: Auxiliary operation of VFS for breaking down a POSIX write into page
writes.

vfs_writepage#(inode, pno, buf ,written, offset ,n; ; err)
auxiliary
precondition valid-file-inode(inode, dirs,files)

∧ written + n ≤ # buf ∧ offset + n ≤ PAGE_SIZE
{
err := ESUCCESS;
let pbuf = ⊥, exists = false in

if n < PAGE_SIZE then
afs_readpage#(inode, pno; pbuf , exists; err);

if err = ESUCCESS then
pbuf := copy(buf ,written, pbuf , offset ,n);
afs_writepage#(inode, pno, pbuf ; ; err);
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Figure 4.24: Auxiliary operation of VFS for writing a page.

for the last iteration, in which only the beginning of a page may be written).
Since all calls of AFS operations can return an error and writing stops in this case,

the number written of bytes actually written is returned from vfs_writeloop#. It
is finally used in vfs_write# to modify n. If the file size has been increased, which
is the case when start + written is bigger than the old file size sz , vfs_write#
adjusts it by calling afs_writesize# (lines 13-16). As long as at least one byte
was written, vfs_write# always returns ESUCCESS (line 12), even when increasing
the file size was necessary but did not succeed (line 20). In this case, the operation
signals that just the range from start to the initial size sz has been written (line
19). Finally, the file handle is updated by moving the position to the end position
of the write (line 24), so that subsequent appending writes do not have to move it
manually with vfs_seek#.

Reading a buffer from the content of a file with vfs_read# (not shown) is
implemented quite similarly to vfs_write#: the requested range (determined by
the current position of the file handle and the requested number of bytes to read)
is partitioned into page-sized and page-aligned chunks by the auxiliary operation
vfs_readloop#, which reads these pages via repeated calls of afs_readpage#.
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vfs_truncate#(p,n, user ; ; err)
interface

{
let ino = ROOT_INO, inode = ? in

vfs_walk#(p, user ; ino; err);
if err = ESUCCESS then

vfs_mayopen#(ino, MODE_W, user ; inode; err);
if err = ESUCCESS then

afs_truncate#(n; inode; err);
}

Figure 4.25: Truncate operation of VFS for modifying the size of a file.

Of course, vfs_read# does not need to care about junk pages, so there is no need
to call afs_writebegin# at the beginning of the operation, and there is no need
to update the file size either.

The implementation of truncations in VFS (shown in Fig. 4.25) resembles the
implementation of structural operations more than other content operations. As the
operation takes a path as input instead of a file descriptor, it must first traverse the
directory tree with vfs_walk#. It then checks via vfs_mayopen# if the node
reached is a file and if user has permission to modify the file (MODE_W). If the checks
were successful, the truncation is performed with a call to afs_truncate#.

Writing and truncating are the central two operations affected when write-back
caching for files is added (together with a non-trivial implementation of a synchro-
nization operation). We will see in Chapter 6 that, when adding caches, it is crucial
for correctness that VFS implements writing by traversing the pages from low to
high page numbers. We will also find that the data representation of VFS, where
all calls are optimized for efficiency, which in particular results in an asymmetric
afs_truncate# (Fig. 4.17), is one of the main difficulties for adding caches cor-
rectly.

Correctness & Crashes

The major part of the state of VFS(AFS) lies in AFS in form of dirs and files. In
particular, the persistent part of the state is defined solely in AFS (to match the
characteristics of crash-modularizable components, see Def. 15). Hence, the main in-
variants and the crash predicate are formulated in AFS while VFS has a crash predicate
equal to true (since it is a RAM component).

component AFS

crash predicate afs-crash(dirs ‵,files ‵, dirs,files)

invariants afs-cons(dirs,files)

The crash predicate afs-crash matches the statements about root and fs of the
predicate posix-crash given in Sec. 4.2.

⊢ afs-crash(dirs0,files0, dirs1,files1) ↔
dirs1 = dirs0\ orphans(dirs0,files0)

∧ files1 = files0\ orphans(dirs0,files0)
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The heaps dirs and files after a crash result from removing all entries of orphans (the
function orphans(dirs0,files0) returns a set(ino) of inode numbers that are allocated
in dirs0 resp. files0 but have no links pointing to them). While POSIX only needs
to consider file orphans, AFS also considers directory orphans due to how directories
are removed by VFS(AFS). For example, the AFS operation called by vfs_rmdir#
removes the entry from the parent directory (together with decreasing the size and
subdirectory count) and decreases the link count of the child directory but does not
remove the child directory from dirs. This is outsourced to a separate AFS operation
(afs_evict#) that checks whether a file or directory has a link count equal to zero
and then removes the node from the respective heap if so. That way, afs_evict#
can be used in multiple VFS, e.g., vfs_rmdir#, vfs_unlink#, or vfs_rename#.
This split results in orphaned directories for a short time, but this does not pose
an additional challenge since the recovery mechanism of the implementation of AFS
handles orphaned files and directories uniformly.

The invariant predicate afs-cons collects all sorts of consistency conditions over
the file and directory heap, as shown in the following excerpt of its definition.

⊢ afs-cons(dirs,files) ↔
∀ ino.

(
ino ∈ dirs → ¬ ino ∈ files ∧ dirs[ino].nlink ≤ 1

∧ dirs[ino].size = # dirs[ino].entries

∧ . . .
)

∧
(
ino ∈ files → ¬ ino ∈ dirs ∧ . . .

)
∧
(
∀ name. ino ∈ dirs ∧ name ∈ dirs[ino].entries →

valid-ino(dirs[ino].entries[name], dirs,files)
)

∧
(
∀ n. ino ∈ files ∧ n ∈ files[ino].content →

# files[ino].content[n] = PAGE_SIZE
)

It ensures that an inode number is not used for both a file and a directory and that
the fields of the nodes store the correct values, e.g., that size of a directory contains
the number of its entries (first and second conjunct). Furthermore, it specifies
that only valid inode numbers can be targeted by the entries of a directory, i.e., all
directory entries must be allocated in dirs or files (third conjunct). Finally, all buffers
of the content of a file must be valid pages, i.e., have the correct size PAGE_SIZE
(fourth conjunct).

On the other hand, the invariant of VFS ensures consistency of the file descriptors
and handles stored in of . A descriptor in of must not be lower than maxfd (since
otherwise, the mechanism for issuing new descriptors could be corrupted), and all
entries of of must point to existing files (and thus, orphaned files are not deleted
until they are no longer open).

component VFS using AFS

invariants ∀ fd . fd ∈ of → fd < maxfd ∧ of [fd].ino ∈ files



4.4. RELATED WORK 91

The refinement of VFS(AFS) ≤ POSIX is proven using Separation Logic (see
Sec. 2.5), with an abstraction similar to the one of red-black trees (see Sec. 3.2).

data refinement VFS(AFS) ≤ POSIX

abstraction relation ofh = abs-of(of )

∧ fs = abs-files(files)

∧ abs(root , ROOT_INO)(dirs)

Since of of VFS is basically identical to ofh of POSIX, of can be mapped directly to ofh
with the function abs-of by concretizing the type fid to ino. The function abs-files
builds a file store from a file tree: a POSIX file can be constructed from an AFS file
by taking over the metadata and combining all content pages up to the file’s size into
one continuous buffer. The heap predicate abs : (tree × ino) → iheap(dir) → bool
abstracts the pointer tree in dirs starting at ROOT_INO to the algebraic directory tree
root . The predicate is defined analogously to the red-black tree abstraction, except
that the recursive case requires separating into an arbitrary number of cases (as a
directory can have an arbitrary number of entries). In contrast, binary trees are
separated into a fixed number of disjoint parts: the parent node, a left subtree, and
a right subtree.

4.4 Related Work

File system correctness has been an active research topic for some time, starting with
the earliest formal model of the POSIX standard written in Z by Morgan and Sufrin
[83].

NASA’s proposal to build a verifiable file system [72] has prompted a large body
of related work, covering many aspects of file systems in general and also specific to
flash memory. Mechanized models have been developed in [19, 43, 30, 29, 46, 61].

There has also been work on specific issues, e.g., reading and writing files at
byte-level has been addressed in [6, 73]. Model checking, the existing VFS code has
been abstracted, was been used for proving specific properties, e.g., memory safety
or the correct usage of locks [47, 85, 118]. A nice summary of this early work is [77].

While these approaches have made interesting contributions, they all considered
specific aspects, specific layers of abstraction, or specific properties only. For ex-
ample, none of the approaches considers crash-safety or the separation of common
functionality (VFS) and file system specific parts (AFS). By considering particular
aspects only, none of them produced executable code.

Apart from Flashix, there are two other approaches that have generated running
code for full-featured file systems.

Amani et al. design the flash file system BilbyFS [4, 3, 2] as a case study for their
tool Cogent [91] for generating verified C code. The system can also derive specifica-
tions for Isabelle/HOL [103]. BilbyFS has a similar but simpler structure as Flashix.
For instance it builds on top of the Erase Block Manager (using UBI [51] instead of
MTD. It is implemented for the use with the Linux VFS, so it implements an inter-
face similar to AFS. Thus, caching on the level of the Virtual File System Switch is
not considered in BilbyFS, but lower-level caching mechanism are supported. The
verification of the file system is incomplete (only the functional correctness of the
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operations iget and sync are proven) and crash-safety has also not been considered
so far.

Closest to Flashix is the FSCQ file system by Chen et al. [25, 23], a sequentially
implemented file system which is targeted for regular disks with random access,
not flash memory (and is therefore much simpler than Flashix, the code size is ap-
prox. 4K). Haskell code is derived from the specifications that can be integrated in
Linux via FUSE. Like for Flashix, crash-safety was a major concern in the devel-
opment and verification process of FSCQ. Chen et al. developed Crash Hoare Logic
(CHL), an extension of traditional Hoare Logic with crash conditions, and proved
the correctness of FSCQ using Coq [10]. FSCQ was also extended by performance
oriented features over the years: DFSCQ [24] added caching mechanics to the file
system, and CFSCQ [20, 21] introduces an additional layer at the bottom of the file
system performing concurrent I/O operations to the disk. These additions follow
the same motivations as the caching and concurrency extensions in Flashix, how-
ever, they use different approaches and are not as extensive as the ones presented
in Chapter 6 and Chapter 7. Recent extensions gear towards security aspects like
confidentiality in SFSCQ [64] or data integrity in IFSCQ [113], which are currently
not covered by Flashix.



Chapter 5
Order-Preserving Caches in File
Systems

Summary File systems typically implement some kind of low-level buffer cache
to reduce the number of I/O-operations on the underlying storage medium. As
the first non-local extension to the Flashix file system, the Write Buffer was
integrated into the hierarchy, which buffers writes until a complete page can be
written. The use of such buffer caches has an impact on the crash behavior of
the layers above them. In the event of a crash, the contents of caches are lost
as they are only located in RAM. Thus, crash-safety criteria of components with
underlying buffer caches must guarantee that losing the buffered data does not
affect the structural integrity of the file system.
This chapter gives a brief summary of the Write Buffer extension, which is part of
the work of Pfähler [96] and resulted in an extension of the semantics of sequential
components to cope with the properties of such order-preserving caches. Instead
of using a state-based approach for specifying crash effects, an operations-based
approach is chosen, where crashes are explained by alternative, crash-free histories
that differ only slightly from the original ones. Based on this, the crash-safety
criterion Quasi-Sequential Crash Consistency for buffered file systems is formulated
on the level of POSIX: basically, a crash reverts a postfix of the last executed
operations.
This chapter extends Pfähler’s work to concurrent components by giving a
history-based definition of retractions and Quasi-Sequential Crash Consistency:
re-executing one operation is generalized to the re-execution of a set of pending op-
erations. The re-formulation is used in Chapter 6 to show compatibility of buffer
caches with non-order-preserving high-level caches.
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Publications Crash-safety of order-preserving caches and the correctness of the
Write Buffer integration is published in [97], and it is also covered in more detail
in Pfähler’s thesis [96]. The re-formulation of Quasi-Sequential Crash Consistency
in terms of histories was performed as part of the publication [15].
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5.1 Retracting Components

In Sec. 3.1 the concept of hierarchical components was introduced, together with
their semantics for the case that they are non-retracting and used in a sequential
system. In this section, the semantics is adjusted to retracting components, which
are relevant as soon as write-back caches are used. In a retracting component C, not
all states are synchronized, i.e., the set of synchronized states SYNCC is a real subset
of the set of states SC. Intuitively, this means that the component can be in a state
where some (non-recoverable) data resides in volatile memory only, such that a crash
in this state results in actual data loss. This cannot be prevented when one wants to
benefit from caching, but (critical) systems must at least provide some guarantees
that allow rebooting to a consistent state, ideally with as little data loss as possible.

Furthermore, users must be able to trigger mechanisms for ensuring that certain
data is not lost during a crash. This is usually achieved by providing synchronization
operations that synchronize the complete system state or parts of it. For example, file
systems implement a fsync operation that synchronizes the content of one particular
file. Another goal is to give the system users an understanding of the possible
outcomes of a crash. This is complicated using the state-based approach for specifying
the effects of a crash by specifying a crash predicate as given in Sec. 3.1. Using caches
on lower levels of the hierarchy would require to explicitly distinguish between volatile
and persistent state on every abstraction level, which would complicate specifications
(and thus also proofs) significantly or sometimes is not even possible in the first place.
For example, there is no natural way in the POSIX specification of Sec. 4.2 to express
that a write to a flash page (which could contain data of multiple, potentially partial
POSIX operations) is currently cached.

Therefore, the state-based approach is extended by an operations-based crash
effect: a crashed state can be explained by an alternative sequence of executed
operations that may differ slightly from the original one. This is motivated by
the buffer cache in the Write Buffer component in the lower part of the Flashix
hierarchy, which queues writes to the flash storage until a full flash page can be
written (see Sec. 5.2). The cache is order-preserving, i.e., writes are emitted to the
underlying storage in the same order as they were handed to the cache. As all writes
pass this buffer cache, the property causes some recent write requests to be lost in
the event of a crash. In other words, a crash essentially has the effect of retracting
several operations, namely those whose data lies entirely in the cache.

The semantics of retracting components can thus be derived from the semantics of
non-retracting components by exchanging the crash transitions with retracting crash
transitions as given by Def. 33. The idea is similar to Buffered Durable Linearizability
by Izraelevitz et al. [66]: a postfix h1 of a (concurrent) history h = h0 ·h1 is lost, and
pending operations in h0 can be completed. However, these completions must not
alter the state while we allow re-executions that modify the state (and yield other
outputs).

Definition 33 (Retracting Crash Transitions). A transition sn
 −→ sn+1 is a retract-

ing crash transition for an era I, hC of a component C and a system SystemC with
I = (s0, . . . , sn) and I, hC |= SystemC

 iff

1. The interval I, hC can be split into two intervals I0 and I1 with corresponding
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I0.first si I0.last sj I1.last = sn

I2.last sn+1
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Figure 5.1: Constructing a retracting crash transition of a sequential component C.

histories hC0 and hC1 where steps of I1 do not result in synchronized states, i.e.,
I = I0 o

9I1 and hC = hC0 · hC1 with I1(k) ̸∈ SYNCC for all 0 < k ≤ #I1.

2. There exists an interval I2 with a corresponding history hC2 where hC2 contains
only response events of operations pending in hC0 and where the concatenation
with I0, hC0 forms an uninterrupted system run, i.e., I0 o

9I2, h
C
0 · hC2 |= SystemC.

3. The crashed state sn+1 can be reached from I2.last by applying the crash and
recovery relations, i.e., (I2.last , sn+1) ∈ CRASHCo9REC

C.

The definition formalizes the construction of a retracting crash transition, as
visualized in Fig. 5.1 for the sequential case. Given an era with interval I and history
hC of a component C, the construction starts from the last state sn of I, targeting
the crashed state sn+1. A retraction reverts several system steps (it “jumps back in
time”), splitting I into a kept prefix I0 and a dropped suffix I1. I1 must not contain
synchronized states (except for the initial state I1.first = I0.last) as no synchronized
steps are reverted. Similar to CRASHC and RECC, SYNCC results from building the
Cartesian product of SyncC with the respective state sets of C’s subcomponents. The
retraction may lead to a state in which an operation is currently running, so there
may be a pending operation in the prefix era I0, hC0 . Such an interrupted operation
execution, like OPC in Fig. 5.1, can be completed by an completion interval I2 with
history hC2 . The hC2 is only allowed to complete the pending operation by adding a
suitable response but must not contain invocations. We call this a re-execution of
the operation as the completed response is allowed to yield a different result than in
the original, uninterrupted execution. This is, for example, already relevant on the
level of POSIX, where a retraction could result in fewer pages being written in a write
operation. Then the re-execution of this write operation must return a corresponding
smaller value n of written bytes in order to match the resulting state. Alternatively,
a pending operation can also stutter, which allows the operation to have no effect,
e.g., when all modifying persisting steps of the operation were retracted (lie between
I0.last and sj). Finally, the residual state-based crash effect, i.e., the crash relation
CRASHC with subsequent recovery RECC, is applied to I2.last , yielding the crashed
state sn+1. Recall that this state is guaranteed to be a synchronized state since all
states targeted by the recovery relation RECC are in SYNCC by Def. 7, so following
crashes will not retract past this recovered state.
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Note that Def. 33 is explicitly not limited to sequential systems but can be ap-
plied for runs of an arbitrary SystemC. Furthermore, I2, hC2 is not restricted to the
completion of one operation as in Fig. 5.1 but may complete several pending op-
erations. This liberal definition will be exploited for the semantics of concurrent
(retracting) systems in Def. 40. However, Fig. 5.1 depicts the sequential case us-
ing the system SystemC ≡ { OPC }∗ from Def. 27, where at most one operation can
be pending in hC0 . Accordingly, Def. 34 gives the adjusted semantics for sequential,
retracting components.

Definition 34 (Semantics of Sequential, Retracting Components). The semantics
of a sequential, retracting component C is given by the labeled transition system C =
(SC, INITC,LC ∪ {τ},→seq

↶ ). The state transition relation →seq
↶ is determined by the

set of observable system runs (I, hC) ∈ runs(C) satisfying the conditions (1)-(5) and
(7) of Def. 27 and

6a. Each crash transition Ii.last
 i+1−−−→ Ii+1.first with i < n is a retracting crash

transition for the era Ii, hCi and SystemC ≡ { OPC }∗ according to Def. 33.

The invariant proof obligation for retracting components must be adjusted slightly
compared to the ones of non-retracting components since they must now ensure that
the states reached by initialization and recovery procedure executions are in fact
synchronized according to Def. 7.

Lemma 4 (Invariants of Sequential, Retracting Components). For a sequential,
retracting component C, the proof obligations (2) and (3) of Lem. 1 together with the
following proof obligations ensure termination and the absence of exceptions, establish
the sequential invariant inv(s), guarantee that C calls its subcomponents’ interface
operations only if their preconditions are satisfied.

1a. ⊢ ⟨|init#(x ; ; s, z )|⟩ (φ(s, z ) → inv(s) ∧ synced(s))

4a. inv(s0), crash(s0, s) ⊢ ⟨|recover#(x ; s; z )|⟩ (φ(s, z ) → inv(s) ∧ synced(s))

Similarly, the proof obligations for data refinement must be extended by the
additional obligation given in Thm. 5. The obligation restricts A to having fewer
synchronized states than C so that all retractions on C are also allowed on A. Or in
other words, the concrete component C is only allowed to “jump back ” less than the
abstract component A.

Theorem 5 (Data Refinement of Sequential, Retracting Components). The refine-
ment C ≤ A of sequential, retracting components A and C, where C is compatible with
A, is implied by the forward simulation abs(sA, sC) satisfying the conditions (1)-(5)
of Thm. 1 and the following one.

6. ⊢ syncedA(sA) ∧ abs(sA, sC) → syncedC(sC)

Finally, compositionality of data refinement can be generalized to retracting com-
ponents when the extended proof obligations of Lem. 4 and Thm. 5 are employed.
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Figure 5.2: Buffering page writes.
Figure 5.3: Alternative re-execution of
a partially buffered write.

Theorem 6 (Compositionality of Data Refinement). Given two sequential (poten-
tially retracting) components C and A with C ≤ A, i.e., where C is a valid refinement of
A, and a crash-modularizable component M(A) that uses A as a subcomponent, then A
can be substituted by C in M without affecting M’s correctness, i.e., M(C) ≤ M(A) holds.

Proof of Thm. 6. See the second case of the proof of Thm. 1 in [96].

5.2 Buffering Partial Writes

The Flashix file system features an order-preserving buffer cache that requires switch-
ing to the operations-based crash specification presented in the previous section. It
is implemented in the Write Buffer component, which is located in the lower part
of the hierarchy (see Fig. 4.1). The cache deals with the limitation that flash blocks
can only be written sequentially and in page-sized chunks. Since the written data
can be of arbitrary size, a write is mostly not aligned with a flash page. In order
to perform such an non-aligned write, the partial page has to be filled with some
padding data (typically zero bytes) to create a buffer of valid size.

Persistence

Node Encoding abs. Blocks (op-based)

abs. Blocks (state-based)

crash refinement

Write Buffer logical Blocks

data refinement

Figure 5.4: Crash refinement of the
Write Buffer component.

However, this mechanism com-
promises the performance and space
efficiency of the file system signif-
icantly as more pages have to be
written in total and a substantial
amount of storage space is occupied
by padding data.

The Write Buffer deals with
this problem by queuing writes in a
page-sized buffer in RAM, as shown
in Fig. 5.2. As long as the data in
sum does not reach the size of a flash
page, no write to the flash hardware
is emitted. When the page boundary is crossed, all buffered writes are persisted with
a single page write. Then the buffer “moves” one page further and caches subsequent
writes until the next page in the block can be written.

Naturally, the addition of this cache affects the crash behavior since data written
by higher-level operations can still reside (partially) in the buffer, even if the opera-
tion has returned already. But because all writes must pass through the buffer (and
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Write Buffer is not used concurrently), the component introduces retracting crash
transitions as given by Def. 33.

The switch from the state-based view to the operations-based view is done using
another kind of refinement, which we call crash refinement. We therefore have an
additional refinement step in the hierarchy, as shown in Figure 5.4. While this kind
of refinement is not the focus of this thesis, the general idea is briefly presented in the
following as it has implications for the high-level caches presented in the remainder
of this chapter. A more detailed explanation can be found in [97] and in Pfähler’s
thesis [96], where he also presents the complete models of the relevant components.

Going bottom-up, the Write Buffer component, which has an explicit distinc-
tion between the persistent state in logical Blocks and the volatile state of the
buffer cache, is abstracted via data refinement to abstract Blocks, which does not
have this distinction but uses still the state-based view on crashes. The component
abstracts a logical erase block (LEB) as a dynamically-sized buffer leb. A write to
the block then simply appends the written data to leb.

component abstract Blocks (state-based)

state leb : buffer, . . .

crash predicate leb = leb ‵ ↓ EB_PAGE_SIZE

The crash predicate of the component specifies the effect of loosing the buffered page
by trimming leb to the next lower page-aligned size. The constant EB_PAGE_SIZE
defines the size of hardware pages (note that it generally does not coincide with the
size PAGE_SIZE of VFS pages), and the algebraic function buf ↓ n resizes (shrinks)
the buffer buf to the greatest possible length m with m ≤ # buf ∧ m mod n = 0.
Fig. 5.3 shows an example with four write operations w1, . . . , w4 using this state
representation. The vertical dashed lines depict the page boundaries, and the arrows,
together with the color shades, denote the content that was written by the respective
write operation. A crash in this state removes the hatched part at the end of the
shown section of the block since the Write Buffer caches this page.

A crash refinement step abstracts this explicit crash specification to an implicit
operations-based specification. The resulting component is identical regarding state
representation and operations, but the crash predicate is simplified to identity.

component abstract Blocks (operations-based)

state leb : buffer, . . .

crash predicate leb = leb ‵

synchronized predicate aligned(leb, EB_PAGE_SIZE)

A synchronized predicate is introduced to restrict the domain of the crash predicate
to states where the content of an erase block is aligned with the pages, and a crash
has no effect (leaves the content unchanged). For the example in Fig. 5.3, this
synchronized state is reached by retracting the last two operations w3 and w4 and
subsequently re-executing w3 so that it only writes to the page boundary. Note that
the re-execution w′

3 is always possible as the flash hardware can always refuse to
write a page.

The operations-based component abstract Blocks is then used as a subcompo-
nent of Node Encoding. However, the specification of synchronized states propagates
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posix_fsync#(fd , user ; ; err)
interface

{
choose err0 with pre-fsync(fd , user , root , fs, ofh, err0) in err := err0;
psynced := (err = ESUCCESS);

}

posix_create#(p, md , user ; ; err)
interface

{
choose err0 with pre-create(p,md , user , root , fs, ofh, err0) in err := err0;
. . .
psynced := false;

}

Figure 5.5: Specification of synchronized states in POSIX operations.

all way up the refinement hierarchy: on each layer, a synchronized predicate must
be given. On higher levels, synchronized states cannot be identified precisely as the
state abstracts from the hardware structure, e.g., dirs and files of AFS do not parti-
tion their contents in flash pages. For this reason, ghost state variables1 are used in
specification components to specify when a state must be synchronized, i.e., when
its implementations must ensure that the buffer cache is empty and all operations
are persisted entirely. For example, the POSIX component (see Sec. 4.2) realizes this
by a boolean ghost variable psynced .

component POSIX

. . .

ghost state psynced : bool

synchronized predicate psynced

The POSIX operations then set these synchronized flags explicitly, depending on
whether their implementations (potentially) write something to the buffer cache or
should synchronize it. POSIX, for example, defines an operation fsync for synchro-
nizing individual files. A corresponding operation is added to the POSIX compo-
nent (shown in Fig. 5.5 at the top) and is used trigger the synchronization of the
Write Buffer. In POSIX, this operation does nothing but set psynced to true if the
successful execution was chosen. Nevertheless, its implementation propagates a fsync
call down to the Persistence component, which synchronizes the Write Buffer by
writing a padding node with exactly the size to reach a page boundary. That way,
successful execution of posix_fsync# guarantees that all buffered operations were
persisted and thus cannot be reverted by crashes. Other POSIX operations, like
posix_create# shown in Fig. 5.5 at the bottom, pessimistically set psynced to
false as they could have produced a non-synchronized state by writing something
to the buffer cache.

1Ghost state variables are used for verification purposes only and are not allowed to influence
the outputs of operations or the regular state of a component. This is checked syntactically by KIV.
When code is generated, all ghost state variables and statements accessing them are removed.
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While the fsync operation is used here for the synchronization of a low-level
buffer cache, which is completely independent of a specific file descriptor fd and the
associated file, its actual purpose will be relevant for the integration of high-level
caching discussed in the following section. We will see that the operation (more
precisely, its implementation) is crucial for the correctness and crash-safety of the
caching mechanisms of the Cache extension.

Using this extended version of the POSIX specification, a correctness & crash-
safety criterion can be defined for file systems using a buffer cache similar to the
Write Buffer. Our criterion Quasi-Sequential Crash Consistency (QSCC) expands
on the work of Bornholt et al. [17], which defines the criterion Sequential Crash-
Consistency using the idea of retracting crashes. QSCC extends the criterion by
allowing re-execution of pending operations.

Definition 35 (Quasi-Sequential Crash Consistency (QSCC)). A file system is
quasi-sequential crash consistent iff it refines the POSIX component given in Sec. 4.2
extended by a synchronization operation and a synchronized predicate as presented in
this section.

In [97] and the thesis of Pfähler [96], it was shown that this criterion holds for
the Flashix implementation that does not use the Cache layer introduced in the
context of this thesis. Adding non-order-preserving high-level caches to a file system
does affect the crash-safety, as we will see in Sec. 6.1. However, we will argue in
Sec. 6.4 that both kinds of caches and thus the respective crash-safety criteria can
be combined.



Chapter 6
Crash-Safe Caching in File Systems

Summary The second caching extension to the Flashix file system was the
addition of the Cache layer, a collection of caches for high-level data structures
used in VFS. These caches are non-order-preserving, i.e., writes may be reordered
within the caches before they are persisted, which complicates reasoning about
crash-safety significantly.
As a central contribution of this thesis, this chapter presents the Cache extension
in detail. The layer is integrated modularly into the existing hierarchy by applying
the Decorator pattern. The functional correctness of the layer primarily depends
on a correct, non-trivial implementation of the synchronization routine. A crucial
aspect of this implementation is the proper handling of asymmetric truncations to
files (cf. Fig. 4.17): due to the efficient data representation of VFS, which is based
on the Linux VFS implementation, a correct aggregation of cached truncations is
not evident.
This chapter introduces a novel crash-safety criterion for non-order-preserving
caches. Write-Prefix Crash Consistency not only guarantees consistency after re-
covering from crashes, but it also gives an intuitive explanation for the crash effects
in terms of histories: crashes yield shorter writes (prefix-writes) for files that have
not been fully synchronized. For synchronized files, Write-Prefix Crash Consistency
ensures that all written data is persisted and thus not lost in a crash.
Proofs are given that Flashix with the Cache extension satisfies Write-Prefix Crash
Consistency. As a result of the complex nature of the caching layer, these proofs
are challenging as they require a forward simulation over multiple layers of the
hierarchy. Furthermore, it is shown that high-level caches are compatible with
order-preserving caches, e.g., that Cache can be used on top of the Write Buffer.

Contents
6.1 Caching of High-Level Data Structures . . . . . 102
6.2 Crash-Safety of Non-Order-Preserving Caches . 108
6.3 Proving Crash-Safety of High-Level Caches . . . 113
6.4 Crash-Safe Combination of Caches . . . . . . . . 120
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Publications The Cache addition, the correctness of non-order-preserving
caches, and the correctness proofs for Flashix are published in [14, 15]. The com-
patibility with order-preserving caches is published in [15].
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6.1 Caching of High-Level Data Structures

In Linux, the implementation of the Virtual File System Switch is enormously com-
plicated. In particular, it is noticeably more complex than the VFS model of Flashix.
One reason for this difference is that the Linux VFS also includes several caches
for the data structures frequently used to communicate with the underlying file sys-
tems. For example, it employs caches for inodes, dentries, and file content pages (see
Sec. 4.3).

Initially, Flashix was developed without such caches for high-level data structures.
However, it is inevitable to use mechanisms similar to the Linux VFS caches to
achieve comparable performance. Integrating caches into the existing VFS component
would result in the need to reprove the whole layer from scratch while at the same
time its complexity is increased significantly. Therefore, a new layer between the VFS
and the FFS is introduced to add such caches to the Flashix hierarchy with minimal
impact on the surrounding layers, visualized in Fig. 6.1.

Figure 6.1: Flashix component hierarchy
with caching layer.

This layer is implemented as a Dec-
orator [48], i.e., it implements the same
interface, namely the one of AFS, and
delegates calls from VFS to FFS, which
also has AFS as its interface. The VFS
communicates with a Cache Controller
(Cache), which in turn communicates
with the FFS and manages caches for in-
odes (ICache), dentries (DCache), pages
(PCache), and an auxiliary cache for
truncations (TCache).

The ICache, DCache, and PCache
components internally store maps from
unique identifiers to the corresponding
data structures. They all offer inter-
faces to Cache for adding resp. updat-
ing, reading, and deleting cache entries.
Cache is responsible for processing re-
quests from VFS by either delegating these requests to FFS or fulfilling them with the
help of the required caches. It also has to keep the caches consistent with data stored
on flash, i.e., update cached data when changes to corresponding data on flash have
been made.

Write-Through Caching of Structural Operations

Similar to the Linux VFS, information about the file system structure is cached in
a write-through manner to speed up read accesses. This includes dentries in DCache
as well as structural fields of inodes in ICache like size of directory inodes or nlink.
By writing changes to the file system structure (through the cache directly) to flash
memory, the integrity of the file system tree after a crash is ensured since structural
operations are usually highly dependent on one another and affect multiple data
objects. For example the creation of a file can only take place after the parent
directory was created and linking of a file results in changes to the file itself as well
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Figure 6.2: Interaction of VFS, FFS, and the caching layer during a posix_create#
operation.

as to the directory in which the link is created.

Nevertheless, adding such write-through caches has a noticeable impact on the
performance of structural operations as well. Consider for example the typical se-
quence arising from the posix_create# operation in Fig. 6.2, which is representa-
tive for all structural operations. As explained in Sec. 4.3, the initial path traversal
comprises multiple reads of inodes and dentries during vfs_walk# (see Fig. 4.19).
This is done by calling the AFS interface operations afs_iget# and afs_lookup#,
which typically results in slow reads from flash via the FFS when no cache is used.
However, with the caching layer, these requests can potentially be handled by the
ICache and the DCache, as seen in the example sequence and in the respective im-
plementations listed in Fig. 6.3. If a cache miss occurs, i.e., a requested data ob-
ject is not cached and the operation icache_get# resp. dcache_get# returns
hit = false, the object must still be read from flash, however, it is then added to
the cache for future queries via icache_set# or dcache_set#. Cache passes the
actual update calls of VFS simply to FFS (afs_create# in the example), and hence
the file system is still modified persistently. But the caching layer takes advantage
of the fact that FFS can return all modified or created data structures during the
operation (for afs_create# in Fig. 4.13, these are pinode, cinode, and dent) and
adds these data structures to the caches or updates them in the caches respectively
(with the icache_set# and dcache_set# operations). This significantly reduces
the number of reading accesses to the flash storage for everyday workloads such as
extracting an archive, which requires traversing the full path to the parent directory
each time a node is created.
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cache_iget#(ino; inode; err)
interface
precondition ino ∈ dirs ∨ ino ∈ files

{
err := ESUCCESS;
let hit = false, dirty = false in

icache_get#(ino; inode, dirty ; hit);
if ¬ hit then

afs_iget#(ino; inode; err);
if err = ESUCCESS then

icache_set#(inode, dirty);
}

cache_lookup#(pino; dent ; err)
interface
precondition
valid-parent-ino(pino, dirs,files)

{
err := ESUCCESS;
let hit = false in

dcache_get#(pino; dent ; hit);
if ¬ hit then

afs_lookup#(pino; dent ; err);
if err = ESUCCESS then

dcache_set#(pino, dent);
}

Figure 6.3: Cache operations for reading inodes and dentries.

pcache_set#(ino, pno, pbuf , dirty)
interface
precondition # pbuf = PAGE_SIZE

{
let key = pkey(ino, pno) in
pcache[key] := pentry(pbuf , dirty);

}

pcache_markclean#(ino, pno)
interface
precondition pkey(ino, pno) ∈ pcache

{
let key = pkey(ino, pno) in
pcache[key].dirty := false;

}

pcache_get#(ino, pno; pbuf , dirty ; hit)
interface

{
let key = pkey(ino, pno) in
hit := key ∈ pcache;
if hit then
dirty := pcache[k].dirty;
pbuf := pcache[k].page;

}

pcache_delete#(ino, pno)
interface

{
pcache := pcache -- pkey(ino, pno);

}

Figure 6.4: Core operations of the PCache component.

Write-Back Caching of Content Operations

Compared to structural operations, updates to file data can be considered mostly
in isolation. This means that in particular reads and writes to different files do not
interfere with each other. Therefore we allow write-back caching of POSIX operations
that modify the content of a file, namely posix_write# and posix_truncate#
(cf. Fig. 4.6 and Fig. 4.9, respectively). Hence, the Cache component does not
forward page writes to the FFS and instead only stores the pages in PCache. Updates
to the size of a file are also performed in ICache only as garbage data could be
exposed in the event of a power cut otherwise. To distinguish between up-to-date
data and cached updates, entries of PCache or ICache include an additional dirty
flag. For PCache, this results in a mapping from inode numbers and page numbers
(wrapped in the tuple type pcache−key) to entries consisting of a page-sized buffer
and a boolean flag (wrapped in the tuple type pcache−entry).

component PCache

state pcache : map(pcache−key, pcache−entry)
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cache_writepage#(inode, pno, pbuf ; ; err)
interface
precondition . . . ∧ # pbuf = PAGE_SIZE

{
err := false;
let ino = inode.ino, dirty = true in

pcache_set#(ino, pno, pbuf , dirty);
}

cache_writesize#(inode, sz ; ; err)
interface
precondition . . . ∧ inode.size < sz

{
err := false;
inode.size := sz ;
let dirty = true in

icache_set#(inode, dirty);
}

Figure 6.5: Cache operations for writing pages and updating file sizes.

where

data pcache−key = pkey(. .ino : ino; . .pageno : nat)

data pcache−entry = pentry(. .page : buffer; . .dirty : bool)

Fig. 6.4 lists the central operations of the PCache component using the state pcache.
The components ICache and DCache are defined analogously. ICache stores a map-
ping icache : map(ino, icache−entry) from inode numbers to entries containing the
inode and a dirty flag, and DCache uses a mapping dcache : map(dcache−key, dentry)
from directory inode numbers and entry names to dentries (only real dentries are
stored, no negdentrys).

data icache−entry = ientry(. .inode : inode; . .dirty : bool)

data dcache−key = dkey(. .ino : ino; . .name : string)

Note that no dirty flag is necessary for the entries of dcache since they are always
identical to their persisted counterparts. The auxiliary cache TCache records the
minimal truncation size tsize of a file since the last synchronization as well as its
current persisted size fsize using a mapping tcache : map(ino, tcache−entry).

data tcache−entry = tentry(. .tsize : nat; . .fsize : nat)

Writing pages or file sizes results in putting the new data dirty in the particular
caches. These operations of the controller component Cache are shown in Fig. 6.5.

On the other hand, reading pages returns the page in question stored in PCache
or, if it has not been cached yet, it tries to read it from flash (Fig. 6.6 lines 2 and 10,
respectively). But reading from flash yields the correct result only if there was no
prior truncation that would have deleted the relevant page (lines 6-8). This is the
case when an entry for this file exists in TCache, and when applying this truncation
would delete the requested page (if pno is beyond the cached truncate size szT or
the current persisted size of the file szF ). If reading the page from flash is correct
and the page actually stores any relevant data (exists is true), the resulting page is
stored clean in PCache to handle repeated read requests (lines 11-13).

For truncations of files, there are several steps Cache needs to perform. They
are implemented by the operation cache_truncate# shown in Fig. 6.7, and the
operation cache_writebegin# (not shown). First, when an actual user trunca-
tion is executed, ICache needs to be updated by setting the size to the size the
file is truncated to (lines 11 and 12). Second, cached pages beyond sz resp. n
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cache_readpage#(inode, pno; pbuf , exists; err)
interface
precondition valid-file-inode(inode, dirs,files)

∧ # pbuf = PAGE_SIZE
{

let ino = inode.ino, hit = false, dirty = false in
pcache_get#(ino, pno; pbuf , dirty ; hit);
if hit then { exists := true; err := ESUCCESS }
else let szT = 0, szF = 0 in

tcache_get#(ino; szT , szF ; hit);
if hit ∧ min(szT , szF ) ≤ pos(pno) then
pbuf := ⊥; exists := false; err := ESUCCESS;

else
afs_readpage#(inode, pno; pbuf , exists; err);
if err = ESUCCESS ∧ exists then
dirty := false;
pcache_set#(ino, pno, pbuf , dirty);
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}

Figure 6.6: Cache operation for reading pages.

have to be removed from PCache (line 5), and the truncate sizes in TCache have to
be updated (line 10). For this purpose, the two subcomponents provide dedicated
truncation operations pcache_truncate# and tcache_update#, respectively.
tcache_update# aggregates multiple truncations by caching the minimal truncate
size n for each file only. Additionally, the persisted size sz of a file is stored in TCache
to determine whether it is allowed to read a page from flash in cache_readpage#.
pcache_truncate# ensures that no truncated data is cached by removing all en-
tries pkey(ino, pno) from PCache where szT ≤ pos(pno). Finally, if the truncate is
growing, i.e., sz ≤ n, the page at size sz may need to be filled with zeros (lines 6-8).
The auxiliary operation cache_truncpage# shown in Fig. 6.8 is used to determine
if this page is existent. This is the case if the page is either cached in PCache or
can be read from flash. However, reading from flash is tried only if the page would
not have been deleted already by a truncation, which is checked by comparing the
page position with the cached truncate sizes in TCache. If necessary, the page re-
turned by cache_truncpage# is then filled with zeros beyond offset(sz ) using
the truncate function, and the result is stored in PCache.

Like the corresponding AFS operation, cache_writebegin# performs a trunca-
tion with the current file size. Hence, its implementation is almost identical to the
one shown in Fig. 6.7, except that the file size must not be updated, so the state-
ments in lines 11 and 12 are not performed. Because n is equal to sz , the condition
sz ≤ n in line 6 is obsolete and szT is always sz .

Synchronization of File Contents

The synchronization of files, i.e., transferring cached updates to the persistent stor-
age, is coordinated by Cache, too. Clients can use the POSIX fsync operation to
trigger synchronization of a specific file.

The implementation of fsync in Cache is shown in Fig. 6.9. The general idea of
this implementation is to split the process into multiple phases: first, all pages that
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cache_truncate#(n; inode; err) {
interface
precondition valid-file-inode(inode, dirs,files)

{
let ino = inode.ino, sz = inode.size in, szT = min(n, inode.size) in
let pno = page(szT ), pbuf = ⊥, hit = false, dirty = true in

cache_truncpage#(inode, pno; pbuf ; hit , err);
if err = ESUCCESS then

pcache_truncate#(ino, szT );
if hit ∧ sz ≤ n ∧ ¬ aligned(sz ) then
pbuf := truncate(pbuf , sz );
pcache_set#(ino, pno, pbuf , dirty);

tcache_update#(ino,n, sz );
inode.size := n;
icache_set#(inode, dirty);
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Figure 6.7: Cache operation for user truncations of file contents.

cache_truncpage#(inode, pno; pbuf ; hit , err)
auxiliary
precondition valid-file-inode(inode, dirs,files) ∧ # pbuf = PAGE_SIZE

{
err := false;
let dirty = false in

pcache_get#(ino, pno; pbuf , dirty ; hit);
if ¬ hit then let szT = 0, szF = 0 in

tcache_get#(ino; szT , szF ; hit);
if ¬ hit ∨ pos(pno) < min(szT , szF ) then

afs_readpage#(inode, pno; pbuf ; hit , err);
}

Figure 6.8: Cache auxiliary operation for determining a page for truncation.

would have been truncated since the last synchronization are removed from flash;
then, a VFS write is mimicked by persisting all dirty pages in PCache and updating
the file size to the size stored in ICache if necessary. More precisely, cache_fsync#
performs the following steps.

1. The file is truncated to the minimal truncate size szT since its last synchro-
nization using afs_truncate#.

2. Potential garbage is removed by a call of afs_writebegin#.

3. All cached dirty pages are written in ascending order with afs_writepage#.

4. The file size is updated with afs_writesize#.

As we will see in Sec. 6.2, it is crucial for crash-safety that synchronization is executed
in this order. Particularly, the order in which pages are persisted is essential for the
formulation of an expressive crash-safety criterion.

The cache_fsync# operation uses the auxiliary operations listed in Fig. 6.10 to
implement this process. The operation cache_fbegin# is responsible for synchro-
nizing truncations and for preparing the subsequent writing of pages and updating
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cache_fsync#(inode; ; err)
interface
precondition valid-file-inode(inode, dirs,files)

{
let szF = 0, dosync = false in

cache_fbegin#(inode; szF ; dosync, err);
if err = ESUCCESS ∧ dosync then cache_fpages#(inode; ; err);
if err = ESUCCESS ∧ dosync then cache_finode#(inode, szF ; ; err);
if err = ESUCCESS then afs_fsync#(inode; ; err);

}

Figure 6.9: File synchronization operation of Cache.

of the file size in cache_fpages# and cache_finode#, respectively. When us-
ing this synchronization strategy, it is sufficient to aggregate multiple truncations
by truncating to the minimal size the file was truncated to, and only if this min-
imal truncation size is lower than the current file size on flash. As truncation is
the only possibility to delete pages (except for deleting the file as a whole), this
afs_truncate# call deletes all obsolete pages. The following afs_writebegin#
call ensures that the entire file content beyond szT resp. szF is zeroed so that writing
pages and increasing the file size on flash is possible safely. Since AFS enforces an
initial afs_writebegin# before writing pages or updating the file size, and Cache
is a refinement of AFS, it is guaranteed that there are dirty pages in PCache or dirty
inodes in ICache only if there is an entry in TCache for the file that is being synchro-
nized. Hence there is nothing to do if tcache_get# returns false in hit (which is
directly stored in dosync by the call in cache_fbegin#).

If there is dirty data to persist (dosync was set to true), cache_fpages# iterates
over all possibly cached pages of the file delegating the synchronization of individual
pages to cache_fpage#. Similar to the implementation of vfs_write# explained
in Sec. 4.3, this iteration is executed bottom-up, starting at page 0 up to the maximal
page m cached in PCache (returned by pcache_maxpage#). cache_fpage#
checks for a given page number pno if the respective page of the file is cached and
dirty. If this is the case, it persists the dirty page with afs_writepage# and marks
it clean in PCache after writing it successfully.

After all pages have been synchronized successfully, cache_finode# updates the
file size with afs_writesize# if the cached size is greater than the persisted size szF .
Finally, cache_fsync# synchronizes the lower levels as well by calling afs_fsync#
to ensure that all updates to the file have actually been written completely to flash
as dictated by the POSIX standard.

6.2 Crash-Safety of Non-Order-Preserving Caches

Due to the modular approach, verifying the functional correctness of the integration
of high-level caches into Flashix as shown in Fig. 4.1 requires to prove a single
additional data refinement Cache(AFS) ≤ AFS only. For better distinction between
both AFS variants in the hierarchy, we will use AFSP for the persistent AFS used
as subcomponent by VFS, and AFSC for the cached AFS used by VFS. Accordingly,
elements of the components (state variables, operations, ...) will be marked with
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cache_fbegin#(inode; szF ; dosync, err)
auxiliary

{
err := false;
let ino = inode.ino, szT = 0 in

tcache_get#(ino; szT , szF ; dosync);
if dosync then

if szT < szF then
afs_truncate#(szT ; inode; err);
szF := szT ;

if err = ESUCCESS then
afs_writebegin#(inode; ; err);

if err = ESUCCESS then
tcache_delete#(inode.ino);

}

cache_finode#(inode, szF ; ; err)
auxiliary

{
let sz = inode.size in

if szF < sz then
afs_writesize#(inode, sz ; ; err)

else
err := false;

}

cache_fpages#(inode; ; err)
auxiliary

{
err := false;
let ino = inode.ino, pno = 0, m = 0 in

pcache_maxpage#(ino; ;m);
while err = ESUCCESS ∧ pno ≤ m do

cache_fpage#(inode, pno; ; err);
pno := pno + 1;

}

cache_fpage#(inode, pno; ; err)
auxiliary

{
let hit = false, dirty = false,

ino = inode.ino, pbuf = ⊥
in

pcache_get#(ino, pno; pbuf , dirty ; hit);
if hit ∧ dirty then

afs_writepage#(inode, pno, pbuf ; ; err);
if err = ESUCCESS then

pcache_markclean#(ino, pno);
}

Figure 6.10: Auxiliary operations for file synchronization in Cache.

subscripts _P or _C, respectively.
The following forward simulation R is used for the refinement proofs.

data refinement Cache(AFSP) ≤ AFSC
abstraction relation dirsC = dirsP

∧ filesC = ((filesP ↓ tcache)⊕ pcache)⊕ icache

The abstraction states that the abstract state of AFSC can be constructed from the
concrete state of Cache(AFSP) by applying all cached updates to the persistent AFSP
state. Basically, it encodes the process of synchronizing all files: all files are pruned
at their cached truncate size (_ ↓ tcache), their pages are overwritten with their
cached contents (_⊕ pcache), and the file sizes are updated with the corresponding
cached ones (_ ⊕ icache). As no structural operations are cached, dirsC and dirsP
are identical.

Theorem 7 (Functional Correctness of High-Level Caches). The sequential compo-
nent Cache is a correct cache decorator implementation of the component AFS, i.e.,
Cache(AFS) ≤ AFS holds.

While AFSC functionally matches the original specification of AFS, it is easy to
see that AFSC differs quite heavily from AFSP in terms of its crash behavior. A crash
in AFSP just has the effect of removing orphaned files (see Sec. 4.3), i.e., those files
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that are not accessible from the file system tree anymore but still opened in VFS for
reading/writing at the event of the crash. However, if there are pending writes that
have not been synchronized yet, a crash in AFSC additionally may revert parts of
these writes as all data only stored in the volatile state of Cache is lost.

Like for order-preserving caches (cf. Sec. 5.1 and Sec. 5.2), this crash effect cannot
be expressed explicitly (using a crash relation) on higher levels of the hierarchy, where
there is no distinction between persistent and cached state any more. This is already
the case for AFSC, and thus for POSIX, too. So instead of verifying crash-safety in
a state-based manner, we want to explain the effects of a crash by constructing an
alternative run where losing cached data does not have any effect on the state of
AFSC (nevertheless, the residual state-based crash effect of removing orphans is still
present). If such an alternative run can always be found, crash-safety holds since all
regular (non-crashing) runs of AFSC yield consistent states, and thus a crash results
in a consistent state as well.

However, the semantics of retracting components (see Def. 34) is not sufficient for
the use of these non-order-preserving caches. For example, consider a sequence of two
writes, where the first one writes a file f1 and the second one writes to another file f2.
If now f2 is synchronized, e.g., via fsync, and a crash occurs before a synchronization
of f1, the second write cannot be retracted (since it is persisted already), while
the first one had no persistent effect and would thus have to be retracted. But
obviously, this cannot be achieved by retracting a postfix of the original history, so
Quasi-Sequential Crash Consistency (see Def. 35) cannot hold.

Write-Prefix Crash Consistency

Therefore, a new correctness criterion is required: in natural language, the criterion
Write-Prefix Crash Consistency can be formulated as follows.

A file system is write-prefix crash consistent (WPCC) iff a crash keeps the
directory tree intact and for each file f a crash has the effect of retracting all
write and truncate operations to f since the last state it was synchronized
and re-executing them, potentially resulting in writing prefixes of the original
runs.

This property results from the fact that files are synchronized individually by the
fsync operation. Thus, all runs of operations that modify the content of a file,
either cached or persistent, can be decoupled from runs of structural operations or
operations accessing the content of other files.

The criterion is formulated in the granularity of POSIX operations, so we formalize
Write-Prefix Crash Consistency in terms of POSIX histories, focusing on content
operations. Since content operations always affect only one file (identified by a file
identifier fid in POSIX), we restrict histories h to histories h|fid that contain only the
content operations to fid . These include write, read, truncation, and synchronization
operations so that h|fid consists of matching pairs of the form(

inv(write,fid , buf ,n), res(write,n ′, err)
)(

inv(read,fid ,n), res(read,n ′, buf , err)
)(

inv(truncate,fid ,n), res(truncate, err)
)(

inv(fsync,fid), res(fsync, err)
)
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Each invocation is marked with the targeted file fid and each response contains the
error flag err recording whether the operation was successful, i.e., no error occurred
and err = ESUCCESS, or failed. n ′ denotes the potentially altered value of the
reference parameter n and hence records how many bytes were written or read,
respectively.

Note that we omit the input argument user in the invocation events since it is
not relevant for crash-safety reasoning (invalid user permissions are reflected by error
outputs in the corresponding response events).

WPCC will use write-prefix histories to define write-prefix crash transitions giving
an alternative explanation for crashed runs. A notion for prefix operations is needed
to define such histories.

Definition 36 (Prefix Operations). For a completed content operation (einv , eres), a
corresponding prefix operation is a tuple (einv , e

′
res) where e′res results from changing

the outputs of eres in the sense that

• operations that were originally successful, i.e., returned err = ESUCCESS, may
fail in the prefix operation, i.e., have an output err ̸= ESUCCESS (this includes
that the remaining outputs may differ as well, e.g., the buf of a read response
could still be filled with nothing but zeros), and

• write operations, that have written m bytes originally, may write less bytes
m ′ ≤ m in the prefix write.

Note that we do not define prefixes of read operation other than failed executions
(that did not read anything at all). While it would be feasible to allow reads that
have read some but not all bytes of the original operation, this is not necessary as
reads do not affect the observable behavior of following operations and hence can
simply considered as failed or omitted altogether when considering crash-safety.

Write-prefix histories should contain prefixes for non-synchronized operations
only. For this, a history h can be split in an non-synchronized prefix h>sync and
a synchronized postfix h≤sync.

Definition 37 ((Non-)Synchronized Histories). A history h can be split in two his-
tories h≤sync and h>sync with h = h≤sync · h>sync where h>sync is the maximal postfix
of h not containing an event res(fsync, ESUCCESS).

Thus, (h|fid )≤sync contains all synchronized write, read, and truncate opera-
tions as well as all complete, successful fsync operations of fid . (h|fid )≤sync either
ends with an res(fsync, ESUCCESS), or it is empty (when h|fid does not contain any
successful response of fsync). Conversely, (h|fid )>sync contains all pending fsync
operations of fid and all write, read, and truncate operations of fid that are not
(fully) synchronized. Both histories, however, may contain failed fsync operations.

Definition 38 (Write-Prefix Crash Transitions). A transition sn
 −→ sn+1 is a

write-prefix crash transition for an era I, h of the component POSIX and a system
SystemPOSIX with I = (s0, . . . , sn) and I, h |= SystemPOSIX

 iff there exists a legal
write-prefix history h ′ with corresponding interval I ′ where

1. I ′.first = s0 and I ′, h ′ forms an uninterrupted system run, i.e., I ′, h ′ |= SystemC,
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2. h ′ contains invocations and responses of the same operations in the same order
as h with the exception that all pending operations of h are completed in h ′,

3. completed structural operations in h are identical in h ′,

4. for each file fid , h ′|fid = (h|fid )≤sync·h ′′|fid and h ′′|fid is derived from (h|fid )>sync

by replacing write, read, and truncate operations with matching prefix oper-
ations, and by completing pending operations, and

5. the crashed state sn+1 can be reached from I ′.last by applying the crash and
recovery relations, i.e., (I ′.last , sn+1) ∈ CRASHPOSIXo9REC

POSIX.

Write-Prefix Crash Consistency is then given by the sequential semantics of the
POSIX component given by Def. 27 resp. Def. 34, but instantiated with write-prefix
crash transitions according to Def. 38.

Definition 39 (Write-Prefix Crash Consistency (WPCC)). A file system is write-
prefix crash consistent iff it refines the POSIX component given in Sec. 4.2 extended
by a synchronization operation and a synchronized predicate as presented in Sec. 5.2,
and each crash transition Ii.last

 i+1−−−→ Ii+1.first with i < n is a write-prefix crash
transition for the era Ii, hi and SystemPOSIX ≡ { OPPOSIX }∗ according to Def. 38.

The main point of this criterion is that interrupted runs (represented by legal
histories h) can be explained by alternative, uninterrupted legal histories h ′ (con-
dition 1 of Def. 38). Conditions 2-4 of Def. 38 ensure that h ′ is again well-formed
and as close as possible to the original era h: the same operations must be executed
in the same order and with the same inputs, structural operations must yield the
same results (and hence, yield the same file system tree), only non-synchronized con-
tent operations may have slightly different results. The final condition 5 applies the
residual, state-based crash effect like for retracting crash transitions (cf. Def. 33).

Note that our definition completes all pending operations while general lineariz-
ability completes some and deletes the remaining pending operations. This sim-
plification is possible since each POSIX operation has a completion that fails non-
deterministically and does not change the state, so the completed operation is equiv-
alent to not executing it.

Furthermore, fixing the returned errors and the number of written/read bytes
in the responses resolves all non-determinism (POSIX is non-deterministic just in
succeeding or failing of operations and in writing or reading prefixes of the requested
number of bytes, see Sec. 4.2)1. This property makes it possible to argue solely with
histories about crashes since a history determines the complete observable run of the
system for a given initial state. However, while both system runs (the original run
and a corresponding write-prefix run) yield the same POSIX state, we will see in the
following section that the internal representation of the file system may be slightly
different.

1The creation of a file also chooses fresh file identifier non-deterministically, however, these
choices are unaffected by content operations and are thus negligible for the considerations here.
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6.3 Proving Crash-Safety of High-Level Caches

Given the WPCC criterion of Def. 39, this section presents the proof that Flashix is
crash-safe, i.e., that the following theorem holds.

Theorem 8 (Flashix satisfies WPCC). The Flashix file system with the VFS imple-
mentation given in Sec. 4.3, extended by the Cache component of Sec. 6.1, satisfies
WPCC.

The basic proof idea for Thm. 8 is to consider a system run with history h = h0 · 
with just a single crash  (and empty final era), construct a write-prefix era h ′

0

satisfying Def. 39, and show that h ′ = h ′
0 is legal. We also prove that runs of h0 ·  

and h ′
0 yield identical POSIX states, which guarantees that legal write-prefix histories

for histories with an arbitrary number of crashes can be constructed inductively.
Whereas WPCC could be formulated purely in terms of POSIX histories, we

now have to consider implementation runs for proving, in particular the ones of
VFS(Cache(AFSP)). We exploit that the lower levels of Flashix can be assumed to be
atomic w.r.t. to crashes. In particular, this still holds for AFSP, i.e., a crash during
an AFSP operation has the same effect as a crash either directly before or directly
after the operation. The implementation by a transactional journal ensures that, and
thus crashes in Cache(AFSP) have to be contemplated only between AFSP operations.
The proofs, therefore, revolve around constructing matching alternative runs in AFSC
for all possible crashes in Cache(AFSP). In a next step, these runs have to be lifted
to VFS(AFSC) runs via the refinement Cache(AFSP) ≤ AFSC. Finally, the refinement
VFS(AFSC) ≤ POSIX then ensures that they are also runs of POSIX.

As it turns out, for an arbitrary file fid , the only critical case is when a crash
occurs during the execution of cache_fsync# for this file. In all other cases, up-
dates to the content of fid have been stored in cache only, thus the persistent content
of fid in AFSP is unchanged since the last successful execution of cache_fsync#
for fid . So if the crash is outside of cache_fsync#, we can choose a VFS(AFSC)
run in which all unsynchronized writes and truncates to fid have failed and hence
have not written or deleted any data. Constructing such runs is always possible as
AFSC is crash-neutral, i.e., all operations of AFSC are specified to have a run that fails
without any changes to the state (see Sec. 3.1 and Sec. 4.3). In terms of histories,
all operations in (h0|fid )>sync are replaced by failed prefix operations.

However, showing that WPCC holds for crashes during cache_fsync# is hard.
The remainder of the section shows why caching of asynchronous truncations is one
major difficulty when proving Thm. 8, the approach for constructing write-prefix
histories when crashes occur during synchronization, and how it was proved in KIV
that such write-prefix histories always yield a valid write-prefix run.

Truncations and Caching

Initially, our goal was to prove this property locally on the level of AFSC resp. of
Cache and AFSP only. For example, one approach was to construct matching prefix
runs of AFSC by commuting and merging operation calls. While we will not go
into the many pitfalls we ran into, the main problem with these approaches was
the synchronization of aggregated truncates, as states resulting from an interrupted
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Figure 6.11: Effect of a sequence of afs_truncate# operations and a following
afs_fsync# on the states of one file in AFSC (left) and AFSP (right), including
intermediate states of AFSP during vfs_fsync#. The state of Cache is omitted.

´

synchronization in Cache could not be reconstructed by any combination of VFS
prefixes from the corresponding AFSCrun.

For example, given the sequence of three afs_truncate# calls followed by an
afs_fsync# call as visualized in Fig. 6.11, starting with a synchronized file, i.e., the
contents (and sizes) of the affected file are equal in AFSC and AFSP. Considering this
run in AFSC on the left, the first truncation shrinks the file to a new size n0 deleting
all pages above page(n0). Since aligned(n0) is false, rest(n0) bytes of junk data
remain in page(n0) for the moment. This junk data is removed not before the second
truncation as it increases the file size then to n1 and the remainder of page(n0) is
filled with zeros. Then finally, the third truncation shrinks the file again to n2 with
n2 < n0 but page(n0) = page(n2), which yields a mixed page containing valid data,
junk, and zeros.

These truncations do not have any effect on the persistent state of AFSP as Cache
handles all requests. Conversely, a call to afs_fsync# in AFSC leaves its state
unchanged but its implementation Cache triggers a number of calls to AFSP. First,
the file is truncated to n2, the minimal truncation size since its last synchronized
state. Second, junk data above n2 is removed with afs_writebegin# to prepare a
potential synchronization of pages beyond n2.

Comparing the state after afs_writebegin# in AFSP with the state after all
truncations in AFSC, one can see that the sizes and the valid part of the content
match but there is some junk data left in AFSC that is not in AFSP. In fact, if a crash
occurs in a state after this afs_writebegin# call and before the synchronization of
page(n2) with afs_writepage#, we cannot construct a VFS prefix run of AFSC that
yields exactly the state of AFSP. However, the abstraction from VFS(AFSC) to POSIX
(see Secvfs) ignores bytes written beyond the file size anyway, and the implementation
Cache(AFSP) may at most remove more junk data than AFSC, so the implementation
actually matches our crash-safety criterion under the POSIX abstraction as intended.
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Figure 6.12: Construction of a write-prefix run (lower half) matching a run with a
crash  in fsync that occurs just before writing page k (upper half).

But in order to prove this, we need to explicitly consider runs of AFSC in the context
of VFS.

Write-Prefix Histories for Crashed Synchronizations

To find a legal write-prefix history that satisfies Def. 39 for an arbitrary history that
crashed during cache_fsync#, one has to consider at which point the synchro-
nization was interrupted. We will now omit arguments of operations and abbreviate
the AFS/Cache operations writebegin#, writepage#, writesize#, truncate#,
and fsync# with wb, w, ws, fs, and t, respectively. Given the implementation of
cache_fsync# in Fig. 6.9 and Fig. 6.10, a typical run yields a AFSP call sequence
of the form t wb w∗ ws fs. Because of the crash-atomicity of AFSP, effectively two
cases need to be addressed, namely a crash occurs

1. between t and wb or

2. between persisting pages k − 1 and k with w.

Two additional cases are crashes before t or after ws (the fs call to AFSP can be
ignored for now, it only is relevant when additional low-level caches are used as
discussed in Sec. 6.4). These can be viewed as crashing before resp. after the
complete cache_fsync# operation since no persistent changes happen in these
ranges. We also do not explicitly consider crashes immediately after wb or before ws
as separate cases, but instead we handle these as variants of case 2.

For case 1, finding a write-prefix history is quite obvious. As cache_fsync#
only executed a single persisting truncation to szT , only truncate operations to szT in
(h0|fid )>sync have been synchronized. Thus, only these operations remain unchanged
in (h ′

0|fid )>sync, truncate operations to sizes n greater than szT are replaced by
failed prefix operations. Similarly, all write operations are replaced by failed prefix
operations as no pages have been persisted in cache_fsync#.

Verifying case 2 requires more effort. As an example consider the crashed run
shown in the upper half of Fig. 6.12. The run contains vfs_truncate# and
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vfs_write# calls, followed by an interrupted synchronization with vfs_fsync#
(denoted by the _ superscript in the figure). One can see that vfs_truncate#
triggers just a single t call to AFSC resp. Cache, whereas vfs_write# yields a call se-
quence of the form wb w∗ ws (cf. Figures 4.22, 4.23, and 4.24). The vfs_truncate#
and vfs_write# operations are performed in Cache only, so calls to AFSP are per-
formed not until synchronization. The synchronization crashes after an ascending
sequence w∗|k of page writes, which contains only writes to pages < k .

A possible write-prefix run (and therefore a write-prefix history) is shown in
the lower half of Fig. 6.12. As for case 1, the write-prefix run contains successful
executions of vfs_truncate# calls to the minimal truncate size. In the example,
this is the size n0, so the first truncation is performed as before. For the second
truncation to n1 on the other hand, we choose a failing run of vfs_truncate#
(failing operations are marked with _ERR), which results in a stutter step τ in Cache,
i.e., no operation is executed in Cache. So the first truncate operation is carried over
unchanged to (h ′

0|fid )>sync while the second truncate operation is replaced by a failed
prefix operation.

The main aspect of WPCC is that non-synchronized vfs_write# executions
write just as far as the interrupted vfs_fsync# was able to persist pages in the
write-prefix run. Hence, the alternative vfs_write# execution successfully per-
forms wb and a prefix of the original sequence w∗, namely the prefix of writes w∗|k
to pages < k . All other writes to pages ≥ k are again replaced by stutter steps
τ in Cache. When constructing the write-prefix history, a write operation with
einv = inv(write,fid , buf ,n) and eres = res(write,n ′, ESUCCESS) in (h0|fid )>sync is
replaced in (h ′

0|fid )>sync by the prefix operation (einv , e
′
res) where

e′res =


eres if pos + n < min(pos(k), sz )

res(write, 0, ⌊err⌋) if min(pos(k), sz ) ≤ pos

res(write, min(pos(k), sz )− pos, ESUCCESS) otherwise

Depending on the range the original vfs_write# has written to, the restricted
sequence w∗|k may be empty or the full sequence w∗. However, because the alternative
run does not execute updates of the file size via ws, not all bytes written by w∗|k
become visible on the level of POSIX, but only bytes written below the persisted file
size sz and below pos(k). Hence, the prefix operation (einv , e

′
res) writes the same

number of bytes as the original operation (first case), fails and writes no bytes at all
(second case, an arbitrary low-level error ⌊err⌋ is returned), or writes bytes up to
min(pos(k), sz ) (third case).

With a complete write-prefix history constructed this way, a full, successful
vfs_fsync# run has the same effect as the crashed execution of the original run
(except for differences in junk data resulting from the problematic nature of syn-
chronizing truncations discussed earlier this section, see Fig. 6.11). Thus, the pend-
ing operation einv = inv(fsync,fid) can be completed with the response eres =
res(fsync, ESUCCESS).

From Write-Prefix Histories to Write-Prefix Runs

We now want to prove that write-prefix histories, as constructed in the previous
section, are legal and that the corresponding write-prefix runs yield the same POSIX
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(a) Successful AFSC run for i < k.
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(b) Failing/stuttering AFSC run for i ≥ k.

Figure 6.13: Commuting diagrams of a w run writing page i.

states as their original crashed runs. This is done with a forward simulation ∼=k ⊆
CS × CS over Cache(AFSP) states CS using commuting diagrams. The relation ∼=k

links all vertically aligned states in Fig. 6.12.

∼=k ≡ ((filesP ↓ tcache)⊕ pcache|k ).seq(ino)
= (((files ′P ↓ tcache ′)⊕ pcache ′)⊕ icache ′).seq(ino)

where pcache|k restricts pcache to entries for pages i < k and files.seq(ino) extracts
the content of the file ino as a sequence of bytes up to the current size of ino in
files. Intuitively, two Cache states cs and cs′ are cs ∼=k cs′ if a synchronization
interrupted at page k of cs yields the same content (up to the file size) as a complete
synchronization of cs′. Note that cs ∼=k cs′ enforces implicitly that the file size of ino
is identical in cs and cs′ and hence the cached truncate sizes in tcache and tcache ′,
as well as the cached size in icache ′, must be equal.

For writepage# calls the commuting diagrams as shown in Fig. 6.13 in the
bottom plane are required. writepage# operations of AFSC and Cache(AFSP) are
denoted wA and wC, respectively. When writing a page < k , re-executing this opera-
tion maintains ∼=k (Fig. 6.13a). In contrast, writing pages ≥ k maintains ∼=k if the
alternative run stutters (Fig. 6.13b). Since VFS is defined on AFSC, these commuting
properties must be lifted from Cache(AFSP) to AFSC in order to construct commuting
diagrams for VFS(AFSC) runs. This is why the commuting diagrams are extended
by R-corresponding AFSC runs, yielding the front and back sides of Fig. 6.13 (R is
given by the abstraction relation of the refinement Cache(AFSP) ≤ AFSC shown in

Sec. 6.2). So in addition we show that, given a run as0
wA(i)−−−→ as1 as it is part of

vfs_write#, there is an R-corresponding run cs0
wC(i)−−−→ cs1 of Cache(AFSP). Con-

versely, we have to show that the resulting alternative run of Cache(AFSP) can be
lifted to an R-corresponding run of AFSC as well. Depending on the operation, up to
two versions of this lifting are necessary if the run is stuttering: an AFSC run that
stutters (τ transition from as′0 in Fig. 6.13b) and a failing run of the AFSC operation
(wA(i)ERR transition from as′0 in Fig. 6.13b). For writepage#, the former is used to
skip writes of pages > k while the latter is required to stop the loop of vfs_write#
when trying to write page k .
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In KIV, these commuting diagrams have been proven using the sequent based
weakest-precondition calculus presented in Sec. 2.4. For example, we get the following
proof obligation for Fig. 6.13a.

invA(as0), invC(cs0), invA(as
′
0), invC(cs

′
0),

R(as0, cs0), R(as
′
0, cs

′
0), cs0

∼=k cs′0,

⟨afs_writepage#(inode, pno, pbuf ; as0; err)⟩(err = ESUCCESS ∧ as1 = as0),

pno ≤ k

⊢ ∃ cs1, cs′1, as′1.
⟨cache_writepage#(inode, pno, pbuf ; cs0; err)⟩

(err = ESUCCESS ∧ cs1 = cs0)

∧ ⟨cache_writepage#(inode, pno, pbuf ; cs′0; err)⟩
(err = ESUCCESS ∧ cs′1 = cs′0)

∧ ⟨afs_writepage#(inode, pno, pbuf ; as′0; err)⟩
(err = ESUCCESS ∧ as′1 = as′0)

∧ invA(as1) ∧ invC(cs1) ∧ invA(as′1) ∧ invC(cs′1)
∧R(as1, cs1) ∧R(as′1, cs′1) ∧ cs1 ∼=k cs′1

Recall that the calculus requires that all non-local variables accessed in the body of a
procedure are appropriate parameters while the declarations in our components (as
shown in Sec. 4.3 and Sec. 6.1) do not have state variables as explicit parameters,
Hence, the state variables of a component (in the example, the vectors as0, cs0, as′0,
or cs′0, respectively) are added automatically as reference parameters to the signature
of its operations (as they can always read or update their component’s state). Having
the states as reference parameters also makes modifications to the states visible in
postconditions of program formulas. For example, the equation as1 = as0 in the
antecedent program formula fixes the AFSC state reached by the afs_writepage#
run to as1. This state can then be referenced in other formulas of the sequent, e.g.,
in the conjunct R(as1, cs1) of the succedent formula.

In order to construct a valid alternative VFS run, analogous commuting diagrams
for wb, ws, and t have been proven, not all commuting diagrams were necessary
for each operation though. The proofs of commuting diagrams for vfs_write#
and vfs_truncate# then are based upon the step by step application of these
commutative properties.

Fig. 6.14 shows the construction of a vfs_write# write-prefix execution as an
example. At the bottom there is the Cache(AFSP) run cs0 to csn resulting from
the original vfs_write# execution writeVFS. We proved for an arbitrary k (i.e.,
for every possible crash occurrence within a cache_fsync# matching case 2 given
earlier this section) that there is an execution write′VFS yielding Cache(AFSP) states
cs′0 . . . cs′i+1 which preserve ∼=k. Regardless of k , the initial wb call always needs
to be executed successfully in write′VFS in order to get a valid execution. So we use
a commuting diagram analogous to Fig. 6.13a to get the states cs′1 and as′1. Then
we repeatedly append the commuting diagram for w of Fig. 6.13a for all writes to
pages less than k . This yields the state cs′i+1 (and a R-corresponding as′i+1) for
which csi+1

∼=k cs′i+1 obviously still holds, since so far the write-prefix execution
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as′0 as′1 as′i as′i+1 as′i+1 as′i+1 as′i+1

wbA wA(k − 1) wA(k)ERR τ

cs′0 cs′1 cs′i cs′i+1 cs′i+1 cs′i+1 cs′i+1

write′VFS

wbC wC(k − 1) τ τ

R R R R R R R

cs0 cs1 csi csi+1 csi+2 csn−1 csn

writeVFS

wbC wC(k − 1) wC(k) wsC

∼=k ∼=k ∼=k ∼=k ∼=k ∼=k ∼=k

Figure 6.14: Lifting commuting diagrams to VFS, exemplary for a vfs_write# run
(omitting the original AFSC run for readability).

does not differ from the original one. For the preservation of ∼=k, neither a write to
a page greater than or equal to k nor a size update may be performed in the write-
prefix execution, so write′VFS must stutter for further w and ws steps in writeVFS.
In order to achieve a valid vfs_write# execution, the operation has to be aborted
due to an error in w or ws, respectively (see Figures 4.22, 4.23, and 4.24). Hence,
we append the failing variant of the commuting diagram of Fig. 6.13b to end the
vfs_writeloop#, and we continue with repeating stuttering steps of the τ variant
of Fig. 6.13b until the state csn−1 after vfs_writeloop# is reached. Finally, if
the file size was increased in the original execution, one last stuttering commuting
diagram for writesize# has to be applied. This commuting diagram is analogous
to the one for writepage# in Fig. 6.13b: depending on whether a page is written
beyond the file size sz in the write-prefix execution, this diagram either yields a
failed transition wsA(i)ERR (if pos(k) ≤ sz as shown in Fig. 6.14) or a stuttering τ
transition (if sz < pos(k)). Note that state cs′i+1 of the write-prefix execution after
writing page k − 1 remains unchanged as only stutter steps τ are taken and hence
all csj with i+ 1 ≤ j ≤ n satisfy csj ∼=k cs′i+1.

For the construction of a write-prefix run for vfs_truncate#, only one modi-
fying step needs to be considered, namely the call of t. As shown in Fig. 6.12 in the
lower half, vfs_truncate# calls may occur re-executed or failed in the write-prefix
run, depending on whether they decrease the file size or they increase the file size.
Hence, commuting diagrams analogous to Fig. 6.13a and Fig. 6.13b (only the vari-
ant with tA(i)ERR) are necessary for tA and tC. While re-executing only the minimal
truncation would be sufficient to get a complete write-prefix run, the forward simula-
tion ∼=k requires that the truncate sizes in tcache and tcache ′ are identical after each
step. As a consequence, every update of the minimal truncate size in the original run
(when n < min(szT , szF )) must result in the same update in the write-prefix run.
So for such vfs_truncate# calls, the successful run is chosen while for all others
(where n ≥ min(szT , szF )), the failed run is chosen.

Considering the final states of the runs shown in Fig. 6.12, tcache, pcache|k ,
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tcache ′, pcache ′, and icache ′ do not contain any dirty data for ino, and so applying
them to filesP resp. files ′P does not have any effect. Consequently, in theses states
cs ∼=k cs′ reduces to filesP.seq(ino) = files ′P.seq(ino), which is exactly the property
we wanted to achieve, namely identical POSIX states.

All in all, the verification of the crash-safety properties alone (not including
earlier attempts) comprises approx. 300 theorems. The proofs were significantly
more complex and required about ten times more interactions than the proofs for
functional correctness (only 79% of the proof steps could be automated compared to
98%). Most of the time was spent proving the commuting diagrams for ∼=k on the
level of Cache(AFSP) since many different cases have to be considered. Lifting these
to AFSC could be done mainly by reusing the commuting diagrams for R together
with some auxiliary lemmata over the Cache(AFSP) and AFS operations, which in
turn enabled proving the commuting diagrams for VFS(AFSC) without major issues.

6.4 Crash-Safe Combination of Caches

In the previous sections, Write-Prefix Crash Consistency was considered without
using other caches simultaneously. However, the high-level caches implemented in
Cache are built on top of the buffer cache implemented in Write Buffer. Thus, the
crash-safety criterion and the correctness of the Cache component must be considered
in the context of retractions as introduced in Sec. 5.1.

In particular, we want to show that the crash effects of stacked caches can be
aggregated: the crash effect of the lower-level buffer cache is applied first, and the
effect of the high-level caches is applied afterward to the resulting state.

Theorem 9 (Compatibility of WPCC and QSCC). Write-Prefix Crash Consistency
is compatible with the use of order-preserving caches in lower levels of the implemen-
tation that satisfy Quasi-Sequential Crash Consistency.

Proof of Thm. 9. For compatibility of WPCC with QSCC, it is relevant that AFSP
operations do not have different executions: re-executing an AFSP operation will lead
either to the same result or to an error without any state change, which is equivalent
to not executing the operation at all. Therefore, the effect of a crash is just to
retract some of the final AFSP operations. In the context of Def. 39, prefix-histories
are not built based on the original eras Ii, hi but on prefixes I⊑i , h

⊑
i of them. This

means that for each file, some of its final AFSP operations are retracted as well, and
thus h ′

i|fid is also constructed based on a prefix h⊑
i |fid of hi|fid . For the crashed run

of Fig. 6.12, the existence of the low-level cache will result in less persisting AFSP
operations being executed when a crash happens during vfs_fsync#. However,
this either is the same scenario as before (case 2 in Sec. 6.3 with k ′ ≤ k instead of
k) or results in a simpler crash (case 1 in Sec. 6.3 or in a state before vfs_fsync#
started).

Note that executing fs at the end of cache_fsync# is crucial since it syn-
chronizes the Write Buffer: As each successful vfs_fsync# operation yields a
synchronized state s ∈ SYNCVFS, a crash cannot retract AFSP operations called before
the response of vfs_fsync#. Thus, (h⊑

i |fid )≤sync = (hi|fid )≤sync and (h⊑
i |fid )>sync
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simply contains shorter prefixes than (hi|fid )>sync, i.e., more failed operations and
writes with fewer bytes written, which is entirely in line with Def. 39.

6.5 Related Work

Bornholt et al. [17] provide a model for POSIX-compliant file system that includes
the specification of crashes. They introduce several crash consistency models, e.g.,
for the ext4 file system, and validate these models against real file system implemen-
tations with a tool called FERRITE. Crashes are modeled by maintaining a sequence
of updated events: the state after a crash is constructed by choosing a prefix of the
event sequence, reordering them according to the respective consistency criterion,
and applying the resulting event sequence to the initial or last recovered state, re-
spectively. Our criterion Quasi-Sequential Crash Consistency for order-preserving
write-back caches (see Sec. 5.2) is inspired by Bornholt’s Sequential Crash Con-
sistency. Compared to Sequential Crash Consistency, QSCC allows re-executions of
pending operations after the retraction, which may produce different events by yield-
ing different states and outputs. Furthermore, the POSIX model of Flashix specifies a
residual state-based crash effect by closing all opened files and removing orphans (cf.
Sec. 4.2), which is omitted in [17]. Another restriction is that [17] does not support
truncations, which are the crux of the matter when giving crash consistency crite-
ria for non-order-preserving caches like Write-Prefix Crash Consistency as shown in
Sec. 6.2 and Sec. 6.3.

BilbyFS [4, 3, 2] by Amani et al. implements caching mechanisms and gives a
specification of the sync operation on the level of AFS. These mechanisms are similar
to the buffer cache implemented in Flashix in form of the Write Buffer component
presented in Sec. 5.2. The functional correctness of this order-preserving cache is
proven, for which pending writes that are buffered in-memory are specified explicitly
as a sequence of file-system transformations. However, the verification of crash-safety
properties for the buffer cache and recovery mechanisms still remains future work.
Non-order-preserving caches have not been considered so far, and caching on the level
of VFS, as discussed in sections 6.1-6.3, has not been addressed either since BilbyFS
is designed for the use with the Linux VFS.

DFSCQ [23, 24] employs caching that are non-order-preserving. Similar to our
approach, structural updates to the file system tree are persisted in order using a se-
quential log. However, it allows writes to bypass the log, so that content updates can
commute arbitrarily with structural operations. Furthermore, DFSCQ uses a page
cache but does not specify an order in which cached pages are written to persistent
store. Therefore, it is not provable that a crash leads to a POSIX-conforming alter-
nate run. Instead, a weaker crash-safety criterion is satisfied, called metadata-prefix
specification: it is proved that a consistent file system results from a crash, where a
prefix of the metadata operations (they correspond to the term structural operations
used in this thesis) took place, and some subset of the page writes has been executed.

Like in BilbyFS, the effects of the in DFSCQ employed caches are modeled using
a state-based approach. Tree sequences store a snapshot of the file system tree
for each transaction, i.e., each structural operation. In addition, possible contents
of individual pages are specified. A crash then selects a file system tree from the
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sequence and assigns one of its possible contents to each page individually. DFSCQ
also implements the fsync operation and guarantees that all file data (metadata and
content) is persisted after successful execution and cannot be reverted by a crash.

In the context of Flashix, the weaker criterion of DFSCQ should be provable
for any (functional correct) implementation of VFS caches, since we ensure that all
AFSP operations are atomic (calls can never overlap) and the refinement proof of
VFS ≤ POSIX has lemmas for all AFS operations, that ensure that even these (and not
just the VFS operations) preserve the abstraction relation to a consistent file system.
Indeed, no stronger result is possible for the original VFS implementation in Linux,
which offers many caching strategies, and does not even protect files from concurrent
writes with mixed results.

For applications, when WPCC is not satisfied, the only strategy to achieve crash-
safety is typically to write a new version of the whole file, call fsync on the new
version, and atomically replace the old with the new version (using the rename
operation). While this is efficient for small files, e.g. text files modified by an editor,
it is inefficient for larger files.



Chapter 7
From Sequential to Concurrent Systems

Summary Introducing concurrency into sequential systems is a complex task.
When operations are executed in parallel, the semantics of components changes as
runs now consist of interleaved steps of multiple threads. Thus, the correctness of
components is affected as well, and sequential reasoning about components does
not suffice anymore.
This chapter introduces the semantics for concurrent components as an adaptation
of the semantics of sequential components. Correctness of concurrent components
is shown by proving linearizability using atomicity refinement : atomic program
statements are incrementally combined to larger ones by applying a technique called
reductions and thread-local reasoning with a rely-guarantee calculus. To facilitate
this process, programs are augmented with locking instructions and ownership for
the state of components is specified, which allows to partially automate atomicity
reasoning.
The methodology presented in this chapter is, to a large extent, a summary of
the work of Pfähler [96]. This chapter serves as a basis for Ch. 8, where the
methodology is applied to introduce concurrency on the top levels of the Flashix
file system, namely in the form of a concurrent garbage collection mechanism and
concurrent executions of POSIX operations.
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Publications The concept of concurrent components and the verification
methodology for proving linearizability via atomicity refinement presented in this
chapter is mainly adopted from the work of Pfähler [96]. The publication [108] sum-
marizes the main aspects of the approach, the presentation of the rely-guarantee
calculus is based on the publication [107].
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7.1 Rely-Guarantee Calculus

For the verification of concurrent programs, the logic is based on the idea of having
programs as formulas. For this, the semantics of expressions e (cf. Sec. 2.1) is
generalized from JeK(v) to JeK(I) using an interval I (see semantics of programs in
Sec. 2.3) instead of a single state v. The expressions considered so far refer to the
initial valuation I(0) of the interval only. The extended semantics makes it possible
to view a program α with free variables z as a formula [: z | α ] (expression with
boolean result) which returns tt iff the semantics of α includes the interval I. That α
has a temporal property φ is then simply expressed as the implication [: z | α ] → φ
or, in terms of sequents, as [: z | α ] ⊢ φ.

The resulting calculus (described in detail in [110]) is again based on symbolic
execution of programs as well as temporal formulas. It is strong enough to define rely-
guarantee (RG) formulas as abbreviations of temporal logic formulas and formally
derive the rules of rely-guarantee calculus. Initially, rely-guarantee reasoning was
introduced by Jones [69, 70]. Xu et al. extended the method with reasoning about
deadlock- and divergence-freedom later in [117]. Since rely-guarantee calculus is
predominantly used in the practical verification of programs in KIV, rely-guarantee
formulas were added explicitly to the KIV system, and the rules for them were
derived. While KIV supports various temporal logic formulas, like the standard
formulas □ φ, ♢ ψ, . . . of linear temporal logic (LTL) [99], we will focus on rely-
guarantee formulas in the following since they are used for reasoning about the
correctness of concurrent components.

Variables are now partitioned into flexible variables, that may be modified by
concurrent programs, and static variables, that always have the same value in all
states I(0), I ′(0), . . . of an interval. For the remainder of this section, we use y
to denote a static and z for a flexible variable1. Flexible variables are allowed in
quantifiers, but not as parameters of λ-expressions. Flexible variables z can also
be used in primed or double primed form in predicate logic expressions (z ′ or z ′′,
respectively). Jz ′K(I) and Jz ′′K(I) are defined as I ′(0)(z ) and I(1)(z ), except for the
case where the interval consists of a single state, i.e., # I = 0. For such an empty
interval the value of both is I(0)(z ). Formulas like z ′ = z or z ′′ ≥ z ′ therefore
talk about the relation of the first program step (z is not changed) and about the
first environment step (z is not decremented). They are used as guarantee and rely
formulas that constrain program and environment steps. We write φ′ and φ′′ for
predicate logic formulas where one resp. two extra primes are added to every free
variable that is flexible.

The rely-guarantee method reduces reasoning about concurrent systems, in which
multiple threads execute programs interleaved, to thread-local reasoning about single
programs. Therefore, the properties of programs are expressed by distinguished
formulas over a sequential program α of some thread that executes atomic steps.
These alternate with environment steps, where one environment step is an arbitrary

1In KIV, the convention is used that flexible variables start with uppercase letters while all
others are static.
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sequence of steps of other threads.

[: z | rely(z ′, z ′′), guar(z , z ′), inv(z ), α ](φ ; ξ)

⟨: z | rely(z ′, z ′′), guar(z , z ′), inv(z ), runs(z ), α ⟩(φ ; ξ)

Using these formulas, partial and total correctness are expressed as sequents.

ψ ⊢ [: z | rely(z ′, z ′′), guar(z , z ′), inv(z ), α] φ (1)
ψ ⊢ ⟨: z | rely(z ′, z ′′), guar(z , z ′), inv(z ), runs(z ), α⟩ φ (2)

Like for the wp-formulas, we leave away the default exception condition ξ ≡ default ::
false that forbids any exceptions for the final state.

Formula (1) asserts that if the precondition ψ holds in the initial state, program
steps of α will not violate the guarantee guar (and do not throw exceptions), and
the final state will not violate the postcondition φ unless an earlier environment
step violated the rely rely . The formula implies that partial correctness holds: if all
environment steps are rely steps, all program steps will be guarantee steps and in
final states the postcondition will hold.

Total correctness, given by formula (2), guarantees two additional properties.
First, the program α is guaranteed to terminate when the rely is never violated. Sec-
ond, in all states where predicate runs holds, the next program step is guaranteed
not to be blocked. The additional runs-formula is used to verify deadlock-freedom:
when an interleaved program satisfies total correctness with runs = true, the pro-
gram is deadlock-free, i.e., there is always at least one of its threads not currently
waiting to acquire a lock. Conversely, when runs = false is chosen, the formula
guarantees divergence-freedom only: the program α is allowed to block arbitrarily
but must only perform finitely many non-blocking steps.

Note that the invariant formula inv specifies conditions that must hold in each
state, regardless of whether a program or an environment step produced the state.
However, this is just an abbreviation for adding the conditions to both the rely and
guarantee formulas. For example, in [117], the RG assertion (1) would be written as

α sat {ψ, rely(z ′, z ′′) ∧ (inv(z ′) → inv(z ′′)), guar(z , z ′) ∧ (inv(z ) → inv(z ′)), φ}

Since both wp- and RG-formulas are defined based on the interval semantics of
programs, they can be transformed into each other. This property can be exploited,
for example, to apply lemmas formulated in wp-calculus to RG-proofs.

[α] φ ≡ [: z | z ′′ = z ′, true, true, α] φ

⟨|α|⟩φ ≡ ⟨: z | z ′′ = z ′, true, true, true, α⟩ φ

In the formulas, z are the flexible variables that occur free in α (all variables except
those bound by let or choose) or free in φ.

Symbolic execution using the rely-guarantee calculus resembles symbolic execu-
tion in wp-calculus. The extra effort needed when proving RG formulas can be seen
when looking at the rule for assignment listed in Fig. 7.1.

For easier notation, the rule assumes that all variables of the frame assumption
z are assigned. We also omit side conditions for possible exceptions when evaluating
t . These are the same as in wp-calculus (see Sec. 2.4).
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Γ ⊢ ⟨: z | rely(z ′, z ′′), guar(z , z ′), inv(z ), runs(z ), z := t ;α⟩ φ, ∆

Figure 7.1: RG-calculus rule for assignments.

Γ, inv(z ), runs(z ) ⊢ ψ, ∆
Γ
y
z , rely(z , y)

⊢ ⟨|α{z 7→ y}|⟩
(
⟨: z | rely(z ′, z ′′), guar(z , z ′), inv(z ), runs(z ), z := y ;β⟩ φ

)
, ∆

y
z

Γ ⊢ ⟨: z | rely(z ′, z ′′), guar(z , z ′), inv(z ), runs(z ), atomic ψ {α};β⟩ φ, ∆

Figure 7.2: RG-calculus rule for atomic blocks.

In the semantics, symbolic execution of the assignment reduces the interval
I = (I(0), I(0)b, I

′(0), I(1), . . .) to the one shorter interval (I(1), . . .). The values
of variables z in states I(0) and I ′(0) are now stored in two vectors y

0
and y

1
of

fresh static variables, while the remaining program α again starts with the values of
the variables in z . The other formulas of the sequent (collected in Γ and ∆) now
hold for y

0
, the values stored in y

1
are equal to the ones of the terms t

y
0

z . As the
assignment rule shows, the RG-calculus has two differences to wp-calculus. First,
there is an additional premise asserting that executing the assignment satisfies the
guarantee (which is usually simple). Second, the main premise needs two vectors
of fresh variables instead of one to store old values: one before and one after the
assignment but before the environment step.

A crucial program construct for the verification methodology of this chapter is
the atomic block. Fig. 7.2 shows the corresponding RG-calculus rule. The first
premise guarantees that the guard of the atomic block is satisfied (and thus, the
program does not block) when runs holds. For the second premise, the assumptions
Γ and ∆ are substituted with static variables y referring to the state before arbitrary
many blocking steps. Nothing is known about these steps apart from that they are
rely steps. The block α itself is executed in wp-calculus, calculating a new state y .
The actual program step is then performed by assigning the resulting state to the
flexible frame variables z , exploiting that wp-formulas can have program formulas as
postconditions.

The remaining rules of RG-calculus (e.g., the invariant rules for partial and total
correctness) look very similar to wp-calculus. Again, the only difference is that an
additional premise is generated, ensuring that the step is a guarantee step.

Individual rely-guarantee proofs for single threads can be combined to a rely-
guarantee property of a concurrent system. The crucial property that needs to hold
for this to work is that the relies and guarantees must be compatible: the guarantee
of each thread guar tid must imply the relies rely tid ′ of other threads tid ′ ̸= tid . For
the components used in this thesis, where all threads are known to execute the same
operations, the guarantee can be chosen to be guar tid ≡

∧
tid ′ ̸=tid rely tid ′ , the weakest

guarantee possible that is trivially compatible.
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7.2 Semantics & Correctness of Concurrent Components

In the previous chapters, components were only considered in a sequential context.
Sec. 3.1 introduces sequential components with a state-based crash specification
and Sec. 5.1 extends the component semantics with retracting crash transitions,
an operations-based crash specification.

Def. 40 adjusts the semantics of components further to consider runs of a con-
current system. The concurrent system is given by a weak-fair interleaving (using
the forall∥ construct, see Sec. 2.3) of sequential runs of an arbitrary number of
threads tid ∈ Tid . Crashes now partition system runs into concurrent eras so that
the retractions of crash transitions may yield states in which several operations are
pending. Thus, multiple pending operations can be re-executed.

Definition 40 (Semantics of Concurrent, Retracting Components). The semantics
of a concurrent, retracting component C is given by the labeled transition system
C = (SC, INITC,LC ∪{τ},→con

↶ ). The state transition relation →con
↶ is determined by

the set of observable system runs (I, hC) ∈ runs(C) satisfying the conditions (1)-(3)
and (7) of Def. 27 and

4b. Each era Ii, hCi with i < n forms an interrupted run of the concurrent system,
i.e., Ii, hCi |= forall∥ tid with tid ∈ Tid do {{ OPC }∗ ; OPC }.

5b. The last era In, hCn forms an uninterrupted run of the concurrent system, i.e.,
In, h

C
n |= forall∥ tid with tid ∈ Tid do { OPC }∗.

6b. Each crash transition Ii.last
 i+1−−−→ Ii+1.first with i < n is a retracting crash

transition for the era Ii, hCi and SystemC ≡ forall∥ tid with tid ∈ Tid do {OPC}∗
according to Def. 33.

For concurrent components, the wp-calculus proof obligations of Lem. 1 alone
are not sufficient to ensure termination and correct usage of subcomponents since
they only consider executions in an empty environment. Therefore, we use the rely-
guarantee method presented in the previous section to formulate suitable proof obli-
gations. This requires an extended specification for concurrent components.

concurrent component C

thread id tid

invariants inv(s)

rely condition rely tid (s
′, s ′′)

deadlock freedom runs tid (s)

An explicit, constant thread identifier tid of type threadid is given, which is used to
distinguish the currently considered thread from environment threads syntactically.
tid is used similar to ghost state, i.e., it cannot be read from concrete operations
but is used for specification purposes only. Instead of a sequential invariant (which
must hold in between operation executions), a concurrent invariant inv(s) over the
component state s can be given. This invariant is used in RG formulas to establish
properties that must hold in every state of concurrent system runs. Similarly, a
rely condition rely tid (s

′, s ′′) over the primed and double primed component state
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specifies a universal rely for the component, which is used in all RG formulas over
all its operations. When no invariant or rely condition is specified, the formula true
is used as default value. Guarantee conditions for components are not specified by
hand: since all operations that manipulate the state are known, and they all use the
same rely condition, the guarantee is defined automatically as

guar tid (s, s
′) ≡ ∀ tid ′. tid ′ ̸= tid → rely tid ′(s, s ′)

Finally, a runs predicate over the component state can be given for proving deadlock
freedom. If no formula is given, the default value false is used, which only ensures
divergence-freedom. Using these formulas, Lem. 5 shows the proof obligations that
must be shown for all concurrent components.

Lemma 5 (Invariants of Concurrent Components). For a concurrent component C,
the proof obligations 1 and 4 of Lem. 1 and the following proof obligations are proven.

2a. pre j (x , y , s), inv(s)
⊢ ⟨: rely tid (s ′, s ′′), guar tid (s, s

′), inv(s), runs tid (s), opj#(x ; y , s; z ) ⟩ true
for all j ∈ J

2b. pre j (x , y , s0), inv(s0), rely tid (s0, s1) ⊢ pre j (x , y , s1) for all j ∈ J

3a. guardk (s), inv(s)
⊢ ⟨: rely tid (s ′, s ′′), guar tid (s, s

′), inv(s), runs tid (s), iopk#(; s) ⟩ true
for all k ∈ K

5. ⊢ rely tid (s, s)

6. ⊢ rely tid (s0, s1) ∧ rely tid (s1, s2) → rely tid (s0, s2)

7. inv(s) ⊢ ∃ tid . runs tid (s) if runs tid ̸= false

The obligations ensure divergence-freedom and the absence of exceptions, establish the
concurrent invariant inv(s), and guarantee that C calls its subcomponents’ interface
operations only if their preconditions are satisfied. Furthermore, they ensure termi-
nation of all atomic blocks whenever their guard is satisfied, stability of preconditions
over steps of other threads, and the compliance with the rely-guarantee discipline when
using the guarantee guar tid ≡

∧
tid ′ ̸=tid rely tid ′. For runs tid ̸= false, obligation 7

also guarantees deadlock-freedom.

Obligations 2a and 3a give the main RG proof obligations for interface and inter-
nal operations (corresponding to obligations 2 and 3 of LeminvariantsI). Obligation
2b ensures that the preconditions of interface operations do not get invalidated by
steps of other threads (abstracted by the rely tid ). The predicate logic obligations 5
and 6 ensure that rely tid is a valid rely condition, i.e., it is reflexive and transitive.

Note that for runs tid = false, the programs may block arbitrarily at atomic
blocks (cf. the first premise of Fig. 7.2). For runs tid ̸= false, obligation 7 ensures
that, at any time, runs tid is true for at least one thread. Thus, at least one thread
does not have to wait at an atomic block since runs tid must imply the guards of all
atomic blocks in the component due to the obligations 2a and 3a and the atomic
rule shown in Fig. 7.2.
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The standard criterion used to prove correctness of a concurrent implementation
CIv (we use the subscript _Iv to denote that a component is concurrent, i.e., has an
interleaved semantics) with respect to an atomic specification AAt (the subscript _At
denotes that a component is atomic) is linearizability [60].

Informally, a concurrent implementation CIv with non-atomic operations OPC is
linearizable to an atomic specification AAt with atomic operations OPA if the in-
put/output behavior of each concurrent run can be explained by mapping them to
the input/output behavior of some sequential run of AAt.

The mapping between a concurrent and a sequential run is as follows: for each
concurrent call of an operation OPC that is invoked at time ti and returns at time t′i,
find some point in time li with ti ≤ li ≤ t′i such that all li are different. The point is
called the linearization point of the operation call. Then construct some sequential
run of AAt that executes each corresponding abstract operation OPA atomically at
time li. Note that even for fixed linearization points, this may give several sequential
runs if the abstract operations are non-deterministic.

A refinement from AAt to CIv then is linearizable if for every concurrent run, lin-
earization points and an abstract sequential run can be found such that all operation
calls have the same inputs and outputs.

The clients of the interface then cannot distinguish the concurrent run from one
where each operation call is delayed until time li, executes OPA atomically, and then
is delayed again until time t′i.

We now define linearizability formally according to Herlihy and Wing [60], and
extended the criterion with crash events. Each history h induces an irreflexive partial
order <h on operations, which captures the “real-time” ordering of operations in h.

Definition 41 (Real-Time Order). The real-time order <h of operation executions
Op0 and Op1 on a crash-free history h is defined as

Op0 <h Op1 iff the response of Op0 precedes the invocation of Op1 in h.

Two operation executions are executed concurrently in in the history h iff they are
not ordered by the order <h .

Linearization then extends a concurrent history by completing pending operations
and reorders overlapping operations to get a sequential history.

Definition 42 (Linearizability). A crash-free history h is linearizable iff it can be
extended (by appending response events) to a history h ′ such that completed(h ′) is
equivalent to some sequential history h ′′ according to Def. 22, and h ′′ respects the
real-time order of h, i.e., <h ⊆ <h ′′ . Then the history h ′′ is called a linearization of
h.

Extending h to h ′ allows to complete pending operations that may have taken
effect but have not yet returned their responses to the caller. The restriction to
completed(h ′) corresponds to removing the remaining pending operations not yet
having an effect. Adhering to <h ensures that operations are reordered only with
operations they are overlapping with.

This criterion can now be lifted from crash-free histories (eras) to histories inter-
rupted by crash events, forming crash linearizations.
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Definition 43 (Crash Linearizability). A history h = h0 ·  1 · h1 ·  2 · . . . ·  n · hn
consisting of crash-free era histories h0, h1, . . . , hn and separated by crash events
 1, 2, . . . , n is crash linearizable iff for each hi with i ≤ n, there exists a lin-
earization h ′′

i . Then the combined history h ′′ = h ′′
0 ·  1 · h ′′

1 ·  2 · . . . ·  n · h ′′
n is called

a crash linearization of h.

Finally, the correctness of a concurrent component CIv w.r.t. to the atomic com-
ponent AAt can be defined by applying crash linearizability to the observable behavior
of the components.

Definition 44 (Crash Linearizability of Components). A concurrent component CIv
is crash linearizable with respect to a compatible atomic component AAt iff for each
h ∈ Obs(CIv) there is a crash linearization h ′ with h ′ ∈ Obs(AAt).

Abstracting a concurrent component to an atomic specification is the key con-
cept used for adding concurrency to the (originally) sequential refinement hierarchy
of Flashix. Instead of considering concurrent runs of the potentially complex imple-
mentation, clients must only cope with sequential runs of the atomic specification.
Obviously, this simplifies reasoning about the client component significantly.

AAt

CAt

data refinement

CIv

atomicity refinement

Figure 7.3: Abstracting a con-
current implementation CIv to an
atomic specification AAt.

As shown in Fig. 7.3, the abstraction process
is split in two main steps. First, it is proven via
atomicity refinement that the concurrent imple-
mentation CIv can be abstracted to an atomic
version CAt. CAt has the same data and opera-
tions as CIv but different atomicity. This intro-
duction of atomicity is performed incrementally
using reductions, as shown in the remainder of
this section. Using the intermediate component
CAt has the advantage that a potential change of
the data representation from CIv to CAt is com-
pletely decoupled from reasoning about concur-
rency resp. atomicity. Thus, the second abstrac-
tion step can be performed using data refinement
as presented in Sec. 3.1 and Sec. 5.1, respectively.

Note that linearizability alone does not imply termination (resp. divergence-
freedom) and deadlock-freedom. Hence, the reduction methodology presented in the
following is not sufficient to prove these properties. However, the proof obligations
of Lem. 5 cover these aspects (deadlock-freedom only if a sufficient runs predicate is
given), so they are proven for all concurrent components. We call these components
strong linearizable in the following (when fair locking implementations are used, the
criterion would coincide with the classification starvation-free in [59]).

7.3 Proving Linearizability with Atomicity Refinement

The strategy for atomicity refinement follows Lipton’s [80] idea of combining atomic
statements to larger ones. The idea is that a thread executing two atomic steps at1
and at2 with an environment step in between is often equivalent to first executing
the environment step, then at1 and at2 with no intermediate environment step. In
this case the two steps can be merged together to form one atomic step.
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Reverting the order of first executing at1 and then an environment step is possible
if all steps of other threads, that could be a part of the environment step, commute
to the right with at1 in the sense that executing them in both orders gives the same
final state. Fig. 7.4 shows an example where the environment step consists of two
steps atm and atn of other threads. The original run is shown at the bottom, and
the alternative run, which allows to execute at1 and at2 as one atomic step, at the
top. The intermediate states of the runs are different but they reach the same final
state. Commutation of a step with environment steps is often trivial, for example
if the step itself accesses local variables only. If at1 commutes to the right with all
steps of other threads, it is called a right mover. Dually, if at2 commutes to the left
with environment steps, it is called left mover. In this case a combined atomic step
can be done before the first environment step.

s0 s1 s2 s3 s4

s′1 s′2

at1 atm atn at2

atm

atn

at1

atomic {at1; at2}

Figure 7.4: The atomic step at1 commutes to
the right of the environment steps atm and atn.

This fundamental idea was re-
visited by Pfähler in his thesis [96],
where he defined a reduction calcu-
lus for the programs used in concur-
rent, retracting components. The
rules are similar to the ones given by
Elmas et al. [37], which are an ex-
tension of Lipton’s approach. In the
following, the methodology of Pfäh-
ler will be recapped as a basis for
the next chapter, where the methodology is applied to various layers of Flashix.

Note that the calculus given by Pfähler also covers crash-safety. For this, he
presents a more general reduction approach distinguishing between R-retractable
and R-introducible programs (R is a generic binary relation over states, this relation
is then instantiated with the crash relation  ) which slightly affects the reasoning in
theory. However, this distinction is irrelevant for the practical application in Flashix
since all in-memory steps and all atomic operations of specification components are
proven to be crash-neutral (see Lem. 2 and Lem. 3, or Thm. 5 and Thm. 6 in [96]),
which corresponds to Pfähler’s introducibility criterion. Therefore, the following
presentations will ignore this generalization and only show how the calculus is applied
practically.

To apply reductions, we have to extract the atomic statements, called atoms, of a
component first. These atoms can then be commuted to build bigger atomic blocks.

Definition 45 (Atoms of Programs). The set of atoms At(α) of a (sequential) pro-
gram α contains a program for every non-stuttering transition of α, defined as the
smallest set satisfying the following equations.

At(x := t) = {x := t}
At(α;β) = At(α) ∪At(β)

At(if ε then α else β) = {bv := ε} ∪At(α) ∪At(β)

At(choose x with φ in α ifnone β) = At(α) ∪At(β)

∪ {choose* y ′ with φ
y ′

x in x := y ′, bv := true ifnone bv := false}
At(choose x with φ in α ifnone abort) = At(α) ∪At(β) ∪ {x :∈ φ}
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At(let x = t in α) = {x := t} ∪At(α)

At(while ε do α) = {bv := ε} ∪At(α)

At(proc#(t ; u; v)) = {y ′ := t} ∪At(γ)

At(atomic ε {α}) = {atomic ε {α}}

where proc# is a procedure with non-atomic declaration proc#(x ; y ; z ){γ}, and the
variables bv , y ′ are globally fresh. The set of atoms At(C) of a component C is given
by the union of atoms for the programs of every interface and internal operation of
C.

Def. 45 assumes w.l.o.g. that programs do not introduce local variables that
shadow other program variables, including state variables of the component C in
which they are defined. This is exploited in the sense that introduced local variables
x of choose or let do not have to be renamed in the resulting atoms. Since all local
variables are disjoint from the state variables of a component C, the local variables of
an atom are determined by the difference of its free variables and the state variables
of C.

Def. 45 is primarily defined on implementation programs (cf. Def. 16) since reduc-
tions are performed on implementation components while we consider specification
components to be atomic already (after all, the goal is to show that a concurrent
implementation component is linearizable w.r.t. to an atomic specification). How-
ever, the definition also covers cases for atomic blocks and choose statements. The
former is necessary because atoms must be calculated repeatedly in different stages
of the reduction: after the first reduction, some atoms usually have been combined
into larger atomic blocks already, which are reduced further in subsequent itera-
tions. The latter is relevant, for example, for the allocation of new heap locations
(cf. Sec. 3.2). Since let is an abbreviation of choose, its case could also be covered
by the one of choose but the tailored definition for let simplifies the commuta-
tion proofs. Similarly, an optimized case for choose with only a single introduced
variable and an aborting ifnone case is defined, as this is the typical way of using
choice programs: the choice-assignment x :∈ φ assigns a random value satisfying the
condition φ to the variable x . Note that atoms make all branch decisions explicit
by assigning the results of evaluating conditions to a globally fresh boolean variable
bv (and similarly, the choice of values for x in chooses). As a result, commutations
must also maintain these decisions. Furthermore, note that the equation for proce-
dure calls applies only to procedures with non-atomic bodies. For procedures with
atomic bodies, the atomic block is lifted outside of the call such that the equation
for atomic blocks applies. Since a concurrent component mainly calls interface op-
erations of its subcomponents, which are usually atomic specifications, this is the
primary way calls are treated in atoms.

The atoms of a program α can be combined to atom sequences, i.e., the se-
quences of atoms that are executed during a execution of α. In the context of
concurrent components, these sequences are always always finite since Lem. 4 guar-
antees divergence-freedom of all programs of the component. Thus, while loops and
recursive procedures are guaranteed to perform only a finite number of non-blocking
steps, and this number directly corresponds to the length of the atom sequence.
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for all β ∈ At(C) :
tid ′ ̸= tid , y

0
= y , invC(sC), φβ′

⊢ [β′]
(
φα → [α]

(
⟨α{y 7→ y

0
} ; β′{y 7→ y

0
}⟩ y

0
= y

))
α ∈ At(C)

invC ⊢ α : L
(L-Mover)

for all β ∈ At(C) :
tid ′ ̸= tid , y

0
= y , invC(sC), φα

⊢ [α]
(
φβ′ → [β′]

(
⟨β′{y 7→ y

0
} ; α{y 7→ y

0
}⟩ y

0
= y

))
α ∈ At(C)

invC ⊢ α : R
(R-Mover)

invC ⊢ α : L invC ⊢ α : R
α ∈ At(C)

invC ⊢ α : B (B-Mover)

Figure 7.5: Calculus rules for inferring Left-, Right-, and Both-Movers. The de-
rived atom β′ results from the atom β by replacing tid with tid ′ and local variables
free(β) \ sC with fresh ones.

Consider now the following simple program α as an example.

α ≡ if φ then {x := t0; } else {x := t1; } ; y := f(x );

The program has the set of atoms At(α) = {bv := φ, x := t0, x := t1, y := f(x )}
according to Def. 45. Based on these atoms, α has two possible atom sequences,
determined by the result of evaluating the if condition φ.

bv := φ; x := t0; y := f(x );

bv := φ; x := t1; y := f(x );

In order to reduce a program to an atomic block, all its atom sequences must be
reducible, i.e., the atoms of a sequence must move in a way that they can “meet”
at one point. This “meeting point” is an atom that marks the (or one possible)
linearization point of the program execution: all preceding atoms of the sequence
must move to the right, and all subsequent atoms of the sequence must move to the
left.

In order to determine such mover properties, the calculus rules of Fig. 7.5 are
applied. The rules L-Mover and R-Mover are used for proving that an atom α ∈
At(C) of the component C is a left or right mover, respectively. Therefore, one has
to show that α commutes to the left (resp. to the right) of all atoms β ∈ At(C)
(including α itself) that are executed by another thread tid ′ ̸= tid . In the derived
atom β′, the thread identifier tid is replaced with a different identifier tid ′, and local
variables of (all free variables except for sC) are renamed to avoid clashes with the
local variables of α. The variable vector y comprises all free variables of α and β′,
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Γ ⊢ Ψ(L), ∆ Ψ(L) ⊢ ⟨: z | rely(z ′, z ′′), guar(z , z ′), inv(z ), runs(z ), α⟩ φ
Γ ⊢ ⟨: z | rely(z ′, z ′′), guar(z , z ′), inv(z ), runs(z ), L:- α⟩ φ, ∆

Figure 7.6: RG-calculus rule for assertions at label L.

including the shared state variables sC. Atoms that are both left- and right-movers
can be declared as both-movers (rule B-Mover). If an atom does not move in any
way, we call it a non-mover (abbreviated A).

Proving mover properties is supported by two additions to the calculus rules of
Fig. 7.5. First, the concurrent invariant invC(sC) of the component C can be assumed
since the proof obligations of Lem. 4 ensure that the invariant is maintained in all
possible interleaved runs of the component (we therefore write invC ⊢ α : L/R/B for
the statement that α is a left-/right-/both-mover under the invariant invC).

Second, assertions φα and φβ′ that hold for the respective atoms α and β are
added as assumptions to rules. These assertions can be given for each atomic state-
ment (i.e., for each atom) of a concurrent component. During the rely-guarantee
proofs, it is then proven that the assertions always hold when the statement is exe-
cuted (thus, they must be stable over the rely of the component). For the specification
of assertions, programs are provided with labels L, each identifying one atom. For
example, the program α from above is labeled as follows.

if φ then
x := t0

L1

L2

else
x := t1;

y := f(x );
L3

L4

assertions
L1 : ψ1

L2, L3 : ψ2

L2 → L4 : ψ3

L4 : ψ4

Note that labels L2, L3, and L4 mark atoms that directly consist of the assign-
ments of the program, but label L1 identifies the atom bv := φ build from the test
of the conditional. As shown on the right of α, assertions can be given for individual
labels (ψ1 and ψ4), for multiple distinguish labels (ψ2), or for ranges of labels (ψ3).

When symbolic execution of an RG formula reaches a labeled statement, the
calculus rule of Fig. 7.6 is applied (the program L:- α denotes the program α at
label L). The rule produces two premises: First, all given assertions for Lmust follow
from the current assumptions Γ and ∆. Here, Ψ(L) abbreviates the conjunction over
all assertions specified for L. In the example, the combined assertion for label L3

would be Ψ(L3) = ψ2 ∧ψ3. Second, the symbolic execution is continued regularly at
α, but now the assertions Ψ(L) can be assumed for this.

Using the assertions established this way, reduction proofs often become trivial.
Assertions of both atoms are often contradictory, which means that the initial in-
terleaving of L-Mover or R-Mover could not occur in the first place. As we will see
later, this is especially the case when locks are used, e.g., two threads cannot be
inside a critical region protected by a mutex at the same time. Thus, the respective
statements do not have to move over each other, and the corresponding rule can be
applied when assertions for both atoms are given that the respective threads hold
the mutex.

Giving assertions has another advantage. As shown with the calculus rules in
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Fig. 7.1 and Fig. 7.2, symbolic execution with rely-guarantee adds lots of predicate
logic assumptions to the sequent. Particularly, each steps adds an rely-step to the an-
tecedent, which adds up quite quickly to sequents containing hundreds of individual
formulas. This complicates reasoning as one can easily lose the overview of the goal,
but also slows down automation performed by the proof system since the number
of formula combinations that have to be checked for simplifications/rewriting grows
exponentially. For large programs, it can even go as far as being practical unusable.

Hence, we combined the symbolic execution approach with the one used, for
example, in IO-Automata [81], where individual proofs for each possible step of the
automaton are performed. The second premise of the calculus rule in Fig. 7.6 not
only adds Ψ(L) to the antecedent but also drops the other assumptions Γ and ∆,
as they usually refer to older states, keeping only the rely-guarantee formula2. Of
course, this requires giving assertions that describe the current state as precisely as
possible to be able to continue the proof from there on successfully. In practice, the
user can decide for each step individually (by declaring the assertions to be weakening
or not) whether the assertions should be established in the strong fashion shown in
Fig. 7.6 or whether old assumptions should be kept. This allows for a mixed proof
approach in which weakening assertions regularly establish a concise sequent between
short sequences of symbolically executed statements. Practice has shown that using
this approach significantly improves conducting and maintaining proofs.

When mover properties are determined for the atoms of an atom sequence, the
sequence can be combined into an atomic block if it is reducible according to Def. 46.

Definition 46 (Reductions of Programs). A program α of a component C is reducible
if every finite atom sequence α1;α2; . . . ;αn of α can be split into a prefix sequence
α1;α2; . . . ;αi and postfix sequence αi+1; . . . ;αn for some 0 ≤ i ≤ n where

1. invC ⊢ αj : R holds for all 0 < j ≤ i,

2. invC ⊢ αj : L holds for all i+ 1 < j ≤ n,

3. invC ⊢ αi+1 : L or invC ⊢ αi+1 : A holds, and

4. the atoms αj with 1 < j ≤ n never block, i.e., have the guard true.

Going back to the example program α with corresponding atom sequences, the
following mover properties could be inferred.

{bv := φ} : R; {x := t0} : R; {y := f(x )} : A;
{bv := φ} : R; {x := t1} : L; {y := f(x )} : A;

It is easy to see that the first sequence matches all conditions of Def. 46 (note that
the prefix and postfix sequences are allowed be empty), and thus it can be combined
to an atomic sequence. However, the second sequence does not satisfy the required
properties as a suitable split cannot be found. While the first two atoms can be
combined by splitting the sequence at i = 1, the last atom cannot be added to the
atomic prefix since it cannot move to the left as required by condition 2 of Def. 46

2The implementation of this rule in KIV does not drop all formulas naively, but keeps some by
determining a set of formulas that may still be relevant heuristically. Nevertheless, the majority of
formulas are removed.
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(it is a non-mover A). Thus, it must be shown that the atom {x := t1} also moves
to the right (and therefore is a both-mover B) to reduce the program α to

atomic {if φ then {x := t0; } else {x := t1; } ; y := f(x ); }

Such reduction steps can then be applied to a concurrent component by Thm. 10.

Theorem 10 (Atomicity Refinement of Concurrent Components). Given a reducible
program α of a divergence-free, concurrent component C, then wrapping α in an
atomic block is sound, i.e., the refinement

C{α 7→ atomic φ {α}} ≤ C

holds where the guard φ is chosen to be the guard of the first statement of α if it is
an atomic block, or true otherwise.

Reduction of a program is not possible if an atom in one of its atom sequences
has a guard other than true and is not the sequence’s leading atom (see 4 of Def. 46).
Thm. 11 copes with that problem by giving a way to remove guards from atomic
blocks. When a concurrent invariant could be established that implies the guard,
i.e., the guard always holds outside of atomic blocks, it can be replaced with the
guard true.

Theorem 11 (Removal of Atomic Guards). If a concurrent component C has a
concurrent invariant invC that implies the guard φ of an atomic block, i.e., invC ⊢ φ,
then the guard can be removed, i.e., C{atomic φ {α} 7→ atomic {α}} ≤ C.

7.4 Locking & Ownership

Concurrent components must employ mechanisms to ensure correctness of the algo-
rithms implemented. For example, a typical goal is to ensure that the implementa-
tion is data race free, i.e., that two threads cannot write simultaneously to a shared
resource. The approach used in this thesis is the one of lock-based concurrency : crit-
ical regions in programs are surrounded by locks to restrict access to the protected
resources.

Using locks also facilitates the reduction of a concurrent component CIv to its
atomic counterpart CIv. When a resource is protected properly by a lock, i.e., all
accesses to that resource require acquiring the corresponding lock, atoms of CIv that
read or write the resource are trivially movers since no other thread can access the
resource concurrently.

By and large, Flashix uses two kinds of locks: mutexes and reader/writer locks.
Both are used to acquire ownership of a particular resource (in the context of com-
ponents, some part of the state). We specify ownership with a free data type owner.

data owner = readers(. .tids : set(threadid)) | writer(. .tid : threadid)

Ownership is either exclusive, i.e., a single thread tid can be a writer of a resource,
or shared, i.e., multiple threads are readers of a resource. The idea is that exclusive
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mutex_lock#(tid ; mtx ) { atomic (mtx = free) {mtx := locked(tid)}; }

mutex_unlock#(tid ; mtx ) { if* mtx = locked(tid) then mtx := free else abort; }

rwlock_rlock#(tid ; rwl)
{ atomic (rwl.read? ∧ ¬ tid ∈ rwl.tids) {rwl := rlock(rwl.tids ++ tid)}; }

rwlock_wlock#(tid ; rwl)
{ atomic (rwl.read? ∧ rwl.tids = ∅) {rwl := wlock(tid)}; }

rwlock_runlock#(tid ; rwl)
{ if* rwl.r?(tid)∧¬ rwl.w?(tid) then rwl := rlock(rwl.tids -- tid) else abort; }

rwlock_wunlock#(tid ; rwl)
{ if* rwl.w?(tid) then rwl := rlock(∅) else abort; }

Figure 7.7: Declarations for Mutex and Reader/Writer-Lock Operations.

ownership allows the (single) writer to read and modify the owned resource arbitrar-
ily. In contrast, shared ownership grants access to the resource to several readers,
which can only read the resource though. Crucially, there cannot be a writer and a
reader of the resource simultaneously. For a given owner o, the predicate o.w?(tid)
checks if tid is the current writer, and the predicate o.r?(tid) checks if tid has read
permissions.

Locks are also defined as free data types. Following the idea of ownership, a
mutex acquires exclusive ownership only, while an rwlock can be used to acquire
shared or exclusive ownership.

data mutex = free | locked(. .tid : threadid)

data rwlock = rlock(. .tids : set(threadid)) | wlock(. .tid : threadid)

A mutex mtx is either free (no thread has ownership) or locked (a single thread has
exclusive ownership). A reader/writer lock rwl is write-locked (wlock) by a single
thread or read-locked (rlock) by a set of threads. rwl is free if the set of reading
threads is empty, i.e., rwl = rlock(∅). Mutexes mtx and reader/writer locks rwl
can be translated into its corresponding owner with the function mtx.owner and
rwl.owner, e.g., free.owner = readers(∅) and wlock(tid) = writer(tid).

These data types are not manipulated directly in programs. Instead, they are
only accessed via the locking procedures given in Fig. 7.7. These correspond di-
rectly to locking operations of the widely used POSIX Threads (pthreads) library
and are thus mapped to these operations when code is generated. The declarations
use the atomic construct to model the expected behavior of locking and unlock-
ing. Acquiring a mutex mtx blocks until mtx is free and then instantly locks mtx
for the current thread tid , while releasing a mutex simply sets it to free. Note
that mutex_unlock# only terminates regularly if mtx was acquired by the calling
thread, otherwise it aborts. For reader/writer locks, there are distinct procedures for
acquiring and releasing a lock rwl as reader or writer, respectively. rwlock_rlock#
adds the current thread to the set of readers as soon rwl is a rlock (checked by the
postfix predicate .read?). rwlock_wlock# blocks until rwl is an rlock without
any readers and then changes rlock to a wlock. Conversely, rwlock_runlock#
removes the current thread from the set of readers (rwl.r?(tid) and rwl.w?(tid)
checks whether the thread tid has read resp. write permissions according to rwl),
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concurrent component C using A

thread id tid : threadid
state mtx : mutex, m : nat
ownership
m owned by mtx.owner

c_operation#(. . . )
interface
precondition . . .

{
. . .
mutex_lock#(tid ;mtx );Li

a_wacquire#();
. . .
/* assert mtx.owner.w?(tid) */
m := m + 1;Lj

. . .
a_operation#(. . .);Lk

. . .
a_release#();
mutex_unlock#(tid ;mtx );Ll

. . .
}

atomic component A

thread id tid : threadid
state n : nat
ghost state o : owner

a_wacquire#()
ghost interface

{
if* o = readers(∅) then o := writer(tid);

}

a_release#()
ghost interface

{
if* o.r?(tid) then o := unlock(o, tid);

}

a_operation#(. . . )
interface
precondition o.w?(tid) ∧ . . .

{
n := f(n);

}

Figure 7.8: Usage of locking and ownership in client- and subcomponents.

and rwlock_wunlock# resets rwl to an empty reader lock rlock(∅). Note that
the given implementation of reader/writer locks is non-reentrant, i.e., calling a lock-
ing operation while the thread already holds the lock is illegal. The declarations
reflect this circumstance by then blocking infinitely (the guards ¬ tid ∈ rwl.tids
and rwl.tids = ∅ will never change be satisfied since the thread cannot be unlocked
by other threads).

For the reduction of concurrent components, ownership and locks are used in
multiple ways, particularly hierarchies of components are built. Fig. 7.8 shows an
abstract, minimal example to illustrate these applications. First, consider the con-
current component C on the left in isolation. It defines an natural number m as state,
together with a mutex mtx . This mutex is used to protect the variable m, i.e., all
operations of C must have mtx acquired whenever they read or write m. For example,
the operation c_operation# increments m at label Lj , for which mtx is acquired
with mutex_lock# at Li before and released with mutex_unlock# at Ll after-
ward. Thus, the assertions Li+1 → Ll : mtx = writer(tid) can be established, which
include Lj : mtx = writer(tid) in particular. Other operations must lock similarly
when they read from or write to m, so the same assertion mtx = writer(tid) holds
for these statements. For different threads, the assertions obviously contradict each
other (writer(tid) ̸= writer(tid ′) if tid ̸= tid ′), and thus the statements trivially
commute. Since Lj only accesses m, it also commutes with all remaining statements,
which do not access m, and so Lj is a both-mover B.

This reasoning is quite generic for protected state variables. Hence, concurrent
components provide a mechanism to reduce the specification and verification effort



7.4. LOCKING & OWNERSHIP 139

for this kind of ownership: an explicit owner can be given for state variables, e.g.,
the owned by clause of C specifies that mtx (more precisely, the extracted owner
¸mtx.owner) is the owner of m. When such a clause is given (called an ownership
annotation), all statements accessing the owned state variable are provided with
an assertion checking that the required ownership is present. In the example, the
assertion mtx.owner.w?(tid) must be proven at Lj since the statement writes to m
(note that o.w?(tid) subsumes o.r?(tid)). The assertions are then proven in the rely-
guarantee proofs, together with the assertions given by the user. As a consequence,
atoms that only access owned state, like the one of Lj , are automatically inferred to
be both-movers.

Furthermore, a generic rely condition can be generated for an ownership annota-
tion x owned by o.

⊢ rely tid (o
′, o′′, x ′, x ′′) ↔
(o ′.r?(tid) → x ′ = x ′′)

∧ (o′.r?(tid) ↔ o′′.r?(tid))

∧ (o′ = writer(tid) ↔ o′′ = writer(tid))

The formula states that the value of x is unchanged over the rely step, i.e., other
threads do not modify x , if the thread tid has read permission for the field. Moreover,
other threads do not remove (or add) read or write permissions from the thread tid .

Besides plain state variables, such ownership assertions can also be given for
access forms of state variables, as they can also be directly assigned to. Basically,
these include field selections of data types (x.sel) or selections of array and map
locations (ar[n] resp. mp[k]). The rely conditions for owned access forms slightly
differ from the generic rely shown above. They must take definedness conditions into
account, e.g., only allocated locations in maps can be owned. However, custom relies
are often necessary for more complex state compositions, so they will be introduced
in the respective sections individually if relevant.

When subcomponents are used, ownership serves another purpose. It is used to
encode that a (transitive) client component has acquired a lock and that hence certain
operations cannot occur concurrently. Consider again Fig. 7.8 as an example. The
component C uses an atomic component A as subcomponent, where A is potentially
implemented by another concurrent component. A provides an interface operation
a_operation# that calculates some new value f(n) for the state variable n. The
implementation of a_operation# can be more complex and may require that the
operation is not called concurrently with certain other operations of the component
to guarantee linearizability. For this reason, A uses an owner ghost state variable o
to enforce a certain locking scheme in client components. An ownership precondition
o.w?(tid) is added to a_operation# and all operations that could conflict when
called concurrently. Since this precondition can only be satisfied by at most one
thread at a time (there can be only one writer), concurrent calls to these operations
are not possible.

C establishes these ownership preconditions by employing proper locking. In order
to formally establish the precondition of a_operation#, c_operation# has to ac-
quire the ownership by calling the ghost operation a_wacquire#. Analogously, the
ownership must be released by calling the symmetrical ghost operation a_release#
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after a_operation# was executed. However, a_wacquire# only sets the writer
accordingly if no other thread has acquired ownership already (it is no actual locking
operation). Thus, the client C is obliged to ensure that no other thread is able to
hold ownership when a_wacquire# is called. This is again achieved by enclosing
the calls to the ghost operations (and the call to a_operation# at Lk itself) by
the locking range of mtx . The ownership conditions (particularly, the ownership
preconditions) are then propagated downwards via refinement (the concurrent im-
plementation must specify a corresponding ownership ghost state), and can be used
for the reductions of the implementation.

An important aspect of the locking operations listed in Fig. 7.7 is that they have
intrinsic mover properties. It can be shown that acquiring a mutex or reader/writer
lock is always a right-mover R, and symmetrically, releasing a mutex or reader/writer
lock is a left-mover L.

mutex_lock# : R mutex_unlock# : L
rwlock_rlock# : R rwlock_runlock# : L
rwlock_wlock# : R rwlock_wunlock# : L

Analogously, it can usually be shown that ownership require and release operations,
like a_wacquire# and a_release#, are also right- and left-movers, respectively.

Combining all the mover properties obtained for the example so far, the lock-
ing range Li → Ll can be reduced to one atomic block (assuming that all omit-
ted statements also move accordingly). The guard (mtx = free) of the leading
mutex_lock# call is lifted to the surrounding block, which prevents the block
from being combined with a preceding atomic block at first. However, when locks
are used in a hierarchical fashion, i.e., locking ranges adhere to a strict order, all
locking ranges of mtx in C should be reduced to atomic blocks. Then the trivial
concurrent invariant mtx = free can be established, enabling the application of
Thm. 11 and thus the removal of the guard.

Since the atoms of the reduced component are more coarse-grained, additional
concurrent invariants may be established to facilitate further reductions. The reduc-
tion process is then repeated until all operations have atomic bodies, and thus the
component can be considered atomic as well.



Chapter 8
Concurrency in File Systems

Summary This chapter presents another central contribution of this thesis, an-
swering the question of how concurrency can be added correctly to higher levels
of an originally sequential file system. Using the sequential Flashix hierarchy as
starting point, concurrency is employed on various layers.
External concurrency is introduced by allowing concurrent user calls to the file sys-
tem interface. A concurrent implementation of VFS is given that is linearizable to
the original POSIX specification by realizing a suitable locking strategy. The struc-
tural integrity of the file system is ensured by restricting tree manipulations to be
executed sequentially only, while writing and reading of file contents is allowed to
be executed concurrently. An efficient mechanism for managing locks for dynam-
ically allocated objects is realized and used by VFS for the locking of individual
files. The particular locking strategy was chosen so that caches are still used in a
crash-safe way, i.e., WPCC still holds for the concurrent implementation.
Internal concurrency of Flashix is extended further by moving the garbage collec-
tion mechanism implemented in the Journal layer into a separate thread, similar
to what was already done with wear leveling in EBM. That way, users do not have
to wait for these internal administrative tasks to finish after the execution of POSIX
operations.
All concurrency extensions have been proven to be correct w.r.t. their atomic spec-
ifications by applying the methodology presented in Ch. 7.

Contents
8.1 Locking of Dynamically Allocated Objects . . . 141
8.2 A Concurrent Virtual File System Switch . . . . 152
8.3 Concurrent Garbage Collection . . . . . . . . . . 159
8.4 Related Work . . . . . . . . . . . . . . . . . . . . . 162

Publications The methodology used to specify and prove the concurrency ex-
tensions of this chapter is published in [108]. The presentation of concurrent
garbage collection is based on the publication [13].

8.1 Locking of Dynamically Allocated Objects

Similar to the integration of high-level caches (see Chapter 6), the main goal for
allowing concurrent calls to the file system interface was to improve the performance

141
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of content operations, i.e., writing or reading the contents of files. Since content
operations to different files affect different parts of the high-level state (AFS), a natural
decision is to allow concurrent executions of these operations. In particular, writes
to different files can be executed concurrently in VFS, as we will see in the following
Sec. 8.2.

However, concurrent writes to the same file must be prohibited if the file system
should adhere to correctness criteria such as strong linearizability (see Sec. 7.2) and
Write-Prefix Crash Consistency (see Sec. 6.2). Concurrent writes to the same file
could yield arbitrary interleaved calls to afs_writepage#, potentially resulting in
mixed file content. Obviously, no linearization point can be found then, neither can
a write-prefix history.

So, the concurrent implementation of VFS must employ locking mechanisms to
prevent such concurrent executions but still allow harmless concurrent executions,
i.e., concurrent reads or writes targeting different files. This can be achieved by
using locking on the granularity of files, i.e., one lock restricts access to one file. As
reading from a file in parallel is non-critical, using reader/writer locks (see Sec. 7.2)
for this is an obvious choice. Hence, the state of VFS could be extended by a map
flocks storing an rwlock for each ino of a file.

concurrent component VFS using AFS

state . . . , flocks : map(ino, rwlock)

This, however, has one problem. Because the map flocks itself is an in-memory
data structure that can be accessed concurrently, it must also be protected by a lock.
Furthermore, lock entries in flocks must be allocated and deallocated dynamically
during runtime, e.g., when a new file is created, an existing file is removed, or when a
file is accessed the first time after a remount (allocating locks for all files at recovery
is not reasonable as it would require to scan the entire file system). As a result,
locking a file ino would be implemented as follows, for example.

mutex_lock#(tid ;mtx );
if ¬ ino ∈ flocks then

rwlock_init#(;flocks[ino]);
rwlock_wlock#(tid ;flocks[ino]);
mutex_unlock#(tid ;mtx );

Before the reader/writer lock for ino can be acquired by the current thread tid ,
it must be checked whether the corresponding lock is already allocated in flocks.
If not, it has to be initialized first (the operation rwlock_init# creates an rlock
with empty tids). The crux of the matter is that arbitrary steps of other threads
can be performed between the conditional check ¬ ino ∈ flocks, the initialization of
the lock, and the actual acquisition of the lock with rwlock_wlock#. In order to
prevent data races regarding the lock entry for ino (notably, no other thread should
delete it in the meantime), the whole process must be protected, e.g., by a mutex
mtx (read-locking is not sufficient since the domain of flocks is potentially modified).

Using this locking mechanism, the system can quickly get into unnecessary block-
ing of threads. As soon as the requested lock cannot be acquired immediately, the
thread stays at the rwlock_wlock# call, still holding mtx . While the thread is
waiting, no other thread can enter the locking range of mtx , and thus other content
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operations are blocked as no other file can be locked. To avoid such situations, we
use a more elaborate mechanism for managing file locks, inspired by the Linux VFS.

Separating Locks from Protected Maps

The basic concept for solving this problem is twofold. First, the actual rwlock objects
are not stored directly in a map. Instead, a map is only used to store a mapping from
inode numbers to references that point to heap locations storing the corresponding
locks. This way, a lock reference can be retrieved from the map (while locking it),
and the targeted rwlock can be acquired afterward only via this reference. Second,
the map also stores counters for the number of threads currently accessing the lock
of the respective file, similar to the concept of reference counting (but with at most
one reference to a lock per thread). The idea of this counter is that, as long as it
is non-zero, some thread has the corresponding rwlock acquired or wants to acquire
it. Thus, entries must not be deleted when threads are still using the associated
lock (indicated by a counter greater than zero), which makes holding a lock over
the actual (potentially blocking) lock operation, as it has to be done in the example
above, unnecessary.

In order to detach this mechanism from the already complex VFS implementation,
it is moved into a separate component CLocking. Since the implementation has to
handle concurrent accesses to heaps, an atomic abstraction ALocking is used as
interface for VFS. Hence, we get the resulting refinement hierarchy shown in Fig. 8.2
as instance of the generic atomicity refinement pattern of Fig. 7.3.

Instead of heap and map types, the abstract (atomic) component ALocking uses
total functions for storing the mapping from inode numbers to references and the
allocated rwlocks.

atomic component ALocking

thread id tid : threadid

state mapping : ino → lock−entry, rwlocks : ref → rwlock

where

data lock−entry = lentry(. .ref : ref; . .cnt : nat)

As the function mapping is total, it cannot directly be seen whether a lock for an
ino is already allocated. Thus, non-allocated entries will store the null reference to
distinguish them from allocated ones. The rwlocks function stores free reader/writer
locks rlock(∅) as the default value, but only those with an rwlocks entry pointing
to them are relevant.

The interface of ALocking offers operations for read-/write-locking and unlocking
of files. However, they do not have an inode number ino as input but a reference r .
The operations must be called with valid references pointing to an allocated rwlock
only. Thus, clients must have a possibility to look up the lock-reference for a given
ino.

Fig. 8.1 lists the two operations interface operations for managing such references.
The operation alocking_getlock# on the left takes an inode number ino as input
and returns a reference r pointing to the corresponding lock. If there is currently no
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alocking_getlock#(ino; ; r)
interface
precondition ¬ tid ∈ accessed(ino)

{
if mapping(ino).ref = null then {

choose r0 with
r0 ̸= null ∧ ¬ mapped(r0,mapping)

in
mapping(ino) := lentry(r0, 1);
r := r0;

} else {
let refcnt = mapping(ino) in
mapping(ino).cnt := refcnt.cnt+1;
r := refcnt.ref;

};
accessed(ino) := accessed(ino) ++ tid ;

}

alocking_droplock#(ino)
interface
precondition

tid ∈ accessed(ino)
∧ mapping(ino).ref ̸= null
∧ idle(tid ,mapping(ino).ref, rwlocks)

{
let cnt = mapping(ino).cnt in

if cnt = 1 then {
mapping(ino) := lentry(null, 0)

} else {
mapping(ino).cnt := cnt − 1;

};
accessed(ino) := accessed(ino) -- tid ;

}

Figure 8.1: ALocking operations for accessing references to reader/writer locks.

lock allocated for ino, i.e., the entry mapping(ino) points to null, a fresh reference
r0 is chosen and returned (the predicate mapped(r0,mapping) checks whether there
is an entry in mapping storing r0 as ref). The entry of mapping(ino) is then set to
the new reference r0 and initialized with the cnt = 1: tid is the only thread accessing
the lock at the moment. Note that an initialization of the rwlock in rwlocks(r0) is
not necessary as it has the suitable default value rlock(∅). When a lock is already
allocated for ino, i.e., mapping(ino).ref ̸= null, the reference stored in the entry
is returned, and the counter is incremented: one more thread accesses the lock now.

ALockingAt

CLockingAt

data refinement

CLockingIv

atomicity refinement

Figure 8.2: Locking refinement
CLockingIv ≤ ALockingAt.

Recall that ALocking is an atomic specifica-
tion. Hence, the body of alocking_getlock# is
executed in a single atomic step, which is why no
locking is necessary within the operation. The im-
plementation CLocking will have to use locks to
realize this atomic behavior.

The operation alocking_droplock# on
the right of Fig. 8.1 is the counterpart to
alocking_getlock#. It takes the ino of
an accessed lock as input (the precondition
mapping(ino).ref ̸= null ensures that a rwlock
for ino is allocated) and decrements the counter
for the lock entry. If the count would be decre-
mented to 0, i.e., tid is the last thread accessing the lock for ino, it is directly
“deallocated” by setting the ref of the entry to null. Again, the rwlock in rwlocks
does not have to be updated since no other thread is allowed to have it acquired and
tid is only allowed to call alocking_droplock# if it has released the lock before
(the predicate idle(tid , r , rwlocks) in the precondition states that tid has not locked
the rwlock at rwlocks(r)).

Besides mapping , both operations also manipulate a function accessed , which is
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a ghost state variable of ALocking.

ghost state accessed : ino → set(threadid)

It maps inode numbers to a set of thread identifiers, specifying explicitly which
threads are accessing a rwlock. Thus, the value directly corresponds to the cnt of
the mapping in the sense that the size # accessed(ino) is always equal to the count
mapping(ino).cnt for all inode numbers ino. This property is also specified by the
predicate accessed #= mapping as part of the invariant of ALocking.

atomic component ALocking

invariants accessed #= mapping ∧ inj(mapping)

rely condition rwlock-relytid (rwlocks
′, rwlocks ′′)

∧ accessed-relytid (accessed
′, accessed ′′)

∧ mapped-relytid (mapping ′, accessed ′,mapping ′′, accessed ′′)

The second part of the invariant inj(mapping) enforces that the function mapping
is injective, which apparently is a fundamental requirement for the mechanism to
work correctly.

The component also defines some rely conditions. Note that these are not relevant
for the correctness of the isolated component (since it is atomic), but are necessary
for the integration as a subcomponent into VFS. While they could be proven in VFS
in principle, it is way less effort to prove them directly in the component because
they only need to be proved for runs of ALocking operations rather than entire VFS
operations.

The rely for rwlocks is relatively standard for reader/writer locks but lifted to
functions. When the thread tid has read- or write-locked a location r in rwlocks
(specified by the predicates rlocked and wlocked), the thread will keep the lock
over the rely step. On the other hand, other threads also do not lock a location for
tid .

⊢ rwlock-relytid (rwlocks
′, rwlocks ′′) ↔

∀ r .
(
rlocked(tid , r , rwlocks ′) ↔ rlocked(tid , r , rwlocks ′′)

)
∧

(
wlocked(tid , r , rwlocks ′) ↔ wlocked(tid , r , rwlocks ′′)

)
Similarly, when tid has “registered” itself as accessing the lock of an ino, other threads
do not “unregister” tid , or vice versa.

⊢ accessed-relytid (accessed
′, accessed ′′) ↔

∀ ino.
(
tid ∈ accessed ′(ino) ↔ tid ∈ accessed ′′(ino)

)
Finally, when tid accesses the lock of an ino, the location for this lock is not changed
in mapping . In particular, no other thread deallocates the lock of ino while tid still
uses it.

⊢ mapped-relytid (mapping ′, accessed ′,mapping ′′, accessed ′′) ↔
∀ ino. tid ∈ accessed ′(ino) →

mapping ′(ino).ref = mapping ′′(ino).ref
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alocking_rlock#(r)
interface
precondition

idle(tid , r , rwlocks)
∧ accesses(tid , r ,mapping , accessed)

postcondition
rlocked(tid , r , rwlocks)

∧ accesses(tid , r ,mapping , accessed)
{

rwlock_rlock#(tid ; rwlocks(r));
}

alocking_runlock#(r)
interface
precondition

rlocked(tid , r , rwlocks)
∧ accesses(tid , r ,mapping , accessed)

postcondition
idle(tid , r , rwlocks)

∧ accesses(tid , r ,mapping , accessed)
{

rwlock_runlock#(tid ; rwlocks(r));
}

Figure 8.3: ALocking operations for acquiring and releasing a reader-lock.

The necessity for these relies becomes apparent when looking at the declarations
for locking and unlocking an rwlock, as listed for example in Fig. 8.3 for reader-
locks (the operations for writer-locks are analogous). The operations just call the
respective operations rwlock_rlock# and rwlock_runlock# for the locks stored
at r in rwlocks. However, for the calls to be valid, i.e., targeting an allocated rwlock,
the precondition accesses must hold.

⊢ accesses(tid , r ,mapping , accessed) ↔
r ̸= null ∧ ∃ ino. mapping(ino).ref = r ∧ tid ∈ accessed(ino)

The reference r must be a valid mapped referenced in mapping and the requesting
thread tid must be in accessed of the corresponding ino. Together with the latter
two relies, this guarantees that the reference r stays valid after retrieving it via
alocking_getlock#, i.e., no other thread deallocates the lock at r .

Note that at this abstraction level, where total functions are used, the access
rwlocks(r) is actually non-critical in terms of definedness. Nevertheless, it becomes
very well critical for the implementation CLocking where the functions are imple-
mented by heaps and maps, as we will see in the following. Thus, the preconditions
must be enforced by ALocking in order to enable the refinement CLockingAt ≤
ALockingAt.

Concurrent Management of Locks in Heaps

The implementation CLocking is in many aspects quite similar to ALocking. The
state of CLocking contains the same mappings, however, functions are now imple-
mented by maps and heaps, for which code can be generated. The heap rwh cor-
responds to rwlocks, the maps cmapping and caccessed correspond to mapping and
accessed , respectively.

concurrent component CLocking

thread id tid : threadid

state cmapping : map(ino, lock−entry), rwh : heap(rwlock), mtx : mutex

ghost state caccessed : map(ino, set(threadid))

ownership cmapping , caccessed owned by mtx.owner
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clocking_rlock#(r)
interface
precondition

idle(tid , r , rwh)
∧ accesses(tid , r , cmapping , caccessed)

postcondition
rlocked(tid , r , rwh)

∧ accesses(tid , r , cmapping , caccessed)
{

rwlock_rlock#(tid ; rwh[r]);
}

clocking_runlock#(r)
interface
precondition

rlocked(tid , r , rwh)
∧ accesses(tid , r , cmapping , caccessed)

postcondition
idle(tid , r , rwh)

∧ accesses(tid , r , cmapping , caccessed)
{

rwlock_runlock#(tid ; rwh[r]);
}

Figure 8.4: CLocking operations for acquiring and releasing a reader-lock.

Since the component is concurrent, a mutex mtx is used to prevent data races by pro-
tecting cmapping and caccessed . The ownership annotation specifies this explicitly,
generating assertions and inferring movers automatically as presented in Sec. 7.4.

Fig. 8.4 shows the implementation of the read-lock operations listed in Fig. 8.3.
The operations are nearly identical to their specifications: they also call either
rwlock_rlock# or rwlock_runlock#, but now for heap locations. The contracts
use analogous predicates defined on the concrete heap and map types.

The implementations for accessing references shown in Fig. 8.5 are more interest-
ing as they now have to cope with concurrent calls to the component. Both operations
use mtx to ensure that these operations cannot be executed in parallel as this would
easily yield inconsistent data structures. But note that the locking operations in
Fig. 8.4 do not acquire the mutex mtx and can thus be called concurrently to each
other and to the operations of Fig. 8.5. Particularly, a blocking rwlock_rlock#
call in clocking_rlock# does not affect the locking of other threads since a ex-
ecution of clocking_getlock# or clocking_droplock# cannot block once the
locking range of mtx is entered.

The basic steps of clocking_getlock# or clocking_droplock# are still the
same. The former checks whether ino is already mapped: if ino is mapped, the oper-
ation returns the stored reference from cmapping while incrementing the counter of
the entry; if ino is not yet mapped, an entry with fresh reference and the counter 1 is
added to cmapping . The latter decrements the counter of ino and removes the entry
from cmapping if tid was the last thread accessing ino. The updates to caccessed
are also performed analogously; they are just outsourced to ghost auxiliary oper-
ations clocking_addaccess# and clocking_rmaccess# (not shown, they must
consider multiple cases as caccessed is not total). However, they additionally have to
update the heap rwh accordingly: the fresh reference r0 is allocated in rwh together
with initializing the rwlock at that location via rwlock_init#, or the reference
refcnt.ref is deallocated in rwh when no other thread accesses the lock, respectively.
These are the crucial statements for correctness as they are not protected by mtx
and thus potentially interfere with acquiring/releasing an individual reader/writer
lock (cf. Fig. 8.4).

Therefore, suitable concurrent invariants and rely conditions are established. As
for ALocking, the invariants establish injectivity of cmapping and relate the access
counter of a mapped ino with the cardinality of the set of accessing threads in
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clocking_getlock#(ino; ; r)
interface
precondition

¬ ino ∈ caccessed
∨ ¬ tid ∈ caccessed[ino]

{
mutex_lock#(tid ;mtx );
if ¬ ino ∈ cmapping then {

choose r0 with
r0 ̸= null ∧ ¬ r0 ∈ rwh

in
rwh := rwh ++ r0;
cmapping[ino] := lentry(r0, 1);
rwlock_init#(; ; rwh[r0]);
r := r0;

} else {
let refcnt = cmapping[ino] in
let cnt = refcnt.cnt in
cmapping[ino].cnt := cnt + 1;
r := refcnt.ref;

};
clocking_addaccess#(ino); // ghost
mutex_unlock#(tid ;mtx );

}

clocking_droplock#(ino)
interface
precondition

ino ∈ caccessed
∧ caccessed[ino]
∧ idle(tid , caccessed[ino].ref, rwlocks)

{
mutex_lock#(tid ;mtx );
let refcnt = cmapping[ino] in
let cnt = refcnt.cnt in

clocking_rmaccess#(ino); // ghost
if cnt = 1 then {
cmapping := cmapping -- ino;
rwh := rwh -- refcnt.ref;

} else {
cmapping[ino].cnt := cnt − 1;

};
mutex_unlock#(tid ;mtx );

}

Figure 8.5: CLocking operations for accessing references to reader/writer locks.

caccessed . For the latter, equality cannot be achieved in the fine-grained concurrent
version of CLocking. Instead, caccessed ⊆ cmapping states that the cardinality is
at most the value of the corresponding counter. Note that the respective updates
to cmapping and caccessed in Fig. 8.5 are arranged so that this property actually
holds. Reductions will then increase the granularity such that the stronger equality
property can be established. Additionally, caccessed ⊆ cmapping imposes a sub-
set relation between the domains of caccessed and cmapping . The new invariant
valid-refs(cmapping , rwh) ensures that all references stored in cmapping are valid
for rwh, i.e., they are not null and are allocated in rwh. Again, the order of state-
ments in Fig. 8.5 is chosen so that this holds, e.g., a reference is allocated before it is
stored in cmapping but deallocated only after its entry is removed from cmapping .

concurrent component CLocking

invariants caccessed ⊆ cmapping ∧ inj(cmapping)

∧ valid-refs(cmapping , rwh)

rely condition

heap-relytid (mtx ′, rwh ′, rwh ′′)

∧ accessed-relytid (caccessed
′, caccessed ′′)

∧ refs-relytid (caccessed
′, cmapping ′, rwh ′, cmapping ′′, rwh ′′)

∧ last-relytid (mtx ′, caccessed ′, cmapping ′, rwh ′, cmapping ′′, rwh ′′)

Contrary to ALocking, the rely conditions of CLocking are primarily necessary for
the correctness of the component itself, more precisely, for guaranteeing linearizabil-
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ity. The accessed-relytid is analogously to the one of ALocking, stating that no
thread is unintentionally added to or removed from a set of accessing threads. The
heap-relytid copes with rwh not being protected directly by mtx : while the values
of allocated references can be updated without acquiring mtx , the domain of rwh is
only manipulated when mtx is held.

⊢ heap-relytid (mtx ′, rwh ′, rwh ′′) ↔
mtx ′ = locked(tid) → dom rwh ′ = dom rwh ′′

This is crucial for allocating new rwlocks in clocking_getlock#. After a fresh
reference r0 is chosen, the current thread tid must rely on that other threads do not
allocate r0 before tid allocates it (allocating a reference twice is illegal) and that the
reference is not again deallocated before tid initializes the location rwh[r0].

refs-relytid is mainly relevant for the actual locking and unlocking operations
(cf. Fig. 8.4), but it is also for client steps between retrieving a lock reference from
clocking_getlock# and calls to these operations.

⊢ refs-relytid (caccessed
′, cmapping ′, rwh ′, cmapping ′′, rwh ′′)

↔ ∀ ino.
(

ino ∈ caccessed ′ ∧ tid ∈ caccessed ′[ino]

→ cmapping ′[ino].ref = cmapping ′′[ino].ref

∧ ( cmapping ′[ino].ref ∈ rwh ′

↔ cmapping ′′[ino].ref ∈ rwh ′′)
)

It ensures that, as long as tid accesses ino, no other thread changes the assigned
lock reference for ino or deallocates the respective reference. This implies that the
accesses predicate, used in the preconditions of clocking_rlock# etc., is stable
over rely steps so that, in particular, the access rwh[r] stays valid while the thread
is waiting for acquiring the lock.

The most specific rely is last-relytid , as it is tailored to one particular situation.

⊢ last-relytid (mtx ′, caccessed ′, cmapping ′, rwh ′, cmapping ′′, rwh ′′)

↔ ∀ ino. mtx ′ = locked(tid)

∧ ino ∈ caccessed ′

∧ caccessed ′[ino] = {tid}
→ rwh ′[cmapping ′[ino].ref] = rwh ′′[cmapping ′′[ino].ref]

It guarantees that other threads do not modify the value of a heap location, i.e.,
acquire or release the rwlock stored under a particular reference, when tid has locked
mtx and is the only one accessing the respective rwlock. This property encodes the
idea that only accessing threads are allowed to acquire or release the corresponding
reader/writer locks stored in the heap, but is reduced to the only case it is critical: a
thread is the last thread accessing ino in clocking_droplock#. In this situation,
the thread deallocates the reference in cmapping[ino]. However, this is only safe if
no one has acquired the rwlock stored at that heap location, i.e., it is rlock(∅).

This follows indirectly from last-relytid : a thread tid must always consider that
another thread tid0 could be about to deallocate a lock tid wants to access. If tid0 is
the only thread in caccessed , tid must adhere to the rely of tid0 and is not allowed to
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clocking_getlock#(ino; ; r)
interface
precondition . . .

{
R mutex_lock#(tid ;mtx );
B if ¬ ino ∈ cmapping then {
A choose r0 with

r0 ̸= null ∧ ¬ r0 ∈ rwh
in

A rwh := rwh ++ r0;
B cmapping[ino] := lentry(r0, 1);
A rwlock_init#(; ; rwh[r0]);
B r := r0;

} else {
B let refcnt = cmapping[ino] in
B let cnt = refcnt.cnt in
B cmapping[ino].cnt := cnt + 1;
B r := refcnt.ref;

};
B clocking_addaccess#(ino);
L mutex_unlock#(tid ;mtx );
}

clocking_getlock#(ino; ; r)
interface
precondition . . .

{
R atomic (mtx = free) {

mutex_lock#(tid ;mtx );
};

B if ¬ ino ∈ cmapping then {
A choose r0 with

r0 ̸= null ∧ ¬ r0 ∈ rwh
in

A rwh := rwh ++ r0;
A atomic (true) {

cmapping[ino] := lentry(r0, 1);
rwlock_init#(; ; rwh[r0]);
r := r0;

};
} else {

B atomic (true) {
let refcnt = cmapping[ino] in
let cnt = refcnt.cnt in
cmapping[ino].cnt := cnt + 1;
r := refcnt.ref;

};
};

L atomic (true) {
clocking_addaccess#(ino);
mutex_unlock#(tid ;mtx );

}
}

Figure 8.6: First reduction of the clocking_getlock# operation.

modify (acquire or release) the lock in question. Thus, the only way to circumvent
this restriction for tid is to register itself in caccessed as well.

Recall that, besides these custom relies, the ownership annotations for cmapping
and caccessed also add generic rely conditions ensuring that both maps are not
modified via rely steps if the current thread holds the mutex mtx .

Given this concurrent specification of CLocking, we will look at the atomicity
refinement from CLockingIv to CLockingAt in the following.

Atomicity Refinement of Lock-Management

Based on the ownership annotations of CLocking, mover properties for large part
of the component’s atoms are inferred directly. All atoms that only access local
state or the owned maps cmapping and caccessed are automatically both-movers
B (the required assertions are proven in the rely-guarantee proofs of CLocking).
Furthermore, all mutex_lock# and mutex_unlock# calls are right- and left-
movers, respectively. What remains are statements accessing the heap rwh, which
are initially non-movers A.

For most of the operations, this is already sufficient to reduce their bodies to
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atomic blocks. The locking and unlocking operations only consist of a single call to a
rwlock operation that is already atomic by its declaration (cf. Fig. 7.7). Hence, this
atomic block can be lifted outside of the call. clocking_droplock# has more steps,
however, it has only one non-moving step, namely the heap modification rwh :=
rwh -- refcnt.ref. The remaining statements (resp., their atoms) are all both-
movers, except for the surrounding mutex calls, which move inward. This directly
complies to Def. 46, splitting the atom sequence at the heap modification (or at an
arbitrary point for the atom sequence that does not include the assignment to the
heap).

For clocking_getlock#, this does not apply. As there are multiple accesses to
the heap, the atom sequences of the operation contain several non-moving atoms.
Fig. 8.6 on the left shows what mover-properties can be inferred initially. One can
see that the atom sequence of the path where the if-condition evaluates to ff , i.e.,
when ino ∈ cmapping is tt, is already reducible. For the other path, the sequence
contains three non-moving atoms (cf. Def. 45)1.

1. {r0 :∈ r0 ̸= null ∧ ¬ r0 ∈ rwh} : A

2. {rwh := rwh ++ r0} : A

3. {atomic (true) {rwlock_init#(; ; rwh[r0])}} : A

A first reduction step produces then the reduced body in Fig. 8.6 on the right. For a
complete reduction of the operation, it is sufficient to show that atoms 1 and 2 move
to the right, i.e., we apply the calculus rule R-Mover of Fig. 7.5 to prove

1. {r0 :∈ r0 ̸= null ∧ ¬ r0 ∈ rwh} : R

2. {rwh := rwh ++ r0} : R

Since both atoms only access rwh besides local variables, commutations only need
to be shown for atoms accessing rwh as well (all other atoms commute trivially due to
program variables being disjoint). Commutations with atoms of clocking_getlock#
or clocking_droplock# follow from holding the mutex mtx at all relevant atoms,
assuming that respective assertions are given (locked(tid) is a contradiction to
locked(tid0) for tid ̸= tid0).

It remains to show the commutations of the atoms 1 and 2 with the rwlock
operations called in Fig. 8.3 (and the according writer-lock operations). Atom 1
commutes to the right because locking/unlocking does not affect the domain of rwh,
and thus the same reference r0 can be chosen. Atom 2 commutes to the right because
r0 is not allocated in rwh while the argument r of the locking/unlocking operation
has to be a valid reference in rwh, and heap allocations commute with heap updates
if they target different references.

With these mover properties proven, the body of clocking_getlock# reduces
to one atomic block with top-level guard mtx = free (lifted from the leading
mutex_lock# call). At this level of atomicity, the guard can be established as
a new invariant, facilitating its removal via Thm. 11. Thus, the whole component is
atomic, i.e., CLockingIv ≤ CLockingAt holds.

1The body of rwlock_init# is atomic, which is why the atomic block is lifted outside of the
call to build the atom.
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Finally, the data refinement of the atomic components can be shown by an ab-
straction relation that maps the state of CLocking directly to the state of ALocking.

data refinement CLockingAt ≤ ALockingAt
abstraction relation mapping = cmapping.to-fct

∧ rwlocks = rwh.to-fct

∧ accessed = caccessed.to-fct

The algebraic functions _.to-fct construct total functions uniformly from the re-
spective mappings. Depending on whether key is allocated in the concrete map/heap,
the created functions map to the store values or to the default values used in
ALocking, e.g., rwh.to-fct is defined as

rwh.to-fct = λ r . (r ∈ rwh ⊃ rwh[r] ; rlock(∅))

Using this abstraction, the data refinement proofs are straightforward. Together with
the atomicity refinement from above, the concurrent implementation CLockingIv is
proven to be correct w.r.t. the atomic specification ALockingAt.

Theorem 12 (Correctness of Concurrent Lock Management). The concurrent com-
ponent CLocking is a correct implementation of the atomic specification ALocking,
i.e., CLockingIv ≤ ALockingAt holds.

The presented implementation of CLocking overcomes the potential problem de-
scribed at the beginning of the section. Used as a subcomponent, clients obtain
references to locks (via alocking_getlock#) and then pass these references to the
respective locking operations. To achieve atomicity, the implementation of the for-
mer operation must use an exclusive locked (a mutex), but this mutex is held only
very briefly by each thread. On the other hand, the actual locking operations of
CLocking do not require holding the mutex and thus do not block other threads
accessing other locks.

Note that the concrete type ino used to identify individual locks is not relevant
to the implemented mechanism. Thus, the components presented in this section can
be realized for any other desired type as well. Nevertheless, the components defined
with inode numbers ino are used in the concurrent version of VFS for the locking files,
as shown in the following section.

8.2 A Concurrent Virtual File System Switch

When allowing concurrent calls to the POSIX interface, the sequential implementation
of VFS as given in Sec. 4.3 can no longer guarantee consistency of the file system as
concurrent operations could arbitrarily interleave, causing data races. Hence, the
existing implementation must be adjusted to avoid such data races. In the case of
Flashix, this is done by extending implementation components with locking.

In order to prove that the extended VFS component is correct with respect to its
specification POSIX, we apply the methodology presented in Chapter 7, resulting in
the refinement hierarchy shown in Fig. 8.7. The concurrent version VFSIv of VFS still
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uses AFS as a subcomponent, but now extended by ownership state and operations
enforcing certain concurrency restrictions to client components (denoted by Own in
the figure, cf. Sec. 7.4). VFSIv assumes that the specification AFS has atomic behavior
(denoted by AFSAt). The implementation of AFSAt is responsible for guaranteeing this
atomicity, which is usually achieved by using locks as well. Atomicity refinement (see
Sec. 7.3) is applied to prove strong linearizability of the concurrent implementation
VFSIv and to reduce it to an atomic version VFSAt.

POSIXSq

VFSSq AFSSq

data refinement

VFSAt AFSAt Own

abstraction

VFSIv AFSAt Own

atomicity refinement

Figure 8.7: Refinement hierarchy of
the concurrent VFS.

When following the pattern of Fig. 7.3,
the atomic implementation would be ab-
stracted to an atomic specification using
data refinement. This specification is typ-
ically also extended by ownership to specify
how clients can use it concurrently. How-
ever, VFS implements the top-level specifica-
tion POSIX of the file system. Thus, own-
ership extensions to the original sequential
version of POSIX are not necessary since the
file system cannot enforce any concurrency
restrictions on its users. The operations of
the POSIX interface can be called in arbitrary
concurrent fashion (we call concurrency in-
duced this way external concurrency), and
the file system implementation has to restrict the concurrency internally to avoid
executions harming the consistency of the system. As a result, the atomic imple-
mentation VFSAt(AFSAt) can be abstracted to its original sequential VFSSq(AFSSq).
This abstraction can be done by a trivial data refinement that drops all locking-
and ownership-related state variables. Therefore, the original data refinement
VFSSq(AFSSq) ≤ POSIXSq is entirely unaffected and must not be reproved.

The remainder of this section gives an overview on how the components VFSSq
and AFSSq from Sec. 4.3 were extended to VFSIv and AFSAt, respectively. For the most
part, atomicity refinement of VFS is proved analogously to the refinement of CLocking
described in detail in the previous section, so only some specifics are emphasized in
this section.

Specifying Ownership of AFS

The basic idea of the locking strategy of VFS is to sequentialize structural operations,
i.e., restrict manipulations of the file system tree to one at a time, but to allow exe-
cution of multiple content operations in parallel, as long as a file is not manipulated
concurrently. This corresponds to using a single lock for the whole tree while using
individual locks for files. Hence, respective ownership (ghost) state and annotations
are added to AFS.

atomic component AFS

thread id tid : threadid

state dirs : iheap(dir), files : iheap(file)
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ghost state odirs : owner, ofdom : owner, ofiles : map(ino, owner)

ownership

dirs owned by odirs

files[ino].meta owned by odirs

files[ino].nlink owned by odirs

files[ino].content owned by ofiles[ino]

files[ino].size owned by ofiles[ino]

The directory heap dirs is owned completely by the owner odirs, which leads to the
generation of assertions and relies as explained in Sec. 7.4. But odirs also speci-
fies ownership for the structural fields of files, e.g., the field nlink that stores the
number of hard links for a file (given by ownership annotations for the access form
files[ino].nlink). On the other hand, the non-structural fields of files, i.e., content
and size, of a file ino are owned by a corresponding entry in the owner map ofiles.

Defining ownership for entries of partial mappings (heaps or maps) generates a
slightly different version of the generic ownership rely. The ownership annotations
for files produce a rely files-relytid of the form

⊢ files-relytid (ofiles
′, ofiles ′′,files ′,files ′′) ↔

∀ ino.
(
valid-reader(tid , ino, ofiles ′) ↔ valid-reader(tid , ino, ofiles ′′)

)
∧

(
valid-writer(tid , ino, ofiles ′) ↔ valid-writer(tid , ino, ofiles ′′)

)
∧

(
ino ∈ files ′ ∧ valid-reader(tid , ino, ofiles ′) →

ino ∈ files ′′ ∧ files ′[ino].content = files ′′[ino].content

∧ files ′[ino].size = files ′′[ino].size
)

The generated rely universally quantifies over all keys of the mappings and also
takes their domains into account. The idea is that the content and size of a file
files[ino] is protected, i.e., is not changed over the rely step, when the thread tid is
(at least) a reader of the corresponding entry in ofiles[ino]. Since ofiles is a partial
mapping, the predicates valid-reader and valid-writer additionally ensure that
ino is allocated in ofiles.

⊢ valid-reader(tid , ino, ofiles) ↔ ino ∈ ofiles ∧ ofiles[ino].r?(tid)

⊢ valid-writer(tid , ino, ofiles) ↔ ino ∈ ofiles ∧ ofiles[ino] = writer(tid)

Note that files-relytid rely also implies that an entry ino is not removed (neither
from files nor from ofiles) as long as tid has ownership of ino before the rely step.
Of course, this ownership is also propagated via the rely.

Ownership is acquired by client components of AFSAt via additional ghost inter-
face operations. For example, Fig. 8.8 on the right shows the respective operations
of acquiring and releasing ownership of a file ino. The regular interface opera-
tions are extended with ownership preconditions depending on the way they access
state. As shown in Fig. 8.8 on the left, content operations like afs_writepage# or
afs_readpage# force callers to be owners of the read or written file, while struc-
tural operations like afs_lookup# of afs_create# require ownership of the whole
tree.
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afs_writepage#(inode, . . .)
interface
precondition . . .
∧ valid-writer(tid , inode.ino, ofiles)

{ . . . }

afs_readpage#(inode, . . .)
interface
precondition . . .
∧ valid-reader(tid , inode.ino, ofiles)

{ . . . }

afs_lookup#. . . )
precondition . . .
∧ odirs.r?(tid)

{ . . . }

afs_create#( . . . )
precondition . . .
∧ odirs.w?(tid) ∧ ofdom.w?(tid)

{ . . . }

afs_wacquirefile#(ino)
ghost interface

{
if ino ∈ ofiles ∧ ofiles[ino] = readers(∅)
then ofiles[ino] := writer(tid);

}

afs_racquirefile#(ino)
ghost interface

{
if ino ∈ ofiles ∧ ¬ ofiles[ino].owned?
then
ofiles[ino] := rlock(ofiles[ino], tid);

}

afs_releasefile#()
ghost interface

{
if ino ∈ ofiles ∧ ofiles[ino].r?(tid)
then
ofiles[ino] := unlock(ofiles[ino], tid);

}

Figure 8.8: Adjustments to AFS for the use in the concurrent VFS component.

Special care has to be taken for the creation and deletion of files (performed
by the operations afs_create# and afs_evict#). As also shown in Fig. 8.8 for
create, these operations require an additional ownership of ofdom (for other opera-
tions, ofdom is not relevant). This requirement prevents both operations from being
executed concurrently, which is necessary for proving linearizability (creation and
deletion of files do not commute with each other). Hence, ownership of ofdom en-
sures that the domain of files is not changed by other threads, given as custom rely
condition dom-relytid .

⊢ dom-relytid (ofdom
′, ofdom ′′,files ′,files ′′) ↔

(ofdom ′.r?(tid) → dom files ′ = dom files ′′)

∧ (ofdom ′.r?(tid) ↔ ofdom ′′.r?(tid))

∧ (ofdom ′ = writer(tid) ↔ ofdom ′′ = writer(tid))

Furthermore, an additional invariant ensures equality of the domains of ofiles and
files to ensure that each entry of files has a corresponding owner in ofiles (naturally,
the original AFS invariants still hold as well).

invariants dom files = dom ofiles

rely condition dom-relytid (ofdom
′, ofdom ′′,files ′,files ′′)



156 CHAPTER 8. CONCURRENCY IN FILE SYSTEMS

Linearizable Locking in VFS

Based on the extended AFSAt, VFSIv implements the desired locking strategy using
multiple locks and the abstract locking management component ALocking introduced
in Sec. 8.1.

concurrent component VFS using AFS, ALocking

thread id tid : threadid

state of : map(nat, fhandle), maxfd : nat

rwldirs : rwlock, rwlfdom : rwlock, rwlvfs : rwlock

oflocks : map(nat,mutex)

ownership

maxfd owned by rwlvfs.owner

of [fd] owned by oflocks[fd].owner

The reader/writer locks rwldirs and rwlfdom are used for acquiring the respective
ownership odirs and ofdom of AFSAt. Ownership for individual files is acquired by
the reader/writer locks rwlocks outsourced to ALocking. For protecting the RAM
data structures maxfd and of of VFSIv, rwlvfs and oflocks are used. The map oflocks
stores a mutex for each file descriptor fd currently existing, and rwlvfs protects the
file descriptor counter maxfd .

It is crucial for a linearizable and deadlock-free implementation that the locks are
used in the same order in each operation. Consider for example, the locking scheme
outlined in Fig. 8.9 for the vfs_create# and vfs_write# operations, representing
both structural and content operations.

Structural operations mainly have to acquire ownership of the file system tree
only. They usually acquire rwldirs at the beginning of the operation, traverse the tree
via vfs_walk#, perform the actual operation with the respective AFSAt call, and
then release rwldirs at the end of the operation. To meet the ownership preconditions
of AFSAt, ownership is acquired via the respective ghost interface operations of AFSAt
directly after the corresponding lock was acquired. For rwldirs, this is done by
calling afs_wacquiredirs# as shown in Fig. 8.9 on the left. This call is always
successful, i.e., tid is guaranteed to be an exclusive writer afterward, since rwldirs
is the only lock that can acquire odirs ownership. Formally, this is established by
giving a respective invariant (and similarly, for the other lock-ownership relations).

invariants dom of ⊆ dom oflocks

∧ odirs ⊆own rwldirs ∧ ofdom ⊆own rwlfdom

∧ ofiles ⊆own(mapping , rwlocks)

The predicate o ⊆own rwl abbreviates o ⊆ rwl.owner, which states that no thread
has more ownership in o than in the derived owner of the lock rwl . This corresponds
to acquiring ownership only within the respective locking range. For ofiles, this
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vfs_create#(p, md , user ; ; err)
interface

{
. . .
rwlock_wlock#(tid ; rwldirs);
afs_wacquiredirs#(); // ghost
vfs_walk#( . . . );
. . .
rwlock_wlock#(tid ; rwlfdom);
afs_wacquirefdom#(); // ghost
afs_create#( . . . );
afs_releasefdom#(); // ghost
rwlock_wunlock#(tid ; rwlfdom);
. . .
afs_releasedirs#(); // ghost
rwlock_wunlock#(tid ; rwldirs);
. . .

}

vfs_write#(fd , user , buf ; n; err)
interface
precondition n ≤ # buf

{
. . .
mutex_lock#(tid ; oflocks[fd]);
let ino = oflocks[fd].ino in {

alocking_getlock#(ino; ; r);
alocking_wlock#(r);
afs_wacquirefile#(ino); // ghost
. . .
vfs_writeloop#(. . .);
. . .
afs_releasefile#(ino); // ghost
alocking_wunlock#(r);
alocking_droplock#(ino);
. . .
of [fd].pos := start + n;

};
mutex_unlock#(tid ; oflocks[fd]);
. . .

}

Figure 8.9: Locking in the concurrent VFS component.

property is lifted to the state of ALocking.

⊢ ofiles ⊆own(mapping , rwlocks) ↔
∀ ino. ino ∈ ofiles ∧ ofiles[ino] ̸= readers(∅) →(

mapping(ino).ref ̸= null

∧ ofiles[ino] ⊆own rwlocks(mapping(ino).ref)
)

An additional invariant (dom of ⊆ dom oflocks) ensures that existing file descriptors
can always be locked. This is achieved by creating the respective lock for a file
descriptor when opening a file (before the entry is added to of ) and deleting the
lock not until the descriptor is removed from of when closing of the file. Note that
the vfs_create# operation also has to acquire the rwlfdom lock and the associated
ofdom ownership for the afs_create# call.

Content operations that are called with a file descriptor fd as input, such as
vfs_write# on the right of Fig. 8.9, do not need to lock the directory tree. In-
stead, they lock the file descriptor for retrieving the inode number ino (and the
current position) of the targeted file. The actual file is then locked by requesting a
lock reference from ALocking via alocking_getlock#, and then acquiring the the
lock with alocking_wlock#. Afterward, ownership of the file is acquired in AFSAt,
which enables the following AFSAt calls (afs_writebegin#, afs_writepage#, and
afs_writesize#) triggered by the write operation. At the end of the actual writ-
ing, ownership and lock are released before also dropping the reference to the lock.
Finally, the file descriptor mutex is released after the position has been updated.

By using a strict locking hierarchy, the reduction of the concurrent component is
straightforward. Locking ranges are contracted to atomic blocks incrementally, start-
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ing from the innermost locking range towards the outermost one. At each iteration,
the guard of the next outer locking range can be established as a new concurrent
invariant and thus eliminated (see Thm. 11). Deadlock-freedom follows from this
locking scheme as well: for hierarchical employed locks, one thread on the lowest
acquired locking level can always progress as it either does not need to acquire a
further lock or is the first one entering the next locking level.

Together with the original refinement VFSSq(AFSSq) ≤ POSIXSq and the trivial
abstraction VFSAt(AFSAt) ≤ VFSSq(AFSSq), the reduction proofs establish correctness
of the concurrent VFS implementation.´

Theorem 13 (Correctness of the Concurrent Virtual File System Switch). The
concurrent implementation of VFS is a correct, deadlock-free implementation of the
sequential POSIX specification, i.e., VFSIv(AFSAt) ≤ POSIXSq holds.

The implementation presented in this section is linearizable to the sequential
POSIX specification, and it achieves the goal of allowing concurrent writes to different
files and arbitrary concurrent reads.

There are still some minor optimizations possible. For example, the implementa-
tion Cache of AFS is currently implemented sequentially. Hence, concurrent calls to
AFSAt are sequentialized by a global mutex surrounding the interface of Cache, but
a concurrent component that locks each sub-cache (ICache, DCache, PCache, and
TCache, see Sec. 6.1) exclusively should be unproblematic to realize. Access to the
maps used within the Cache layer is then still sequential, but we think this would
only have a marginal impact on performance. Nevertheless, it could be investigated
how thread-safe implementations of maps can be integrated into our approach.

Another potential optimization could be to implement a more fine grained locking
strategy for the directory tree, e.g., by adapting the approach of Zou et al. [119]. This
would allow for more concurrent path traversals as a structural operation would not
have to lock the whole tree exclusively. While this change would certainly bring some
performance improvements, we expect them to be negligible in everyday workloads
since the performance-critical tasks usually access file contents. Furthermore, the
locking strategy in [119] is not compatible with the linearizability criterion if multiple
hard links to files are supported (which is the case in Flashix), as Lehner found out
in his master thesis [79].

Concurrency & Write-Prefix Crash Consistency

In Ch. 6 we introduced the crash-safety criterion Write-Prefix Crash Consistency
that copes with non-order-preserving caches like the ones implemented in the Cache
layer of Flashix, and we proved that Flashix adheres to this criterion. However, the
proofs only considered purely sequential runs of POSIX. When concurrent POSIX calls
are allowed, the VFS implementation must ensure that concurrent executions do not
invalidate WPCC. We argue that the concurrent implementation VFSIv presented in
this section achieves this.

Concurrent POSIX calls yield runs of the file system with well-formed concur-
rent histories. At first, these histories may contain arbitrary interleaved operations,
particularly multiple content operations to the same file fid . Such interleavings
would be problematic for WPCC because they would enable a vfs_write# to
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“overtake” a vfs_fsync# or vise versa (which could result in mixed file contents
after a crash, even if it occurs outside of vfs_fsync#). However, VFSIv prohibits
such situations by using a reader/writer lock per file set at the start of all con-
tent operations (via the ALocking component, e.g., see Fig. 8.9 on the right). As
a consequence, all histories hi|fid are sequential, i.e., an interleaving of the form
inv tid (op,fid , . . .) inv tid ′(op’,fid , . . .) res tid (op, . . .) res tid ′(op’, . . .) is not possible,
and thus WPCC as defined in Def. 39 is still applicable.

Theorem 14 (Compatibility of WPCC and with the Concurrent Virtual File Sys-
tem Switch). Write-Prefix Crash Consistency is compatible with the concurrent im-
plementation VFSIv of the Virtual File System Switch.

8.3 Concurrent Garbage Collection

Besides allowing concurrent calls to the file system interface as outlined in Sec. 8.2,
moving certain internal mechanisms into separate threads also introduces additional
concurrency to the file system (we call this internal concurrency). Hence, the affected
models also have to be modified in order to avoid conflicts resulting from parallel
executions of operations.

Internal concurrency was first introduced for the wear leveling algorithm in the
Erase Block Manager layer (EBM, cf. Sec. 4.1) by Pfähler [96]. Moving garbage
collection to a separate thread is the natural continuation of this work. Thus, the
methodology used in [96] is also used for the extension presented in this section.
We will not go into technical details (see sections 8.1 and 8.2 for insights into the
concrete specification and proof work) but will only outline the high-level approach
in the following.

The extension of Flashix with concurrent garbage collection ranges from the
FFS layer to the Journal layer. In the FFS, the concurrent operation for garbage
collection is introduced (Fig. 8.11) as an internal operation. Since it is not part of
the interface (it refines skip, i.e., it has no visible effect for clients), it cannot be
called by any client components. Instead it will be repeated infinitely within its own
thread. To ensure that garbage collection is not performed continuously, especially
when no more space can be regained, a condition variable gccond is used 2. At the
beginning of each iteration, the thread blocks at the condition_wait# call until
it is signaled by another thread to start. The concrete garbage collection algorithm
is specified in the FFS-Core and implemented in the Journal component, so after
being signaled the operation ffs_core_gc# is called.

Signaling takes place in all FFS operations that may modify the file system state
in the sense that either entries are written to the log (and thus space on the flash
device is allocated) or garbage is introduced by invalidating allocated space. Such
operations, as shown generically in Fig. 8.10, emit a signal to gccond after they have
updated the Index.

2Note that condition variables are always coupled to a mutex. Here gccond is coupled to gcmtx .
Signaling a condition requires to hold the corresponding mutex. Starting to wait for a signal requires
to hold the mutex as well, however, the mutex is released during waiting. As soon as a signal was
emitted and the mutex is free, the waiting thread acquires the mutex and continues its execution.
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ffs_operation#(...)
interface

{
...
nd1 := inodenode(key1 , ...);
...
rwlock_wlock#( ; corelock);
ffs_core_wacquire#(); // ghost
ffs_core_jadd#(nd1 , ... ; adr1 , ... ; err);
if err = ESUCCESS then {

ffs_core_istore#(key1 ; adr1 );
...
mutex_lock#( ; gcmtx );
condition_signal#( ; gccond , gcmtx );
mutex_unlock#( ; gcmtx );

};
ffs_core_release#(); // ghost
rwlock_wunlock#( ; corelock);
...

}

Figure 8.10: General operation scheme of
modifying FFS operations.

ffs_gc#()
internal

{
mutex_lock#( ; gcmtx );
condition_wait#( ; gccond , gcmtx );
mutex_unlock#( ; gcmtx );

rwlock_wlock#( ; corelock);
ffs_core_wacquire#(); // ghost
ffs_core_gc#();
ffs_core_release#(); // ghost
rwlock_wunlock#( ; corelock);

}

Figure 8.11: Internal garbage collec-
tion operation of FFS.

The implementation of ffs_core_gc# in the Journal component then first
checks whether there is a block which is suitable for garbage collection. If that is
the case, all still referenced nodes of this block are collected, these nodes are then
written to the journal, and their new addresses are updated in the Index accordingly.
Finally, if the referenced data was successfully copied, the block can be marked for
erasure.

As an additional thread is introduced in the FFS, established ownerships in the
VFS/AFS layer (see Sec. 8.2) are not sufficient to prevent data races between the
garbage collection thread and other threads. For this reason the reader/writer lock
corelock is added to the FFS component. It is used to acquire exclusive or shared
ownership for the Journal and Index data structures (both are abstracted together
as FFS-Core). We did not head for a more fine-grained locking approach since
updates usually affect nearly all parts of the state of FFS-Core anyway. However,
using reader/writer locks still allows for concurrent read accesses to the Journal.

Modifying operations in the FFS as shown in Fig. 8.10 always follow the same
scheme. First, all new or updated data objects are wrapped into nodes (nd1 , ...)
with an unique key (key1 , ...). Depending on the concrete operation, nodes for in-
odes, dentries, and pages are created (cf. Sec. 4.3). These nodes are then grouped
into transactions and appended to the log using the ffs_core_jadd# operation.
If successful, i.e., the operation returns the error code ESUCCESS, the operation re-
turns the addresses (adr1 , ...) where the passed nodes have been written to. Finally,
the Index is updated by storing the new addresses of the affected keys via the
operation ffs_core_istore# 3. It is crucial that garbage collection is never per-
formed between these calls since this could result in a loss of updates (e.g., when
garbage collection moves nodes updated by the operation), potentially yielding an

3Some operations, e.g., truncations, also update the index by removing entries from it.
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inconsistent file system state. Hence, the locking range of corelock must include the
ffs_core_jadd# as well as all ffs_core_istore# calls.

To prove that this locking strategy is in fact correct, i.e., that the interleaved
components are linearizable, we again apply atomicity refinement (see Sec. 7.3). This
results in the expansion of the refinement hierarchy shown in Fig. 8.12. Atomicity
refinement could be applied to Index and the layers below, too. However, we have
not yet implemented a concurrent version of the B+-Tree ([75] presents a verification
for concurrent B+ trees using Iris/Coq [10]), as we do not expect noticeable efficiency
gains from doing so. So instead, we locked the interface of the Index (depicted by µ).
This means that each call to an Index operations index_operation# requires the
current thread to be an exclusive owner of the Index component. In the Journal,
this is realized by surrounding these calls with a mutex idxlock as shown in Fig. 8.13
on the left. Owning a subcomponent exclusively ensures that the subcomponent is
only called sequentially and hence allows to directly use the unaltered sequential
version of the subcomponent and its refinements (denoted by the subscript _Sq in
Fig. 8.12).

AFSAt Own

FFSAt Own FFS-CoreAt Own

data refinement

FFSIv Own FFS-CoreAt Own

atomicity refinement

JournalAt Own IndexSq
µ

data refinement

JournalIv Own IndexSq
µ

atomicity refinement

Figure 8.12: Refinement hierarchy extended
by concurrent garbage collection.

FFS-Core is augmented with own-
ership ghost state matching the
reader/ writer lock corelock of FFS.
The FFS operations acquire and re-
lease this ownership according to the
locking ranges (see Fig. 8.10 and
Fig. 8.11). While the ownership gran-
ularity of AFSAt (owned directory tree
odirs, owned files ofiles, ...) does not
match the state of the FFS-Core or the
Journal, the information about which
files etc. are owned when an opera-
tion is called (encoded in the precondi-
tions) is still relevant for the FFS in or-
der to preserve functional correctness.
For example, an owned file must not
be removed from the Index while its
metadata is updated. Therefore, own-
ership ghost state is added to FFS analogously to AFSAt and corresponding ownership
properties are established. This is sufficient to prove that the interleaved FFSIv can
be reduced to an atomic FFSAt via atomicity refinement. The data refinement of
the atomic AFSAt to the atomic FFSAt is basically identical to the original sequen-
tial refinement, in addition, it must only be shown that their respective ownerships
match.

When proving the atomicity refinement of the Journal, it is apparent that Index
operations together with their surrounding lock calls form atomic blocks like in the
center of Fig. 8.13. But as most operations have multiple calls to the Index, this
is not sufficient to reduce these operations to completely atomic ones. It remains
to show that these blocks as well as statements that access the local state of the
Journal move appropriately (usually they have to be both mover). To prove this,
the ownership information of the FFS-Core component can be used. The Journal is
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journal_operation#(...)
interface

{
...
mutex_lock#(; idxlock);
index_operationi#(...);
mutex_unlock#(; idxlock);
...
mutex_lock#(; idxlock);
index_operationj#(...);
mutex_unlock#(; idxlock);
...

}

journal_operation#(...)
interface

{
...
atomic{

mutex_lock#(; idxlock);
index_operationi#(...);
mutex_unlock#(; idxlock);

}
...
atomic{

mutex_lock#(; idxlock);
index_operationj#(...);
mutex_unlock#(; idxlock);

}
...

}

journal_operation#(...)
interface

{
atomic{

...
mutex_lock#(; idxlock);
index_operationi#(...);
mutex_unlock#(; idxlock);
...
mutex_lock#(; idxlock);
index_operationj#(...);
mutex_unlock#(; idxlock);
...

}
}

Figure 8.13: Reduction steps of a Journal operation (from left to right).

augmented with ownership properties, operations and preconditions that match those
of the FFS-Core, and so accesses to the local state can be inferred to be both movers.
The information that certain ownership is acquired at the calls of Index operations
and their associated locking operations allows us to prove that these blocks in fact are
movers and, hence, further reduce the operations to be atomic (Fig. 8.13 on the right).
Although the proofs are simple, this is quite elaborate since many commutations have
to be considered. The data refinement of FFS-CoreAt to the atomic JournalAt then
again is basically identical to the sequential refinement. All in all, this guarantees
the correctness of the concurrent garbage collection implementation.

Theorem 15 (Correctness of Concurrent Garbage Collection). The concurrent com-
ponents FFSIv and JournalIv implementing concurrent garbage collection are a cor-
rect, deadlock-free implementation of the atomic AFSAt specification, i.e., the refine-
ment FFSIv(JournalIv(IndexSq)) ≤ AFSAt holds.

8.4 Related Work

Verification of concurrent, lock-based systems is of course a very broad topic with lots
of important contributions. However, we are not aware of other formal methods that
specifically address the question of adding concurrency a posteriori to an existing
modular, sequential system, without having to prove the whole system from scratch.
Nevertheless, adding concurrency to components of an existing software system to
increase efficiency is a recurring software engineering task that should be supported
by formal methods.

The method for verifying the correctness of concurrent components presented in
the previous chapter, and used to verify the extensions of this chapter, is largely
adopted from the work of Pfähler [96]. The original approach of Pfähler added asser-
tions as program statements (assert) directly to the operation declarations. In this
thesis, assertions are given decoupled from declarations in the form of annotations for
labels identifying statements, which simplifies specification (identical assertions do
not need to be added as multiple program statements but can simply be mapped to
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multiple labels) and improves proof maintenance (altering a declaration invalidates
more proofs than changing an annotation).

Rely-guarantee [69, 117] is a commonly used method to reason about concurrent
programs from a thread-local perspective. It is used both in Pfähler’s and this thesis
to establish the assertions given or generated for programs of concurrent programs.
Using RG significantly reduces the number of proof obligations that need to be shown
compared to automata-based approaches such as the Owicki-Gries-Method [93, 94]
or IO-Automata [81], which also require giving concise specifications for all program
steps. On the other hand, proof in RG-calculus tend to be relatively cumbersome and
produce large goals since the symbolic execution approach accumulates information
about previous program states, which have to be propagated (transitively) over rely-
steps. Thus, the verification performed in this thesis uses a combination of both
approaches: symbolic execution of a program with RG-calculus is “partitioned” into
manageable sections by giving complete characterizations of intermediate program
states.

The concept of ownership is also used in various other verification systems. For
example, the C verification tools VCC [26, 27] and Spec# [67] also use ownership to
ensure data race freedom of verified code. These tools typically couple ownership to
objects of the programming language while the approach used in this thesis decouples
the use of ownership from objects by specifying separate ownership (ghost) state
variables, linked to owned objects via rely conditions only. Other verification tools
like VeriFast [68], used to verify C and Java programs, use Fractional Permissions
[18] to specify and verify similar properties.

Based on Lipton’s reduction approach [80] for the verification of parallel pro-
grams, the calculus of atomic actions presented by Elmas et al. [37] provides an
incremental verification methodology for proving linearizability of concurrent sys-
tems. Compared to the adapted approach in this thesis and in [96], [37] provides a
more incremental methodology geared towards highly concurrent systems and lock-
free algorithms. The approach includes abstraction steps into the verification process
that transform the initial implementation step-wise into a simplified atomic program.
The calculus only addresses partial correctness; divergence- and deadlock-freedom
would have to be proven differently. In our approach, on the other hand, divergence-
and deadlock-freedom are proved during the rely-guarantee proves establishing asser-
tions. The original program statements remain unchanged while they are gradually
grouped into larger atomic blocks. Transforming programs in other ways would re-
quire an extra data refinement step; however, our approach currently only supports
data refinement of fully atomic components.

There are also some works targeting the verification of concurrency in file systems.
Damchoom et al. [30, 29] develop a flash file system by using incremental refinement.
Concurrency is verified on a similar level as AFS for reading and writing of file content
and for wear leveling as well. Synchronization between threads is implicit by the
semantics of Event-B [1] models. Events are always executed atomically, which
simplifies modeling and verification noticeably but increases the gap to actual running
code since no explicit synchronization mechanisms such as locks are necessary.

Chajed et al. [20] adapt the idea of optimistic transactions [76] to add I/O con-
currency to the verified FSCQ file system [25, 23]. While the file system itself still
runs completely sequential, an additional I/O layer is added at the bottom of the file
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system that serves as a read cache of the storage device. Calls to this layer assume
optimistically that the requested data is cached, aborting their execution if it is not.
The file system then rolls back its pending transaction while simultaneously, the I/O
layer loads the requested data into the cache. The aborted transaction is then retried
hoping that all required data was added to the cache in the mean time. [20] reports
from an intermediate state of the development where the extension was executable
but not yet verified. Since we are not aware of further publications regarding this
concurrency extension of FSCQ, it is not apparent whether or how its correctness
has been proved.

A very interesting work regarding concurrency on the level of VFS is the verifica-
tion of AtomFS by Zou et al. [119]. AtomFS is a concurrent in-memory file system
prototype that is directly programmed in C. It implements the POSIX interface and
uses hash tables to store directories and files at an abstraction level similar to our AFS
specification. Hence, crash-safety is not considered and the implementation is with
about 700 lines of code significantly smaller than Flashix. It does, however, use a
sophisticated locking scheme in its VFS implementation that employs hand-over-hand
locking for inodes (lock coupling). Zou et al. proof correctness of the implementation
using the theorem prover Coq [10]. A particular challenge for the proof of lineariz-
ability was the rename operation, which moves directories (whole subtrees). The
operation has to lock both the source and target directory but avoid deadlocks. The
locking approach could be applied to Flashix as well, where one major task would be
to investigate the impact of allowing hard links on the linearizability criterion (this
is not covered by AtomFS as hard links are not supported).



Chapter 9
Benchmarking a Verified File System

Summary With most extensions of the second project phase of Flashix, and
thus of the contributions of this thesis, targeting efficiency, this chapter provides
an insight into how the extensions affect the performance of the Flashix file system.
Different workloads representing everyday usage of file systems are run on the gen-
erated C code of the Flashix models, integrated into Linux via the FUSE interface.
The performance of Flashix in its original, i.e., sequential and non-cached, form is
compared with its respective performance after adding caching and concurrency,
showing significant improvements.
Furthermore, the performance of Flashix is evaluated against the state-of-the-art
flash file system UBIFS, demonstrating competitiveness with real-world (hand-
written) implementations. Flashix now covers all performance-relevant concepts,
which is reflected in the results; only small deficits remain due to non-optimal code
generation.

Publications The evaluation presented in this chapter is based on the publica-
tion [13].

To evaluate the performance of the Flashix file system a collection of microbench-
marks were performed. This gives some insight in whether the extensions that were
made, especially those described in Chapter 6 and Chapter 8, have an impact on
the performance. Furthermore, we want to compare the performance of Flashix with
state-of-the-art flash file systems like UBIFS [63].

In order to run Flashix, our code generator produces executable C or Scala code
for all implementation components included in the refinement hierarchy (see Fig. 4.1).
The generated C implementation, which we are most interested in when considering
performance, comprises approximately 18,000 lines of code. Another 2,000 lines are
used to integrate Linux via the FUSE (Filesystem in USErspace) library. Algebraic
data types are transformed into corresponding C data structures, e.g., doubly-linked
lists are used to implement algebraic lists and algebraic maps are realized by hash
tables.

All benchmarks were run within a virtualized Linux Mint 19.3 distribution, using
3 Cores of a Intel Core i5-7300HQ CPU and 4,8 GB of RAM. The flash device
was simulated in RAM using the NAND simulator (nandsim) integrated into the
Linux kernel [87]. The numbers shown in the following represent the mean of 5
benchmark runs in which the mean standard deviation across all runs is below 4.5%
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Figure 9.1: Nano write benchmarks on Flashix and UBIFS: big write (left) and
small writes (right). Flashix was used in three different configurations: sequentially
without VFS cache (FA), sequentially with VFS cache (FB), and with VFS cache
and concurrency (FC).
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Figure 9.2: Vim write benchmarks on Flashix and UBIFS: big write (left) and small
writes (right). Flashix was used in three different configurations: sequentially with-
out VFS cache (FA), sequentially with VFS cache (FB), and with VFS cache and
concurrency (FC).

(this translates to a mean deviation in runtime of less than 0.16 seconds).
We chose some small workloads that represent everyday usage of file systems:

copying and creating/extracting archives. Copying an archive to the file system
results in the creation of a file and writing the content of that one file. Analogously,
copying an archive from the file system yields in reading the content of the file.
Hence, we call these workloads big write and big read respectively. On the other
hand, extracting an archive results in the creation of a directory structure containing
many files. The contents of the created files are written as well, however, these are
multiple smaller writes compared to the single big write when copying. Creating an
archive from a directory structure on the file system requires to read all directories
and files. Hence, we call such workloads small writes and small reads respectively.
As sample data we used archives of the text editors Nano1 and Vim2.

1nano-2.4.2.tar: approx. 220 elements, 6.7 MB
2vim-7.4.tar: approx. 2570 elements, 40.9 MB
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Figure 9.3: Vim read benchmarks on Flashix and UBIFS: big read (left) and small
reads (right). Flashix was used in three different configurations: sequentially with-
out VFS cache (FA), sequentially with VFS cache (FB), and with VFS cache and
concurrency (FC).

Fig. 9.1 shows the results of the write benchmarks with Nano. When comparing
the uncached configuration (FA) with the cached configuration (FB) of Flashix, one
can see that adding the Cache layer to VFS (see Sec. 6.1) has indeed a significant
impact on write times (depicted in blue). But as these times do not include per-
sisting the cached data to flash, we enforced synchronization directly afterwards via
fsync calls (depicted in red). For big writes, the combined runtime of the cached
configuration is similar to the uncached one. For small writes though, the combined
runtime of FB is substantially faster since repeated reads to directory and file nodes
during path traversal can be handled by the cache.

Moving wear leveling and garbage collection (see Sec. 8.3) into separate threads
(FC) further improves the performance. This is especially noticeable in the small
writes workload where the write time can be reduced by about one order of magni-
tude. In the sequential configurations (FA and FB), after each top-level operation it
was checked whether garbage collection or wear leveling should be performed. Dur-
ing these checks and potential subsequent executions of the algorithms, other POSIX
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Figure 9.4: Vim benchmarks on Flashix and UBIFS without flash delays.

operation calls were blocked. In the concurrent configuration (FC) these blocked
time can be eliminated for the most part since writing to the cache does not interfere
with garbage collection or wear leveling. As small writes trigger considerably more
top-level operation calls, this effect is much more noticeable than with big write
workloads.

Compared to UBIFS, the current version of Flashix performs as expected. Run-
times of the FC configuration are always within the same order of magnitude of those
of UBIFS. This also applies for running the benchmarks with a larger archive like
Vim shown in Fig. 9.2.

Similar effects can be observed when considering read workloads as shown in
Fig. 9.3. Adding caches significantly speeds up both reading a single big file and
reading many small files when the caches are hot (Fig. 9.3a), i.e., when the requested
data is present in the caches. Likewise, moving wear leveling and garbage collection
to background processes brings down the runtime by an order of magnitude. When
reading from cold caches, i.e., when no requested data is present in the caches, the
speed up is much more subtle since the main delay results from reading data from
flash. As shown in Fig. 9.3b, for big reads there is hardly any improvement from
FA to FB or FC. However, both expansions have an impact on the runtime of small
read workloads for the same reasons as for small write workloads: repeated reads to
the directory structure can be handled by the cache, and blocked time for garbage
collection and wear leveling can be eliminated. With these additions one can see
that Flashix is competitive with UBIFS regarding read performance, too.

Flashix now covers all performance-oriented concepts of realistic file system im-
plementations, which is reflected in the benchmark results. Nevertheless, some minor
performance gains could still be achieved by improving our code generator as the gen-
erated code is not optimal in allocating/deallocating and copying data structures.
The optimization potential becomes apparent when comparing the raw in-memory
runtimes of Flashix and UBIFS like in Fig. 9.4. Here we instructed nandsim to not
simulate any delays for accessing the simulated NAND memory. The results show
that UBIFS is still up to a factor of 10 faster than Flashix for the Vim microbench-
marks (the Nano benchmarks yield similar results). First experiments show, that
even simple routines can affect performance noticeably if they are generated ineffi-
ciently. For example, we found out that a simple optimization of a routine used in
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the Journal for calculating the required space of a node-list on flash improved the
runtime by up to 30% compared to the generated code. Hence, we plan to apply
data flow analysis to identify this and other locations where such optimizations can
be performed, further closing the gap to state-of-the-art handwritten file systems.
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Chapter 10
Summary & Outlook

Summary This chapter summarizes the theoretical and practical results of this
thesis, contributing to the formal development of large-scale software systems. The
case study of this thesis, the Flashix file system, has evolved significantly due to
the results obtained and is now competitive with real-world implementations.

This thesis contributes to the modular development of formally verified software
systems. When a software system is developed using formal methods, the primary
goal is usually the functional correctness of the resulting system w.r.t. some concise,
abstract specification. Hence, the system is designed to be verified easily, which
typically includes modularization. Performance or extensibility are often secondary
aspects, but quickly become relevant when the system competes with realistic im-
plementations.

This thesis has investigated three prominent concepts used to improve the per-
formance of software systems: destructive heap-based algorithms, caching, and con-
currency. It contributes methodologies for facilitating modular verification and inte-
grating them into existing verified component hierarchies while retaining large parts
of the original specification and proof work. The methodologies were applied to the
Flashix case study, yielding an efficient and realistic flash file system implementation.

Verification of Destructive Heap Algorithms For the verification of efficient
destructive algorithms on pointer structures, a modularization concept is given that
separates different verification concerns into multiple refinements (Chapter 3): the
functional correctness of algorithms can be proved solely on algebraic data types,
while complex reasoning about pointer structures (for example, by employing Sepa-
ration Logic) is limited to fine-grained operations.

The concept is applied to a destructive implementation of red-black trees. Two
data refinements are proven, starting from an abstract specification of sets, over an
algebraic representation of trees, to a heap-based pointer implementation. Correct-
ness of the resulting implementation is shown by Thm. 4.

Theorem 4 (Correctness of Destructive Red-Black Trees). The sequential component
RBTree(RBTHeap) is a correct, memory-safe destructive implementation of red-black
trees.
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The verified red-black tree implementation is now used for several purposes in
Flashix, e.g., for the management of free and used erase blocks in the EBM. This
extension reduces the untrusted code base of Flashix as an unverified external library
was used before.

Besides red-black trees, we think that the modularization concept can also be
beneficial to the verification of other pointer data structures. For example, the
verification of wandering B+ trees using this approach is currently in progress.

Integration and Correctness of Caching Caching is one of the standard mech-
anisms to reduce the (perceived) delay of storage-based systems. This thesis provides
an implementation and verification strategy for the post hoc integration of caches
into a software system (Chapter 6): a cache layer can be added between two existing
layers as a decorator without adapting or re-validating surrounding components. The
functional correctness of the addition can be shown by just one additional refinement
proof.

The Flashix file system is extended with a corresponding layer for caching high-
level data structures, integrated between the Virtual File System Switch VFS and
the abstract interface AFS of the flash file system. Thm. 7 guarantees the correct
decorator integration of the Cache component.

Theorem 7 (Functional Correctness of High-Level Caches). The sequential compo-
nent Cache is a correct cache decorator implementation of the component AFS, i.e.,
Cache(AFS) ≤ AFS holds.

The adaption of the decorator pattern is not restricted to this specific applica-
tion but can be used as a universal technique to support formal development. For
example, the approach for modeling and verifying durable opacity for software trans-
actional memory (STM) in [11] uses a similar approach (applied to IO-Automata):
an initial specification A performs a transaction on persistent memory and is then
refined by an implementation C that buffers transactions until they can be written
entirely to persistent storage specified by A.

Crash-Safety of Caching Crash-Safety is a fundamental concern of storage-based
systems, particularly when caching mechanisms are employed. File systems, however,
often only provide unsatisfactory guarantees in the event of a crash/power cut (e.g.,
the POSIX standard [100] enforces guarantees only for fully synchronized operations).
This thesis contributes a novel crash-safety criterion Write-Prefix Crash Consistency
for cached file systems with Def. 39 (Chapter 6).

Definition 39 (Write-Prefix Crash Consistency (WPCC)). A file system is write-
prefix crash consistent iff it refines the POSIX component extended by a synchroniza-
tion operation, and each crash transition is a write-prefix crash transition.

The criterion is based on the history-based definition of write-prefix crash transi-
tion given by Def. 38, which reduces the crash effect to individual files by restricting
file histories to writing prefixes of their original executions. The criterion is moti-
vated by the natural way of synchronizing files: cached file content is persisted from
low to high pages, imitating a POSIX write operation (which is also the default
strategy of the Linux VFS).
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For the Flashix file system, a reference implementation is given with the Cache
component realizing synchronization this way. A strategy for proving the compliance
to WPCC is presented and applied to the case study, guaranteeing crash-safety for
Flashix, as shown with Thm. 8.

Theorem 8 (Flashix satisfies WPCC). The Flashix file system with the VFS imple-
mentation, extended by the Cache component, satisfies WPCC.

WPCC is a universal correctness criterion for file systems, not specific to flash
memory. It gives stronger guarantees than other related criteria, e.g., the metadata-
prefix specification of Chen et al. [23, 24]. Thus, WPCC gives applications new ways
to access the file system in a crash-safe way, e.g., check-sums written before the
actual data can be used to detect writes that were not persisted completely.

Cache implementations compliant with WPCC are also compatible with low-level
buffer caches that imply the crash-safety criterion Quasi-Sequential Crash Consis-
tency introduced by Pfähler [96], as shown by Thm. 9.

Theorem 9 (Compatibility of WPCC and QSCC). Write-Prefix Crash Consistency
is compatible with the use of order-preserving caches in lower levels of the implemen-
tation that satisfy Quasi-Sequential Crash Consistency.

Introducing Concurrency to Sequential Systems Concurrent systems are of-
ten designed from the ground up for correct parallel execution of operations. Hence,
adding concurrency to a sequential system a posteriori typically requires significant
effort. This thesis presents an approach that allows introducing concurrency to spe-
cific layers of a sequential refinement hierarchy by moving internal algorithms to
separate threads or permitting external parallel calls to the system interface (Chap-
ter 7 and Chapter 8).

This can be done while retaining large parts of the original specifications and
proofs: the sequential implementation is augmented with suitable locking instruc-
tions guaranteeing ownership of parts of the shared state, which is propagated to
lower layers via ownership operations and preconditions. Correctness of the adap-
tion is proved by an additional strong linearizability proof using atomicity refinement,
abstracting the concurrent implementation to an atomic version. Since this atomic
version is basically identical to the original sequential implementation, existing data
refinement proofs can be carried over with little effort.

This thesis contributes several realizations of concurrency concepts for file sys-
tems (Chapter 8). An efficient mechanism for managing dynamically allocated locks,
i.e., locks for shared objects that can be created and destroyed during runtime of the
system, is presented, which avoids unnecessary blocking of other threads. Thm. 12
guarantees the correctness of this mechanism, separated as a modularly usable com-
ponent CLocking.

Theorem 12 (Correctness of Concurrent Lock Management). The concurrent com-
ponent CLocking is a correct, deadlock-free implementation of the atomic specification
ALocking, i.e., CLockingIv ≤ ALockingAt holds.

While the mechanism can be employed universally, in Flashix, the component
is used to implement a concurrent implementation of VFS, the top layer of the file
system. It facilitates an implementation that permits concurrent reads and writes to
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file contents by locking files individually. The correctness of this approach is ensured
by Thm. 13.

Theorem 13 (Correctness of the Concurrent Virtual File System Switch). The con-
current implementation of VFS is a correct, deadlock-free implementation of the se-
quential POSIX specification, i.e., VFSIv(AFSAt) ≤ POSIXSq holds.

Since this concurrency extension creates calls of interleaved operations to Cache,
compatibility of WPCC with concurrency must be considered. This thesis provides
a compliant implementation and locking scheme for VFS and Cache, as shown by
Thm. 14.

Theorem 14 (Compatibility of WPCC and with the Concurrent Virtual File System
Switch). Write-Prefix Crash Consistency is compatible with the concurrent implemen-
tation VFSIv of the Virtual File System Switch.

Additional internal concurrency was introduced in Flashix with a concurrent
variant of garbage collection in the FFS and Journal layers. Thus, the administrative
work of garbage collection is moved to the background so that users do not have to
wait for it to be completed. Thm. 15 guarantees correct integration of this concurrent
algorithm in the hierarchy.

Theorem 15 (Correctness of Concurrent Garbage Collection). The concurrent com-
ponents FFSIv and JournalIv implementing concurrent garbage collection are a cor-
rect, deadlock-free implementation of the atomic AFSAt specification, i.e., the refine-
ment FFSIv(JournalIv(IndexSq)) ≤ AFSAt holds.

The verification methodology for concurrent components used in this thesis is
one of the key factors for successfully extending the refinement hierarchy with con-
currency. Verifying correctness by abstracting a concurrent component to an atomic
one first (atomicity refinement) and then re-using the results of sequential reasoning
(data refinement) is much more feasible than proving linearizability simultaneously
with functional correctness.

The approach is not restricted to file systems but can be used universally to
verify concurrent systems. It works best for lock-based concurrency with a strict
hierarchical locking strategy, as it is used in the Flashix file system. Support for
other types of concurrency could still be improved, e.g., the CAS (compare-and-
swap) instruction used frequently in lock-free algorithms is not supported at the
moment. Verifying more fine-grained locking strategies where locking ranges overlap,
like hand-over-hand locking used by Zou et al. [119], is currently quite cumbersome
and requires rather much manual proof work. Future work could explore how the
methodology could be extended for better automation.

Verification Under Adverse Conditions Verifying large-scale software systems
under adverse conditions, like when using caching and concurrency, turns out to be a
major challenge. When integrating these concepts into existing systems, proving the
correctness of these additions is often significantly more laborious than the original
verification of the respective components, particularly when considering crashes. For
example, proving crash-safety of the caching addition (Chapter 6) was noticeably
harder than proving its functional correctness (crash-safety required about ten times
more interactions than the proofs for functional correctness). As another example,
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the core verification of concurrent garbage collection (Chapter 8) was much more
extensive than the sequential verification (approx. 90,000 proof steps compared to
18,000 steps). For managing these complexities, rigorous specification and proof
engineering efforts were inevitable.

Tool Support In the course of this thesis, tooling support was also improved. The
KIV proof system has undergone various enhancements, further improving the sup-
port for the proof engineer and increasing the trust in systems verified by KIV. For
example, the KIV logic was extended by a polymorphic type system (Chapter 2) that
reduces the specification overhead for instantiable data types noticeably. Further-
more, exceptions were integrated into the programming language and the calculus so
that the absence of runtime exceptions is verified directly by program proofs (Chap-
ter 2 and (Chapter 7). Rely-guarantee and reduction proofs with KIV are improved
by enabling to give assertions as annotations for labeled statements (Chapter 7),
which are also used for the generation of proof obligations. The latter has turned
out to be another crucial factor for the successful development of large-scale systems.
The methods used in this thesis are supported directly by KIV, e.g., there are distinct
specification types of defining sequential and concurrent components or refinements,
which all generate proof obligations that guarantee correctness automatically. These
mechanisms also find regular application in various small- to mid-sized case studies
outside of Flashix, for example, in competitions of the VerifyThis series [115].

A Realistic Flash File System Implementation As a result of this thesis,
the Flashix file system is the first fully verified and crash-safe file system for flash
memory meeting realistic standards. It covers all safety-critical and performance-
oriented aspects of real-world file system implementations. It is thus competitive
with standard implementations like UBIFS, which are established in the operating
system environment (Chapter 9). As discovered in the course of this work, there is
still some potential for performance gains due to the limitations of the code generator
used. This insight led to a follow-up project that examines how code generation can
be improved, e.g., by applying data flow analysis techniques, so that the resulting
code is more efficient in sharing and copying data structures.
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