TRANSACTIONAL MEMORY FOR
HiGH-PERFORMANCE EMBEDDED SYSTEMS

Dissertation
zur Erlangung des akademischen Grades eines
Doktors der Ingenieurwissenschaften (Dr.-Ing.)
der Fakultat fiir Angewandte Informatik
der Universitat Augsburg

o
Universitat

Augsburg
University

eingereicht von
Christian Piatka, M.Sc.

TRANSACTIONAL MEMORY FOR HIGH-PERFORMANCE EMBEDDED SYSTEMS

Christian Piatka, M.Sc.

Erstgutachter: Prof. Dr. Sebastian Altmeyer
Zweitgutachter: Prof. Dr. Theo Ungerer
Tag der miindlichen Priifung: 20.03.2023

Kurzfassung

Der immer grofier werdende Bedarf an Rechenleistung in eingebetteten Systemen, der
fir verschiedene Aufgaben wie z. B. dem autonomen Fahren benétigt wird, kann nur
durch die effiziente Nutzung der zur Verfiigung stehenden Ressourcen erreicht werden.
Durch physikalische Grenzen sind Prozessorhersteller dazu iibergegangen, Prozessoren
mit mehreren Prozessorkernen auszustatten, statt die Taktraten weiter anzuheben. Da-
her kann die zuséatzlich benotigte Rechenleistung aus unserer Sicht nur durch eine Stei-
gerung der Parallelitat gelingen.

Hardwaretransaktionsspeicher (HTS) erlauben es ihren Nutzern schnell und einfach par-
allele Programme zu schreiben. Allerdings wurden HTS nicht speziell fiir eingebettete
Systeme entwickelt und sind daher nur eingeschrankt fiir diese nutzbar. Durch den Ein-
satz herkommlicher HTS steigt die Komplexitdt und es wird somit schwieriger abzuse-
hen, ob andere wichtige Eigenschaften erreicht werden kénnen.

Um den Einsatz von HTS in eingebettete Systeme besser zu ermdglichen, beschreibt
diese Arbeit einen konkreten Ansatz. Der HTS wurde hierzu so entwickelt, dass er eine
parallele Ausfithrung von Programmen erméglicht und Eigenschaften besitzt, welche fiir
eingebettete Systeme niitzlich sind. Dazu gehdren unter anderem: Wegfall der typischen
Limitierungen herkdmmlicher HTS, Einflussnahme auf den Konfliktauflésungsmecha-
nismus, Unterstiitzung einer abschitzbaren Ausfithrung und eine Funktion, um Energie
einzusparen.

Um die gewiinschten Funktionalitdten zu ermoglichen, unterscheidet sich der Aufbau
des in dieser Arbeit beschriebenen HTS stark von einem klassischen HTS. Im Vergleich
zu dem Referenz HTS, der ebenfalls im Rahmen dieser Arbeit entworfen und imple-
mentiert wurde, betrifft die grofite Anpassung die Konflikterkennung. Sie wurde der-
art verandert, dass die Konflikte zentral erkannt und aufgelost werden konnen. Hierfiir
mussten die Cache-Hierarchie und Cache-Kohérenz stark angepasst und teilweise er-
weitert werden.

Das System wurde in einem taktgenauen Simulator, dem gem5-Simulator, umgesetzt.
Zur Evaluation wurden die acht Benchmarks der STAMP-Benchmark-Suite eingesetzt.
Die Evaluation der verschiedenen Funktionen zeigt, dass die Mechanismen funktion-
ieren und somit einen Mehrwert fiir eingebettete Systeme bieten.

iii

Abstract

The increasing demand for computational power in embedded systems, which is re-
quired for various tasks, such as autonomous driving, can only be achieved by exploit-
ing the resources offered by modern hardware. Due to physical limitations, hardware
manufacturers have moved to increase the number of cores per processor instead of fur-
ther increasing clock rates. Therefore, in our view, the additionally required computing
power can only be achieved by exploiting parallelism. Unfortunately writing parallel
code is considered a difficult and complex task.

Hardware Transactional Memories (HTMs) are a suitable tool to write sophisticated par-
allel software. However, HTMs were not specifically developed for embedded systems
and therefore cannot be used without consideration. The use of conventional HTMs
increases complexity and makes it more difficult to foresee implications with other im-
portant properties of embedded systems.

This thesis therefore describes how an HTM for embedded systems could be imple-
mented. The HTM was designed to allow the parallel execution of software and to offer
functionality which is useful for embedded systems. Hereby the focus lay on: elimination
of the typical limitations of conventional HTMs, several conflict resolution mechanisms,
investigation of real time behavior, and a feature to conserve energy.

To enable the desired functionalities, the structure of the HTM described in this work
strongly differs from a conventional HTM. In comparison to the baseline HTM, which
was also designed and implemented in this thesis, the biggest adaptation concerns the
conflict detection. It was modified so that conflicts can be detected and resolved cen-
trally. For this, the cache hierarchy as well as the cache coherence had to be adapted and
partially extended.

The system was implemented in the cycle-accurate gem5 simulator. The eight bench-
marks of the STAMP benchmark suite were used for evaluation. The evaluation of the
various functionalities shows that the mechanisms work and add value for the operation
in embedded systems.

Danksagung

An dieser Stelle mochte ich mich fiir die hervorragende Betreuung wahrend meiner Pro-
motion bei Herrn Prof. Theo Ungerer und Herrn Prof. Sebastian Altmeyer bedanken.
Auch bei Herrn Prof. Jérg Hahner mochte ich mich bedanken, da er als Drittpriifer an
meiner miindlichen Priifung teilgenommen hat.

Ebenfalls mochte ich mich bei meinen Kollegen hier am Lehrstuhl bedanken. Die vielen
Gesprache und Diskussionen im Rahmen unserer Mittagsrunde, aber auch zu anderen
Gelegenheiten waren immer sehr anregend. Diese werden mir sehr fehlen. Des Weiteren
habe ich den immer sehr kollegialen Umgang geschatzt. Besonders bei Rico Amslinger,
Florian Haas und Sebastian Weis mdochte ich mich an dieser Stelle bedanken, da ich mit
ihnen sehr eng zusammengearbeitet habe.

Der grofite Dank gilt meiner Familie, insbesondere meiner Frau Helen, unseren drei
Kindern sowie meinen Eltern und Geschwistern, da diese Arbeit ohne ihre Unterstiitzung

nicht moglich gewesen wire.

Christian Piatka
Augsburg im Juli 2023

vii

Acronyms

ACID Atomicity, Consistency, Isolation and Durability
ASF Advanced Synchronization Facility
COTS common of the shelf

DMB Data Memory Barrier

FPGA Field Gate Programmable Array
HTM Hardware Transactional Memory
HTS Hardwaretransaktionsspeicher
ISA Instruction Set Architecture

LLC Last Level Cache

LSU Load/Store Unit

OS Operating System

PC program counter

RC Release Consistency

RS read set

SMT Simultaneous Multithreading
STM Software Transactional Memory
TLE Transactional Lock Elision

TM Transactional Memory

X

TME Transactional Memory Extensions

TMU Transaction Management Unit

TSX Transactional Synchronization Extensions
WCET worst case execution time

WS write set

Xl cross interrogates

Contents

Zusammenfassung iii
Abstract v
Danksagung vii
Acronyms X
1 Introduction 1
1.1 Motivation 2

1.2 Objectives and Contributions 4

1.3 Publications 4

1.4 OVerview e e 5

2 Background 7
2.1 Transactional Memories 8
2.1.1 Properties of Transactional Memories 8

2.1.2 Concurrency Control 9

2.1.3 Conflict Detection 10

2.1.4 Versioning e 11

2.1.5 Software Transactional Memories 12

2.1.6 Hardware Transactional Memory 13

2.1.7 Challenges and benefits of Transactional Memories 14

2.2 CacheCoherence 15
221 OVerview L 15

222 Invariants Lo 17

223 States 18

2.24 Snooping Based Cache Coherence 19

2.2.5 Directory Based Cache Coherence 20

2.2.6 MOSI Cache Coherence Protocol 20

2.3 The Gem5 Simulator 24

2.4 STAMP Benchmark Suite 25

25 Summary 27

3 Related Work 29
3.1 Hardware Transactional Memory Approaches Devolved by Industry . . . 30
3.1.1 Sun Microsystemso 30

pel

xii Contents
3.1.2 Proposal of Hardware Transactional Memory by AMD 31
3.1.3 Hardware Transactional Memory approaches by IBM 32

3.1.4 Intel Transactional Synchronization Extensions (TSX) and ARM
Transactional Memory Extensions (TME) 34
3.2 Contention Management Strategies 34
3.3 Unbounded Conflict Detection 36
3.3.1 Unbounded Transactional Memories 36
3.3.2 Virtualizing Transactional Memory 37

3.3.3 LogTM-SE: Decoupling Hardware Transactional Memory from
Caches 39

3.3.4 Directory-Based Conflict Detection in Hardware Transactional
Memory e 40

3.3.5 Making the Fast Case Common and the Uncommon Case Simple
in Unbounded Transactional Memory 41
34 Embedded-TM 42
3.5 Real-Time Transactional Memories 44
3.6 Summary e e 45

4 Implementing a Hardware Transactional Memory exploiting MOSI Cache

Coherence 47
4.1 BasicSystem 48
4.2 Implementing Cache Coherence 51
4.3 Design Choices for Hardware Transactional Memories 53
43.1 Conflict Detection 53
4.3.2 ConflictResolution0 . 54
433 Versioning e 54
4.4 Integrating the Hardware Transactional Memory 54
441 Managing the Read and Write-Set 55
4.4.2 Additional Coherence Messages 55
443 Modifying the Cache Controllers 57
45 Interface 61
4.6 Evaluation 62
4.6.1 Estimation of Hardware Costs 63
46.2 Benchmarks L. 63
4.6.3 Methodology 64
464 Analysis 64
47 SUMMATY o vttt e e e e e e e 68
5 Hardware Transactional Memory for Embedded Systems 69
5.1 Motivation L 70
5.2 Adapting the baseline Hardware Transactional Memory 73
5.2.1 Managing the Read- and Write-Set 74
5.2.2 Additional Coherence Messages 75

5.2.3 Conflict Detection 79

Contents xiii

524 ConflictResolution 80

5.2.5 Modifying the Cache Controllers 80

53 Interface 87

5.4 Abort-Aware Transactional Execution 88

5.5 Unbounded Transactions 88

5.6 Contention Management Strategies 90

5.7 Estimating Execution Times for Extended HTM 93

5.8 Reducing False Conflicts 94

59 Evaluation 96
5.9.1 Estimation of Hardware Costs 96

5.9.2 Methodology 97

593 Benchmarks oL 98

5.9.4 Overhead of extended HTM 99

5.9.5 Contention Management Strategy: timestamp 100

5.9.6 Contention Management Strategy: commit. 107

5.9.7 Contention Management Strategy: abort 111

5.9.8 Unbounded Transactions 116

5.9.9 Contention Management Strategy: priority 120

5.9.10 Abort-Aware Execution 122

5.9.11 Reducing False Conflicts 124

510 Summary e 126

6 Summary and Conclusion 127
6.1 Summary 127

6.2 Future Work 130

6.3 Conclusion and Outlook 131
Bibliography XV
List of Figures xxii

List of Tables xxiii

Introduction

Contents

1.1 Motivationo 2
1.2 Objectives and Contributions 4
1.3 Publications 4
1.4 Overviewo e e 5

In 1965 Gordon E. Moore predicted a trend concerning the development of integrated
circuits for the computer industry. The prediction is known as Moore’s law and implies
that the numbers of transistors on a computer-chip can be doubled every 18 to 24 months
[52, 31, p. 19].

For nearly 30 years the frequency at which a processor could be run by also doubled
whenever the number of transistors doubled. Since the power needed to run a transistor
is proportional to its size, it is possible to reduce the power supply needed to run a
transistor when it is reduced in size. Another effect of decreasing a transistor’s size is
that it can be operated at a higher frequency. Since the power consumption of a transistor
decreases energy density stays constant, even though more transistors are located within
the same space and frequency is higher. This effect is known as Dennard scaling.[17]

In the early two thousands it was no longer possible to further decrease the power sup-
ply for transistors. Due to physical limitations a certain voltage is needed to power a
transistor even though they continue to decrease in size [21]. Therefore, it was also not
possible to further increase frequency, since otherwise the energy density would have
increased and problems with heat development would have occurred. Since no further
performance gains were possible, but the number of transistors continued to increase,
the processor industry shifted from producing single core chips to manufacturing multi-

2 1 Introduction

core chips to enable performance gains though parallel execution [21]. Therefore, nowa-
days multi-core processors have become ubiquitous.

Supplying adequate software for multi-cores is complex, since writing correct parallel
code is a challenging task [29, p. 1]. Transactional Memories (TMs) are synchronization
mechanisms which simplify this process. Therefore, this technology has become inter-
esting for research and industry. In the following we will further motivate why we focus
on using a Hardware Transactional Memory (HTM) and how we consider using it for
embedded systems. Next, we will lay out the objectives and contributions of this work.
After we declare where a part of this work is published, we will close this chapter by
giving an overview of how this work is structured.

1.1 Motivation

The demand for embedded systems which offer high performance will most likely in-
crease in the near future. Since e.g., cars or other complex embedded systems will have to
process a lot of data to provide their functionality, multi-core systems must be exploited
to a high degree to provide the necessary performance.

Providing multi-cores with sufficient software is not trivial [29, p. 1]. Writing correct
parallel programs which exploit the available computational power is not easy and is
therefore considered a difficult task. One of the key problems is to set the right amount
of synchronization [39]: Potential parallelism may be lost due to too coarse synchro-
nization settings prohibiting the parallel execution of software. If synchronization is set
too fine parallelism may be increased, but errors might occur since this approach is con-
sidered very error prone. TMs simplify the process of writing a parallel program and
leave it to software or hardware to handle synchronization. In the optimal case a user
only must set the beginning and end of a critical section. An instance executing the
critical section is called a transaction. TMs use optimistic synchronization which allows
multiple concurrent transactions to simultaneous access critical data. In our work we
focus on an HTM, which realizes its functionality in hardware. We do not believe that a
Software Transactional Memory (STM), which is realized purely in software, allows the
adaptations for the functionality we want to offer.

Embedded systems which do not require high performance might not need hardware
offering the possibility to execute parallel code, since their workloads can be handled by
a single core chip. These systems are not focus of this work, since TMs are not beneficial
in such a case. In our work we therefore want to supply an HTM specifically for high-
performance embedded systems, since we find that conventional HTMs do not offer
the functionality and flexibility needed in modern embedded systems. In the following

1.1 Motivation 3

we discuss some problems with conventional HTMs and lay out which functionality an
HTM for embedded systems should offer in our opinion.

Conventional HTMs often suffer from hardware limitations, meaning a transaction has
to be aborted when exceeding the available resources. We believe that such hardware
limitations should not be an issue, since otherwise already made computational progress
might be discarded. Therefore, we believe that an HTM for embedded systems has to pro-
vide a mechanism which allows transactions of arbitrary size. Other transactions should
be affected as little as possible if a transaction exceeds available resources. Optimally,
they should be able to continue execution until the transaction ends.

A conflict resolution policy determines how the underlying HTM handles a conflict.
Most HTMs only offer one conflict resolution policy. Therefore, they are very static
meaning that the contention management strategy cannot be adapted even though a dif-
ferent strategy would be more suitable for the execution. If multiple strategies could be
offered, more control over the behavior of the execution of software could be provided.
Changing the strategy potentially allows further optimizations (performance, power
consumption, etc.). Among others, we believe that providing a conflict resolution policy
which can handle priorities is important, since embedded systems often require pri-
orities. Therefore, we believe it is important to provide several contention resolution
policies to satisfy the needs of an execution performed on an embedded system.

In our opinion writing software for an HTM has to be as simple as possible. Many HTMs
require an alternative path of execution if a transaction continuously cannot be exe-
cuted. The alternative path of execution is often referred to as fallback path. We believe
that there should be no necessity of providing fallback paths when writing software
for embedded systems. Otherwise, an alternative synchronization mechanism is needed
which adds complexity to the development process. The fallback path must also be im-
plemented carefully and raises the question of why the programmer should not use a
different synchronization mechanism right away, since it also must be implemented.

Depending on where embedded systems are used, they require additional features. If
embedded systems are integrated into high-realiability machines (e.g., planes) software
executed on the embedded systems must be analyzable to guarantee e.g., real-time re-
quirements. Also, power reduction mechanisms are important for embedded systems,
since they often have power constraints. Conventional HTMs do not consider the possi-
bility to analyze execution and do not provide any power saving mechanisms. Therefore,
such features must also be considered when providing an HTM for embedded systems.

As pointed out conventional HTMs are not thought to be used in embedded systems.
Therefore, an HTM developed for embedded systems should eliminate the typical lim-
itations of conventional HTMs, offer several conflict resolution mechanisms, allow the
investigation of real time behavior, and supply features to conserve energy.

4 1 Introduction

1.2 Objectives and Contributions

With our work we want to offer an HTM which provides functionality useful for modern
embedded systems. Our goal is to develop an HTM which is able to execute transactions
of arbitrary size, offers multiple conflict resolution strategies, does not require fallback
paths, is analyzable and offers the possibility to save power. To provide a holistic analysis
of the behavior we targeted to implement our HTM into an cycle-accurate simulator.

The following contributions were made in this doctoral thesis:
+ Implementation of an HTM based on MOSI cache coherence
« Implementation of a mechanism to support transactions of arbitrary size
» Provision of multiple hardware contention management strategies
« Investigation of real time behavior

+ Special abort-aware execution mode which allows power saving options when
executing software

« False conflict detection and reduction

« Holistic evaluation of performance and overheads of the proposed HTM imple-
mentation

1.3 Publications

An early stage of the work described in Chapter 5 is published in [44]. In contrast to
the work provided by this thesis we there described an extra hardware unit, the Trans-
action Management Unit (TMU), which provided the functionalities to offer the desired
features. As we continued to further develop our system, we eventually integrated the
functionalities provided by the TMU to the Last Level Cache (LLC) controller (see Chap-
ter 5 for more details) and therefore got rid of the TMU.

1.4 Overview 5

1.4 Overview

The next chapter of this thesis provides the background to better understand how we
implemented our work. We here present an overview on TMs as well as cache coherence.
In Chapter 3 we present and summarize related work. At the end of this chapter, we
provide a table which compares the presented work to our proposal. Chapter 4 describes
how we implemented the underlying baseline HTM. Among other things relevant for
the Implementation, we here in particular describe the hardware setup, how we adapted
the cache coherence protocol and how we adjusted the cache controllers. At the end
of this chapter, we evaluate the HTM by executing the benchmarks from the STAMP
benchmark suite. In Chapter 5 we explain how we adapted the baseline HTM developed
in Chapter 4 to be able to perform conflict detection at the LLC level. In this chapter we
also present the details on how we implemented the features the adapted HTM provides.
At the end of this chapter, we provide a detailed evaluation. Here we also investigate
where potential overheads are generated. We conclude our work by summarizing it in
Chapter 6. In this chapter we also give a conclusion and an outlook on future work.

Background

Contents

2.1 Transactional Memories 8
2.2 CacheCoherence 15
2.3 The Gemb5 Simulator 24
24 STAMP Benchmark Suite 25
25 Summary Lo e 27

In this chapter we will explain the mechanisms and tools used in this work to allow a
better understanding of the following chapters. Additionally, we will provide informa-
tion on the topics which are discussed later but are not the focus of this work (e.g., STM).
In the following we will therefore first give a general overview of TMs. Since we had to
make changes to the cache coherence protocol it is important to understand the under-
lying mechanisms. Therefore, we provide an overview of the techniques needed to keep
the caches coherent. To implement our work, we used the gem5 simulator. Therefore,
we will next give an overview of the gem5 simulator. Here, we will give a brief overview
on how the gem5 simulator is set up and how it can be configured. Furthermore, we
will here also lay out the reasons for some design choices we made in Chapter 4. We
will close this chapter by giving a brief overview of the STAMP benchmark suite. The
suite consists of eight benchmarks which we used for the evaluations in Chapter 4 and
5. Therefore, we present the key characteristic of each of the eight benchmarks.

8 2 Background

2.1 Transactional Memories

The idea which lead to TMs originates from databases. Here, multiple operations, which
perform read or write accesses to the database, are tied together, and treated as a whole.
The combined operations are called transactions. Transactions must be executed and
treated as one atomic operation. If a conflict occurs with another transaction, the effects
of one of the conflicting transactions have to be undone. A conflict occurs if a data depen-
dency is violated (see Section 2.1.3 for more details). To be able to perform a rollback of
a transaction, a transaction log has to be maintained. It records the changes which were
made to the database. In case of a conflict the log is used to restore the database to a
consistent state. Database transactions must fulfill the Atomicity, Consistency, Isolation
and Durability (ACID) properties (see Section 2.1.1 for more details). The most important
characteristic, which can be adopted from database transactions, is the optimistic access
to data. Hereby, two transactions can both access the same data if no data dependency
is violated. [29, pp. 4-5]

2.1.1 Properties of Transactional Memories

A transaction within TMs is a sequence of operations which performs read and/or write
accesses to the memory. Transactions in TMs originate from database transactions but
do not entirely fulfill their properties. Therefore, transactions of TMs are referred to as
light weighted transactions. In contrast to database transactions, transactions in TMs do
not meet the consistency and durability criteria. Since the consistency property refers
to data integrity, which depends on how the database tables are set up, it is not a rele-
vant property for transactions in TMs. The durability property is also not relevant for
transactions in TMs, since it requires that data changed by a database transaction is per-
manent and is written to a durable medium such as a disk. Therefore, the criteria is also
only relevant for database transactions. If not stated differently, we from now on refer to
a transaction in a TM when using the term transaction by itself. In the following we give
an overview on the properties which apply to transactions: [30, 29, pp. 5-6, 32, p. 2080,
39]

Atomicity: A transaction can either commit or abort. If a transaction commits, the ef-
fects of the transaction become visible to other tasks and transactions. A trans-
action can only be committed if all its operations are executed without failing. In
case an operation could not be executed successfully since a conflict occurred (see
2.1.3 for more details), the transaction has to be aborted and the already performed
changes have to be discarded. Furthermore, the TM has to ensure that the effects of
the already executed operations of the aborted transaction are undone. This form
of atomicity is referred to as failure atomicity. [29, p. 5, 30, 33]

2.1 Transactional Memories 9

Isolation: The effects of a transaction are only determined by the operations within a
transaction and have to be independent of other tasks. Therefore, a transaction
always has to produce the same result as if it were executed exclusively. [39]

Due to the properties described above transactions are serializable. Although concurrent
transactions as well as concurrent code can be executed interleaved, they always produce
a result which could have been produced by an instance of a sequential execution of the
transactions and the code. [29, pp. 25-26, 33]

2.1.2 Concurrency Control

Concurrency control defines how data can be accessed by transactions within the trans-
actional execution. Furthermore, it has a major impact on when conflicts are detected
and resolved [29, p. 20]. Concurrency control is provided in two different ways:

Pessimistic concurrency control: Access to critical data is only granted to one trans-
action. Therefore, a potential conflict will not arise, since the access which would
cause a conflict is delayed until the data is accessible again. The data can only be
accessed by another transaction, when the transaction, which first accessed the
data, finishes. [29, p. 20]

Optimistic concurrency control: This form of cocurrency control allows multiple
transactions to access the same data. If a conflict arises the TM has to ensure that
they are resolved before the transactions are able to commit. This form of con-
curency control is used for most implementations of TMs. [29, pp. 21-22, 39]

When implementing pessimistic or optimistic concurrency control it is important to note
that the mechanisms themselves do not ensure progress. Deadlocks, where two concur-
rent running transactions wait for the respective other to allow access to the data it
currently holds, can occur in faulty implementations of pessimistic concurrency con-
trol. Therefore, techniques (e.g., contention management) preventing deadlocks have to
be considered during the development process when implementing pessimistic concur-
rency control. For optimistic concurrency control, livelocks have to be considered. Here
two or more transactions may keep aborting each other and no progress is made. This
can also be solved by providing contention management. [29, p. 21]

Pessimistic and optimistic concurrency control can also be combined. If a transaction
keeps aborting a surpassed a predefined number of aborts, when executed optimistically,
it can be executed pessimistic. This is done by protecting the execution of the transac-
tion with a mutex. Now the transaction cannot be aborted. Furthermore, it will cause

10 2 Background

the concurrent transaction to abort. This mechanism is used to implement a fallback
execution of transactions. [29, p. 21]

2.1.3 Conflict Detection

Defining how the conflict detection has to behave significantly impacts the implemen-
tation of a TM. To better understand the terms relevant for conflict detection we provide
a definition according to [29, p. 20]:

A conflict occurs, if a thread tries to read or write to a memory location a transaction
already wrote to. A conflict also occurs when a thread tries to write a memory
location which was beforehand read by a transaction. [29, p. 20, 43, 32]

A conflict is detected when the underlying TM system identifies a conflict [29, p. 20].

A conflict is resolved by the underlying TM system. This can happen in various ways.
One possible action the TM-System could take to resolve the conflict, is to abort
one of the conflicting transactions. [29, p. 20, 33]

The order of the above-mentioned events is always maintained and can never change.
The time when the events happen may vary. [29, p. 20, 33]

Conlflict detection can be classified in three categories. The first category concerns the
granularity by which the TM system detects conflicts. Conflict detection in HTM usually
works on cache or word line granularity. In contrast, STMs detect conflicts at object (de-
pending on how the used language defines objects) level. The granularity has a high im-
pact on the implementation since a fine granularity needs more resources. Furthermore,
it affects how many false conflicts are detected. False conflicts are conflicts which are
detected even if no data dependencies have been violated. For example, when conflicts
are detected on cache line granularity, a conflict is detected if two transactions access
it in a conflicting manner. The conflict is detected regardless of whether the transac-
tions access the same words of the cache line. Therefore, a conflict can be detected even
though no actual conflict occurred. [29, p. 22, 30]

The second category defines when a conflict is detected. The literature describes two
approaches: In eager conflict detection conflicts are detected and resolved directly
after they occur. In contrast, when lazy conflict detection is applied potential con-
flicts are detected when a transaction tries to commit . Eager conflict detection is a more
pessimistic approach. When applied it might abort transactions which would have com-
mitted with lazy conflict detection. In lazy conflict detection the transactions run longer
since the conflicts are detected later. Therefore, they consume more computational re-

2.1 Transactional Memories 11

sources than in a TM system with eager conflict detection. [29, pp. 20,22, 32, pp. 2085-
2086]

The third category refers to what accesses the underlying TM system detects as a con-
flict. For systems supporting tentative conflict detection conflicts are detected between
actively running transactions. In contrast, committed conflict detection only observes
conflicts between actively running transactions and committed transactions. Usually
TM systems which detect tentative conflicts are combined with eager conflict detection
mechanisms. TMs which feature committed conflict detection are combined with lazy
conflict detection mechanisms. [29, pp. 22-23]

To detect conflicts TMs rely on an read set (RS) and write set (WS). RSs and WSs are
managed per transaction. The RS contains all read accesses performed by a transaction.
The WS contains all write accesses. To identify conflicts the TM system has to detect if
an overlap between a transaction WS and the RS or WS of another transaction occurred.
[29, p. 151, 33, 43].

2.1.4 Versioning

Another important design choice involves the management of speculative data. The lit-
erature provides two general mechanisms which can be applied in TMs:

Eager version management allows writing speculative data in place. Meaning, the
memory location is directly updated with the speculative data. This technique re-
quires pessimistic concurrency control, since the transaction needs exclusive ac-
cess when writing to the concerning memory location. Eager version manage-
ment therefore requires an undo-log which tracks the old values the transaction
updated. The undo-log is required, since it is used to restore the updated values in
case the transaction aborts. [29, pp. 21-22, 30, 32, p. 2084]

Lazy or deferred version management requires the TM system to provide a private
redo-log. The redo-log can be considered as a private copy of the data the transac-
tion wants to update. It is used to buffer the speculative data. During the time the
transaction is running the TM system has to ensure that already written values
are read from the redo-log. Otherwise, earlier performed writes are not consid-
ered. In case the transaction succeeds and therefore commits the actual memory
locations are updated with the values from the redo-log. If the transaction aborts
the redo-log is dropped and not further considered. [29, pp. 22-23, 30, 32, p. 2084]

12 2 Background

2.1.5 Software Transactional Memories

Although STMs are not the main focus of this work we will provide some basic infor-
mation to better understand related work. Additionally, we will explain why STMs ap-
proaches are widely spread in academia (e.g., [28, 34, 41, 56]) and why it seems attractive
to work with an STM instead of an HTM. At the end of this section, we will point out
why we decided to continue our work with an HTM.

STMs provide TM functionality in software. Therefore, all functionality, such as ensuring
the properties are not hurt, conflict detection and concurrency control are offered by a
compiler or library. [10, 32, p. 2083]

Using software for the development of a TM brings some advantages: Compared to the
underlying hardware of an HTM the software used to implement an STM can be eas-
ily modified. Therefore, adapting or developing an HTM is considered quite challenging
compared to adapting or developing an STM. When using software to provide TM func-
tionality another advantage is that a potential developer can also exploit the features the
underlying programming language offers. Additionally, STMs are not so much affected
by hardware limitations (e.g., cache size). [29, p. 101]

STMs provide two main ways to maintain the logs as well as the metadata. This can
either happen object-based or word based. The main difference is that in the object-based
approach the metadata is maintained within the object. For the word-based approach the
metadata is kept for every word address which is used within a transaction. To detect
conflicts STMs provide special functions which identify a read or write access to be
transactional. The extended read and write operations cause extra instructions, since the
STM has to check if the accessed location was already accessed by another transaction.
If the underlying STM detects a conflict it has to react accordingly and initiate measures.
[10, 29, pp. 103-104]

Unfortunately, conflicting non-transactional accesses cannot be identified, since they
do not use the special augmented read or write instructions. Therefore, STMs typically
only support weak atomicity. When weak atomicity is applied only conflicts between
transactions are detected. [7, 10, 30, 39]

Even though STMs offer the above-mentioned advantages we decided to proceed our
work with an HTM. Due to the overheads STMs generate when transactionally reading
or writing data ([29, p. 149]) and the fact that a potential user has to ensure atomicity
([10]), we decided that an STM is not a good fit for our work. Since our goal is to pro-
vide an HTM for embedded systems we need more control of the procedures within the
transactional system. In our opinion this can only be provided by an HTM.

2.1 Transactional Memories 13

2.1.6 Hardware Transactional Memory

Since HTMs are the main focus of our work we show how they can be classified and give
a brief overview of their main properties. In Chapter 3 we will put the focus on actual
implementations and will explain a few implementations in detail.

To detect conflicts most HTM implementations rely on adaptations to the cache co-
herence protocol Additionally, the Instruction Set Architecture (ISA) is augmented, in
one way or the other, to provide the TM functionality. Depending on how the ISA was
adapted, HTMs can be classified as follows [29, p. 148]:

Explicitly transactional HTMs have special instructions which are used when writ-
ing or reading transactionally. Accesses to memory locations within the transac-
tion not using these special instructions are not considered transactional. Addi-
tionally, other instructions for e.g., starting and ending a transaction can be pro-
vided (e.g., [14, 33, 38, 59]).

Implicitly transactional HTMs only require the specification of the boundaries of a
transaction (i.e., start and end of a transaction). All accesses within the transac-
tion boundaries are considered transactional and therefore added to the RS or WS
respectively (e.g., [3, 12, 47, 49]).

As stated earlier (see 2.1.3 for more information) a TM system has to maintain an RS
and a WS per transaction to be able to detect conflicts. To provide an RS an HTM has
to track the reads performed during a transaction. A popular approach to do this is to
modify the data cache, so it is able to mark cache lines, read during a transaction. A WS is
maintained by buffering transactional writes. Tracking the WS requires more care, since
transactional writes are speculative and therefore cannot be written back to memory.
Here HTMs also utilize the cache or some sort of additional buffer [32, p. 2083]. Since
caches are involved in maintaining the RS and WS, usually an entire cache line is added to
the RS when read or to the WS when written. Read and write operations are recognized
by monitoring the accesses to the cache. One important detail to consider is that the RS
and WS are usually limited in size. The limitation is related to the associativity of the
caches, or the size of the buffers used to maintain the RS and WS. If a cache or buffer
is overflowed the affected transaction usually has to abort. [29, pp. 149-150, 32, p. 2083,
43]

To detect conflicts HTMs rely on the cache coherence protocol. The cache coherence
protocol is here used to identify read or writes from other cores. A conflict is detected if
either a read or write access of another core overlaps with the WS, or a write access of
another core overlaps with the RS of the transaction currently executed. [29, p. 152]

14 2 Background

If a conflict is detected it sooner or later has to be resolved (see 2.1.3 for more informa-
tion). Apart from discarding the WS and RS (see 2.1.1 for more information), HTMs also
have to consider the register set. The register set has to be set back to the state right
before the transaction started. Otherwise, speculative values can still be located in the
registers which could lead to a faulty execution. Therefore, HTMs have to provide some
sort of mechanism (e.g., software solution or hardware mechanism) to save a copy of the
register set when a transaction is started. [29, pp. 152-153]

2.1.7 Challenges and benefits of Transactional Memories

One big challenge within TMs are I/O operations. Since TMs allow optimistic access
to data it is not foreseeable if a conflict will occur. If within a transaction a string was
printed to a terminal this is problematic, since the transaction may still be aborted. If
that is the case a complete rollback of the transaction cannot be performed, since the
output operation cannot be reverted. [39, 30]

Another issue TMs face is that the semantics can be different depending on the under-
lying system. Most STMs support weak consistency and most HTMs support strict con-
sistency. This may cause the same program to produce a different outcome depending
on where it was executed. Therefore, it can be challenging to develop software which
can be executed on either TM system (STM or HTM). [39]

Until now, it is not easy for programmers to use TM. Especially HTMs are only available
in a few processors (see Chapter 3 for more Information). Also, for STMs the hurdles to
use it are quite high. Potential programmers might have to completely rewrite a project
to be able to integrate transactions. [39]

Especially in state of the art HTMs the limitation of resources can be problematic. Due
to limited buffer size HTMs may be forced to abort transactions which exceed the buffer
limits. This e.g., can occur if the RSs or WSs become too big. A possible solution for this
is presented in Chapter 3 as well as in Chapter 5. [30]

When writing parallel code, where programmers have to ensure mutual exclusion when
accessing critical sections, it can be very challenging to set the right amount of synchro-
nization. Providing too much protection by setting the protection to critical sections too
wide (also known as coarse-grained locking) limits scalability. Setting the protection of
the critical sections very narrow (also known as fine-grained locking) is not easy to im-
plement and might cause implementation faults leading to a faulty execution causing
data races or deadlocks. In contrast, TMs provide an abstraction which highly simpli-
fies parallel programming. Here the underlying TM system manages synchronization.
Programs using TMs do not suffer from data races or deadlocks. [39]

2.2 Cache Coherence 15

2.2 Cache Coherence

Cache coherence mechanisms are heavily exploited when implementing TMs. Also, our
work, described in Chapter 4 and Chapter 5 heavily relies on the cache coherence pro-
tocol. Furthermore, we also added states and messages to the established protocols de-
scribed in this section (see Chapter 5 for more details). In the following we will first give
an overview on cache coherence. Next, we will briefly explain snooping based cache
coherence. Since we used directory-based cache coherence for our work, we will pro-
vide a detailed explanation of the mechanism. Furthermore, we will describe the states
necessary and show in detail how the MOSI protocols work.

2.2.1 Overview

Cache coherence always refers to a certain memory location and defines the behavior of
reads and writes to it. Therefore, it is an important tool to enforce memory consistency.
Memory consistency defines the order of accesses to memory locations, considering all
memory accesses. The applied memory consistency model can be observed by a potential
programmer. Its enforcement is therefore essential to write correct parallel programs.
Memory consistency and cache coherence are not the same, since cache coherence alone
cannot determine the behavior of shared memory architectures. Due to the fact that
the processor pipeline can also reorder memory accesses, use buffers, etc. it also has
to be considered when enforcing consistency in shared memory architectures. If not
thought of it is possible that in such architectures, memory consistency might be hurt
even though cache coherence works correctly. [31, p. 379, 57, pp. 15; 20-21; 91]

To enforce cache coherence, cache coherence protocols are applied. As Figure 2.1 in-
dicates every cache coherence protocol offers some sort of interface for the cores to
interact with it. The way the core interacts with the cache hierarchy and how the cache
coherence protocols work may vary. There are two ways to enforce cache coherence. In
the following we describe the two approaches and point out the main difference:

Consistency-directed coherence: Here a write operation of a core is acknowledged be-
fore all locations of that address were invalidated or updated. Therefore, out-of-
date values might be visible for other cores. To enforce coherence consistency-
directed approaches rely on the cache coherence protocol as well as on the cores.
(57, p. 11]

It is possible, but challenging, to apply this form of coherence to different forms
of consistency. Especially in systems, enforcing consistency requiring the data to
be consistent only at synchronization boundaries (e.g. Release Consistency (RC)),
consistency-directed coherence can be suitable. [18, 19, 57, p. 12]

16 2 Background

Consistency-directed coherence is also referred to as lazy coherence, since write
operations are lazily updated [19].

Consistency-agnostic coherence: In this form of cache coherence an illusion is created
in which the core interacting with the cache hierarchy is made belief it is inter-
acting with one atomic memory. The main identification criteria for this form of
cache coherence is that the effects of a write operation is made visible to all other
cores before it is acknowledged. Since, this is the form of cache coherence we used
in our implementation (see Chapter 4 for more information) we provide Figure 2.1
for better understanding. Furthermore, we refer to a system applying consistency-
agnostic coherence when mentioning cache coherence. [57, p. 11]

Consistency-agnostic coherence is also referred to as eager coherence, since write
operations eagerly invalidate shared locations [19].

1 Core 1 Core N 1
i read-request(..) read-response(..) 1
' write-request(..) write-response(..) Pipeline
N Coherence |
i Private Cache Private Cache i
! LLC l
} Main Memory |

Figure 2.1: Coherence involves all caches (private caches and the last level cache (LLC))
as well as the main memory. For cores to interact with the coherence pro-
tocol it offers an interface. The coherence protocol provides two functions.
The read-request returns the value for a given memory location. The write-
request expects a memory location and a value. If the write operation was
successful, it returns an acknowledgment. The cache coherence protocols let
the actual memory hierarchy look way simpler, since they completely ab-
stract away the caches. Therefore, the cores access the memory as if only one
atomic main memory existed. [57, p. 11] The Graphic is inspired by [57, p. 12].

2.2 Cache Coherence 17

2.2.2 Invariants

It is important to determine when a memory hierarchy can be called coherent. Literature
therefore provides multiple definitions (e.g., [57, p. 15, 45]). In the following we present
the definition presented in [31, p. 378], since we consider it as the most holistic and
comprehensible. According to [31, p. 378] coherence is achieved if the following three
criteria are met:

1. If a core A writes to a memory location and afterwards reads from the same loca-
tion, A should always receive the value it has written beforehand. This rule applies
as long as no other core performed a write operation between the consecutive
write and read operation of core A. [31, p. 378]

2. Avalue written to a memory location by core A should be available to core B when
it is reading that exact same memory location. Here also time has to be considered,
since the time between the write and read operation has to be sufficient. Addition-
ally, the value written by core A should only be received by core B if no other core
performed a write operation to that memory location between the write operation
of core A and the read operation of core B. [31, p. 378]

3. Write operations to the same memory location are serialized. Therefore, all cores
always observe the same order of writes to a memory location. It can never happen
that two or more cores observe a different order of write accesses to a certain
memory location. [31, p. 378]

To maintain the above-mentioned invariants cache coherence protocols were developed.
Many of these protocols contain an invalidation mechanism. Therefore, they are often
referred to as "invalidation protocols". The underlying idea of these protocols is that a
core can only write to a location if its cache contains the only valid copy of the concerned
memory location. Therefore, the core has to send an invalidation message to all sharers
of that particular location. Reads to a memory location can be performed by multiple
cores simultaneously. To track the shares the core has to perform a read request. [57,

p. 14]

In theory, cache coherence is not bound to a particular granularity since it could vary
from 1 to 64 bytes. In reality this would entail high hardware costs. Therefore, coherence
is usually enforced at cache line level which is dependent on the memory architecture.
In our work we also implemented cache coherence at cache line level (see Chapter 4 for
more information). [57, p. 14]

18 2 Background

2.2.3 States

Cache coherence protocols rely on state machines to maintain cache coherence. For this
purpose, usually the cache hierarchy is augmented to support states for every line con-
tained. Since, we, as well as many others, use a subset of the MOESI protocol, originally
proposed by [60], for our work (see Chapter 4 for more information), we provide a brief
overview of the stable states of the protocol in the following. [57, pp. 97-98 100]

Modified: A cache line marked as modified is valid but dirty since it most likely was
modified through a write access. The cache line is held exclusively by the cache
which contains it. The copy of the cache line in the LLC or memory is most likely
outdated. Therefore, requests to the cache line have to be answered by the cache
containing the modified cache line. [57, p. 98, 60]

Owned: A cache marks a cache line with the owned state if it responded to a request
concerning a cache line it held in the modify state. Since the cache line was mod-
ified beforehand the cache contains the most recent version and has to respond
to requests concerning that cache line. Without another state change the cache
cannot perform any writes to the cache line, since it is no longer held exclusively
by the cache. [57, p. 98, 60]

Exlusive: If marked as exclusive the copy of the cache line is exclusively held by the
cache containing it. This can be beneficial since no further communication is nec-
essary when updating the state of the cache line. Note that the state can therefore
be instantly transformed from exclusive to modified. [57, p. 98, 60]

Shared: A cache line in shared mode was read by several cores. In every local cache the
cache line is therefore marked as shared which indicates that the cache line is not
held exclusively. A cache line in shared mode may only be read. [57, p. 98, 60]

Invalid: A cache line may be invalid for two reasons. The first reason is that the cache
line is currently not present in the cache. The second reason is that the cache line
was updated by another core and therefore all locations of the cache line but the
one in its local cache had to be invalidated. [57, p. 98]

In general, a cache line may be valid or invalid. Further distinctions are made for valid
cache lines. In Figure 2.2 we provide a diagram which shows the characteristics of the
states in detail.

Some state transitions of stable states (e.g., S — M) cannot be performed atomically, since
the state change requires some communication. Therefore, the state of the concerning
cache line may has to be set to an intermediate state. Depending on the protocol the
number of intermediate states varies. We are going to present intermediate states in more

2.2 Cache Coherence 19

Dirtiness

s ¢ + Validity

Exclusivity
I

Figure 2.2: If a cache line is not valid it is marked as invalid (represented by the invalid
state (I)). For invalid cache lines no further distinctions are made. The states
shared (S), modified (M), exclusive (E) and owned (O) represent the states
for which a cache line is considered valid. Validity can further be divided
into exclusivity and dirtiness. A cache line which is not dirty, but exclusive
is marked with the exclusive state (E). A dirty and exclusive cache line is
marked with the state modified (M). If the modified cache line was shared it
is not exclusive anymore but remains dirty. The state is then changed to the
owned state (O). [57, p. 99] This graphic was originally provided by [60] and
the labeling was adopted from [57, p. 99].

detail in Section 2.2.6, where we explain how the MOSI protocol can be implemented.
[57, p. 99]

2.2.4 Snooping Based Cache Coherence

The main idea with snooping-based cache coherence protocols is that the states of the
cache lines are solely managed by the cache controllers, meaning there is no central
point where the cache coherence is managed. Therefore, all cache controllers are inter-
connected via a shared medium like a bus. To maintain cache coherence the participants,
snoop the shared medium to keep the states of their cache lines up to date. Whenever
a cache controller wants to change the state of a cache line it broadcasts a request. The
other cache controllers notice the state change by snooping the bus. If a request concerns
a cache line located in the cache they perform the necessary actions and collaboratively
ensure cache coherence. [57, p. 107, 31, p. 380]

For snooping to work the order of the requests to the cache lines is very important. To
enforce the ordering snooping-based approaches rely on ordered broadcast networks. By
broadcasting every coherence request to all participants, it is ensured that all requests
can be observed by all cache controllers. [57, p. 107]

20 2 Background

Snooping based protocols do not scale well, which is why directory-based consistency
is more often used in multi-core architectures. [57, p. 151]

2.2.5 Directory Based Cache Coherence

In directory-based cache coherence the states of the cache lines are managed by a central
directory. The directory saves the current state and the exact location of a certain cache
line. Furthermore, it either saves the sharers, the exact location, or both for a particular
cache line. Requests to cache lines are first directed to the directory. From there they
are either directly handled or re-directed to the current location of the cache line. In
contrast to snooping based approaches coherence requests are not broadcasted to all
participants. Since the directory contains information to where caches lines are located
coherence messages can be sent more precisely. [57, p. 151]

For directory-based approaches ordering is also important. In contrast to snooping based
approaches, where an ordered broadcast network ensures ordering, the coherence re-
quests are ordered when reaching the directory. Here they are serialized and put in order.
[57, p. 152]

Directory based approaches scale better but might inquire more steps for certain state
changes which can cause higher latencies. The reason for the additional steps is that in
contrast to the snooping-based approach a potential state change possibly has to be ac-
knowledged by several shares, since otherwise ordering cannot be enforced. [57, pp. 152-
153]

For our work we implemented directory-based cache coherence (see Chapter 4 for more
information).

2.2.6 MOSI Cache Coherence Protocol

Due to some benefits, we expected when implementing the MOSI cache coherence proto-
col (see Chapter 5 for more information), we chose to use it for our work. Implementing
cache coherence protocols can be very complex and error prone. Therefore, we oriented
our implementation at the one provided by [57, pp. 151-190]. To give an accurate insight
on how the protocol is implemented we here provide two tables also provided by [57,
pp. 169-170]. Table 2.1 gives an overview on how the cache controller behaves within
the MOSI cache coherence protocol. Table 2.3 gives an overview of how the directory
controller has to react depending on which message arrives and what state the cache
line is in. Throughout our work we slightly adapted Table 2.1 since we believe that oth-

2.2 Cache Coherence

21

erwise we would have not been able to operate the protocol (see Table 2.1 for more
information).
g
- s | = 5 9
5 [a] [a] t [3}
£ 2 z E |E_ |8 E 3
¢ S S g |Es &5 | &y 8 ¥ | E
3 g < < < N Tlstist |28 |z, T |%
S & & Z £ B £ |88|88 |86 |$A |& |S
I Send Send
GetS to | GetM
Dir /ISP | to Dir /
IMAD
ISP Stall Stall Stall Stall -/S -/S
IMAD | Stall Stall Stall Stall Stall -/M | -IM* | -/M ack-
IMA | Stall Stall Stall Stall Stall ack- | -/M
S Hit Send send send
GetM PutS to Inv-Ack
to Dir / | Dir/SI* to Req /
SMAD I
SMAD | Hit Stall Stall Stall Stall send -/M | -/SM? | if(ack>0) ack-
Inv-Ack -/SMA
to Req / else
IMAP -/M*
SMA | Hit Stall Stall Stall Stall ack- | -/M
M Hit Hit send Send Send
PutM data to | data to
to Dir / | Req/O | Req/I
MIA
MIA | Stall Stall Stall Send Send /1
data data to
to Req | Req /I
/OIA
(¢] Hit Send send Send Send
GetM + | PutM data to | data to
data to|to Dir /| Req/O |Req /
Dir /1 o IMAP
OMAC | Hit Send Stall Stall Send if(ack>0) | ack— | -/M*
GetM data to -/OMA
to Dir / Req / else
IMAP IMAP -/M*
OM* | Hit Stall Stall Stall Stall ack—- -/M
ot Stall Stall Stall send -/1
Inv-Ack
to Req
/A
SIA Stall Stall Stall send -/1
Inv-Ack
to Req
/IIA
m Stall Stall Stall -/1

Table 2.1: This table provides an overview of the MOSI cache coherence protocol from
the perspective of a cache controller. It shows all stable and transient states
used in the protocol (first column). The first row shows actions relevant for
coherence which can reach a cache controller. Depending on the current state
and the desired action the table specifies the state transitions. The table fur-
ther provides which steps (e.g., if messages have to be triggered) have to be
performed to ensure a correct state change. The table was copied from [57,
p- 169]. We performed a few changes marked by a star. We believe that with-
out these adaptations the protocol cannot work correctly. Due to the space
limitation, we provide more details in the following paragraphs.

22 2 Background

For better understanding of Table 2.1 and 2.3 we provide the Tables 2.2 and 2.4. Table 2.2
provides an overview on the coherence messages used. Table 2.4 gives an overview on
the abbreviations used in Table 2.1 and 2.3.

The first column of Table 2.1 shows the stable states M, O, S and I as well as all possible
transient states e.g., ISP. For better understanding we want to look at the transient state
ISP in more detail. Since the basic scheme of the transient states follows the same pattern,
the description is sufficient for all transient states.

ISP represents the state of a cache line which is set when it is transitioning from invalid (I)
to shared (S). Since the data has to be requested and the controller has to be registered as a
sharer of the cache line it cannot be instantly set to shared. The controller first has to send
a GetS request (second column, second row). Then it is set to the transient state ISP. P
hereby indicates that data is expected to be received. Once the data arrives the controller
is certain it was registered as sharer and may now change the state of the cache line to
shared (S) (ninth column, third row). If a transient state is marked with an # e.g., SM#
the controller expects one or more acknowledgment message(s). The controller knows
how many acknowledgment messages it has to receive, since the directory transmits the
number of sharers to the cache controller after receiving a GetM request. © indicates the
transient state is expecting the shared counter. The only case where this is necessary is
when a state is transitioned from owned (O) to modify (M), since the controller needs to
know for how many acknowledgments it has to wait, before the state can be switched.

Message Explanation:

GetS Message sent by cache controller to indicate it wants to read a cache
line

GetM Message sent by cache controller to indicate it wants to write a
cache line

Fwd-Get(S/M) | Get(S/M) request is forwarded to owner of cache line

Put(S/M/0O) Cache controller sends this message if it wants to invalidate a cache
line

Put-Ack Coherence message sent by the directory to confirm prior sent Put
message

Inv Coherence message sent by directory if cache line has to be invali-
dated

Inv-Ack Coherence message sent by the cache controllers if a cache line was
invalidated

send data The cache controllers as well as the directory controller can send
data, the directory always adds the number of sharers of the con-
cerned cache line to the message

Table 2.2: Coherence messages used for MOSI cache coherence protocol

2.2 Cache Coherence 23

= - = = = -
g2 g2] g 'L s g
£8 E2 % E <8 e |88 < &5
e ZE ZL ek Fe ZE ZEL Qg QELL
[5) L O L O = O = = O = O O = O =5 O 0 Q
O Q& oz aZ &~ oS AEZ A& AEZE
I | Send data Send data | Send Put- | Send Put- Send Put- | Send Put- | Send Put-
to Req, to Req, set | Ack to | Ack to Ack to | Ack to | Ack to
add Req to Owner to | Req Req Req Req Req
Sharer /S Req /M
S | Send data Send data | Remove Remove Remove Remove
to Req, to Req, | Req from | Req from Req from Req from
add Req to send Inv to | Sharers, Sharers, Sharers, Sharers,
Sharers Sharers, set | send Put- | send Put- send Put- send Put-
Owner to | Ack to | Ack to Req Ack to Ack to
Req, clear | Req n Req Req
Sharers /M
O | Forward send Ack- | Forward Remove Remove Remove Remove Copy data | Remove
GetS to | Count GetM to | Req from | Req from | Req from | Req from |to mem, | Req from
Owner, to Req, | Owner, Sharers, Sharers, Sharers, Sharers, send Put- | Sharers,
add Req to | send INv | send Inv to | send Put- | send Put- | copy data | send Put- | Ack to | send Put-
Sharers to Shar- | Sharers, set | Ack to | Ack to | to mem, | Ack to | Req, clear | Ack to
ers, clear | Owner to | Req Req send Put- | Req Owner /S Req
Sharers /M | Req, clear Ack to
Sharers, Req, clear
send Ack- Owner /S
Count to
Req /M
M | Forward Forward Send Put- | Send Put- | Copy data | Send Put- Send Put-
GetS to GetM to | Ack to | Ack to | to mem, | Ack to Ack to
Owner, Owner, set | Req Req send Put- | Req Req
add Req to Owner to Ack to
Sharers /O Req Req, clear
Owner /I

Table 2.3: This table shows an overview of the MOSI cache coherence protocol from the
perspective of the directory controller. The first column shows the stable states
M, O, S and I. The first row represents the actions relevant for coherence. De-
pending on the state and the requested action the table provides information
on how the state has to change and which actions have to be triggered. Note
that no transient states at directory level are necessary. The table was taken
from [57, p. 170].

Abbreviation | Meaning and explanation:

Req stands for requestor, usually refers to cache controller from which
message originated

Dir stands for directory

ack stands for acknowledgment, in the cache controller it may also
stand for acknowledgment counter

Table 2.4: List of abbreviations used in Tables 2.1 and 2.3

According to the description above we implemented the MOSI cache coherence proto-
col into the gem5 simulator. Since cache coherence is highly important for HTM, the
implementation provides the basis for our work further described in Chapter 4 and 5.

24 2 Background

2.3 The Gem5 Simulator

The gem5 simulator is the result of the union of the m5 and GEMS simulator. Both simu-
lators originally were independently developed but openly available. The m5 simulator
was developed at the University of Michigan and used to model networked systems.
The GEMS simulator was created to evaluate the performance of multiprocessors and
developed at the University of Wisconsin. Combining both simulators made the gem5
simulator a full-system simulation tool. After the merge of the two projects the gem5
simulator continued to be openly available, and the development process became com-
munity oriented. Therefore, researchers and specialists were able to continuously con-
tribute to the project. Over time also the development process was professionalized by
using version management, continues integration and other tools. This made it easier
and more standardized to contribute to as well as use the gem5 simulator. [5, 6, 40, 42]

Five years ago, in 2017 when this work started the gem5 simulator already supported
several ISAs such as ARM, ALPHA, MIPS, Power, SPARC, and x86 (later versions 20.0+
also support RISC-V and GPU-ISAs [40]) [6]. For our work we focused on the ARM ISA

(see Chapter 4 for more information).

Apart from offering different ISAs the gem5 simulator also offers great flexibility in the
CPU model. Among other simpler models, the gem5 offers accurate pipelined in order
as well as out of order CPU models. For our work we used the O3 model, which is the
pipelined out of order CPU model. In contrast to the simpler models, the pipelined mod-
els are more accurate and therefore take longer to evaluate. [6]

The gemb5 offers two system modes to run applications. The System-call Emulation al-
lows a bare metal execution of programs by emulating system calls. In Full-System mode
a complete system consisting of an operating system and devices is modeled. For our
work we used the System-call Emulation mode since the Full-System mode complicated
the evaluation process, due to the very long evaluation times. [6]

One of the main reasons we chose the gem5 simulator for our work is that it can be freely
augmented and adjusted. Since most components are already available (CPU, memory,
buses, etc) we only had to focus on adding the functionality relevant for our work. Apart
from that advantage the gem5 simulator is extremely popular and well established in the
academic world. [6, 40]

Due to merge conflicts when we fetched the latest version of the gem5, caused by our ad-
justments (bug fixes, implementation), we were not able to continuously fetch the most
recent versions of the gem5. Therefore, our version of the gem5 more or less matches
(we performed the last merge on 01.08.2018, where we had quite a few merge conflicts)
the version of the gem5 simulator between 2017 and 2018. Unfortunately, it became too
difficult to solve the merge conflicts, which is why we stuck to our version, since a re-

2.4 STAMP Benchmark Suite 25

implementation of our work to a newer version of gem5 was out of scope of the time
constraints of our project.

2.4 STAMP Benchmark Suite

The authors of [13] developed the STAMP benchmark suite, which contains realistic
benchmarks to evaluate TM-Systems. In their work, the authors describe eight bench-
marks which provide a wide range of challenges for TMs. This includes frequent or rare
use of transactions, short and long transactions, and high or low contention. The bench-
mark suite consists of eight benchmarks and is highly portable since it is widely used to
evaluate transactional memories (e.g., [61, 22, 14]). In the following we will give a brief
description of the benchmarks which we derived from [13]:

bayes: This benchmark learns the structure of a Bayesian network. It uses a hill-climbing
strategy which combines global and local search. The application can be assigned
to the machine learning domain. The transactions executed within the applica-
tion are long. They generate big read and write sets. The contention between the
transactions is high. Additionally, the time spent in transactions is also high.

genome: Is a program which matches gene sequences. The application can be divided
into two phases. Within the first phase duplicates of DNA segments are removed.
In the second phase the application tries to match unmatched segments. Transac-
tions are used in both phases. The transaction size as well as the size of the RS and
WS are medium. Overall, the time spent in transactions is high and contention is
low.

intruder: This application emulates a design of an network intrusion detection sys-
tem. Here network packages have to run through three phases. This is done in
parallel. Two of the three phases utilize transactions. The size of the RS and WS is
medium. The transaction length is short. The contention between the transactions
is considered high by the authors.

kmeans: Is a clustering algorithm which groups objects in a N-dimensional space.
Hereby the objects are grouped in K clusters. The contention in the transactional
execution heavily depends on the value K, since the transactions protect the up-
date of the clusters centers which are updated iteratively by every thread while
processing a partition of the objects. If K is big the probability of two transactions
working on the same cluster center is low. These properties are beneficial for the
execution with transactions since the optimistic synchronization can be exploited.
According to the authors, contention can therefore be considered low. Addition-

26 2 Background

ally, the transactions’ length is short, and the time spent in transactions is low. The
RS and WS are small.

labyrinth: Within this benchmark the threads pick a start and an end point within
a maze represented by a three-dimensional uniform grid. The threads now have
to add paths from the starting to the end points in parallel. This is protected by
transactions. If two paths overlap a conflict is detected. Calculating a path and
adding it to the global maze is protected by a single transaction. Therefore, the RS
and WS can be considered as large. Also, the transaction length is long. The time
spent in transactions as well as contention is high.

ssca2: The Scalable Synthetic Compact Applications 2 (SSCA2) usually consists of four
kernels which operate on large, directed, weighted multi-graphs. For the STAMP
benchmarks the authors focused on one kernel. Here, transactions are used to
protect operations to the arrays which are used to save the graphs. Since the graphs
can become quite big contention is low. Graph operations are not very long and
therefore the size of the RS and WS is small, the transactions themselves are short,
and the time spent in transactions is short.

vacation: This application represents a travel booking system. All necessary data is
saved in trees. Coarse-grain transactions are used to protect writes to the database.
Overall, the application spends a lot of time in transactions. According to the au-
thors, contention can be considered as medium or even low. The size of the RS and
WS and the size of the transactions is medium.

yada: The benchmark creates a Delaunay mesh using Ruppert’s algorithm [50]. The
basic data structures here used are graphs. They store the mesh triangles, a set
which holds the mesh boundaries, and a work queue which holds the skinny trian-
gles which are the triangles which have to be refined. Accesses to the work queue
as well as the refinement of the skinny transactions are protected with transac-
tions. Therefore, transactions are long, and the time spent in transactions is high.
Since some triangles are visited and later changed during triangulation, the RSs
and WSs are large. The authors claim that overall contention can be considered as
medium.

Table 2.5 summarizes the information given above focusing on the most important de-
tails.

2.5 Summary 27

Benchmark Txlength R/W Set Tx Time Contention Domain

bayes long large high high machine learning
genome medium medium high low bioinformatics
intruder short medium medium high security

kmeans short small low low data mining
labyrinth long large high high engineering

ssca2 short small low low scientific

vacation medium medium high low/medium online tx processing
yada long large high medium scientific

Table 2.5: This table summarizes the properties of the eight stamp benchmarks. Here,
"Tx length" refers to the length of the transactions executed within the bench-
marks. The Column "R/W Set" indicates how big the transactions RSs and WSs
get. "Tx Time" refers to the time the benchmark spend executing transactions.
The higher the contention the more conflicts occur during execution. The col-
umn "Domain" indicates to which domain the benchmark belongs. The infor-
mation used for this table is given in [13].

2.5 Summary

This chapter describes the background for the work presented in the Chapters 3, 4 and
5. The first part of the chapter concentrates on TMs. Here we provide an overview on
the properties of transactions, which options for concurrency control exist, how conflict
detection works and how several versions of data can be handled. In the remainder of the
section, we also describe the difference between STMs and HTMs. The section concludes
by outlaying the challenges and benefits of transactional memories.

Next, we put the focus on cache coherence. Especially the cache coherence protocol has
a significant relevance for our work. We start this section by providing an overview
on the topic after giving a general introduction to cache coherence. Then we present
the invariants cache coherence protocols have to fulfill. After describing widespread
states used by many cache coherence protocols, we continue the section by describing
snooping- and directory-based cache coherence. The section ends by giving a detailed
description on how the MOSI cache coherence protocol can be implemented.

We realized our work by using the gem5 simulator. Therefore, we provide an overview
on the gem5 simulator and give some insights on our design choices. Also, we describe
the benefits of the gem5 simulator and also explain why we use an older version of the
gemb>.

28 2 Background

The last section of this chapter focuses on the STAMP benchmark suite. We used the
benchmark suite to evaluate our work (see Chapters 4 and 5 for more information).
Therefore, we gave a brief overview of all the benchmarks included and roughly ex-
plained what they do. The section finishes by providing a table with the properties of
each benchmark.

Related Work

Contents

3.1 Hardware Transactional Memory Approaches Devolved by Industry 30
3.2 Contention Management Strategies 34
3.3 Unbounded Conflict Detection 36
3.4 Embedded-TM L 42
3.5 Real-Time Transactional Memories 44
3.6 Summary L oL e 45

Since the original proposal of TMs by [33], TMs were utilized for many approaches.
Therefore, a wide variety of TMs exist. Since they were partly redesigned and aug-
mented in different ways, they may strongly vary from the original proposal. Often the
focus of the initially intended use, which is benefiting a parallel execution through op-
timistic synchronization, shifted to other functionalities. Further developed TMs were
e.g., used to enable fault tolerance (e.g., [26], [2]). Here the conflict detection and the
rollback mechanism are heavily exploited to detect and recover from faults. TMs can be
implemented in software and hardware. Also, hybrid approaches exist which are partly
implemented in software and hardware. The concepts of TMs were also picked up by
chip manufacturers and are therefore available in some common of the shelf (COTS)
hardware.

In the following we present work which describes different mechanisms for TMs as well
as actual TM implementations. We therefore first present some HTM approaches devel-
oped by the industry. Next, we will provide an overview of the work done on contention
management strategies. Thirdly, we will look at approaches which support unbounded
transactions. Since we focus on embedded systems, we will then look at an approach

29

30 3 Related Work

which also focuses on embedded systems. Before summarizing this chapter, we will dis-
cuss real time transactional memory approaches.

3.1 Hardware Transactional Memory Approaches
Devolved by Industry

TMs offer features which are interesting for a variety of chip manufacturers. Therefore,
several manufacturers proposed their own version of an HTM. A few of these approaches
were available through COTS processors (e.g., Intel TSX). In the following we provide a
brief overview.

3.1.1 Sun Microsystems

The authors of [12] present Rock: a high performance sparc chip-multithreaded proces-
sor. It supports speculative execution and enables an execute-ahead-mode, simultaneous
speculative threading and transactional memory. The authors claim that Rock is the first
commercial processor which offers support for HTM. Although the processor reached a
high degree of development it was never commercially available [46].

In their work the authors describe an architecture which enables an execute ahead mode.
Here the system can speculatively execute instructions. To support the execute ahead
mode the architecture was designed to allow checkpoints. Therefore, the system can
perform a rollback in case of a problem.

A checkpoint is automatically taken if an instruction cannot be executed immediately
due to e.g., a cache miss. After a checkpoint is taken all subsequent instructions are exe-
cuted in speculative mode. Therefore, the values are written to shadow copies of the ac-
tual used registers. The instruction which initially could not be executed is moved to a de-
ferred instruction queue. Additionally, the destination register of the instruction which
could not be executed is marked as not available (NA). Therefore, all subsequent instruc-
tions which consume the register are also moved to the deferred instruction queue. As
soon as the instruction can be executed, the instruction and its dependent successors
are fetched from the deferred instruction queue and executed. The authors call this the
replay process.

If the replay execution works with no disruptions the system detects that the speculative
execution was successful and marks the speculative shadow copies of the registers as the
architectural state. The authors call this the join operation.

3.1 Hardware Transactional Memory Approaches Devolved by Industry 31

To be able to detect potential conflicts the cache lines are marked with an additional s-
bit when read in speculative mode. If a cache line with an s-bit is invalidated or evicted
speculation fails, and the execution resumes from the checkpoint. The speculation has
to fail, since otherwise the total store order cannot be guaranteed.

The speculation ahead mode can be augmented to exploit simultaneous multithreading.
If activated the join operation can be performed by a second thread. This can be beneficial
for execution and is called simultaneous speculative threading by the authors.

The ability to create checkpoints as well as the ability to perform a rollback, in case spec-
ulation does not succeed, is exploited to provide an HTM. In addition to the already ex-
isting features, the L2-cache is augmented. Here all addresses which a transaction wrote
are sent to the L2 cache. The L2 cache is then able to detect conflicts. If the L2 cache
detects a conflict it informs the concerning core which then initiates an abort. Unfortu-
nately, it is not clear which conflict resolution policy is applied. When a transaction tries
to commit, the L2 cache locks the cache lines the transaction wrote and prevents them
from being read or written by other threads during the commit. The list of addresses
sent during the execution of the transaction is used to do this. Then the core committing
its transaction, starts to write back the content of its write queue, since this is where it
stores its speculative values. The last write to a locked line releases the lock of that line
and enables it to be read or written by other threads again.

To start and stop transactions, the system was augmented to support two new instruc-
tions. The checkpoint instruction indicates the start of a transaction. Here the system
expects an address to the code which should be executed if the transaction fails. The
commit instruction indicates the end of the speculative part and therefore signals the
transactions end. A transaction is aborted if a conflict is detected, or the hardware re-
sources are not sufficient to execute the transaction.

3.1.2 Proposal of Hardware Transactional Memory by AMD

In [15] AMD proposed the Advanced Synchronization Facility (ASF) which is an exten-
sion for lock-free data structures and transactional memory. The proposal is not available
in real hardware but was implemented in a simulator. The ASF offers commands to start,
abort and commit a transaction. Additionally, the ASF offers the possibility to reduce the
transactional footprint. Here transactional and therefore speculative loads and stores can
be explicitly marked. Other instructions are not considered as part of the transaction.

The RS and WS are managed in the L1 cache by providing extra bits per line. Conflict
detection is performed eager. The authors refer to the contention management strat-
egy as "attacker wins". This is a straightforward technique, where the core which de-
tects the conflict aborts its transaction. After a random back-off time the transaction is

32 3 Related Work

re-executed. A potential user has to offer a fallback strategy, since the system cannot
overcome capacity conflicts.

The proposal also suggests the additional use of the load store queue to manage the
transactional data. This feature allows bigger transactions and can be used in combina-
tion with the functionality of reducing a transaction’s footprint. If the feature is activated
the speculative data is kept in the L1 caches as well as in the load and store queue. This
implies some complexity but also enlarges the minimum transaction length, which is
determined by the set associativity of the L1 cache.

3.1.3 Hardware Transactional Memory approaches by IBM

The authors of [62] describe the hardware support for TM provided by the Blue Gene/Q
machine. Every core supports Simultaneous Multithreading (SMT) and can therefore run
multiple transactions at the same time. To save the speculative footprint of the transac-
tional execution the L2 cache supports multiple versions of each cache line. Conflicts
are detected eager and performed at L2 cache level. For this purpose, the system sup-
ports speculative IDs. 128 IDs are provided. Since the IDs are a scarce resource, the IDs
have to be frequently recovered. With a process called ID scrubbing the IDs are checked
every 132 cycles and made available again if possible. Conflict resolution can take the
transaction start time into account and favors the transactions which started earliest.
The speculative state can get as big as 20 MB, since 10 ways of the 16 way set associative
32 MB L2 cache can be used for speculation without an eviction. The system supports
two execution modes: A short running mode and long-running mode.

The short running mode evicts a speculatively written cache line from the L1 cache. All
following accesses to that cache line have to be serviced by the L2 cache. A request is
then answered with the thread specific data. Additionally, the answer signals the core
to directly save the data to a register. This mode is good for small transactions which
sporadically access memory locations.

The long-running mode supports up to five versions of a cache line in the local cache.
Here the authors describe how they use the Translation Lookaside Buffer to do this, since
the L1 caches themselves are not modified. In this scheme the memory requests are not
forwarded and therefore the L1 cache is flushed on transaction entry. This is important
so the L2 cache is able to notice which cache lines are consumed by the transaction. This
scheme can be used for longer transactions which access many memory locations, since
it better exploits temporal and spatial locality within the transaction.

The system also supports an irrevocable mode. Transactions which repeatedly failed to
commit or cannot be executed speculatively are executed in irrevocable mode. After the

3.1 Hardware Transactional Memory Approaches Devolved by Industry 33

thread acquired an irrevocable token, the transaction is executed in serialized mode and
cannot be aborted.

Apart from the HTM IBM developed for the Blue Gene/Q machine the company also
developed an HTM for the system z [35]. In contrast to the prior presented HTM, here
mainly the Load/Store Unit (LSU) to which the L1 cache and the store queue are inte-
grated, was augmented to provide an HTM.

The system has a 96 KB 4-way associative L1 cache which is coupled to a private 1 MB 8-
way associative L2 cache. The L1 as well as the L2 cache are store through which means
that their cache lines always match with the ones stored in the L3 cache. The L3 cache is
shared by a central processing chip which consist of 6 cores. It has a capacity of 48 MB.
The system also provides an off chip L4 cache with a capacity of 384 MB to which six
central processing chips are connected. Cache coherence is provided with a variant of
the MESI protocol not further described. The authors call coherency requests generated
by the protocol cross interrogates (XI).

To mark a cache line as part of a transaction the L1 cache provides extra bits to mark a
cache line as read or written within a transaction. Since the L1 and L2 cache are store
through the authors proposed a gathering cache. The purpose of the gathering cache is
that the transactional writes are not written to the L2 and L3 cache. The authors claim
that if the speculative cache lines were located anywhere else than the L1 cache the
effort to perform a cleanup in case of a transaction abort would be unacceptable for
performance. The gathering cache is managed as subset of the L2 cache. The maximum
size of a transactions’ footprint is limited by the gathering cache and is bound to its
size (64 x 128 bytes) and the associativity of the L2 cache, since the gathering cache is
managed as a subset of the L2 cache.

Conlflict detection is performed eager. If an XI indicates a conflict to an LSU by changing
the coherence state of a cache line it aborts the transaction currently running on the
connected core. The LSU does not have to directly abort a transaction, it can also reject
the XI. This mechanism is called stiff-arming and the idea is that a transaction might
finish before the request is reissued. To guarantee progress an XI-counter is provided
which aborts the transaction if it is about to exceed a certain threshold.

IBM also developed architectural support for HTM for the power architecture [8, 1].
Besides the basic functionality of an HTM the authors implemented support for sus-
pending and resuming transactions. Once a transaction is suspended, it enters the sus-
pended transaction mode. While executing in this mode all accesses are performed non-
transactionally. During this time the system prevents the start of a new transaction. If a
conflict occurs, it is detected but handling it is deferred to when the transaction resumes.
The mechanisms allow transactions to survive interrupts. Additionally, the authors pro-
pose rollback-only transactions. This technique is used for speculation. The basic idea
of this technique is to only provide the possibility of being able to perform a rollback. In

34 3 Related Work

contrast to conventional transactions, rollback-only transactions are not used to perform
conflict detection. Access to shared data has to be prohibited in software. Unfortunately,
the authors do not discuss or explain the hardware setup. Therefore, apart from the fact
that the transactional footprint is saved in the L2 cache [1], no details on how the HTM
is implemented are known.

3.1.4 Intel TSX and ARM TME

Intel as well as ARM both offer HTM implementations [16, 4, 58]. Unfortunately, hardly
any implementation details were released by the hardware manufacturers. This mainly
concerns the internal handling of transactional execution, since usage and abstract func-
tionality is well documented. Therefore, no statements upon how the manufacturers
manage transactional execution can be made.

In general Intel TSX as well as ARM TME provide two software interfaces (normal hard-
ware transactions and Transactional Lock Elision (TLE)) with which transactional re-
gions can be defined [16, 58]. The support for Intel TSX started with the fourth-generation
Intel core processor [27]. ARM provides an HTM implementation for the Arm A-Profile
Architecture and announced such support in 2019 [58]. Unlike Intel, to our knowledge
currently no COTS ARM processor exists which features the TME.

Since we had access to machines which provide Intel TSX we were able to perform some
experiments in which we tried to examine some implementation details (e.g., contention
management strategy, maximum size of transactions, etc.). Unfortunately, we were not
able to generate reliable results which would have given us some insights into implemen-
tation details. In general, the transactional execution seemed unstable, and the received
error codes sometimes were misleading and not necessarily beneficial.

3.2 Contention Management Strategies

Past work suggests quite a few contention management strategies which will be pre-
sented in detail in the following. The mentioned proposals developed contention man-
agement approaches mainly for STMs. Although we focus on HTMs, we provide an
overview of the theory and mechanisms, since the findings are relevant for our work.

[25, 53, 54] developed several contention management strategies for STMs. In the fol-
lowing we list and explain some of the proposed strategies. We based our selection on
the selection made by [29, S. 51-52] and [53], as we consider the choice to be sensible,
since the authors focused on the more promising strategies:

3.2 Contention Management Strategies 35

passive: The transaction which detects the conflict aborts itself and re-executes.

polite: Within the polite manager a transaction aborts and tries to resolve the con-
flict by using an exponential backoff. After a certain number of failed attempts
the transaction aborts the concurrent transactions and itself finishes transactional
execution.

karma: Whenever a transaction accesses a new object the priority of that transaction
increases. Therefore, the idea behind the manager is to try to take the already
achieved work into account. When the transaction commits the priority is set back
to 0. If it aborts the value remains which can be considered as karma, since it in-
creases the possibility of committing when re-executed. An aborted transaction
will try to access the object which caused the conflict until the conflicting transac-
tion commits or accessing the object lead to a higher priority than the conflicting
transaction. The aborted transaction is backed off for a fixed time until it is re-
executed.

eruption: Similar to karma a transaction gains priority by accessing objects. In contrast
to karma, a transaction additionally gains priority if it blocks another transaction.
The gain in priority is dependent on the blocked transaction, since it transfers its
priority. The priority is then added to the priority of the blocking transaction. The
idea behind this manager is that a transaction which blocks many other transac-
tions will gain a high priority and therefore will commit fast.

kindergarten: The idea behind this manager is that transactions take turns when ac-
cessing an object. This is done with a hitlist. Initially the hitlist is empty. When
a transaction detects a conflict, and the conflicting transaction is contained in the
hitlist it the manager aborts the conflicting transaction. If the conflicting trans-
action is not part of the hitlist the current transaction is aborted and the con-
flicting transaction is added to the hitlist. After a backoff time the transaction is
re-executed.

timestamp: When a transaction is started the time of the transaction start is saved. If
two transactions conflict the transaction which started earlier is able to continue.

publishedTimestamp: Works like timestamp with the difference that it is able to abort
long-running transactions which appear to be inactive.

polka: Is a combination of the managers polite and karma. Here the transactions are
able to build up a priority. Additionally, an exponential backoff is used, in case a
transaction aborts, to determine when the transaction is re-executed.

greedy: The Authors who presented Greedy were able to show that for n transactions
sharing s resources the runtime is a factor s(s+1)/2 of the optimal runtime achieved

36 3 Related Work

by an offline scheduler [25]. All transactions started are set up with a timestamp.
In contrast to the contention management strategy timestamp a transaction keeps
the assigned timestamp, even if it was aborted. Additionally, every transaction
tracks if it is currently waiting for another transaction. A transaction is marked
as waiting if a conflicting transaction has a higher priority and is currently not
waiting for another transaction. Therefore, transaction A aborts transaction B if it
was started earlier or if transaction B is waiting for another transaction.

3.3 Unbounded Conflict Detection

In conventional HTMs the size of transactions is limited by the underlying hardware. To
solve this problem different approaches exist. The approaches vary in complexity. In the
following we give an overview of the most relevant proposals for our work.

3.3.1 Unbounded Transactional Memories

The authors of [3] first introduced the idea of unbounded transactions. To enable un-
bounded transactions, they provide two proposals. The first implementation they de-
scribe is UTM. UTM is an in hardware implemented mechanism which supports trans-
actions of arbitrary size which can be nearly as big as the virtual memory. Additionally,
the authors state that transactions are able to survive time slice interrupts as well as pro-
cess migration from one core to another. The mechanism is quite complex and requires
significant changes to the cores and the memory subsystem.

To save the register-set the authors avoid saving a snapshot of all registers. Instead, they
propose a mechanism in which they save a snapshot of the rename table of the registers.
With this technique the authors are able to detect all physical registers which are in use.
These registers are blocked from further use until the transactions commits or aborts.
This is done by moving the specially marked registers to a Register Reserved List instead
of the normal Register Free List. If the transaction commits the list is flushed and registers
a moved to the Register Free List. When the transaction aborts, the rename-table is set
to the state when the transaction started.

The memory state is managed by a data structure named xstate. The xstate data structure
saves transactions logs for every transaction. The transaction logs consist of a commit
record and a vector of log entries. The commit record reveals the status of a transaction
(pending, committed or aborted). Log entries contain a block pointer which is a pointer to
amemory block. If the value of a memory block was changed the old value is saved by the
corresponding log entry. Additionally, a reader list is maintained in the log entries. This is

3.3 Unbounded Conflict Detection 37

important for conflict detection. The authors claim that conflicts are resolved by using a
timestamp (also saved by the transaction log) which allows favoring the older transaction
in case of a conflict. To find the corresponding xstate entry the system provides a log
pointer and an RW bit for every block in memory.

To implement and maintain the xstate data structure a lot of changes to the processor
and memory would have to be made. Due to the complexity of these changes UTM was
not implemented. Instead, the authors offer a second proposal named LTM which im-
plements the fundamental ideas of UTM but is simpler. Here overflowing cache lines
are written to a hash table which is located in uncached main memory. All speculative
data is therefore kept in the local caches and the hash tables. In contrast to UTM the
running transaction is aborted if the corresponding hardware detects a conflict. If the
uncached hash table located in main memory is too small, the operating system is in-
formed, and the transaction is restarted. Additionally, the size of the hash table will be
increased by the operating system. LTM was implemented into a cycle-level simulation
using UVSIM.

The authors evaluated LTM. Here only one benchmark, which focuses on small transac-
tions, was evaluated in parallel. The findings of the authors concerning this experiment
is that the proposed TM scales better than an approach using locks. Furthermore, the au-
thors also evaluated the SPECjvm98 benchmarks by running them in their simulation.
This was performed on only one core and also shows that the proposed HTM performs
better than a lock-based approach. A third experiment focuses on a trace driven study
which shows that the chosen benchmarks use transactions but only a few transactions
can be considered to overflow. In the authors opinion the findings of the evaluation sug-
gest that the underlying assumptions behind UTM and LTM are correct. Since the eval-
uation focused on single cores no sophisticated multi-core evaluation was presented.

3.3.2 Virtualizing Transactional Memory

To avoid or reduce non-transactional conflicts that occurred due to the underlying hard-
ware (e.g., capacity conflicts) great knowledge of the hardware specifications is neces-
sary. This is not satisfactory for the authors of [48], since they consider this as major
hurdle to use transactional memories. Therefore, they propose a hardware transactional
memory approach which abstracts the functionality of the transactional memory from
the underlying hardware. To achieve this the authors, utilize the mechanisms used for
virtualizing memory. This leverages a potential user to use the transactional memory
without needing specialized knowledge of the hardware. The complexity of handling
everything correctly is concealed by virtualization mechanisms.

With their work the authors want to provide a hardware transactional memory which
allows a transaction to survive context switches, page faults and exceeding hardware re-

38 3 Related Work

strictions. To achieve these goals the authors, introduce Virtual Transactional Memory
(VITM). Here the Authors do not focus on the HTM, since this can vary. More impor-
tant is how the approach handles scenarios causing the regular HTMs to abort their
transactions. The underlying HTM therefore only plays a minor role.

The VTM consists of a Transaction Status Word (XSW) which holds the current execu-
tion status of a transaction. It is part of a thread’s state and is located in virtual memory.
The Address Data Table (XADT) manages overflowed parts of the transactional execu-
tion. To quickly determine if a cache request causes a miss, the authors introduce a filter
(XF) for the XADT. The XF is realized as a bloom filter and can reliably detect if an entry
is not contained in the XADT. If the XF detects that an entry is contained in the XADT,
the VITM walks the XADT to detect if a conflict really occurred. Both structures are
implemented in software and are contained in the application’s virtual address space.
Figure 3.1 shows how the authors assume the VTM system. The authors assume that the
VTM system, implemented in hardware or microcode, manages the above-mentioned
structures. This e.g., includes resizing the data structures if they are too small to fit the
overflowed data. Unfortunately, the approach was not implemented and therefore not
evaluated.

Processor VTM system
Hardware transactional
memory support XADC
! Address mapped?
S — -
< ' Overflow Count; XF = ———
7777777777777 Yes

Cache hierarchy { XADT walker ‘
Buffered ro oo :
transaction data : XADT i
l J xswo

Figure 3.1: The dashed boxes contain structures the authors assume to be located in vir-
tual memory. The hardware structures are represented by solid boxes. Ac-
cording to the Authors the XADC unit caches remapping information for
faster accesses of subsequent accesses to overflowed addresses. The overflow
count is used to quickly determine if an address overflowed. This is impor-
tant for conflict detection, since VITM has to determine if a conflict with an
overflowed address exists. The graphic was originally provided by [48] and
was here reused for explanation.

3.3 Unbounded Conflict Detection 39

3.3.3 LogTM-SE: Decoupling Hardware Transactional Memory
from Caches

The approach presented by the authors of [63] is based on LogTM [43]. LogTM is a Log
based HTM approach, which updates values in place. In case of a transactional conflict a
valid system state can be restored by setting back memory following the logged changes.
Among other improvements the authors extended LogTM by implementing a signature
mechanism inspired by [11].

LogTM-SE relies on a MESI directory protocol for cache coherence and exploits it to
detect conflicts. To ensure the correct behavior the authors had to adapt the MESI co-
herence protocol. This concerns mechanisms to not update the directory entry in case a
cache line is evicted from the L1 cache. Since signatures are managed at L1 cache level
this measure ensures that conflicts can still be detected. Additionally, the authors devel-
oped a mechanism to ensure correctness if a cache line is evicted from the L2 cache. Here,
subsequent coherence requests have to be treated specially, since information of cache
line distribution is lost. Therefore, the directory state is rebuilt on subsequent requests
concerning that cache line. To do so the subsequent coherence request is broadcasted to
the L1 caches. According to the answers the directory state can be restored. If a conflict is
detected the L2 directory puts the cache block into a special state, which requires signa-
ture checks for all subsequent requests. As soon as the conflict is resolved the directory
resets the state for the cache block.

Conflicts are currently resolved by using a straightforward resolution policy. A request-
ing transaction has to abort in case the core the request was forwarded to, detects a
conflict.

To track the RSs and WSs the approach uses signatures. Here a part of the address is
used to set a bit in the signature. Since a system cannot provide the resources to mark a
bit for every possible address the authors presented different approaches. Although all
approaches can cause false conflicts, correctness is assured, since a real conflict is never
missed.

The system is optimized for commits, since they can be handled fast. In case of an abort
the memory operations have to be undone with support of the log. LogTM-SE is able to
handle transactions of arbitrary size, thread context switches and migrations as well as

paging.

40 3 Related Work

3.3.4 Directory-Based Conflict Detection in Hardware
Transactional Memory

Directory xsx Directory Directory

2) ’S [old] ‘ b) M@CO0lq) 3] °) ’M@CO[old] @‘

Global XSN Da([2] [4][0] Global XSN
Global XSN
& : BEGIN 2:DATA | | 1: GETX 2: NACK v
ACK XACT [XSN=4] ' ' * conflict 4 GETS
Y A,
CO ™ mode@m C 1 TM mode [I] CO TM mode [I] C 1 TM mode [j] CO TM mode [I] C 1 TM mode [I]
xsN R[4] XSN xsN 4] XSN xsN (4] XSN
NP [none]|| |[NP [none]|| |[M[new] || |[[NP [none]|| |[M[new] || |[NP [none]]
d) Directory o) Directory xsns) Directory
’M[new] @‘ ’M [new] @‘ S@Cl[old] E{.‘
Global XSN Global XSN [0][2]
[0] Global XSN [0][2]
2: 4: NACK 3: 2: 1: COMMIT 1:
2: DATA
ACK 1: WB conflict i GETS ACK XACT GETS
CO TM mode [I] C 1 TM mode m CO ™ mode@ Cl TM mode [I] CO TM mode [I] C 1 TM mode m
XsN [4] XSN XsN [4] XSN XsN [4] XSN

NP [none]|| |[NP [none]|| |[NP [none]|| |[NP [none]|| |[NP [none]|| |[[S[old] |

Figure 3.2: In subfigure a) Core 0 (C0) starts a transaction. Therefore, the Global XSNs,
managed by the directory, are updated as soon as the begin request hits the
directory. Core 0 also marks that it is running a transaction and generates
the XSN for this transaction. If core 0 wants to write a cache line it sends the
corresponding request (GETX) to the directory. The directory checks if the
request can be serviced and updates the XSN's to match execution (see subfig-
ure b)). This is important for conflict detection depicted by subfigure c). Here
core 1 (C1) tries to read the cache line core 0 has modified. The directory de-
tects the conflicting access by matching the XSNs stored for the cache line
and the global XSNs. Consequently, it informs core 1 about the conflict. Only
after Core 0 wrote back the cache line and committed its transaction (sub-
figure d) and e)) core 1 is able to read the cache line. When core 0 commits
the transaction (subfigure e)) also the global XSNs are updated. Therefore,
no conflict is detected when core 1 reads the cache line in subfigure f). The
graphic was originally provided by [61].

The Authors of [61] developed an approach for an HTM where the conflict detection is
shifted to the directory. Instead of managing an explicit RS and WS they used a Trans-
action Serial Number (XSN) and the state of the cache line to identify conflicts.

3.3 Unbounded Conflict Detection 41

The authors describe two schemes, a basic and a more advanced one. The base detection
scheme allows the directory to keep track of where a transaction is currently running.
Therefore, the directory is explicitly notified whenever a transaction starts or commits.
The Authors claim that this information is sufficient to start conflict detection. Since this
simple setup would cause a lot of false conflicts the caches are flush cleared at transaction
begin. Now the read and writes detected by the directory can be considered as the RS
and WS. With their proposal the authors want to support transactions of arbitrary size.
Therefore, the cache lines do not necessarily remain local. The directory then cannot tell
where the speculative data comes from or if it was read by a transaction. To solve this
issue the authors, introduce XSNs.

XSNs are small, reusable per-core identifiers. Every core has an XSN register. The XSN is
incremented after every transaction start. The directory saves a global list of all currently
active transactions by saving their XSN. Additionally, the directory is also able to save a
vector of XSNs for every entry. Old entries are removed lazily. Figure 3.2 shows in detail
how this mechanism works.

The authors augmented their basic scheme to avoid flushing the local caches. Here every
local cache line can be marked as part of a transactional execution. If a cache line was
added to the RS or WS the directory is informed and a bit for the cache line is set locally.
Unfortunately, the authors do not explain how a modified cache line which was evicted
from a local cache is restored if the transaction, in which it was changed, aborts.

The authors evaluated their approaches. For this they implemented their work into a
simulation environment and compared it to LogTM-SE ([63]). With the evaluation the
authors were able to show that they were able to reduce execution time between 25 and
55%. On average the proposed system achieved a 15% improvement.

3.3.5 Making the Fast Case Common and the Uncommon Case
Simple in Unbounded Transactional Memory

The authors of [7] try to avoid the necessity of having to offer a complex mechanism
for unbounded transactions. To reduce the potential number of unbounded transactions
they therefore first present a permissions-only cache. The permissions-only cache is
an extra cache which augments the regular cache infrastructure. The idea behind the
permissions-only cache is that it only saves which cache line belongs to the RS or WS of
a transaction. It does not store the actual data. The actual data is saved in the L1 or L2
cache. This technique enables the cores to run much larger transactions, since the RS and
WS can grow much larger as the baseline system would allow it. Only if the permissions-
only cache overflows an unbounded transaction has to be handled. The authors claim

42 3 Related Work

that a 4 KB permissions-only cache allows a transaction to consume up to 1 MB of data
without overflowing.

To handle unbounded transactions the authors, offer two mechanisms. The first mech-
anism is called OneTM-Serialized. It is the simpler of the two approaches, since it stalls
all cores but the one who is executing an unbounded transaction. This way the core run-
ning the unbounded transaction is able to use the entire memory hierarchy by itself. For
this purpose, the authors propose a shared as well as a private status word. The shared
status word can be read by all threads and indicates if currently an overflowed trans-
action is executed. If a thread detects that currently overflowed transaction is executed,
it stalls. Once the overflowed transactions ended the other threads continue execution.
According to the authors conflicts are detected during the execution of an overflowed
transaction and resolved in favor of the overflowed transaction.

The second, more complex mechanism, is called OneTM-Concurrent. In contrast to One-
TM-Serialized it allows other cores to continue their execution when a transaction over-
flowed. During the execution only one overflowed transaction is allowed. So, if a second
transaction overflows it is stalled until the overflowed transaction finished execution. To
manage the correct execution the authors, provide per cache line metadata. The metadata
consists of 2 bytes. It contains the information if a cache line was read or written (each
one bit) by an overflowed transaction as well as a 14-bit identifier. The metadata travels
with the data meaning it is additionally provided for every cache line. This increases
the data payload. Since only one overflowed transaction is allowed, a thread wanting to
execute, and overflowed transaction always first has to check if currently an overflowed
transaction is executed. If a transaction switches to overflowed mode all cache lines read
or written have to be marked as part of an overflowed transaction. The easiest way to
do this is to restart the transaction in overflowed mode. An alternative proposed by the
authors is to walk the cache and the permissions only cache to set the metadata accord-
ingly. The authors also propose an approach where the data is adapted gradually. Here
only the metadata of overflowed transactions is updated, and non-overflowed cache lines
are marked before a context switch occurs. The last two proposals were not evaluated.

The authors evaluated their approaches and were able to show that their implementation
had the targeted results. When additionally, the permissions-only cache was activated
nearly all overhead due to unbounded transactions, could be eliminated.

3.4 Embedded-TM

The work described in [22] focuses on developing an HTM for embedded systems. The
authors focus on energy consumption and complexity of the architecture. Therefore, the
work relies on a simple setup of the underlying architecture. The actual implementation

3.4 Embedded-TM 43

of the baseline transactional memory is not described in detail but can be considered as
the ones described in [33] and [23]. The baseline architecture consists of a core, a small
scratch pad memory, a snooping device, a bus access, a L1 cache and a transaction cache
(TC) or victim cache (VC).

It is important to know if the system supports a TC or a VC, since the functionality of
the approach is determined by this. Two functionalities are proposed and evaluated by
the authors. If the architecture contains a TC for every core, all transactional data is
stored here. The TCs are fully associative. Therefore, the TCs are very small (512B) and
the event that it is overflowed by transactional data is likely. To still be able to execute
large transactions the authors additionally offer a serial mode which shuts off all the
other cores and allows a specific core to exclusively execute its transaction. The serial
mode is not only used if a transaction is too big, but also when a transaction exceeds a
predefined number of tolerated failed attempts. The authors refer to this approach as TM-
vanilla scheme. Another scheme called TM-shutdown-L1WB is the same as TM-vanilla
but the TC is shut down after every transaction commit. Since the authors optimize
energy consumption, this makes sense.

If the hardware configuration contains a victim cache, the transactional data is stored
in the L1 cache. This could be beneficial, since it is much bigger. The limiting factor for
the transaction size here is the cache associativity. Since increasing the associativity of
the L1 cache causes a higher consumption of energy the authors considered a 4-way
set associative cache. If a transaction overflows, the victim cache, which is also (like
the TC) fully associative, is utilized to store the overflowed data. The authors chose this
strategy to better overcome size limitations. When it is not used it is powered down. If the
victim cache overflows or the transaction exceeds a predefined number of tolerated failed
attempts the system also switches to serial mode. The authors refer to this approach as
TM-victim scheme.

To reduce abort rates the authors proposed to implement a lazy over an eager conflict
resolution scheme. Here the conflicts are detected eagerly but are resolved lazily. This
means that transactions are only aborted if another transaction commits. Therefore, the
committing transaction always wins.

The work was evaluated by implementing it to the MPARM simulation framework which
provides a cycle-accurate, multi-processor simulator. The framework also offers power
models to estimate power consumption. The findings of the authors were that they
achieved the best results for power and complexity when using the TM-victim scheme.
The authors recommend that the conflict resolution scheme (eager or lazy) should be
configured depending on the workload, since the lazy scheme adds complexity but im-
proves performance for high conflict workloads.

44 3 Related Work

3.5 Real-Time Transactional Memories

The work of [55] presents a timing-predictable HTM. To store the WS of transactions the
authors use a transaction buffer. To keep track of RS the read addresses are marked. The
size of the transaction buffer is limited since it is fully associative and therefore costly.
The authors assume that the programmers are aware of this and will choose to use small
transactions. In case the buffer overflows the transactions are serialized. Conflict detec-
tion can be performed eagerly or lazily. Since it is not relevant for estimating the WCET
and because the authors consider eager conflict detection as expensive, they propose to
use lazy conflict detection.

One major aspect of determining a actual WCET concerns program analysis. To detect
potential conflicts the authors analyze a program by using a points-to analysis. To de-
termine the size of the RS and WS the authors suggest a symbolic analysis which models
all possible program states.

In the evaluation the authors, are able to show that their program analysis is able to
detect conflicts. This is an important finding since the tightness of a potential WCET
is heavily dependent on the analysis. The authors provide mathematical proof that the
WCET for a task t,,..; can be calculated with the following formula:

Lycet = te + Tl

t. refers to the total cost when execution the task which includes the execution time of
the atomic section t,. r refers to the number of times an atomic section has to be executed
before it is committed.

The authors of [51] present real-time support for a STM (RT-STM). The authors did not
aim at creating a timing analyzable STM. Instead, they focused on maximizing the num-
ber of transactions meeting their deadlines. To achieve this goal the authors enhanced
Fraser’s STM [24] in the way that it can handle parameters when starting transactions.
Additionally, the authors adapted the conflict resolution in a way that contention is re-
solved in favor of the transaction which is closer to its deadline.

To transfer information linked to a transactions execution, RT-STM was integrated LITMUSR”
[9] library. LITMUS® is a real time operating system. With the underlying Operating
System (OS) the authors are able to initialize transactions by transferring the start time

and information concerning the deadline of the transaction. In an evaluation the authors
were able to show that RT-STM can better guarantee that transactions meet their dead-
line. The authors compared their approach to other STMs (EnnalsSTM [20], DSTM [34])

and were able to apply different scheduling policies (G-EDF, P-EDF and PD?).

3.6 Summary 45

3.6 Summary

Even though it seems that manufacturers lose interest in TMs, since e.g., Intel drives back
efforts to advertise their HTM implementation, the topic still seems relevant. ARM an-
nounced the availability of transactional memory extensions in 2019 [58], which shows
that the topic is still relevant and research trying to further improve the technology is
worthwhile.

Approach Implementation
Sun (Rock) [12] real hardware
AMD [15] simulator

real hardware
real hardware
real hardware

IBM Blue Gene/Q [62]
IBM system z [35]
Intel TSX [16]

UTM (3] simulator
VTM [438] no implementation
LogTM-SE [63] GEMS + Virtutech Simics
DirCD [61] GEMS + Virtutech Simics

OneTM-Serialized [7]
OneTM-Concurrent [7]
Embedded-TM [22]

GEMS + Virtutech Simics
GEMS + Virtutech Simics
MPARM simulation framework

FPGA
gems

RTTM [55]
Our Approach

N X XSS NSNS N XXX X X Support Unbounded transactions
N X X X % % X X X X X X X X% Contention Management Strategies

N X X X X X X X X X X X X X| Priorities for Transactions
N X X X X X X X X X X X X X| False Conflict Detection

NN X X X X X X X X X X X X| Real-time Features

Table 3.1: This table provides a comparison of a selection of the approaches discussed in
this chapter. The last line refers to the approach we developed in Chapter 5.
The first column in the table refers to the approach we refer to. The next col-
umn specifies how the approach was implemented (simulator, real hardware
or FPGA). The remaining columns refer to the features we are interested in.
An X means that the feature is not available. A v/ means that the approach
supports the feature.

46 3 Related Work

To provide an overview of proposals provided by the industry, we present several HTM
approaches developed by actual chip manufacturers, at the beginning of this chapter.
Some companies (e.g., Sun, AMD, IBM) presented their work in very detail. A few of the
presented HTMs were made available through COTS processors (e.g., Intel Tsx).

Next, we present work which deals with contention management strategies. Here we
present a selection of policies and explain these briefly. Following the presentation of
the contention management strategies, we discuss several approaches which provide
unbounded transactions and an HTM proposal which was developed for embedded sys-
tems. In the last section of this chapter, we look at two real-time approaches which use
TMs.

We conclude this chapter by presenting Table 3.1 which gives an overview of the features
which we consider useful for our work. To allow a comparison of different approaches
every line represents an approach of a selection of the systems discussed in this chapter.
Additionally, we give an outlook on which features the HTM we describe in Chapter 5
provides. Note that we left out the HTM implementation of IBM offering support for the
power architecture as well as the ARM TME implementation, since we were not able
to gain enough information about these systems. Furthermore, we also left out all STM
approaches, since a comparison would not be useful since our focus lies on HTMs.

Implementing a Hardware
Transactional Memory exploiting

MOSI Cache Coherence

Contents

41 BasicSystem Lo 48
4.2 Implementing Cache Coherence 51
4.3 Design Choices for Hardware Transactional Memories 53
4.4 Integrating the Hardware Transactional Memory 54
45 Interface 61
4.6 Evaluation 62
4.7 Summaryo e e e 68

In this chapter we designed and implemented a complete HTM. In contrast to Chapter
5 the focus does not necessarily lie on embedded systems even though we kept them
in mind. Instead, we here focus on an efficient and robust HTM implementation. The
HTM implemented exploits MOSI cache coherence, since we consider it beneficial when
designing the HTM specifically considered for embedded systems (see Chapter 5 for
more information). Furthermore, we need the implementation provided in this chapter
as baseline to evaluate our findings in Chapter 5.

For our implementation we chose to use the gem5 simulator, since it is a holistic system
which offers many options and is highly configurable (see 2.3 for more information).
Nevertheless, we had to reimplement cache coherence to be able to implement our ver-
sion of an HTM.

47

48 4 Implementing a Hardware Transactional Memory exploiting MOSI Cache Coherence

The HTM was realized without having to perform any changes to the cores. An interface
to use the HTM is offered in software. Most functionality of the HTM is provided by the
cache controllers. In this chapter we first give a detailed description of the underlying
system. Then we explain how we implemented cache coherence. After laying out some
design choices and describing the integration of the HTM, we explain the interface. We
close the chapter by providing a short summary.

4.1 Basic System

This section describes the underlying system providing the basic framework for the
HTM integration (see Section 4.4 for more details). Further it also describes what adjust-
ments had to be made to the original gem5 simulator (see Section 2.3 for more details) to
best prepare the implementation of the HTM. The setup of the baseline system was cho-
sen to resemble a high-performance embedded system. Therefore, the baseline system
is a multi-core system with private L1 caches and a shared L2 cache (LLC). The L2 cache
is non-inclusive non-exclusive. Therefore, transaction aborts due to evicts caused by the
L2 cache are avoided. We further assume that the directory is able to contain entries for
every cache line contained in one of the L1 caches. The number of cores can vary and the
system is also attached to main memory. Figure 4.1 depicts and describes the baseline
system in more detail.

In 2017, when this work started, the gem5 simulator (see Section 2.3 for more details)
did not offer an HTM. To implement an HTM we developed an approach, for which
mainly the memory hierarchy of a system has to be adjusted. Most parts of the memory
hierarchy of the gem5 simulator is provided by the Ruby Memory System Simulator [36].
The ruby memory system simulator consists of three parts:

1. Interconnection network, simulating the communication within the simulated multi-
core processor.

2. Structures for simulating caches and memory.

3. Coherence controllers, ensuring cache coherence.
To simulate the memory hierarchy and facilitate implementation of the HTM, the goal
was to reuse as much infrastructure as possible of the provided memory system simula-
tor.
With minor adjustments the basic system uses the provided interconnection network as

well as the provided cache and memory structures. The provided coherence controllers
were replaced for the following three reasons:

4.1 Basic System 49

Core 1 Core N

(Ll Data CCH LiD ‘ @1 Data. C% L1D ‘

Dir { LLCC } LLC

Main Memory

Figure 4.1: The baseline system consists of up to N cores. Every core has a private L1
data (L1D) as well as an instruction (L1I) cache. Each cache is managed by
its own cache controller (L1 Data CC, L1 Inst CC or LLCC). The cores access
their caches through the L1 cache controllers. If they do not contain the re-
quested data, the request is forwarded to the LLC. The LLC is shared and is
accessed through the LLC controller (LLCC). If the LLC cannot service, the
request it is redirected to main memory. Communication ways of the system
are indicated by the lines of connection but is described in more detail later in
this section. Cache coherence is directory based, indicated by the availability
of the directory (Dir). The directory is also accessed via the LLC controller
(LLCC). The graphic is inspired by [57, S. 154]

1. The cache coherence in the gem5 simulator is provided by a domain specific lan-

guage. It was not foreseeable if it could be used and augmented to implement an
HTM.

2. The implementation of an HTM strongly relies on the full control and detailed
technical knowledge of the cache controllers, which is ensured by our own devel-
opment.

3. We assumed that the use of a more common programming language would in-
crease comprehensibility of our work.

Due to the above-mentioned reasons the cache controllers as well as cache coherence
were completely reimplemented (see Section 4.2 for more details).

50 4 Implementing a Hardware Transactional Memory exploiting MOSI Cache Coherence

<> LLC/L1 CC Response >

\ A \

<> LLC Requests >

'
FAl

LLCC

Figure 4.2: To exchange messages and data, the basic system relies on two interconnec-
tion networks and queues. Each core is connected to a queue allowing it to
send requests to the L1 cache controller (L1 CC). To answer the requests the
L1 cache controller also uses a queue. The L1 cache controllers are connected
to two interconnection networks. One network (LLC Requests) handles the
communication of the L1 cache controllers to the LLC controller. This con-
cerns requests which could not be serviced by the L1 cache (e.g., a read re-
quest, to a cache line not contained by the L1 cache). The second network
(LLC/L1 CC Response), handles communication the other way around, mean-
ing from the LLC controller to the L1 cache controller. It also allows the L1
cache controllers to send messages to the other L1 cache controllers. This con-
cerns e.g., forward requests of owned cache lines (see Section 2.2 for more de-
tails). The messages in the interconnection network and queues are strictly
ordered. As indicated, requests are buffered before they are routed to their
destination, where they are buffered again until serviced by the hardware
unit. Graphic inspired by [36].

Although the basic functionality of the interconnection network was not adapted, some
changes were made. The changes relate to adding new message types and the topology
of the communication network. To enable cache coherence basic message types had to
be added (see Section 4.2 for more details). Later extra message types were added for the
HTM implementation (see Section 4.4.2 for more details). To allow the necessary com-
munication, the topology of the communication network was customized. The following
communication ways were established by setting up the network accordingly:

« Core to L1 cache controller and vice versa

4.2 Implementing Cache Coherence 51

« L1 cache controller to L1 cache controller
« L1 cache controller to LLC controller and vice versa

The network was set up by setting a configuration file within the gem5 simulator. A
detailed description of the communication and an overview of the topology is given by
Figure 4.2.

The structures for the caches and the memory, provided by the original gem5 simula-
tor, have been adapted and used. The baseline functionality of these structures was not
adapted. Features such as the replacement strategies or the management of the asso-
ciativity remained unchanged. Changes concerning the structures resembling e.g., the
cache lines were augmented, which is described later (see Section 4.4 for more details).

As stated earlier, the cache coherence was replaced by our implementation. For this the
cache controllers were completely redesigned and reimplemented. The cache coherence
is implemented to the L1 cache controllers and the LLC controller. The baseline system
no longer requires the use of the domain specific language for cache coherence. Section
4.2 gives a detailed description of the implementation.

4.2 Implementing Cache Coherence

This section provides an overview of how the memory hierarchy was adapted to enable
cache coherence. The cache coherence protocol itself is only handled briefly. For a more
detailed description of how cache coherency works, and which states and messages are
needed see [57, S. 151-190] or Section 2.2.

The implementation of an HTM strongly relies on cache coherence (e.g., for conflict
detection). To ensure cache coherence the MOSI cache coherence protocol (see Section
2.2 for more details) was implemented for the baseline system. We chose a directory-
based approach since it provides better scalability for multi-cores with a high core count
compared to a snooping-based approach [57, S. 151]. The MOSI cache coherence protocol
was applied since it brings some advantages when later adapting the baseline HTM.
This concerns silent state changes in the L1 cache controllers (see Section 5.2.3 for more
details). The implementation of the cache coherence protocol is based on the detailed
description provided by [57, S. 151-190]. To enable cache coherence, the cache controllers
and the directory were adjusted and augmented. Additional message types were added
to the network, to be able to map the communication correctly.

Concerning cache coherence, the controllers have to be able to complete four main
tasks:

52 4 Implementing a Hardware Transactional Memory exploiting MOSI Cache Coherence

1. Changing the state of a cache line.

2. Triggering a new request (e.g., a read request for a cache line which is currently
invalid).

3. Delaying a request until the state of a cache line indicates that request can be
handled.

4. Forwarding of data or other information (e.g., an invalidation acknowledgment).
All cache controllers were adapted to accomplish these tasks.

The L1 cache controllers were augmented to support new message types. This means
that the L1 cache controllers are able to handle incoming messages and know how to
react when receiving a message with such a type. Incoming messages to the L1 cache
controller can either originate from the corresponding core or the LLC controller and
relate to a specific cache line. To make cache coherence work every cache line has to
have a state. Therefore, the structure representing a cache line was extended to support
states. The L1 cache controller can set a state for every cache line held by the L1 cache.
To save the information representing the state, four extra bits are needed. This is because
the cache lines in the L1 cache can either be in one of four stable states (modified, owned,
shared or invalid) or in one of 11 intermediate states (see Section 2.2 for more details).
The state of a cache line and the type of the incoming message ultimately defines how
the L1 cache controller behaves.

The LLC controller has to be handled differently, since the directory is integrated at this
level of the memory hierarchy (see Figure 4.1). Additionally, incoming messages origi-
nate from the L1 cache controllers or the main memory, which means that other message
types have to be used. Just as the L1 cache controller the LLC controller now supports
all messages necessary for the functionality of cache coherence. The LLC controller was
also extended so it can manage the coherency states correctly. In contrast to the L1 cache
controller only four stable cache states (modified, owned, share, invalid) are necessary.
Because the MOSI protocol demands the LLC controller to know where certain cache
lines are located, more information for every cache line has to be saved. Besides the
state also an owner as well as a list of sharers has to be stored. This is necessary to
inform potential sharers about a state change or to redirect a request to the owner of
a cache line. To save this information the directory was utilized. Every entry allows to
save the necessary information for a cache line.

For cache coherence in sum 13 message types and 15 states are supported by the L1
cache controllers. Since some combinations, existing of incoming message and state of
the cache line are not possible, the L1 cache controllers have to provide the correct be-
havior for 159 cases. The LLC controller only supports four states and 9 incoming mes-

4.3 Design Choices for Hardware Transactional Memories 53

sages. Since here also a few combinations are impossible the LLC controller provides a
predefined behavior for 27 cases (see Section 2.2.6 for more information).

4.3 Design Choices for Hardware Transactional
Memories

When designing an HTM there are multiple options to set up conflict detection, con-
flict resolution and version management. The proposed baseline system was designed
to match commercial HTMs (e.g., Intel TSX [16]). This section describes how the key
functionalities are set up and how they work.

4.3.1 Conflict Detection

The conflict detection is performed eagerly (see Section 2.1 for more details). Conflicts
are detected on cache line granularity. In the baseline HTM a conflict can only be de-
tected by an L1 cache controller. Whenever an L1 cache controller detects a violation
of a real data dependency a conflict is detected. Conflict detection is performed by the
means of the MOSI cache coherence protocol and the RS and WS. The coherence proto-
col ensures that all problematic read or writes are delegated appropriately. This means
that it is ensured by the protocol that every conflicting access can be noticed by the L1
cache controllers. If the cache controller receives a write request to a cache line con-
tained in the RS or WS of the transaction running on the corresponding core, a conflict
is detected. The same applies if the L1 cache controller receives a read request to a cache
line contained in the WS. A read request to a cache line in the RS is not problematic and
can be serviced, since no real data dependency is violated.

Another source of conflicts relates to the capacity of the L1 cache. If a cache line, which
is part of the RS or WS, is evicted from the L1 cache, because the associativity or size of
the L1 cache is exceeded, a conflict occurs. The reason for this is that the data is spec-
ulative and therefore cannot be written back. This is because of the isolation criteria.
If the data were written back, it would get violated, because a conflicting request can-
not be detected by the LLC controller and would therefore be serviced. Allowing other
cores to process speculative data is bad practice, since it can lead to erroneous behavior.
Continuing the transaction without writing back the speculative data is also no option.
If the transaction would reaccess the cache line, the data would be reloaded from the
LLC ignoring the already performed updates. This could cause unpredictable behavior.
Therefore, it is unavoidable to abort the transaction.

54 4 Implementing a Hardware Transactional Memory exploiting MOSI Cache Coherence

4.3.2 Conflict Resolution

In the baseline HTM conflicts are resolved following a simple but widely spread strategy.
The L1 cache controller, which detects the conflicts, aborts the transaction running on
its corresponding core. This approach is simple and can be easily applied. More com-
plex conflict resolution policies imply more communication making execution ineffi-
cient. Therefore, they are not considered to be provided by the baseline HTM. Chapter
5 looks at the difficulties and describes how more complex conflict resolution strate-
gies can be applied for HTMs. The implemented resolution policy cannot guarantee any
progress, which is why the software executing transactions has to provide an alterna-
tive path of execution for their critical sections. The alternative path of execution can
be executed, when the system detects that the transactions will not commit. An abort
counter can define after how many failed attempts the transaction is considered to not
commit. When the number of aborts exceeds the counter the alternative path of exe-
cution is chosen instead of rerunning the transaction. Since deciding if the alternative
execution path should be taken is determined in software, no hardware extensions are
needed to offer this functionality.

4.3.3 Versioning

The ability to allow at least two versions of a cache line is a key condition to implement
an HTM as described. To perform a rollback in case of an abort, the data has to be restored
to the values before the transaction has started. The system must be able to allow two
versions of the same data. One is speculative and used within the transaction. The other
version contains the data before the transactional execution. The speculative version
of the cache line is usually held by the L1 cache, since this is where the cache line is
used. The backup of the cache line is held by the LLC controller. In case of an abort, the
L1 cache controllers invalidate all cache lines contained in the WS. This causes the L1
cache controller to reload the cache line if it is needed again. The speculative data will

be discarded.

4.4 Integrating the Hardware Transactional Memory

In this section we describe the integration of the baseline HTM. The proposed approach
only requires changes to the memory hierarchy. No changes to the cores are required.
We first describe how the RS and WS is managed. Then the necessity of additional co-
herence messages and their implementation is explained. The last part of this section
describes how the cache controllers were modified to be able to manage transactional
executions.

4.4 Integrating the Hardware Transactional Memory 55

4.4.1 Managing the Read and Write-Set

Managing the RS and WS is an essential functionality for an HTM. Conflict detection
only works when combining the cache coherence protocol with the RS and the WS. The
RS contains all cache lines read by a transaction and the WS contains all cache lines
written by a transaction.

To maintain this information every cache line was extended to hold two extra bits of
information. The bits are set if a cache line is added to the RS or the WS. The bit for
the RS is set by the L1 cache controller, if it detects that a transaction is running, and
a read request is serviced successfully by the L1 cache. A request can be handled when
the L1 cache contains the corresponding line, and the state indicates that it can be read.
Same applies for the bit set when adding the cache line to the WS. It is also only set if a
transaction is running on the corresponding core and a write request was successfully
serviced.

In the baseline HTM the RS and WS is managed locally by the L1 cache controllers. The
size of the RS and WS is bounded by the size of the L1 cache. The lines added to the RS
and the WS can increase as long as no cache line contained in the RS or WS is evicted
from the L1 cache. Therefore, the maximum size of the RS and WS is equivalent to the
number of cache lines the L1 cache can fit. The number of cache lines contained in the
RS and WS is limited by the associativity of the L1 caches.

4.4.2 Additional Coherence Messages

To operate the HTM the system needs to support additional messages compared to the
basic system. This is because the HTM needs some additional functionality, which can-
not be achieved with the existent message types. To obtain concurrency with an HTM
the characteristics of optimistic synchronization have to be considered, which is why
four new message types were added. Table 4.1 lists all of them and offers a brief de-
scription of their functionality. A more detailed explanation is given in the following
paragraphs.

56 4 Implementing a Hardware Transactional Memory exploiting MOSI Cache Coherence

Message type: | Brief description:

putMnoData Allows to update the state of a cache line at LLC level
without changing its data.

updateMO Enables the L1 cache controllers to update a cache
line at LLC level without changing its state.

redirectRW Redirects a read or write request which failed due to
a conflict to the LLC controller.

sendData Acts as a response to redirectRW message. It enables
the LLC controller to send the data without any other
information.

Table 4.1: New message types for the baseline HTM

If a cache line is written inside a transaction, the state of the cache line will be set to the
modified state by the L1 cache controller. Consequently, that L1 cache controller will be
set as the owner of the cache line in the corresponding directory entry. It is important
to notice that the changed data of a cache line, which is contained in the WS, is not
valid until the transaction commits. This can be problematic if the transaction aborts.
The reason for this is that the cache lines contained in the WS have to be invalidated
in the L1 cache. Additionally, the ownership of the cache line then has to be updated
in the directory. Usually this is done by utilizing a putM-message. The problem with
the putM-message type is that it initiates a write back of the data of the corresponding
cache line. In case of a transaction abort, the cache lines contained in the WS cannot
be written back, since the data is corrupted, and the atomicity criteria would be hurt.
Therefore, the new message type putMnoData was implemented, which only straightens
out the ownership of the cache line in the directory. This is important because redirected
requests concerning the cache lines in the WS can no longer be serviced by the L1 cache
controller. With the new message type, the data of the cache line remains untouched.
Since the ownership was updated, requests to the corresponding cache line will no longer
be forwarded to that L1 cache controller. Instead, future requests will be served by the
LLC until the ownership of the cache line changes.

A modified or owned cache line contained by an L1 cache holds the most recent data.
The version contained in the LLC is deprecated and remains outdated until updated.
Therefore, the version in the L1 cache cannot be lost. Unfortunately, exactly this can
happen in a transactional execution if no precautions are taken. The problem occurs
if the modified or owned cache line is consumed by a transaction, which later aborts.
Because the transaction invalidates its WS, the data will be lost, and future read or write
requests are directed to the outdated version in the LLC. Therefore, the cache line has
to be updated in the LLC before it is consumed by a transaction. If the cache line is
updated before it is consumed by a transaction no data loss will occur if it aborts, since
the version in the LLC now contains the most recent data. To update data a message
type was implemented, which only updates the data of the corresponding cache line in

4.4 Integrating the Hardware Transactional Memory 57

the LLC and leaves the state and ownership of the cache line untouched. The name of
the new message type is updateMO.

The coherence protocol always expects an answer for a request. In an HTM environment
this needs extra attention. The following example shows why this aspect cannot be left
unhandled and why an extra coherence message is necessary: If a transaction wants to
read a cache line, which is not yet included in its corresponding L1 cache, the request
is forwarded. For this example, it is assumed that the cache line is marked as modified
in the directory. Therefore, the LLC controller redirects the read request to the L1 cache
controller which is set as owner for the cache line in the directory. If the cache controller
detects that its corresponding core is also running a transaction and the cache line is part
of the WS a conflict is detected (see Section 4.3.1 for more details). In this situation the
request has to be redirected again, since the cache line cannot be forwarded, because
it was modified, and the transaction has not yet been completed. The regular protocol
does not provide such functionality, which is why the new message type redirectRWreq
was added to the system allowing such a redirect. When the redirected message reaches
the LLC controller it is serviced with the data contained in the LLC, which is the most
recent valid version of that data.

The last message type added to the system is sent from the LLC controller to the L1
cache controller and is called sendData. It is used to answer the redirected request dis-
cussed in the previous paragraph. The message is necessary, since redirected requests
are not handled by the underlying cache coherence protocol. The only information the
new message type contains is the data as well as the reference to which cache line it
belongs. Other information concerning coherence (e.g., acknowledgment count) have
already been sent to the L1 cache controller, when the request was originally stated. If
they were sent again, the local information received after the original request would
be overwritten and unpredictable behavior could occur (e.g., deadlock, because the L1
cache controller waits for data it already received).

4.4.3 Modifying the Cache Controllers

The transactional execution requires the cache controllers to offer some additional func-
tionalities. To feature them the cache controllers had to be adapted. This mostly concerns
the L1 cache controllers, since most parts of the transactional execution is managed
here.

The L1 cache controllers have been adapted, so that they offer a small data section. The

data section is used to save and manage transaction related data. Values saved in the
transaction configuration block are:

1. Transaction depth (max. one, meaning no nested transaction can be executed)

58 4 Implementing a Hardware Transactional Memory exploiting MOSI Cache Coherence

2. Address of the abort handler
3. Abort reason

4. Transaction control value

Currently, it is also used to back up the registers when a transaction is started. The
general-purpose register r0-r16 as well as the floating-point registers s0-s31 are saved.
The transaction configuration block is managed in the L1 cache controller. Note that
saving the registers can be easily shifted to the stack. Then, only the location of the first
register saved would have to be stored in the transaction configuration block. To save
all information (incl. using registers) 208 bytes are needed.

To guarantee correct transactional execution, the L1 cache controllers need to know
when their corresponding core is running a transaction. Therefore, the system supports
a memory mapped interface to start and commit a transaction (see Section 4.5 for more
details). Depending on the address of a specific memory operation, the L1 cache con-
troller can identify which action was performed and updates the transaction configura-
tion block accordingly. When a transaction starts, the depth in the transaction configu-
ration block is set to one. The system does not allow nested transactions, which is why
the depth can be only one or zero. With this information, the L1 cache controller can
identify if its corresponding core is running a transaction or not. When the execution
is transactional, conflict detection (see Section 4.3.1 for more details) will be activated
and memory operations performed by the other cores will be monitored for violations
of real data dependencies. If no transaction is running, conflict detection is not active.

When detecting a conflict, the abort reason is written to the transaction configuration
block, since it is later read by the abort handler. To inform the core that it has to abort
its transaction, the cache controller is able to trigger an interrupt. When the core then
executes the interrupt service routine, it loads the address of the abort handler of the
predefined location in the transaction configuration block. It then jumps to where the
abort handler is located and starts to execute it. This ensures that the core’s state is
restored. The transaction then can either be run again or executed in fallback mode.

Transaction starts, aborts and commits have to be treated as memory fences. If not, cache
lines outside of a transaction could be considered as part of the transactional execution
and could be mistakenly added to the transactions RS or WS set. This could cause false
conflicts and disturbs the transactional execution. For transaction starts, it can be easily
ensured by software that all previous memory operations are processed, when start-
ing a transaction (see Section 4.5 for more details). Transaction aborts are more critical
and require changes to the L1 cache controllers. This is the case, when a transaction
aborts and one or more memory requests are still in flight. When the request cannot be
processed by the L1 or LLC it has to be answered by the main memory. This is time-

4.4 Integrating the Hardware Transactional Memory 59

consuming and could take longer than it takes to abort and re-execute the transaction.
If that happens the request will be treated as part of the re-executed transaction and will
mistakenly be added to its RS or WS. To solve this issue, the cache controller has to en-
sure that all memory operations are finished prior to triggering the interrupt, indicating
to its corresponding core that it has to abort its transaction. This issue cannot be handled
in software and therefore the cache controller has to keep track of all outgoing mem-
ory requests. This is realized with a counter. If a coherence request leaves the L1 cache
controller the counter is raised by one. An incoming message will lower the counter by
one. Only memory requests, which require an answer will raise the counter. Incoming
messages, which are considered as an answer to these requests will lower the counter.
An interrupt can only be triggered when the counter equals zero. For transaction com-
mits no further actions have to be taken, since all memory operations have already been
handled.

If a transaction commits or aborts the cache controller has to clean up the transaction’s
RS and WS. Therefore, the cache controllers need to offer routines for transaction com-
mits and aborts. When a cache controller notices that a transaction commits or aborts the
cache controller has to clear the RS and WS. This is done by setting the bits, indicating
that the cache line is part of the WS or RS, to zero. If the transaction commits regularly
no further actions have to be taken. For aborting transactions also the cache coherence
has to be straightened out: When a cache line was accessed to be written, it is set to
the modified state in the L1 cache controller. Because of the coherence protocol, the L1
cache controller is also set as owner for that cache line in the directory. To straighten
this out, the L1 cache controller sends a putMnoData-message to the LLC controller to
inform it that the cache line was invalidated. This cannot be performed atomically which
is why a follow up situation can occur, which cannot be handled by the regular proto-
col and therefore has to be considered: If the putMnoData-message (see Section 4.4.2 for
more details) was sent to the LLC controller, but has not yet reached it, the L1 cache
controller will still be considered as owner of that cache line. Therefore, read and write
requests are still redirected to it. If the cache controller receives such a request, it has to
now detect that it cannot handle the request and has to redirect the request to the LLC
controller. The L1 cache controller is able to detect this situation, because it observes
that no transaction is running, and the data requested is invalid. This can only occur in
a transactional execution, because the cache line does not devolve in an intermediate
state when it is removed from the WS. Functionality allowing this could be added, but
currently is not required, since the problematic situation can be identified as described.
Because the redirect message cannot be the original request, the redirectRWreg-message
type is sent, when such a situation occurs. The LLC controller then meets this request
by also sending the newly added message type sendData, only sending the data of the
cache line (see Section 4.4.2 for more details). Figure 4.3 depicts and explains a detailed
example of such a situation.

If a cache line, part of the RS or WS, is evicted, the cache controller has to trigger an
interrupt indicating its corresponding core to abort its transaction. In case the cache line

60 4 Implementing a Hardware Transactional Memory exploiting MOSI Cache Coherence

L1CC(Core1) LLC Contr. L1 CC (Core 2)

GetM(x)

GetS
transaction abort . etS(x)
- putMnoData redirect request
time ><
redirectRWreq(x) \
sendData(x) \

A\

Figure 4.3: In this example core 2 tries to read the cache line x. Since the correspond-
ing cache controller (L1 CC (Core 2)) cannot find a copy in the L1 cache, it
redirects the request to the LLC controller (LLC Contr.). The LLC controller
detects that the cache line is owned by the L1 cache controller of core 1 (L1
CC (Core 1)) and redirects the request there. Meanwhile core 1 aborted its
transaction and sends a putMnoData-message for cache line x, which was
part of the transactions WS, to straighten out cache coherence. Shortly af-
ter the redirected request arrives at the L1 cache controller of core 1. The L1
cache controller of core 1 then detects that its version of cache line x is invalid
and redirects the request to the LLC controller by sending a redirectRWregq-
message. Because the message was redirected, the LLC controller answers the
request, by sending a sendData-message to the L1 cache controller of core 2.

is part of the WS the L1 cache controller also has to send a putMnoData-message (see
Section 4.4.2 for more details) to the LLC cache controller, to ensure that cache coherence
remains consistent. This has to be done immediately and not in the abort routine, since
the cache line is evicted from the L1 cache and therefore cannot be handled later.

A modified cache line contains the most recent data. If a transaction is started and adds
this cache line to its WS, it has to be backed up. Otherwise, the most recently written
data could be lost, in case the transaction has to be aborted. The L1 cache controller was
adapted in the way that it detects if a transaction wants to add a cache line in the modify
state. This is easily possible, because only the state has to be checked before adding
the cache line to the WS. When the state of the cache line is modified the L1 cache
controller sends an updateMO-message (see 4.4.2 for more details), to update the cache
line in the LLC. Because this is on the critical path concerning execution time, the cache
line is then added to the WS, without waiting for an acknowledgment message from the
LLC controller. A similar situation occurs, when a cache line was modified by a core
not running a transaction and now is requested by another core running a transaction
trying to add the cache line to its WS. Here the L1 cache controller was adapted that it
detects that the cache line came from another core instead of the LLC. This can be easily

4.5 Interface 61

done, because of the underlying cache coherence protocol and the provided message
types. When detecting such a situation an update of the data is initiated by the L1 cache
controller, since the data would be lost, if the transaction later aborts. Figure 4.4 depicts
and describes a detailed example of such a situation.

L1CC(Core1) LLC Contr. L1 CC (Core 2)

transactionStart

GetM(x)

redirect request \
time

| — senddata(x)
P

updateMO(x) \

addToWS(x)

modified(x)

Y

Figure 4.4: Core 1 wants to add cache line x to its WS after starting a transaction. Since
the cache line is not located in the L1 cache, the request is forwarded to the
LLC controller (LLC Contr.). The LLC controller identifies the L1 cache con-
troller belonging to core 2 (L1 CC (Core 2)) as owner of the cache line and
redirects the request to it. The L1 cache controller of core 2 then sends the
cache line to the L1 cache controller of core 1 (L1 CC (Core 1)). It identifies
that the cache line was not sent from the LLC controller and sends an up-
dateMO-message to the LLC controller, before adding it to its WS.

4.5 Interface

The baseline HTM has two possibilities (transaction start and commit) for a user to in-
teract with it. Before being able to use the baseline HTM an initialize function has to be
called by a user. Afterwards a user can actively start or commit transactions. The sys-
tem does not offer an explicit abort function, since it was not required to execute the
evaluated benchmarks. It could be added easily, if required. The interface is provided via
software, which is why no changes to the cores themselves had to be made. To be able
to use the interface, hardware changes to L1 cache controller were required further de-
scribed in Section 4.4.3. The following paragraphs give an overview of how the interface
is implemented.

Initializing baseline HTM: Before using the baseline HTM an initialization function
has to be called. This function uses the unix syscall mmap to map an address range
into memory. These addresses are then exclusively reserved to be used for transactional

62 4 Implementing a Hardware Transactional Memory exploiting MOSI Cache Coherence

operations. For the HTM an addresses range starting at 0xf0000000 until 0xf0200000 is
mapped. Due to debug and experimental reasons an address space, covering 2MB of
storage is reserved. Note that the size could be drastically reduced, since only 208 bytes
have to be addressed to enable the complete functionality.

Transaction start: A transaction is started by writing the address to the abort handler
to address 0xf0000004. Then the registers are backed up. This is done in the address
range of 0xf0000064 - 0xf0000244. Finally, the transaction depth is written to the address
0xf0000000. This access is intentionally performed last, since it is also used to detect if a
transaction is going to commit. Then a Data Memory Barrier (DMB) call is performed,
which acts as a memory barrier. It ensures that all subsequent memory requests are
definitely handled after. This is important because otherwise, memory operations be-
longing to a transaction might be missed. If the transaction started correctly, it returns
0 as a return value.

Abort handler: When an L1 cache controller detects a conflict, the transaction running
on the corresponding core has to be aborted (see Section 4.3.1 for more details). This is
indicated by an interrupt. Since the address to the abort handler is stored in the trans-
action configuration block it can be accessed within the interrupt service routine. The
interrupt service routine then sets the program counter (PC) to the address of the abort
handler and execution continues. The handler is provided in software. First, a zero is
written to address 0xf0000010 indicating to the L1 cache controller that the transaction
is aborted. After that, a DMB is called since the L1 cache controller cleared the RS and WS
(see Section 4.4.3 for more details), which involves memory accesses. Next all registers
are restored by reloading them from memory range 0xf0000064 - 0xf0000244. Finally, the
abort reason is returned. This indicates why the transaction aborted (conflict, capacity
or other), which is read from address 0xf0000008.

Transaction commit: If a transaction finished successfully, it has to commit. For this
the transaction depth is set back. This is done by writing zero to address 0xf0000000.
The controller detects this access and triggers the commit routine within the L1 cache
controller (see Section 4.4.3 for more details).

4.6 Evaluation

In this section the performance of the implemented HTM is evaluated. The baseline
HTM is compared to an execution with POSIX synchronization. Before discussing the
benchmarks, we will give a short overview on the hardware costs of our approach. Then
the settings of the gem5 simulator and the configuration of the benchmarks are shown.
At the end of this chapter the results are analyzed and explained.

4.6 Evaluation 63

4.6.1 Estimation of Hardware Costs

Since we use a simulator for our work, we are not able to estimate which actual impact
our requirements would have in real hardware concerning size and complexity. Never-
theless, we are aware that our requirements definitively impact the underlying hardware.
Therefore, we will present the modifications which we believe impact the hardware in
terms of size and complexity when augmenting a system towards featuring an HTM.

Every cache line has to be equipped with at least two extra bits. The two extra bits are
needed to determine if a cache line is part of the RS or WS. For the extra bits to be set
extra hardware is required which can identify that a transaction is currently running.
Depending on the current operation (read or write request) it has to set the correspond-
ing bits to indicate if a cache line was added to the RS or WS.

To identify conflicts additional logic is required which results in extra hardware. The
extra hardware has to be able to identify if incoming requests conflict with a cache line
which is part of the RS or WS. Therefore, the hardware has to be able to check the
additional bits indicating if a cache line is part of the RS or WS. Depending on the type
of access and the status of the cache line the hardware has to ensure that the correct
measures are performed (e.g., an abort).

The cache controllers as well as the LLC controller have to be augmented to support
new messages (see Section 4.4.2 for more information). Since new message types are
used additional logic has to be supplied to provide the functionality which is required to
feature the new requests.

The cache controllers have to be adapted in the way that they support the interface we
use. This causes additional logic since the cache controllers have to be adapted in the
way that they are able to identify certain requests (e.g., transaction start, transaction
commit).

Once a transaction aborts or commits we need hardware functionality which allows us
to clear the RS and WS. Therefore, the cache controllers have to be augmented with logic
which is able to clear the status of the cache lines.

4.6.2 Benchmarks

For the evaluation, the STAMP benchmark suite [13] was used. The applications used
in the suite are explicitly chosen to evaluate TM systems. The STAMP benchmarks are
highly portable and used to evaluate a wide variety of TM systems including hardware,

64 4 Implementing a Hardware Transactional Memory exploiting MOSI Cache Coherence

software and hybrid approaches. Since the benchmarks are also used for the evaluation
in Chapter 5, a general detailed description of the suite is given in Section 2.4.

4.6.3 Methodology

To evaluate the performance of the baseline HTM the STAMP benchmarks were exe-
cuted. They were executed by the gem5 simulator in syscall emulation mode in which
system services are directly provided by the simulator [37]. The exact configuration of
the gem5 simulator can be found in Table 4.2.

Table 4.2: System Configuration

Num CPUs {1,2,4,8,16}
Microarchitecture ARM Cortex-A15
L1 data cache 32KB

L1 data cache assoc. | 8

LLC cache 2MB

LLC assoc. 16

Cache Coherence directory-based
Coherence Protocol | MOSI

The STAMP benchmarks were evaluated with the small input set. This is recommended
by the authors of [13] when using a simulator. If a transaction exceeds a certain amount
of tries it is executed in fallback mode. The fallback path executes the same code as the
transaction. The difference is that instead of starting a transaction a mutex is locked
when entering the critical section. This assures that the thread is the only one accessing
the critical path. After execution finished, the mutex is unlocked and other threads can
enter the critical section using transactions or a mutex. The exact launch configurations
and the maximum number of attempts for a transaction to commit are stated in Table
4.3.

4.6.4 Analysis

Figure 4.5 depicts the speedup graphs of all of the eight STAMP benchmarks. Within the
speedup graphs the execution of the baseline HTM is compared to the execution with
POSIX Threads. The x-axes relate to the number of cores the execution was performed
with and the y-axes refers to the speedups achieved. The legend entry pthreads refers
to the execution ran with POSIX Threads and the entry baselineHTM to the execution
performed on the baseline HTM. The speedups are calculated as shown by Equation

4.6 Evaluation 65

Table 4.3: Configuration of STAMP Benchmarks

Benchmark | Parameters

bayes -v32 -r1024 -n2 -p20 -s0 -i2 -e2

genome -g256 -s16 -n16384

intruder -a10 -14 -n2038 -s1

kmeans -m40 -n40 -t0.05 -i inputs/random?2048-d16-c16.txt
labyrinth -1 inputs/random-x32-y32-z3-n96.txt

ssca2 -s13 -i1.0 -ul.0 -13 -p3

vacation -n2 -q90 -u98 -r16384 -t4096

yada -a20 -i inputs/633.2

fallback exec. | after 10 failed attempts or capacity issue

(4.1). The reference execution time refers to the run of the benchmark with one core and
no synchronization. It is marked as solid horizontal line in every speedup graph.

reference execution time

speedup = (4.1)

examined execution time

For the evaluation we look at the parts of the execution which are executed in parallel.
Otherwise, potential improvements achieved could be concealed. The time taken lasts
from calling the first parallel operation (e.g., transaction start or locking a mutex) until
to the last (e.g., transaction end or unlocking a mutex). The reason for this is that some
benchmarks spend a long time preparing the critical part of the execution. The bench-
mark bayes is a prime example for this behavior. Most of its execution time the bench-
mark spends generating structures, which are used to learn the structure of a bayesian
network. This is not relevant for the evaluation, which is why looking at the entire ex-
ecution time is not reasonable.

The executions of the benchmarks can be assigned to three categories. The first category
contains all benchmarks where the POSIX synchronization outperforms the baseline
HTM. Note that the benchmarks of the first category in general perform poorly. This is
also the case when executed with POSIX Threads. The benchmarks labyrinth and yada
belong to this category. The speedup graphs for these benchmarks are marked with a
dark gray background in Figure 4.5.

The benchmark labyrinth suffers from quite a lot of capacity conflicts. These let a trans-
action execute fairly long until it aborts, since it can take a while until a transaction ex-
ceeds the capacity of its RS or WS. Therefore, the execution on the baseline HTM with
one core suffers a major slowdown compared to the execution on one core executed with
POSIX Threads. When the core count increases, contention gets higher, and transactions
are executed in fallback mode much earlier. If a transaction aborted ten times and was

66 4 Implementing a Hardware Transactional Memory exploiting MOSI Cache Coherence

not able to commit it will be executed in fallback mode. This speeds up execution for the
benchmark, since the capacity conflicts are resolved much faster the higher contention
gets. Note that overall execution still stays below the reference execution (one core no
synchronization) since execution is more or less serialized.

The benchmark yada also suffers from capacity conflicts but also of a very high con-
tention when executed on the baseline HTM. The increased contention does not help to
resolve the capacity conflicts for the execution performed on the baseline HTM with two
cores. Therefore, performance here decreases. The effect that contention is beneficial for
performance is noticeable after the benchmark started on three cores. Then capacity con-
flicts are resolved beforehand due to other conflicts which is beneficial for performance.
Here also the execution cannot be brought above the reference execution.

The second category contains the benchmarks where the HTM performs significantly
better than the POSIX Thread synchronization. This category contains the benchmarks
genome, ssca2 and vacation. The speedup graphs of these benchmarks have a white
background in Figure 4.5. For these benchmarks optimistic synchronization is benefi-
cial leading to a higher speedup compared to the POSIX Thread synchronization. Since
the critical sections seem to have only a few dependencies, the benchmarks allow multi-
ple transactions to run in parallel. The POSIX Thread synchronization suffers from being
serialized, since the critical section is accessed exclusively by only one thread.

For the benchmark genome performance continues to rise until eight cores. With 16 cores
contention significantly increases and therefore performance decreases. Performance
even drops below the speedup achieved on eight cores.

The benchmark ssca2 also suffers from increasing contention when executed on the
baseline HTM with higher core counts. Therefore, performance does not scale and only
marginally increases for higher core counts. In general speedup values are good and the
POSIX Thread synchronization is clearly outperformed.

When executing the benchmark vacation the baseline HTM achieves good speedup val-
ues. It is the only benchmark in this category for which the performance can be signifi-
cantly improved when executed by the baseline HTM using 16 cores.

The third category contains the benchmarks where the executions more or less match
or could slightly be improved by the baseline HTM. The benchmarks bayes, intruder and
kmeans belong to this category. The speedup graphs of these benchmarks have a light
grey background in Figure 4.5.

For the benchmark bayes all potential benefits are crushed by high contention and ca-
pacity conflicts. Therefore, the execution of both synchronization methods are very close
to the reference execution.

4.6 Evaluation 67

—o— pthreads —=— baseline

bayes genome

2 T T T T 1 T
S
L | | | |
12 4 8 16
intruder
T 1 T
4 [|
2 | |
1
| | | | |
12 4 8 16
labyrinth
T 1 T T 1 T
8 | |
1 Foo—o = 3
r_/./'/r 4t |
2 | |
1
(| | | | [| | |
12 4 8 16 12 4 8 16
vacation yada
16 T 1 T 2 T T T

Figure 4.5:

Comparison of the performance values achieved with POSIX Thread synchro-
nization and the baseline HTM when executing the STAMP benchmark suite.
The y-axes refer to the speedup values compared to the reference execution
(one core, no synchronization). The x-axes refer to the number of cores the
execution was performed with.

68 4 Implementing a Hardware Transactional Memory exploiting MOSI Cache Coherence

The benchmark intruder has small gaps between the critical sections. The POSIX syn-
chronization can exploit this and therefore achieves a speedup. The transactional exe-
cution suffers from an overall higher contention which is why the benchmark intruder
generates low speedups.

The benchmark kmeans performs very well and nearly reaches perfect speedup (x16)
for the transactional execution. This is because the benchmark has almost no conflicts
compared to the number of transactions started. The reason for this are gaps between the
critical sections. This means that after every transaction, code is executed which is not
critical. This is also beneficial for the execution with POSIX synchronization, because
this execution model does not cause serialization. Therefore, speedups are almost as
good as for the execution with the baseline HTM, since small delays due to blocking of
the mutexes have almost no effect on the speedups. Only when contention increases at
a high core count, serialization becomes an issue as shown by a lower speedup for the
execution using POSIX Thread synchronization with 16 cores in Figure 4.5.

4.7 Summary

This chapter describes the implementation of an HTM into a baseline system, provided
by the gem5 simulator. The chapter starts by laying out the baseline system. Many parts
of the baseline system, offered by the gem5 simulator, were reused with small adapta-
tions. Because cache coherence could not be utilized but is a central functionality to
implement an HTM, it was redesigned. To implement MOSI cache coherence the cache
controllers had to be reimplemented. Also new message types had to be integrated to
provide the necessary communication. After the implementation of the cache coherence
the baseline system was completed. On top of the baseline system the HTM integration
started. Beforehand, some design choices had to be made concerning conflict detection,
conflict resolution and versioning. To implement the HTM the cache controllers, the
caches, the directory and the communication had to be adjusted. For usage of the HTM
an interface is offered. The interface is provided in software, so no changes to the cores
had to be made. At the end of the chapter, the HTM was evaluated and compared to an
execution with POSIX synchronization. The HTM performed as expected and is there-
fore used as foundation and baseline of the work described in Chapter 5.

Hardware Transactional Memory for
Embedded Systems

Contents

5.1 Motivation L0 Lo 70
5.2 Adapting the baseline Hardware Transactional Memory 73
53 Interface L. 87
5.4 Abort-Aware Transactional Execution 88
5.5 Unbounded Transactions 88
5.6 Contention Management Strategies 90
5.7 Estimating Execution Times for Extended HTM 93
5.8 Reducing False Conflicts 94
59 Evaluation 96
5.10 Summaryo Lo e e e e e 126

Developing an HTM for embedded systems implies better control over the transactional
execution. Therefore, we propose an approach which allows a better and more exten-
sive management of the transactional execution. To achieve this we extended the HTM
we developed in Chapter 4 to gain further functionality. The main changes concern the
cache controllers, since they have to manage all necessary information. To give a holis-
tic explanation of our work, a more detailed description follows. First, we motivate our
work by describing common problems of COTS HTMs. Then we will describe the tech-
nical details of how we adapted the baseline HTM. After highlighting the changes to
the interface, we introduce a technique to reduce aborts. To provide better control we

69

70 5 Hardware Transactional Memory for Embedded Systems

then explain which contention management strategies we provide and how we imple-
ment unbounded transactions. Since estimating executions times is important for em-
bedded systems, we show how calculations for estimating the worst case execution time
(WCET) can be simplified for our approach directly after. Before the extended HTM and
its techniques are evaluated and analyzed in detail, we present a technique to reduce
false conflicts. We close this chapter by providing a summary.

5.1 Motivation

COTS HTMs work very well, if the code they are executing is highly parallel. In that
case no conflicts occur, and optimistic synchronization shows its full potential. Unfortu-
nately, real world software often lacks parallelism and suffers from poor programming.
The evaluation of the baseline HTM which is modeled to resemble a COTS HTM shows
exactly that behavior. The scenarios in which COTS HTMs do not perform well are ex-
plained in the following paragraphs.

To handle conflicts COTS HTMs usually apply static rules. A wide spread, because easy
to implement, conflict resolution technique is to abort the transaction, mapped to the
hardware detecting the conflict. This means that a transaction running on core 1 is
aborted if the L1 cache controller of core 1 detects a conflict. Since following static rules
as described could leave the execution with an arbitrary abort sequence, this is problem-
atic. An arbitrary abort sequence could lead to a live lock. In a live lock no transaction
is able to commit, because the transactions continuously abort each other before being
able to commit. Figure 5.1 depicts such a scenario, in which the entire system is blocked,
and no progress is made. Another consequence of this behavior is that a lot of work
is discarded, resulting in a high amount of wasted cycles. Wasted cycles occur, when
instructions performed by a core do not benefit the execution in any way. Instead, the
instructions cost energy and computation time, which go to waste.

If a situation depicted by Figure 5.1 occurs in a system utilizing an HTM, it would not be
able to complete execution. In such a case a fallback strategy has to be provided. Most
commercial HTMs like Intel TSX [16] require the provision of of a fallback execution
path. Usually, the fallback path is an replica of the critical section of code using different
synchronization mechanisms to ensure the correct parallel execution. A transaction is
executed in fallback mode once it exceeds a user defined value of failed attempts to
commit a transaction. This adds complexity to the programming when a providing code
for an HTM.

5.1 Motivation 71

Core 1: | TX1 | TX1 [TX1

Core2: [TX2 | TX2 | TX2 | TX2] X2

Figure 5.1: Core 1 and core 2 try to execute a transaction. Transaction 1 (TX1) runs on
core 1 and transaction 2 (TX2) is executed on core 2. For this execution we as-
sume that the HTM aborts the transaction which detects a conflict. A conflict
is depicted by an arrow going from TX1 to TX2 or vice versa. If the arrow goes
from TX2 to TX1 this means that the hardware TX2 is mapped to, detects a
conflict. Because of the static conflict resolution strategy, it has to abort and
restart its execution. Neither transaction 1 nor transaction 2 are able to com-
mit, because throughout the execution repeatably aborted each other. The
reason for this is the alternation of which transaction detects a conflict and
the lack of prioritization.

A widely spread method to create the fallback path is to copy the critical section of code
and to protect it by locking it with a POSIX mutex. This can be done by replacing the
begin statement of a transaction by lock(mutex) and the end statement of a transaction
with unlock(mutex). This often results in coarse grained locking and serialization but
allows the HTM to recover itself from a situation depicted by Figure 5.1. Figure 5.2 shows
how the livelock can be resolved by executing the fallback path. Note that during the
execution of the fallback path no other thread can enter the critical section which highly
prohibits parallelism compared to the transactional execution.

Core 1: | TX1 ’ TX1 \

Core2: | TX2] TX2 FB2 \

Figure 5.2: When transaction 2 (TX2) reaches its limit of attempts to commit it is ex-
ecuted in fallback mode. After the fallback execution (FB2) finished, Trans-
action 1 (TX1) is re-executed and can try again to commit. This mechanism
can lead to serialization, preventing parallelism, since FB2 has to be executed
exclusively preventing transaction 1 to be executed. Since the original sce-
nario (see Figure 5.1) prevented any progress, it still makes sense to utilize
the fallback path.

Static rules for conflict resolution can also result in an abort distribution which can be
bad for performance. This is the case if a transaction is continuously disadvantaged and
is not able to commit due to conflicts with other transactions. Note that even more so-
phisticated contention management can suffer from this problem. Figure 5.3 shows such
an exemplary execution in more detail.

72 5 Hardware Transactional Memory for Embedded Systems

Core 1: ’ TX3 ‘ ’ TX4
Core 2: TX1 ’ TX5 \
Core 3: |TX2| [TX2| [TX2 | | TX2 | [TX2] | TX2 | | TX6 \

Figure 5.3: Cores 1 and 2 are able to run their transactions without any conflicts, trans-
action 2 (TX2) is aborted multiple times, due to conflicts with transaction 1
(TX1) and transaction 4 (TX4). In this example every abort is executed on
Core 3, resulting in a high delay for Core 3 until it can finish the execution of
transaction 2 (TX2).

Transactional conflicts are not the only reason for transactions to be executed in the
tallback mode. Another limiting factor is the size and associativity of the L1 cache. If a
transaction gets too big for the L1 cache and a cache line, which is part of its RS or WS
is evicted, the transaction also has to be aborted. The reason for this is that a transaction
saves speculative data in the L1 cache, which cannot be written back to a higher cache
hierarchy. If a transaction would be able to write back speculative data, it would be visible
to other cores and could be accessed. This hurts the isolation and atomicity criteria of
transactions (see Section 2.1 for more details) and would lead to a faulty execution. A
similar issue concerns interrupts. If an interrupt occurs within a transaction, it also has
to be aborted. The reason for this is that the speculative data, saved in the cache, could
be accessed or evicted by the code executed by the interrupt service routine. In the worst
case scenario, the interrupt service routine would consume and manipulate speculative
data from the transaction. This would most likely end in a faulty interrupt execution and
hurts the isolation and atomicity criteria of the transaction.

With the extended HTM, we want to provide an HTM for embedded systems which is
able to apply a variety of contention management strategies. Through them the extended
HTM is able to guarantee progress, fairness or other features. Additionally, we want to
enable unbounded transactions to be able to survive capacity conflicts without having
to utilize the fallback path. In combination the necessity for providing a fallback path
should be omitted which would greatly simplify programming. Furthermore, we want
to try to minimize aborts to reduce the number of wasted cycles. Compared to the HTM
presented in Chapter 4 the extended HTM should offer the following improvements:

« support of a variety of contention management strategies

« support of unbounded transactions

no necessity for providing a fallback path

mechanisms to reduce the number of aborts

5.2 Adapting the baseline Hardware Transactional Memory 73

5.2 Adapting the baseline Hardware Transactional
Memory

For the extended HTM the same baseline multi-core system of up to 16 cores as described
and depicted in Section 4.1 is considered. Furthermore, the baseline HTM implemented
in Chapter 4 was used as foundation for the work described in this Chapter.

One of our goals is to provide several sophisticated contention management strategies.
This requires to accessing the meta data of the conflicting transactions for the decision-
making process concerning the abort. In the following we discuss the three most promis-
ing ways to do this in terms of feasibility:

1. The transactional meta data, the RSs and the WSs are managed by the L1 cache
controllers. Also, the decision-making process is handled by the L1 cache con-
troller.

2. The transactional meta data is managed by the LLC controller. Therefore, the
decision-making process for aborts is moved to LLC controller. The RSs and WSs
are managed locally by the L1 cache controller.

3. The transactional meta data, the RSs and the WSs are accessible to the LLC con-
troller. The decision-making process concerning aborts is also moved to the LLC
controllers.

If the first approach were chosen, the decision-making process, if a transaction has to
abort, would be performed by the L1 cache controllers. Since we want to apply more
sophisticated conflict resolution policies an L1 cache controller cannot just abort the
transaction running on its corresponding core when it detects a conflict. Instead, it has
to inform its opponent that a conflict occurred. Additionally, the data upon which the
decision-making progress is based on would have to be transferred. Therefore, a lot of
communication would be necessary to resolve a conflict. This would most likely cause
long blocking times which would have to be taken into account. Although the conflict
is directly detected it takes a lot of communication until execution can continue.

The second approach is a hybrid approach. The WSs and RSs would still be managed
by the L1 cache controller. The LLC controller would manage the relevant transactional
meta data. Since the meta data contains the information where transactions are currently
running potential conflicts could be detected by the LLC. The LLC controller would have
to re-ensure that it really detected a conflict by sending a message to the L1 cache con-
troller running the conflicting transaction requesting it to check its RS and WS. This also
requires a lot of communication which ultimately lengthens the average execution time
for transactional read and write requests.

74 5 Hardware Transactional Memory for Embedded Systems

For the third approach all relevant data is accessible to the LLC controller. In contrast
to the second approach also the RSs and WSs can be accessed by the LLC controller.
Also, the decision-making process concerning transactional aborts is moved to the LLC
controller. Since all relevant data has been transferred to the LLC beforehand, abort de-
cisions can be made very fast. Compared to the other approaches this is a big advantage,
since they always cause some sort of waiting or blocking. Therefore, this approach was
chosen to extend the baseline HTM. To shift the management of the relevant data and
the abort-decision process to the LLC controller, the baseline HTM was completely re-
vised.

The remainder of this section is organized as follows: First the changes to the manage-
ment of the RS and WS are pointed out. Before the changes to conflict detection and
resolution are described the additional message types needed are characterized. Then
the adaptations made to the cache controllers are explained.

5.2.1 Managing the Read- and Write-Set

Shifting the conflict detection and resolution to the LLC cache controller also implies
keeping track of the RS and WS at that level. To detect conflicts and to be able to allow
more complex abort decisions double bookkeeping of the RSs and WSs was implemented.
This means that the RSs and WSs are managed locally by the L1 cache controllers and
globally by the LLC cache controller. Every L1 cache controller keeps track of the RS
and WS of the transaction running on the corresponding core. Additionally, the RSs and
WSs are also managed globally by the LLC cache controller. The LLC controller keeps
track of the RSs and WSs of all transactions running on the system.

The reason why the RSs and WSs also have to be managed locally is that the LLC con-
troller needs to know which cache lines have to be removed from the RS and WS in case
of an abort. Meaning the L1 cache controller has to inform the LLC controller which
cache lines have to be removed from the WS or RS. Since the LLC controller would have
to iterate over the entire LLC whenever a transaction aborts or commits to identify the
lines contained in the corresponding transaction, the LLC controller needs that support.
Because of the size of the LLC iterating over it would not be reasonable and would take
too long. The information for the local RS and WS is maintained as described in Section
4.4.1.

The global RS and WS allows more complex abort decisions, because every in a con-
flict involved transaction can be directly identified. Therefore, it can also be directly
addressed through its corresponding cache controller (e.g., to trigger an abort). The in-
formation regarding the RS and WS is stored by the directory. Similar to storing the
sharers of a cache line the directory is augmented to manage an RS and WS for a cache

5.2 Adapting the baseline Hardware Transactional Memory 75

line. For this the LLC controller adds an L1 cache controller as sharer to the RS when a
transactional read and to the WS when a transactional write occurs.

5.2.2 Additional Coherence Messages

Since the extended HTM requires more functionality than the baseline HTM new mes-
sage types are required. To shift the conflict detection and resolution to the LLC con-
troller in total fourteen new message types were added to the baseline HTM system.
Table 5.1 lists all of them and gives a brief description of their functionality. The addi-
tional message types added in Section 4.4 are not used by the extended HTM.

The LLC controller needs to manage transactional meta data. Therefore, the L1 cache
controllers have to inform the LLC controller when a transaction started, wants to com-
mit or in case a transaction aborted when it finished the abort routine. To do this, three
new message types were added. The new message type transactionStart is used to inform
the LLC controller that a transaction started on the corresponding core of the L1 cache
controller which sent the message.

In case a transaction aborted the corresponding L1 cache controller indicates the LLC
controller that it finished the abort routine by sending the new message type transaction-
End. Since cache coherence has to be maintained no request concerning the RS or WS of
the aborting transaction can be redirected to the L1 cache controller currently aborting
that transaction. Instead, the LLC controller has to detect that the L1 cache controller is
currently aborting a transaction, which it can since all aborts are triggered by the LLC
controller. Therefore, the L1 cache controller is in a transient state in which it is still
running a transaction, but it is marked as aborted. Requests concerning the RS or WS of
that transaction have to be serviced directly by the LLC. As soon as the transactionEnd
message hits the LLC controller it knows that the L1 cache controller completed the
abort of the transaction and can set the meta data accordingly.

If a transaction wants to commit the new message type transactionCommitReq is uti-
lized to inform the LLC controller. A commit of a transaction cannot occur atomically.
This means that at the time an L1 cache controller is informed to commit a transaction
the LLC controller can still detect a conflict and send an abort request. Therefore, the
L1 cache controller sends the transactionCommitReq to inform the LLC controller that
it wants to commit. After the LLC controller receives that message it sends a message
acknowledging the commit. The message is only sent if meanwhile no conflict was de-
tected causing the LLC controller to abort the transaction. To acknowledge the commit
the new message type commitAck is sent. Figure 5.4 depicts and describes the problem
when no acknowledgment message is implemented. Figure 5.5 shows the same scenario
and how it is resolved by implementing a request as well as an acknowledgment mes-
sage.

76 5 Hardware Transactional Memory for Embedded Systems

L1CC(Core1) LLC Contr. L1 CC (Core 2)

/ transactionStart
transactionStart \
GetM(x)

I— GetM(x
time / I

transactionCommit / transAbortReq

Y

Figure 5.4: Core 1 and core 2 are both running a transaction. Therefore, their corre-
sponding L1 cache controllers (L1 CC (Core 1) and L1 CC (Core 2)) send a
transactionStart message to the LLC controller (LLC Contr.) to inform it. First
the transaction running on core 1 and later the transaction running on core 2
add cache line x to their WS. Again the LLC controller is informed. Therefore,
the LLC controller detects a conflict. Meanwhile core 1 commits its transac-
tion and its corresponding L1 cache controller starts clearing the RS and WS.
Shortly after an abort request reaches the L1 cache controller. Since the L1
cache controller already removed entries from the RS and WS it cannot abort
the transaction running on its corresponding core. Due to the information
loss this is not possible anymore. Another option would be to abort the other
transaction. This would involve communication, violate the conflict resolu-
tion strategy, and could also fail. Therefore, we provide a different mechanism
depicted in Figure 5.5.

Since we implemented double bookkeeping of the RS and WS the management of the
RS and WS is also done by the LLC controller. Therefore, two new message types had
to be implemented. The first new message type is called addToRS. It allows the L1 cache
controller to inform the LLC controller that the cache line the message refers to was
added to the RS of the currently running transaction. The second new message type,
named addToWS, informs the LLC controller that the cache line the message refers to
was added to the WS of the currently running transaction.

To maintain the RS and WS correctly the LLC controller also has to be informed when
a cache line is removed from the RS or WS. Otherwise, false conflicts could arise. In
contrast to adding cache lines to the RS or WS managed by the LLC controller this is done
with three new message types, since a cache line can simultaneously be contained in the
RS and the WS. The new message types removeFromRS and removeFromWS indicate the
LLC to remove the L1 cache controller from the RS or WS of the cache line the message
refers to. If an L1 cache controller is contained in the RS and WS and has to be removed
the new message type removeFromRSWS is used.

5.2 Adapting the baseline Hardware Transactional Memory 77

L1CC (Core1) LLC Contr. L1 CC (Core 2)

/ transactionStart
transactactionStart \
GetM(x)

I— GetM(x
time / -

transCommitReq >< transAbortReq
AbortTransaction
/ transAbortReq

Y

Figure 5.5: This example shows the exact same scenario as depicted in Figure 5.5. The
difference is that the transaction running on core 1 will not commit until it re-
ceives approval from the LLC. Due to this the abort request (transAbortReq) is
sent to the L1 cache controller of core 1 (L1 CC (Core 1)) after the LLC detects
the conflict caused by cache line x. It can now abort the transaction since it
has not started to clear the RS and WS. The commit request (transCommit) is
denied by sending a second transaction abort request (transAbortReq). The L1
cache controller of core 1 will detect that the transaction has already aborted
and continues to abort the transaction.

Conflict resolution shifted to the LLC controller. Therefore, we implemented a new mes-
sage type indicating to the L1 cache controllers that they have to abort the transac-
tion running on their corresponding core. To do this the new message type transaction-
AbortReq was added. This message type is sent, if the LLC controller detects a conflict
and one or more L1 cache controllers have to be notified that the transactions running
on their corresponding cores have to be aborted.

In the transactional execution it can be necessary that data held by an L1 cache has to
be written back (see Section 5.2.5 for more details). For this purpose, we added the new
message type writeBackReq. In contrast to the invalidate message type, provided by the
MOSI cache coherence protocol, it can be used for a wider spectrum of states and does
not send any acknowledgment messages (see Section 2.2 for more details). The message
type is only triggered by the LLC controller and causes the L1 cache controller it was
sent to only initiate a write back of the concerning cache line.

To be able to detect all conflicts it can be necessary that a cache line is added to a trans-
actions RS managed by the LLC controller before the cache line is added locally to the RS
managed by the L1 cache controller (see Section 5.2.3 for more details). For this purpose
we added the new message type addToRSinDir. To confirm the cache line was added to
the RS managed by the LLC controller an acknowledgment message is triggered by the
LLC controller. Here the new message type addedToRS is utilized.

78 5 Hardware Transactional Memory for Embedded Systems

In the extended HTM we can allow an abort-aware execution which can be beneficial for
energy consumption (see Section 5.4 for more details). For it to work cores are stalled.
To wake them up again, we implemented the message type canContinue. The message
type informs the L1 cache controller to continue execution.

Message type: Brief description:

transactionStart Indicates the LLC controller that a transaction started
on the corresponding core of the L1 cache controller
which sent the message.

transactionAbortReq Indicates the L1 cache controller that its correspond-
ing core has to abort its transaction.

transactionEnd Indicates the LLC that the abort of the currently run-
ning transaction is completed.

transactionCommitReq | Indicates the LLC that the transaction running on the
corresponding core of the L1 cache controller which
sent the message wants to commit its transaction.

commitAck Indicates the L1 cache controller that the transaction
running on the corresponding core can be commit-
ted.

addToRS Informing the LLC controller to add cache line to RS
of currently running transaction.

addToWs Informing the LLC controller to add cache line to WS
of currently running transaction.

removeFromRS Removes a cache line from the RS managed by the
LLC controller.

removeFromWS$S Removes a cache line from the WS managed by the
LLC controller.

removeFromRSWS Removes a cache line from the RS and WS managed
by the LLC controller.

writeBackReq Writes back the cache line referred to by the message
by evicting the cache line form the L1 cache.

addToRSinDir Indicates the LLC controller to add a cache line to the
RS managed by the LLC controller.

addedToRS LLC sends this message, if the cache line the ad-
dToRSinDir request refers to was successfully added
to RS managed by LLC

canContinue Indicates the L1 cache controller that it can continue
to service request from its corresponding core.

Table 5.1: New message types for the baseline HTM

5.2 Adapting the baseline Hardware Transactional Memory 79

5.2.3 Conflict Detection

Just as in the baseline HTM conflicts are detected eager. In contrast to the baseline HTM
the conflicts are not detected by the L1 cache controllers. Instead, the LLC controller
performs conflict detection. Detecting conflicts at the level of the LLC controller allows
more complex abort decisions. To do this, we rely on the implementation of the MOSI
cache coherence protocol. Since the MOSI cache coherence protocol can be operated
without silent state changes as e.g., performed by the MESI cache coherence protocol,
it allows the LLC controller to directly identify conflicts reducing blocking times. Silent
state changes are changes of the cache line states, which are performed without noti-
fying the LLC controller. Figure 5.6 shows the for our approach problematic silent state
changes performed by the MESI protocol and compares it to the same procedure per-
formed by the MOSI cache coherence protocol. Silent cache changes are problematic,
since the LLC controller cannot determine directly if the concerning cache line only has
to be added to the RS or also to the WS. Since it is possible that the LLC controller is not
informed about a state change of the cache line the LLC controller cannot be certain if it
detected a conflict or not. This means that whenever a potential conflict is detected the
LLC controller would have to check if a state change of the cache line were performed
by the L1 cache controller exclusively holding the cache line. In such a case extra com-
munication would be needed to determine the actual state of the cache line.

A conflict is detected by the LLC controller, if a transactional write request, signaled to
the LLC controller by a getM request, concerns a cache line which is contained in the RS
or WS of another transaction. Also, if a transactional read, identified by a getS request,
concerns a cache line contained in the WS of another transaction a conflict is detected.
Since the directory entry also stores the information to which other RSs or WSs a cache
line belongs, this is possible.

If a transaction exceeds the size for the RS or WS, which is still tied to the size and asso-
ciativity of the L1 cache, the L1 cache controller sends the corresponding put-message
(see Section 2.2 for more details) to the LLC controller. The LLC controller then detects
if the cache line is evicted from a transactions RS or WS. If the cache line is part of the
RS or WS it sends an abort request to the corresponding L1 cache controller.

Conlflicts are exclusively detected by the LLC controller. The L1 cache controllers do not
detect conflicts. Furthermore, the extended HTM is built in such a way that no conflicting
requests will reach the L1 cache controllers.

80 5 Hardware Transactional Memory for Embedded Systems

MESI: MOST:

(2) GetM
(2) GetM

(1) Data

(2) Data

Figure 5.6: The left side of this figure shows the scenario in which a silent evict can
occur in the MESI cache coherence protocol. If a cache line is read it first
sends a GetS request. When the cache controller is identified to be the only
sharer the state of the cache line is set to exclusive. Next the cache is written.
Therefore, the cache controller triggers a GetM request. Since the cache line is
in exclusive state the request does not have to be sent to the LLC controller.
Instead, it is directly changed to modified. The MOSI protocol, depicted on
the right side, always sends a request to the LLC controller when it wants to
change the state of a cache line. It therefore sends the GetM request to the
LLC before changing the state of the cache line. Graphic is inspired by [57, S.
163]

5.2.4 Conflict Resolution

The system we propose allows a wide varity of conflict resolution techniques. Detect-
ing conflicts with the LLC controller brings some advantages when resolving a conflict.
When detecting a conflict all conflicting parties can be identified by the LLC controller.
In contrast to the baseline HTM the LLC controller can now make a more sophisticated
abort decision which can include the consideration of transactional meta data (e.g., trans-
action start time, priorities, number of commits, etc.). We propose several contention
management strategies described in more detail by Section 5.6.

5.2.5 Modifying the Cache Controllers

Shifting the conflict detection and resolution to the LLC controllers requires further
adaptations to the cache controllers. Although a lot of functionality could be adopted

5.2 Adapting the baseline Hardware Transactional Memory 81

from the baseline HTM some major changes had to be made which are described in the
following paragraphs.

Starting a transaction is performed as implemented in the baseline HTM (see Section
4.4.3 for more details). The only change made is that the L1 cache controller now sends a
message to the LLC controller. By sending a message with the new message type transac-
tionStart the L1 cache controller informs the LLC controller that its corresponding core
started a transaction. The LLC controller stores this information and uses it for conflict
detection.

Since the information concerning the transactional execution cannot be lost, the LLC
controller has to be able to save and alternate the transactional meta data. Therefore, we
augmented the LLC controller to be able to save the transactional meta data in a trans-
action config data block comparable to the way data is saved by the L1 cache controllers
(see Section 4.4.3 for more details). In contrast to the information stored in the L1 cache
controllers, which only relates to one transaction, the data managed by LLC controller
relates to all transactions running. Since one core can run one transaction at the time
the space needed varies depending on how many cores the system offers. All data saved
in this block relates to the transactional execution. The data saved heavily relies on the
contention management strategy applied and is listed in Section 5.6.

Although many things had to be adjusted for the commit and abort routine, the baseline
functionalities were adopted (e.g., clearing the local RS and WS) from the implementa-
tion of the baseline HTM (see Section 4.4.3 for more details). In the following we will
strongly focus on the differences. Before the L1 cache controller can start to commit the
transaction running on its corresponding core, it has to send a commit request to the
LLC by sending the new message type transactionCommitReq. If meanwhile no conflict
occurred, the LLC controller sends a commitAck message to the corresponding L1 cache
controller. The LLC controller also marks that currently no transaction is running on
the corresponding core of the L1 cache controller which sent the message. This is im-
portant for conflict detection. Note that the L1 cache controller can still be contained by
the RS or WS of several cache lines. Since the LLC controller marked that no transaction
is currently running requests concerning these lines can be redirected to the L1 cache
controller and no conflict will be detected.

After the L1 cache controller receives the commitAck message it can start to execute
the commit routine. The reason why the commit request has to be acknowledged is that
once the commit routine started it cannot be stopped. It has to look like it was performed
atomically. Therefore, the LLC controller has to be informed beforehand so that subse-
quent request will not cause an abort request (see Section 5.2.2 for more details). Within
the commit routine the L1 cache controller starts to clear the RS and WS (see Section
4.4.3 for more details). When removing a cache line from the RS or WS it sends one of
the new message types romoveFromRS, removeFromWS or removeFromRSWS (see Section
5.2.2 for more details)) to the LLC controller. When receiving such a message the LLC

82 5 Hardware Transactional Memory for Embedded Systems

controller removes the L1 cache controller from the RS, WS or both. If a transaction com-
mits only the RS and WS has to be cleared. Cache line states remain untouched. Note
that because of the strict ordering of the messages it is guaranteed that the RS and WS
is cleared before a new transaction starts.

In contrast to the baseline HTM a transaction abort is never initiated by the L1 cache
controllers. The request to abort a transaction always comes from the LLC controller.
Once the L1 cache controller receives a transactionAbortReq the L1 cache controller will
no longer serve read or write request of its corresponding core. When all messages in
flight are serviced the L1 cache controller triggers an interrupt (see Section 4.4.3 for more
details). Just like when committing the L1 cache controller starts to clear the RS and WS.
The abort routine works like the one described in Section 4.4.3. Here also the states of the
cache lines are reset. In contrast to the implementation of the baseline HTM the cache
controllers of the extended HTM also straightens out the RS and WS managed by the
LLC controller. For this it sends the new message types removeFromRS, removeFromWS
or removeFromRSWS. If the coherence state has not already changed the messages are
also used to straighten out the state of the cache line stored by the directory entry. Table
5.2 shows how the states are set back.

State saved by directory: | Is set to:
shared invalid or remains shared

modified invalid

Table 5.2: Restoring coherence states after a transaction abort

Cache states not only have to be straightened out in the directory, it can also be necessary
to adapt them in the L1 cache before the abort routine is executed. Note that within the
abort routine cache states are set back as decribed by Section 4.4.3. When an L1 cache
controller tries to add a cache line to the RS or WS it sends the according messages to
the LLC controller. If the attempt fails because a conflict was detected, and the conflict is
resolved in favor of an opponent transaction, measures have to be taken by the L1 cache
controller to straighten out the state of the affected cache lines. To explain this in more
detail we give the following example: If a cache line is marked as invalid and should be
added to the RS of a transaction the corresponding L1 cache controller triggers a getS
request to the LLC controller. Meanwhile, the state of the cache line is set to isd (see
Section 2.2 for more details). When the request reaches the LLC controller it checks if it
can service the request. In this example we assume that the cache line is part of the WS
of another transaction and a conflict is detected causing the transaction trying to add the
cache line to its RS to abort. The LLC then sends an transactionAbortReq message to the
L1 cache controller which sent the getS request. Since the transactionAbortReq message
does not only indicate the L1 cache controller to initiate an abort but also contains the
address of the cache line for which the request got sent, the L1 cache controller is able
to restore the coherence state. This is necessary since the intermediate state of the cache

5.2 Adapting the baseline Hardware Transactional Memory 83

line is likely to cause a deadlock if not set back. The cache line set to isd is set back to
invalid. All possible intermediate states and to which state they are reset are listed by
Table 5.3.

Intermediate State: | Is set to:
isd invalid
imad invalid
smad shared

Table 5.3: Restoring coherence states in case of rejected requests

L1CC(Core1) LLC Contr. L1 CC (Core 2)

X(shared) / transactionStart
transactionStart \
/ GetM(x)

time addToRS(x) >< Invalidate

Figure 5.7: In this example cache line x is contained in the L1 cache of core 1. The state
of the cache line is shared. Core 1 then starts a transaction. Therefore, the L1
cache controller of core 1 (L1 CC (Core 1)) sends a transactionStart message to
the LLC controller. Meanwhile core 2 also starts a transaction. The L1 cache
controller of core 2 (L1 CC (Core 2)) therefore also sends a transactionStart
message to the LLC controller. The transaction running on core 2 tries to write
cache line x and sends a getM request to the LLC controller. Since the LLC
controller lacks the information that the transaction running on core 1 added
cache line x to its write set no conflict is detected. Furthermore the LLC sends
an invalidate request to the corresponding L1 cache controller concerning
cache line x. As soon as the invalidate request hits the L1 cache controller of
core 1 it detects the conflicting access. Meanwhile the message informing the
LLC controller that the transaction running on core 1 added cache line x to
its RS reached the LLC controller. To resolve this conflict to act as demanded
by an applied contention management strategy is now very hard, since a lot
of communication would be necessary.

A\

Adding a cache line to the WS or RS works completely different as in the baseline HTM.
In the baseline HTM the cache lines are directly added to the RS or WS. The only criteria
which has to be fulfilled is that a transaction is currently running on the corresponding
core of the L1 cache controller adding a cache line to the RS or WS. In the extended HTM

84

5 Hardware Transactional Memory for Embedded Systems

cache lines which are not yet part of an RS or WS in general have to be treated more
carefully, since they have to be added to RS or WS managed by the LLC controller before
they can be added to the local RS or WS.

Since conflict detection shifted to the LLC controller only it should initiate aborts. Other-
wise, it is not possible to enforce conflict resolution policies. Therefore, a cache contained
in the L1 cache in shared state cannot just be added to the local RS. If added without fur-
ther measures an erroneous state can arise. In some cases, conflicts cannot be detected
as intended and might slip which can lead to a faulty execution. Figure 5.7 shows one
problematic scenario if no precautions are taken.

time

L1CC(Core1) LLC Contr. L1 CC (Core 2)

x(shared) / transactionStart
transactionStart
\ GetM(x)
addToWSinDir /

addToRSinDir(x) >< Inv
Invalidate(x) resolve conflict addToWS(x)
addedToRS
AddToRS(x) / AbortTransaction
GetS(x) \
/ sendData
x(shared)

Figure 5.8: In contrast to Figure 5.7 cache line x is added to the RS managed by the LLC

controller before it is added to the local RS managed by the L1 cache con-
troller. Now the LLC controller is able to detect the conflict directly once
the addToRSinDir message, triggered by L1 cache controller of core 1 (L1 CC
(Core 1)), hits the LLC controller. This brings the advantage that the conflict
can be resolved according to the applied conflict management strategy. The
drawback of adding the cache line to the local RS this way is that although
cache line x is present the execution is blocked until the L1 cache controller
of core 1 (L1 CC (Core 1)) receives the addedToRS message from the LLC con-
troller. Additionally, cache line x has to be reread since it was evicted due to
the write request of core 2. Note that the cache line only has to be added to
the RS managed by the LLC controller once. A second time is not necessary,
since the cache entry although the state is set to invalid still remains and can
be added to the local RS.

5.2 Adapting the baseline Hardware Transactional Memory 85

To solve the issue depicted by Figure 5.7 we implemented that a cache line always has to
be added to the RS managed by the LLC controller before it is added to the RS managed
by the L1 cache controller. Figure 5.8 shows exemplary how this is done. Note that this
procedure only has to be performed if the cache line is not yet part of the RS or WS.

Cache lines which are in modified state but not yet part of the RS or the WS have to also
be treated specially. For these cache lines the L1 cache controller has to initiate a write
back of the data, since the most recent data has to be written back to the LLC. Otherwise,
data loss might occur in case the transaction aborts. In contrast to the implementation
of the baseline HTM the write back of a cache line and adding it to the RS or WS cannot
be initialized simultaneously. Instead, the data first has to be written back. Then it can
be added to the WS or RS. For this no new message type is required, since it can be
written back with a putM message provided by the MOSI cache coherence protocol. The
subsequent read or write is also performed by message types offered by the MOSI cache
coherence protocol.

Another situation which has to be considered occurs when an L1 cache controller sends
a request to the LLC controller indicating that it wants to add a cache line to its RS or
WS. If the LLC controller detects that the cache line is in modified state but not part of
an RS or WS it sends a message with the new message type writeBackReq to the L1 cache
controller registered as owner. This will force the L1 cache controller to initiate a write
back of the concerning cache line.

If the measures described in the previous two paragraphs are not applied a situation
could arise which would lead the system into an undefined and possibly erroneous state.
A detailed description of what goes wrong in such a situation is given by Figure 5.9. Note
that especially for higher core counts it is important to be able to restore a system state
which is correct and follows the applied conflict resolution policy.

Figure 5.10 shows the same initial situation as Figure 5.9. Here the described measures
are applied and no erroneous state is reached. The conflict can be detected and resolved
according to an applied conflict resolution policy.

In contrast to the baseline HTM some functionality had to be added to provide cache
coherence. For this purpose, we exploit the behaviour of the the MOSI cache coherence
protocol in several ways:

If the system detects a conflict and the cache line due to which the conflict arose is in
modified state, this is critical. Especially if the transaction running on the corresponding
core of the L1 cache controller registered as owner is identified to be aborted. Since
no blocking should occur, the state of the cache line has to be adapted immediately.
Therefore, the state of the cache line is set to invalid, and the owner of the cache line is
cleared. This ensures that the correct data is sent to the continued transaction and causes
the LLC controller to send the data stored in the LLC. The state is then also changed

86 5 Hardware Transactional Memory for Embedded Systems

accordingly and if needed a new owner of the cache line can be set. Note that this works
for read or write accesses. This mechanism is especially important for non-transactional
accesses. Non-transactional accesses always win over transactional accesses causing a
conflicting transaction to abort.

L1 CC (Core 1) LLC Contr. L1 CC (Core 2)

x(modified) / transactionStart
transactionStart \
/ GetM(x)

time addToWS(x) >< redirectRequest

Figure 5.9: In this example the cache line x is contained in the L1 cache of core 1. The
state of the cache line is modified. Core 2 starts a transaction, which is why
its corresponding L1 cache controller (L1 CC (Core 2)) informs the LLC con-
troller (LLC Contr.) by sending a transactionStart message. Also core 1 starts
a transaction. Therefore, its L1 cache controller (L1 CC (Corel)) also sends a
transactionStart message to the LLC controller. As depicted the transaction
running on core 2 wants to add the cache line x to its WS by sending a getM
request. Because the cache line is not part of any other RS or WS no conflict
is detected, and the request is redirected to the L1 cache controller of core 1.
Meanwhile, the transaction on core 1 also added cache line x to its WS and
triggered an backup of the cache line. When the L1 cache controller of core
1 receives the redirect request it cannot forward the cache line since it is in
a speculative state. As soon as the LLC controller receives the message that
cache line x was added to the WS of the transaction running on core 1 a con-
flict is detected. Since the ownership of the cache line changed because of the
request of the L1 cache controller of core 2 it can be problematic to restore
correct ownership.

A

If a transaction has to abort the LLC controller marks it accordingly. Since the trans-
action cannot empty its RS or WS atomically it has to be continued in an intermediate
state. If a read or write request concerning a cache line owned by an L1 cache controller
which corresponding core is currently aborting its transaction the LLC controller detects
that and sets the state to invalid and removes the owner. Otherwise, a request could be
redirected to that L1 cache controller although it would not be able to service it. Note
that read requests to a shared cache line is no problem because a cache line can be read
by multiple transactions. A write request to a shared cache line will cause a conflict but
requires no changes to the state of the cache line.

5.3 Interface 87

L1CC (Core1) LLC Contr. L1 CC (Core 2)

x(modified) / transactionStart
transactionStart \
/ GetM(x)

putM(x) writeBackReq
already initiated ><
acknowledge

GetM(x) \\ addToWS(x)
resolve conflict

time

Figure 5.10: In contrast to Figure 5.9 cache line x is not added to the WS of the transaction
running on core 1. Instead, the L1 cache controller of core 1 (L1 CC Contr.)
initiates a write back of cache line x. Another difference is that the request
of the L1 cache controller of core 2 (L2 CC Contr.) trying to add cache line
x to the WS of the transaction running on core 2, does not cause a redirect
message. Instead, a writeBackReq is triggered (see Section 5.2.2 for more De-
tails). When the L1 cache controller of core 1 receives that request it can be
ignored since the intermediate state (ima) indicates that the data is already
written back. The L1 cache controller of core 1 sends a getM requests for
cache line x to the LLC after receiving the acknowledgment which indicates
that the write back of cache line x is completed. This causes a conflict which
can be resolved without having to send redirect messages as it would be
necessary in the example of Figure 5.9. Since the most recent data is now
saved by the LLC either the transaction running on core 1 or core 2 can be
aborted. Depending on which transaction aborts, the ownership can remain
or has to be changed.

5.3 Interface

The interface basically remains as described in the baseline HTM (see Section 4.5 for
more details). We added the functionality that a potential user can set a priority for
every transaction which is started. For this purpose, the interface was changed. Start-
ing a transaction now allows setting a priority. Therefore, the transaction start method
was adapted so the user can pass a priority. The priority is then written to address
0xf0000014.

88 5 Hardware Transactional Memory for Embedded Systems

5.4 Abort-Aware Transactional Execution

Since detecting and resolving conflicts is managed by the LLC controller an optimiza-
tion concerning the transactional execution can be applied. The optimization yields to
improve energy consumption and lower abort rates. When a transaction conflicts with
another transaction, the transaction which has to abort is very likely to again conflict
with the transaction which continued. This does not affect the performance but certainly
affects energy consumption since the core executes a transaction repeatedly without
committing it. Since we are developing an HTM for embedded systems it makes sense to
consider energy consumption. Therefore, we propose a mechanism with which a trans-
action is only executed if there is a chance that it will commit.

When a transaction aborts because of a conflict the transaction will not be restarted after
the abort handler was executed. Instead, the L1 cache controller will no longer service
requests from its corresponding core until it is signaled to let execution continue. This
can be applied because the L1 cache controller exactly knows when to block subsequent
requests. The transactionEnd message sent to the LLC controller once the abort handler
finished indicates that moment. After this message, no requests of the corresponding
core are handled, and it can be put into power saving mode. The execution continues
when the L1 cache controller is signaled to continue by the LLC controller.

For this the LLC controller has to manage a stall list for every core provided by the sys-
tem. A core (core 1) is added to the stall list of another core (core 2) when the transaction
hosted by core 1 is aborted. If the transaction running on core 2 aborts or commits, the
LLC controller sends a canContinue message to all corresponding L1 cache controllers
of the cores saved in the stall list of the core aborting its transaction.

Once a stalled L1 cache controller is notified it will continue servicing the requests from
the corresponding core.

5.5 Unbounded Transactions

In conventional COTS HTM, after which our baseline HTM is modeled, a transaction
has to abort if the size of the RS or WS exceeds the size or associativity of the corre-
sponding L1 cache. Since the information if a cache line is contained in the RS or WS is
missing if it was evicted, a system like our baseline HTM cannot assure to detect all con-
flicts. This is problematic, since other threads could then access speculatively written
cache lines which can lead to erroneous behavior. To avoid transaction aborts we im-
plemented a form of unbounded transactions [3] to the extended HTM. This technique

5.5 Unbounded Transactions 89

allows transactions to survive evicts of cache lines from the L1 cache contained in the
RS or WS.

One difficulty of implementing unbounded transactions is keeping track of the RS and
WS. To be more precise the problem is in maintaining the RS and WS after an unbounded
transaction is completed. Starting an unbounded transaction implies that a cache line
contained in the RS or WS of a transaction was evicted by the L1 cache controller host-
ing the transaction. Therefore, the information that was contained in an RS or WS gets
lost and the LLC controller will not receive a message to remove that cache line from the
RS or WS managed by the LLC when the transaction commits. Since the LLC controller
would have to iterated over every cache line contained in the LLC, the RS and WS cannot
be cleared by the LLC controller because this would be too costly concerning time. To
keep the RS and WS up to date the cache line also has to be removed from the RS or WS
managed by the LLC controller as soon as the corresponding put request hits the LLC.
Otherwise, the cache line remains in the RS or WS. This would be problematic, since the
information will be used for future transactions which would cause false conflicts. For-
tunately, the extended HTM allows a novel approach towards unbounded transactions,
which ensures the correct continuation of the transactional execution.

In our execution model only one unbounded transaction at the time is allowed. Since
unbounded transactions use the entire memory hierarchy speculative values are also
written to the L2 cache. In consequence no versioning for the evicted cache lines exists
which is why unbounded transactions cannot be rolled back. An unbounded transaction
always has the highest priority, and every conflict is resolved in favor of the unbounded
transaction. When an unbounded transaction is executed, no interrupts can occur for the
core running the unbounded transaction. Therefore, preemption has to be deactivated
for the core during the executing of the unbounded transaction.

An unbounded transaction is started when a cache line is evicted from the L1 cache
contained in the RS or WS of the transaction running on the corresponding core. The
LLC controller detects that a cache line is removed from the RS or WS and starts an un-
bounded transaction. Additionally, the requests of all other L1 cache controllers are not
serviced for the time of the unbounded transaction. As soon as the unbounded trans-
action commits the LLC continues to service the requests of the other L1 cache con-
trollers. Note that conflict detection is active for the other transaction and that they can
be aborted in case a conflict is detected. Furthermore, the other transactions continue
execution. As long as they work on data contained in the L1 cache execution contin-
ues. If a miss occurs the transaction can continue once the unbounded transaction is
committed.

Theoretically the extended HTM would also provide a more parallel approach for the
unbounded transactions. This means that the LLC would not necessarily have to quit
servicing requests for the other L1 cache controllers. Note that this approach exceeds
the scope of this thesis and is considered future work. Since conflicts for cache lines

90 5 Hardware Transactional Memory for Embedded Systems

contained in the RS or WS managed by the L1 cache controller could still be detected,
conflict detection works for all transactions running in regular mode. To maintain con-
flict detection with an unbounded transaction, false conflicts have to be taken into ac-
count. Here the problematic case is if a regular transaction tries to add a cache line to
its RS or WS which has already been read or written by the unbounded transaction.
Since the LLC controller cannot rely on the RS and WS for conflict detection with an
unbounded transaction conflict detection is pessimistic. Therefore, a potential conflict is
detected when a regular transaction tries to add a cache line to its RS or WS for which
the L1 cache controller, hosting the unbounded transaction, is not registered as owner or
sharer. Only modified cache lines owned by a different L1 cache controller do not cause
a conflict even though the L1 cache controller hosting the unbounded transaction, is not
registered as owner or sharer. Note that conflicting accesses are not resolved by instantly
aborting the regular transaction. The LLC controller would stop servicing the requests
of the L1 cache controller hosting the potentially conflicting transaction. This allows us
to obtain the progress already made. Also accesses from non-transactional threads can
be problematic. If a potential conflict is detected with a non-transactional access the LLC
immediately stops servicing requests of the corresponding L1 cache controller until the
unbounded transaction committed.

Another problem to consider is that if a contention management strategy is applied
which does not guarantee progress and therefore relies on the possibility to execute
transactions in fallback mode, an alternative fallback execution has to be offered. In a
regular transactional execution, the fallback execution of a transaction aborts all con-
flicting transactions. Since mutexes, used to protect critical sections, use a completely
different underlying mechanism to provide mutual exclusion, a user has to assure that
every transaction, operating in the critical section a mutex is protecting, is aborted as
soon as the mutex is locked. Otherwise, the thread locking the mutex would not have
exclusive access to the critical section. This is done by adding the mutex to the RS of a
transaction. As soon as a transaction is executed in fallback mode the mutex is set. The
transaction then detects a conflict with a non-transactional execution and aborts. When
running unbounded transactions this cannot happen, since an unbounded transaction
cannot be rolled back. Therefore, we provide a fallback mode which allows the fallback
execution only when all transactions finished the current run of their execution.

5.6 Contention Management Strategies

In the following we describe which contention management strategies were implemented
to the system. Note that this is only a selection. Our system allows to implement a wide
variety of strategies. Apart from the first strategy passive we chose to implement policies
which allow to achieve one of the following goals:

5.6 Contention Management Strategies 91

1. guarantees progress
2. guarantees fairness
3. offers good performance (best possible speedup)

The first strategy we implemented is named passive [29, S. 51]. It was implemented
mainly for debugging purposes since it resembles the conflict resolution policy of the
baseline HTM. Although passive also aborts the transaction which detects the conflict
just like the contention management strategy implemented in the baseline HTM the two
do not behave the same way. In the baseline HTM two transactions can abort simulta-
neously if two conflicting accesses are performed at the same time. This is not possible
in the extended HTM, since one conflict will occur before the other. Once that conflict
is resolved the other conflicting request will either be serviced or be ignored since it
belongs to an aborted transaction.

An effective way to guarantee progress and to prevent live locks (see 5.1) is to implement
a conflict resolving mechanism, which automatically prioritizes a certain transaction
preventing it from aborting. Depending on the mechanism meta data has to be evaluated,
when a conflict occurs. In the following we will explain which contention management
strategies we implemented.

To guarantee progress, we first implemented a simple but effective strategy named times-
tamp [53]. This strategy allows the transaction, which started earliest, to continue in
case a conflict with another transaction arises. To implement the strategy a timestamp is
saved for when the transaction started. The timestamp is saved in the transaction config-
uration block managed by the LLC controller (see Section 5.2.5 for more details). In case
of a conflict the LLC controller resolves the conflict by comparing the start times of the
conflicting transactions. The transaction which started first is allowed to continue. The
other transaction has to be aborted. Note that this strategy also works if the transaction
conflicts with more than one other transaction. If the transaction causing the conflict
to be resolved has the oldest timestamp the other transactions have to abort. If one of
the other transactions has an older timestamp, the transaction causing the conflict to be
resolved is sent an abort request.

Our target systems are embedded systems. Therefore, we offer a management strategy
which allows the prioritization of transactions which is named priority. The priority for
every transaction can be set manually. If no priority is set manually the priority is set to
the core Id, it is running on. The higher the core id the higher the priority meaning that
a transaction running on core 2 has a higher priority as a transaction running on core
1. For the strategy to work the LLC saves a priority for every transaction running. If a
conflict arises it is used to resolve the conflict as described.

92 5 Hardware Transactional Memory for Embedded Systems

Since we are not able to completely avoid aborts, because of real data dependencies, an-
other goal of our work is to fairly distribute the aborts among the participating cores.
Figure 5.3 from the motivation of the chapter shows an execution which guarantees
progress, since it behaves as if the timestamp conflict resolution policy was applied. The
problem is that the execution cannot be considered as optimal in terms of fairness since
all aborts are handled by core 3. Therefore, we offer a hybrid conflict resolution policy
called commit. It prioritizes the core which performed the least amount of transaction
commits. If the conflicting transactions all committed the same number of transactions
the timestamp strategy is applied. The conflict resolution policy will resolve the con-
flicts as depicted by Figure 5.11. Since core 3 in Figure 5.11 has not yet committed a
transaction, it gets a higher priority than core 1 and therefore TX4 is aborted. In the
example provided by Figure 5.11 the policy commit is beneficial for performance and
ensures that not only one or a few cores suffer from the majority of aborts.

Corel: | TX3 || TX4 || TX4 || TX4 \
Core 2: TX1 | TX5 \
Core 3: | TX2| [TX2| | TX2 | | TX6 |

Figure 5.11: In contrast to Figure 5.3, Transaction 2 (TX2) now aborts transaction (TX4),
which results in a more distributed handling of the aborts. The delay of the
aborts is not significantly reduced, but, and this is beneficial for the overall
performance, the delay is divided up onto two cores (core 1 and core 3). This
extends the execution time of core 1 but reduces the execution time of core 2
which leads to an overall reduced execution time compared to the execution
depicted by Figure 5.3.

Another conflict resolution policy we offer is based on the idea of prioritizing a trans-
action which already aborted other transactions. The name of the contention manage-
ment strategy is abort. If this strategy is applied a transaction is prioritized over other if
it already aborted more transactions than the conflicting one. The underlying assump-
tion of this conflict resolution policy is that a transaction which already aborted many
other transactions is very likely to again be responsible for a lot of conflicts once it was
aborted and restarted. Therefore, one is well advised to allow the transaction to continue
and commit so it cannot further disturb execution. In order to work the LLC saves the
number of how many transactions were aborted by a transaction. If a conflict arises this
number is taken into account to resolve the conflict. If conflicting transactions aborted
the same number of transactions the transaction detected the conflict wins.

Table 5.4 lists the different contention management strategies and shows which infor-
mation has to be saved by the LLC controller for the contention management strategy
to work.

5.7 Estimating Execution Times for Extended HTM 93

Contention Management Strategy: | Data Saved:

passive nothing

timestamp timestamp of when transaction started
priority priority per core

commit timestamp and number of commits

abort how many transactions a core already aborted

Table 5.4: Data saved depending on the contention management strategy

5.7 Estimating Execution Times for Extended HTM

Since we developed an extended HTM for the use in high performance embedded sys-
tems, we are aware that estimating execution times is an important feature. Unfor-
tunately, our extended HTM does not allow to calculate an accurate WCET but the
properties of the extended HTM allow some simplifications when calculating execution
times.

The term WCET is highly overloaded, since it is used for a lot of different things. There-
fore, we will give a brief explanation on how we use the term. With the term WCET
we refer to the maximum time it took a system, offering one or more cores, to execute
all transactions. In the following we refer to this time as WCETyty. For our work, we
assume that the transactions all execute the same section of code, although this does not
imply they have to execute the exact same code. Note that we assume that the execution
time of all transactions could be estimated beforehand. In the following we show how
the extended HTM is beneficial to calculate the WCETyry:

Calculating the WCETyty for the baseline HTM is not reasonable because most likely
the WCETyy will be highly overestimated. Formula (5.1) shows how the WCETyry is
calculated. The main factors for the overestimation are that the potentially failed trans-
actions ((f — 1) = T;) and the blocking time B; have to be taken into account. Blocking
time B; is caused by transactions executed in fallback mode. Estimating the time of the
blocking time is difficult since it is arbitrary and can strongly vary. Additionally, it is
dependent on the execution performed on the other cores. Therefore, a very pessimistic
value has to be assumed which has to be considered for every execution of a transac-
tion.

94 5 Hardware Transactional Memory for Embedded Systems

Ny
WCETyy = mE}EX(Z(Ti +(f-1)«T; + B)) (5.1)
xXeL =

number of cores

number of transactions executed on core x

execution time of transaction i

number of tries until transaction has to be executed in fallback mode
blocking time

Nz

o

For the extended HTM the WCETyry, is still overestimated but is theoretically bounded
by the execution time achieved on a single core executing the transactions one after
the other. Since sophisticated contention management strategies (e.g., timestamp) in
combination with unbounded transactions allow an execution where no fallback path
is needed, the blocking time B does not have to be considered when calculating the
WCETyry for the extended HTM. Note that to bound execution time only the trans-
action with the oldest timestamp is able to execute in unbounded mode. Throughout
the execution, interrupts have to be deactivated. Otherwise, a gapless execution cannot
be guaranteed. Furthermore, the contention management strategy (e.g. timestamp) has
to guarantee progress which means that always one transaction is running. Therefore,
failed restarts ((f-1) = T; in Formula 5.1) can also be neglected. Calculating the WCETyry
for the extended HTM can therefore be simplified as shown by Formula 5.2.

N
i=1

N total number of transactions

T; execution time of transaction i

5.8 Reducing False Conflicts

False conflicts are caused if a thread executing non-transactional code causes a conflict.
The conflict occurs if the thread accesses data, which is part of a cache line contained
in the RS or WS of one or more transactions, in a conflicting way. This is detected as a
conflicting access although no data dependencies are really hurt.

With the extended HTM we are able to identify problematic accesses like this. If a non-
transactional access violates a data dependency of a transaction the LLC can detect this.
Since conflict detection is shifted to the LLC controller it knows exactly which cache
lines are contained in the RS and WS of the transactions. Furthermore, it also has the
information which core is currently running a transaction. Therefore, accesses of a non-

5.8 Reducing False Conflicts 95

transactional execution can be deferred. This can be beneficial for performance. Figure
5.12 depicts an example of the described scenario.

Core 1: | TX1 | TX1 |

Core 2:

Figure 5.12: Core 1 executes transaction 1 (TX1). Core 2 executes non-transactional code.
The code running on core 2 accesses a memory location, which is part of the
RS or WS of TX1, in a conflicting way. Therefore, TX1 has to be aborted and
re-executed.

Core 1: ’ TX1 \

Core 2:

Figure 5.13: Figure 5.13 shows the same situation as Figure 5.12. In contrast the memory
access of core 2 is deferred, which allows the transaction running on core 1
to finish without having to be aborted.

Figure 5.13 shows how the situation can be solved by the extended HTM. Here the system
detects the false conflict and defers the memory access. As shown, this can be beneficial
for overall execution.

This mechanism only works in combination with unbounded transactions and a con-
tention management strategy guaranteeing progress. The idea behind this is that no
transaction will be executed in fallback mode. Otherwise, false conflicts are detected if
a core has to execute a transaction in fallback mode. Here the core will then try to write
the mutex, used to alternatively secure the critical section. Since all other currently run-
ning transactions contain the cache line which holds the data of the mutex in their RS a
false conflict would occur. The system detects that and defers the accesses. This is not the
purpose of this mechanism. It should only be used on real false conflicts, since otherwise
execution could be affected negatively.

Please note that the mechanism can only reduce the number of false conflicts. It is possi-
ble that the mechanism is not able to eliminate all false conflicts, since the properties of
the MOSI cache coherence protocol can cause a deadlock like situation, when deferring
memory accesses. Therefore, an access is only deferred a certain number of times. If the
memory access cannot be serviced by then, the conflicting transaction is aborted.

96 5 Hardware Transactional Memory for Embedded Systems

5.9 Evaluation

In this section we are going to evaluate the extended HTM. For the evaluation we com-
pare different setups of the extended HTM to the baseline HTM, described in Chapter 4,
and to other configurations of the extended HTM. What exactly is compared is described
in more detail in the following subsections. With the evaluation we are able to show the
following achievements:

1. The extended HTM is able to provide different contention management strategies.
2. The extended HTM is able to reduce the number of aborts for the executions.

3. The extended HTM offers acceptable performance and is even able to increase
performance for some benchmarks.

4. The extended HTM is able to reduce the number of false conflicts.

5. The extended HTM is able to guarantee progress and eliminates the need of a

fallback path.

Since we use the STAMP benchmark suite [13] for our evaluation we show that our
measures positively impact real world software. We can therefore do without synthetic
benchmarks tailored to a specific problem that can be solved well by the extended HTM.

The rest of this section is structured as follows. First, we will give a brief overview of
the hardware costs of our approach. Next, we will briefly describe the methodology and
the benchmarks. Then, we will discuss where the extended HTM can potentially build
up overhead compared to the baseline HTM. Before looking at the effects of unbounded
transactions, we offer the evaluation of the contention management strategies described
in Section 5.6. Since interesting results are achieved when combining the priority con-
tention management strategy with unbounded transactions, we next provide the evalua-
tion of the combination. After looking at the effects of the abort-aware execution we will
complete this section by showing that the extended HTM is able to reduce the number
of false conflicts.

5.9.1 Estimation of Hardware Costs

As we already stated in Section 4.6.1 we are not able to precisely estimate which impact
our extensions have on real hardware concerning size and complexity. Therefore, we
will here also point out where we believe additional hardware is necessary. Hereby we

5.9 Evaluation 97

look at the impact on the hardware when changing a system already providing an HTM
as described in Chapter 4.

The logic used by the cache controllers in the baseline HTM to detect conflicts is not
necessary for the extended HTM since conflicts are detected at the LLC level. The other
functionalities are still required. Therefore, the other extensions described in Section
4.6.1 remain necessary and their impact on the hardware here also has to be consid-
ered. Additionally, the cache controllers as well as the LLC controller have to be further
augmented to handle more new message types which adds to the hardware costs.

In our opinion the biggest impact to the hardware compared to the baseline implemen-
tation concerns the changes of the LLC controller and the directory. Since conflict de-
tection was moved to the LLC level the system has to offer the possibility to globally
add cache lines to the RS or WS. Therefore, the directory was augmented to hold the
readers and writers of a cache line currently running a transaction. The extra lists are
implemented like the list of sharers for a cache line and add to the size of a directory
entry. Additionally, a stall list per core is required for the abort-aware execution. This
adds complexity to the setup of the directory itself since more data has to be handled
efficiently.

Since conflict detection is performed by the LLC controller additional logic is needed to
detect conflicts at that level. Here the LLC controller had to be changed in the way that
it checks if a cache line is part of an RS or WS. Depending on the incoming message, it
has to then take the correct action (e.g. trigger an abort). Therefore, additional hardware
is required, increasing the hardware costs.

The extended HTM offers different contention management policies. Therefore, the logic
for them has to be provided by the LLC controller. Also, the registers which save counters
and timestamps have to be considered when investigating the hardware costs.

To clear the RS and WS at LLC level also the logic for an appropriate mechanism has to be
provided. It can be considered very similar to the mechanism of removing a sharer from
a cache line. Nevertheless, this also adds to the complexity and costs of the hardware
setup.

5.9.2 Methodology

Just as in the evaluation of the baseline HTM we used the STAMP benchmark suite
(see Section 2.4 for more details) to evaluate our extended HTM. The execution was
performed in syscall emulation mode allowing a bare metal execution of programs by
emulating syscalls. The exact configuration of how the extended HTM was executed

98 5 Hardware Transactional Memory for Embedded Systems

matches the configuration used for the baseline HTM. For the sake of completeness, the
exact parameters are listed in Table 5.5.

Table 5.5: System Configuration

Num CPUs {1,2,4,8,16}
Microarchitecture ARM Cortex-A15
L1 data cache 32KB

L1 data cache assoc. | 8

LLC cache 2MB

LLC assoc. 16

Cache Coherence directory-based
Coherence Protocol | MOSI

5.9.3 Benchmarks

Table 5.6: Configuration of STAMP Benchmarks

Benchmark | Parameters

bayes -v32 -r1024 -n2 -p20 -s0 -i2 -e2

genome -g256 -s16 -n16384

intruder -a10 -14 -n2038 -s1

kmeans -m40 -n40 -t0.05 -i inputs/random2048-d16-c16.txt
labyrinth -1 inputs/random-x32-y32-z3-n96.txt

ssca2 -s13 -i1.0 -ul.0 -13 -p3

vacation -n2 -q90 -u98 -r163384 -t4096

yada -a20 -i inputs/633.2

fallback exec. | defined in subsections but always ten for baseline HTM

The STAMP benchmarks are highly portable and are often used to examine TMs. There-
fore, the STAMP benchmarks were used to evaluate a wide variety of TMs. This includes
software, hardware, and hybrid approaches. Since the Benchmarks are also used to eval-
uate the baseline HTM a detailed description of the STAMP benchmarks can be found
in Section 2.4.

The STAMP benchmarks were evaluated with the small input set, since this is recom-
mended by the authors of [13] when using a simulator. The launch configuration also
matches the launch configuration used to evaluate the baseline HTM and is given by Ta-
ble 5.6. Please note that some measures only show an effect when alternating the number
of attempts until a transaction is executed in fallback mode. Therefore, the number of
attempts varies and is defined in the subsections. The number of attempts is always ten

5.9 Evaluation 99

for the baseline HTM. Independent of where a transaction was executed (on the baseline
or the extended HTM) a capacity conflict is always resolved by directly executing the
transaction in fallback mode.

5.9.4 Overhead of extended HTM

Compared to the baseline HTM extended HTM generates an overhead when adding a
cache line to the RS or WS. How big the overhead is depends on three different factors:

1. In which state is the cache line currently?
2. Is cache line dirty and needs to be written back?
3. Is the cache line already part of the RS or WS?

When a cache line, which is going to be added to the RS or WS, is in a state (e.g., invalid)
which causes the L1 cache controller to request data from the LLC controller, the over-
head of adding a cache line to the RS or WS is comparable to the overhead caused by the
baseline HTM. Since a request to the LLC controller is triggered anyway the information
that the cache line was added to the RS or WS can be transferred with no extra costs.

If the state of that cache line indicates that it was only read (e.g., shared) the L1 cache
controller has to send an coherence message to the LLC informing it that the cache line is
going to be added to the RS. The L1 cache controller will not service the original request
until the LLC controller acknowledges the adding of the cache line to the RS. Note that
adding the cache line to the WS would not cause any extra overhead since a request to
change the cache lines state to modified would have to be triggered anyway.

If a cache line is already part of the RS or WS the overhead is as big as an extra coher-
ence message. Compared to the baseline HTM an extra message to the LLC controller
has to be triggered informing it about that the cache line was added to the RS or WS.
Sending the extra message is not on the critical path of the execution of the transaction’s
and therefore is not critical for performance. Note that these messages certainly cause
contention on the bus, which has an indirect effect on the overall performance since it
takes longer to service requests.

The biggest overhead is generated when a cache line in modified or owned state is added
to the RS or WS. Prior to being able to add the cache line to the RS or WS it has to be
backed up. Otherwise, data might be lost (see Section 5.2.5 for more details). After the
write back of the cache line is acknowledged by the LLC controller the L1 cache can
reload the data. With that request the cache line is added to the RS or WS managed by
the LLC controller.

100 5 Hardware Transactional Memory for Embedded Systems

Another source of overhead concerns owned cache lines. If the corresponding core of
the cache controller, marked as owner of the cache line, runs a transaction a read or
write request cannot just be redirected, since conflicts could slip (see Section 5.2.5 for
more details). Therefore, the L1 cache controller is forced to write back the cache line.
The original request will be serviced as soon as the data is written back.

In general, adding cache lines, which are currently present in one of the local L1 caches,
to the RS or WS is quite costly. The overhead then ranges between one or two cache
misses. Therefore, the average size of the transactions has increased.

5.9.5 Contention Management Strategy: timestamp

One of our goals is to get rid of the fallback path. Transactions executed in fallback mode
inhibit parallelism. Adding code for the fallback path also complicates the programming
of the application. Therefore, we evaluate how beneficial the timestamp strategy is to
reduce the number of transactions executed in fallback mode. To see how effective the
timestamp strategy is we launched the benchmarks without offering a fallback path when
applying the timestamp strategy. This means that a transaction can fail without limita-
tion until it commits. The only exception made is when the RS or the WS of a transaction
exceeds the maximum capacity. If such a capacity conflict is detected the transaction is
directly executed in fallback mode. Note that without this measure transactions exceed-
ing the capacity of the RS or the WS would be re-executed infinitely often. This would
cause a livelock situation in which no progress is made. In the following we will first ex-
amine if the number of transactions executed in fallback mode could be lowered. Then
we will investigate how the number of aborts changed. To give a holistic evaluation we
will also look at the performance compared to the execution on the baseline HTM.

Figure 5.14 shows bar charts for all eight STAMP benchmarks. The bar charts allow the
comparison of the number of transactions executed in fallback mode for the baseline
HTM and the extended HTM applying the timestamp strategy. The x-axis of the bar
charts represents the number of cores with which the execution was performed. The
y-axis indicates how many transactions were executed in fallback mode. The number
on top of the bars is an exact representation of how many transactions were executed
in fallback mode. The legend entry baseline refers to the execution performed on the
baseline HTM. Here a transaction is executed in fallback mode after ten failed attempts
or due to capacity issues. The legend entry timestamp refers to the execution performed
on the extended HTM applying the timestamp contention management strategy:.

First it is important to note that all executions performed on the extended HTM were
completed. This means that the timestamp contention management strategy is an ef-
fective way to ensure progress. Since always one transaction is executed because it is
prioritized over the others, livelock situations are avoided.

5.9 Evaluation 101

U0 baseline "7 timestamp

bayes genome
-10?

3, |

3,

Figure 5.14: The bar charts compare how often the fallback path was taken when the
STAMP benchmarks are executed by the baseline HTM and the extended
HTM applying the timestamp strategy. The y-axis of the bar charts relates
to the number of transactions executed in fallback mode. The x-axis relates
to the number of cores. For every execution the number of transactions ex-
ecuted in fallback mode was reduced or stayed the same, when applying the
timestamp strategy.

102 5 Hardware Transactional Memory for Embedded Systems

As expected, the number of transactions which had to be executed in fallback mode
could be reduced for the runs performed on the extended HTM. The greatest reduction
is achieved by the benchmark intruder when executed on 16 cores. The benchmark has
no capacity related fallback executions, which is why the number could be lowered to
zero when applying the timestamp strategy. Figure 5.14 shows that when applying the
timestamp strategy four benchmarks theoretically could have been executed without
offering a fallback path. This concerns the benchmarks intruder, kmeans, ssca2 and va-
cation since none of these benchmarks executed a transaction in fallback mode. In theory
therefore no fallback path would have to be provided for these benchmarks. In reality
providing the progress guaranteeing strategy timestamp is not sufficient enough to not
provide a fallback path. Only minor changes in the behavior of the caches could mean
that a transaction exceeds the size of the RS or WS which would make a fallback path
necessary again.

The number of transactions executed in fallback mode for the benchmarks bayes, genome,
labyrinth and yada stayed the same or were reduced. The remaining transactions exe-
cuted in fallback mode, where the timestamp strategy was applied, all relate to capacity
conflicts. Note that for the benchmarks genome and yada, which not only suffer from
capacity related fallback executions, the numbers of transactions executed in fallback
mode could be reduced.

Since the transactions are re-executed infinitely often until they commit, when the times-
tamp strategy is applied, we also look at how the transaction aborts behave. Therefore,
the number of aborts obtained during the execution on the extended HTM is compared
to the number of aborts obtained during the runs on the baseline HTM. The comparison
is depicted by Figure 5.15.

Figure 5.15 shows a bar chart for every benchmark contained in the STAMP benchmark
suite. The bar chart compares how many transactions were aborted for the baseline HTM
and the extended HTM applying the timestamp contention management strategy. The
x-axis of the bar charts represents the core count with which the execution was per-
formed. The y-axis indicate how many transactions were aborted. The number on top of
the bars is an exact representation of how many transactions were aborted. The legend
entry baseline refers to the execution performed on the baseline HTM. Note that for the
baseline HTM conflicts are resolved following a simple contention management strategy
(see Section 4.3.1 for more details). The legend entry timestamp refers to the execution
performed on the extended HTM applying the timestamp strategy.

The number of aborts could be lowered or stayed about the same for four (genome,
kmeans, ssca2 and vacation) of the eight benchmarks. Therefore, the timestamp strat-
egy can be beneficial to lower abort rates. Since the timestamp strategy prevents that
two transactions continuously abort each other one source, which increases the number
of aborts, is eliminated. If a benchmark is vulnerable to this the timestamp strategy is
beneficial.

5.9 Evaluation 103

U0 baseline "7 timestamp

bayes enome
8% 10° 8

intruder kmeans

—
S
S
—_
[}

a1

Figure 5.15: This figure compares the number of aborts when the STAMP benchmarks
are executed by the baseline HTM and the extended HTM applying the
timestamp strategy. The y-axis of the bar charts relates to the number of
aborts. The x-axis relates to the number of cores. The benchmarks bayes,
intruder and yada stick out because here the numbers of aborts are very
high for the extended HTM applying the timestamp contention management
strategy.

104 5 Hardware Transactional Memory for Embedded Systems

For the other benchmarks (bayes, intruder, labyrinth and yada) the number of aborts
increased. In particular for the benchmarks bayes, intruder and yada. Especially with
higher core counts the contention for these benchmarks is extremely high. Therefore,
the number of conflicts explodes for the executions where the timestamp strategy is
applied. Since the number of failed attempts is not limited the number of aborts can get
very high. Performance is not affected as we will describe later.

Although the aborts of the benchmark labyrinth almost entirely relate to capacity con-
flicts the numbers of aborts are quite high. Since a transaction in fallback mode is the
only one allowed in the critical section, it will always abort all currently running trans-
actions. The conflict which then occurs is identified as a regular conflict and does not
indicate that the transaction will abort due to a capacity conflict. Therefore, the execu-
tion does not know that its transaction will fail due to capacity issues. Instead, it aborts
and re-executes the transaction. Since the baseline execution will execute a transaction
in fallback mode after ten failed attempts the number of aborts is lower as for the ex-
ecution applying the timestamp strategy. It will continue to abort and re-execute the
transaction until it commits.

At the end of this subsection, we look at the performance of the extended HTM applying
the timestamp contention management strategy and compare it to the performance of
the baseline HTM. Therefore, Figure 5.16 depicts eight speedup graphs. Every speedup
graph relates to one of the eight benchmarks of the STAMP benchmark suite. The x-axes
represent the number of cores used for the execution. The y-axes indicate the speedup
compared to the reference execution time, which refers to the run of the benchmarks
with one core and no synchronization. It is marked as solid horizontal line in every
speedup graph. The speedups for the benchmarks depicted in Figure 5.16 are calculated
as shown by Equation (5.3). This is the same equation also used in Chapter 4 to calculate
the speedups.

reference execution time

speedup = (5.3)

examined execution time

Figure 5.16 compares the performance of the baseline HTM to the extended HTM. The
legend entry baseline refers to the executions performed on the baseline HTM. The leg-
end entry timestamp refers to the execution performed on the extended HTM applying
the timestamp contention management strategy.

For the benchmark bayes performance could not be improved instead performance slightly
deteriorated. Although the extended HTM was able to reduce the number of transactions
which had to be executed in fallback mode by over 40%, performance could not be im-
proved. Since the benchmark suffers from a lot of contention the execution is serialized
for great parts, which explains the overall poor performance. This brings some advan-
tages for the execution with the baseline HTM. Due to the high contention and capacity

5.9 Evaluation 105

conflicts, the extended HTM is slowed down. Since transactions are prioritized the exe-
cution time of a transaction, causing a capacity conflict, can be quite long. Meanwhile the
other transactions are aborted. In contrast to the baseline HTM that has no effect since
no limit for failed attempts exists. Therefore, capacity conflicts slow down the entire ex-
ecution in comparison to the baseline HTM, since here the transactions are executed in
fallback mode much faster. In some cases, as for the execution of the benchmark bayes
this is beneficial for performance. Please note that the decrease is very low and overall
performance also for the baseline HTM is poor.

Also, for the benchmark genome performance decreases slightly when executed with the
extended HTM applying the timestamp contention management strategy. Especially for
eight cores the performance drop is noticeable. The reason for this is that the benefits for
the execution cannot make up for the overheads which are generated by the extended
HTM. This changes when the core count and contention increases. For 16 cores the
benefits are higher and the gap between the executions gets smaller.

For the benchmark intruder the execution times for one, two, four and eight cores are
almost the same. The execution with 16 cores differs. Although the baseline execution
as well as the execution applying the timestamp strategy both decrease performance
compared to the execution with eight cores, the drop of the execution of the extended
HTM is more significant. Since the contention between the transactions is very high,
indicated by the high number of aborts in Figure 5.15, the execution of the transactions
takes longer. Due to a high amount of traffic on the bus connecting the L1 cache con-
troller and the LLC controller (see Section 4.1 for more details) the execution times of the
transactions are extended. The high amount of traffic on the bus is a result of the high
contention and that the RS and WS managed by the LLC has to be cleared (see Section
5.2.5 for more details). Since a lot of aborts occur during the execution the traffic on the
bus is high. Therefore, it is beneficial to execute the transactions in fallback mode as
done by the baseline HTM after 10 failed attempts.

The benchmark kmeans also scales very well for the execution with the extended HTM.
The small deterioration of the speedup compared to the execution of the baseline HTM
can be explained by the overhead discussed in section 5.9.4. The overhead lets the short
transaction slightly grow and therefore increases the overall execution time.

Many transactions of the benchmark labyrinth abort due to capacity conflicts. Therefore,
the parallel execution of this benchmark is only possible to a limited extent and overall
performance is below the reference execution. Since the execution slightly profits from
being executed in parallel, a performance increase can be observed when executing the
benchmark on more than one core. Therefore, execution time decreases with higher core
counts. Overall, the speedup still stays below the reference execution.

106 5 Hardware Transactional Memory for Embedded Systems

—o— baseline —=— timestamp

bayes genome
2 T T T T T
4 [|
2 [|
1 1
| | | | |
12 4 8 16
intruder
T T
4 [|
2 [.
1
| | | | |
12 4 8 16
labyrinth ssca’?
T T T T
8 [|
1
I 1 |
2 [|
1
| | | | | | | | | |
12 4 8 16 12 4 8 16
vacation yada
16 T T 2 T T
| | | | |
12 4 8 16

Figure 5.16: Comparison of the performance values achieved by the baseline HTM and
the extended HTM when executing the STAMP benchmark suite. The y-axes
refer to the speedup values compared to the reference execution (one core,
no synchronization). The x-axes refer to the number of cores the execution
was performed with.

5.9 Evaluation 107

The benchmarks ssca2 and vacation hardly execute any transactions in fallback mode
when executed by the baseline HTM. This means that the benchmarks both are suited
to be executed highly parallel. Therefore, they are a prime example of benchmarks which
can be very well executed by transactional memories. Since the benchmarks are obvi-
ously also programmed to make progress the extended HTM has no attack points to
improve performance. Instead, performance is lower due to the overhead the extended
HTM generates. Overall, the speedups for the extended HTM are still acceptable and
it makes sense to provide as many cores as possible, since performance continuously
increases. The overhead becomes higher the higher the core count gets, since the bench-
marks launch many small transactions touching many different cache lines.

The last benchmark is the benchmark yada. This is the only benchmark of the bench-
mark suite for which the extended HTM achieved a better speedup than the baseline
HTM. Since the benchmark has many conflicts the baseline execution has to execute a
lot of transactions in fallback mode (see Figure 5.14). Transactions executed in fallback
mode prohibit parallelism which is bad for performance. The extended HTM gets along
without offering a fallback mode for conflicting transactions which is why no parallelism
is prohibited. This produces gains in performance since the execution is not blocked.

5.9.6 Contention Management Strategy: commit

Although the commit contention management strategy aims at fairly distributing com-
mits and aborts the strategy does not show any significant effects compared to the times-
tamp strategy. This concerns the number of aborts, the number of transactions having
to be executed in fallback mode and performance. Therefore, we refrain from a detailed
analysis.

For the sake of completeness, we provide the data which lead to our findings through
three figures (Figure 5.17, 5.18 and 5.19). All figures contain the data of the execution
performed when applying the commit or the timestamp contention management strategy
to the extended HTM. The legend entries timestamp and commit hereby refer to the
corresponding executions. Additionally, the figures also provide the data generated by
the execution of the eight STAMP benchmarks on the baseline HTM to which the legend
entry baseline refers.

The y-axes in Figure 5.17 hereby provide the number of aborts. The y-axes in Figure 5.18
depict how often the fallback path was executed and the y-axes in Figure 5.19 refer to
the achieved speedups calculated by Formula 5.3. The x-axes in all three Figures refer to
the number of cores.

kmeans
ssca2

genome

-10°
-10%
-10%,

5 Hardware Transactional Memory for Embedded Systems

U0 baseline 7 timestamp [0 commit

bayes

intruder
labyrinth

-10*
-10°,
-10%

A —

0oy -
e

99¢]
wbm,

$ee

b%N _H
99r

ser
9% ﬁ

yada

vacation

108

-10°,

%ANW% B
mmwﬁ “
wooww]
E¥9¢ - o0

Q

0%z
€|

Pob e -

8, 9%

085 I
681 1

16

-10%

tention management strategy, are very similar to the number of aborts
achieved with the timestamp contention management strategy. Addition-
ally, we also depict the number of aborts achieved by the baseline system.

Figure 5.17: In general, the number of aborts generated when applying the commit con-

5.9 Evaluation 109

U0 paseline !7 timestamp 00 commit

bayes genome
, -10° | -10% |
s 7 §
1} 12} |
s 88 o
OIT BIEL T @WAR 10 w N © |
B oo il
~ o~ w0
0“ I I I I 0 Q\QQ .\QQ l\ I\ I
1 2 4 8 16 1 2 4 8 16
10° intr‘uder , 10! km?ans |
N
s 5
~
2t {1t |
1) & S | o
1 2 4 8 16 1 2 4 8 16
labyrinth 2
10% | , 10 sea
5
3\00\4\3\0 VOOV VOOV VOO N\O\O
1 X TATRXN TR XX X x|
17) -
I o
SIS ST © SO SO IQO
0 I I I I I 0 T T T T T
1 2 4 8 16 1 2 4 8 16
vacation yada
2 '101\ ! 2 '103\ ! !
Ne)
)
1| 1) 2 :
s ¢
oloss soe ooo Moo Mool | mart Mart Murt Meri Mafi
1 2 4 8 16 1 2 4 8 16

Figure 5.18: The bar charts show that the number of fallbacks generated when applying
the commit contention management strategy, are very similar to the number
of aborts achieved with the timestamp contention management strategy. For
reasons of comparison, we also depict the number of fallback executions
performed when the benchmarks are executed by the baseline HTM.

110

5 Hardware Transactional Memory for Embedded Systems

—o— baseline —&— timestamp —— commit

bayes
2 T T
1
| | | |
12 8 16
intruder
T T
4 [|
2 [.
1
| | | |
12 8 16
labyrinth

16 —

genome

sscaz
T 1 T
8 - |
4 - |
2 - |
1
L | | | |
12 4 8 16
yada
2 T 1 I

Figure 5.19: The speedups of the execution where the commit contention management
strategy is applied, behaves very similar to the speedups achieved when the
timestamp contention management is applied. For a better classification we
also depict the speedups achieved by the execution with the baseline HTM.

5.9 Evaluation 111

For the commit strategy to show its full potential, applying a contention management
strategy like the timestamp would have to cause a core to be systematically disadvan-
taged. The STAMP benchmarks do not offer such a benchmark. Additionally, conflict
management strategies like timestamp also seem to be quite fair in terms of distributing
commits and aborts.

Achieving fairness seems to be a very attractive goal but it can also become problematic.
Especially if cores execute a different number of transactions, which they do for almost
every benchmark in the STAMP benchmark suite. Then applying the commit strategy
can be a disadvantage: If a transaction repeatably aborts because of another transaction
which runs on a core executing fewer transactions in total and therefore has not yet
committed as many as the core which executes a lot of transactions, this can be counter-
productive. If this happens the core which has to execute many transactions has to wait
until the transaction committed on the core executing fewer transactions in total until
it can continue, even though it has a greater workload.

Since the commit contention management strategy is a hybrid approach also taking the
transaction start time into account if two cores committed the same number of trans-
actions, the contention management strategies commit and timestamp seem to behave
quite similar. Advantages achieved by the commit strategy seem to be very small and
dissolved by a disadvantage caused by the alternated schedule of the transactions.

5.9.7 Contention Management Strategy: abort

The abort strategy has greater effects on the execution than the commit strategy. For
three of the eight STAMP benchmarks the numbers of aborts could be reduced signifi-
cantly compared to when applying the timestamp strategy.

Figure 5.20 shows eight bar charts comparing the number of aborts. The bar charts re-
late to the executions of the eight benchmarks of the STAMP benchmark suite. We focus
our analysis on the benchmarks bayes, intruder, and yada, since the other benchmarks
showed no significant effects and more or less achieved the same results concerning the
number of aborts compared to the execution of the extended HTM which applied the
timestamp strategy. One run in Figure 5.20 refers to the execution where timestamp con-
tention management strategy is applied and the other one to where the abort strategy is
applied. The legend entry timestamp refers to the execution of the extended HTM apply-
ing the timestamp strategy and the legend entry abort refers to the run on the extended
HTM applying the abort strategy. For better comparability we also added the number
of aborts, accumulated by the execution of the benchmarks on the baseline HTM. The
baseline run is referred to as baseline in the legend. The y-axis of the bar charts indicate
how many aborts occurred during the executions. The x-axis gives the information on

112 5 Hardware Transactional Memory for Embedded Systems

how many cores an execution was performed on. The number on top of the bars is an
exact representation of how many aborts were accumulated.

For the benchmarks bayes, intruder and yada (except for the run with 4 cores) the num-
bers of aborts were reduced or stayed the same. This is especially the case for the higher
core counts. For these benchmarks, the abort strategy therefore is able to reduce con-
tention.

To show which impact the lowered number of aborts have on the speedup of the bench-
marks, Figure 5.21 shows the achieved speedups. Therefore, the figure presents eight
speedups graphs which relate to the eight benchmarks of the STAMP benchmark suite.
The x-axes hereby represent the number of cores used for the execution. The y-axes in-
dicate the speedup compared to the reference execution. The reference execution time
refers to the run of the benchmarks with one core and no synchronization. It is marked
as solid horizontal line in every speedup graph. The speedups for the benchmarks de-
picted in the Figure are calculated as shown by Equation 5.3. Just as in Figure 5.20 the
legend entries indicate to which execution the lines belong.

The speedups of the benchmarks bayes, intruder and yada are very similar and more
or less match the speedups where the timestamp strategy is applied. The benchmarks
cannot profit in terms of speedup although the abort rates and therefore contention was
lowered. Reducing the number of aborts did not affect the critical path. Therefore, the
overall execution time of the benchmarks could not be shortened. Execution time can be
lowered if the reduction of accumulated aborts leads to an increase of parallelism e.g., if
the critical path of the execution could be lowered by a better distribution of e.g., trans-
actional aborts. Parallelism can also be increased if the number of transactions executed
in fallback mode is decreased since the execution of a transaction in fallback mode re-
stricts parallelism. The longer the transactions the greater the effects. Since both strate-
gies (timestamp and abort) only execute transactions with capacity issues in fallback
mode the number of transactions executed in fallback mode is not lowered by reducing
the number of aborts.

Figure 5.22 depicts how often the eight benchmarks of the STAMP benchmark suite exe-
cuted the fallback path. The bar charts hereby show the baseline execution which refers
to the execution of the benchmarks performed on the baseline HTM. Additionally, the
bar charts also show two more executions which show the results of the execution of
the benchmarks performed on the extended HTM applying the timestamp and abort
contention management strategy. Here the legend entry timestamp refers to the execu-
tion which applied the timestamp strategy and the entry abort to the execution which
applied the abort strategy. The x-axis of the bar charts indicate the number of fallback
paths executed. The y-axis refers to the number of cores.

113

5.9 Evaluation

U0 baseline 7 timestamp U0 abort

genome

-10%

bayes

-10*

kmeans
|

-10%

£Qor I

intruder
|

-10°,

ssca2
|

-10%

16

oIy B
e

labyrinth

-10%

T
O ——
NNM&N

%wm‘

yada

-10°,

vacation
|

-10%

Figure 5.20: The number of aborts could be reduced for three benchmarks (bayes, in-

compared to the timestamp strategy. The benchmark kmeans suffers from

truder and yada) when applying the abort contention management strategy
applying the abort strategy indicated by high numbers of aborts.

114

5 Hardware Transactional Memory for Embedded Systems

—o— baseline —&— timestamp —— abort

bayes genome
2 T T T T
1
| |
12 8 16
intruder
T T
4 [|
2 [.
1
12 8 16
labyrinth

12 8 16 12 8 16
vacation yada
16
[| |
12 8 16

Figure 5.21: Comparison of the speedup values achieved by the baseline HTM and the
extended HTM applying the timestamp and abort strategy when executing
the STAMP benchmark suite.

5.9 Evaluation 115

U0 baseline 7 timestamp U0 abort

bayes genome
9 -102‘ ‘ .102‘ |
3 .
S S
1r 4 2 |
2 S &
[IT BIX FHS %ﬁ 10 . o N S5y
0 “ I I I I 0 = \Q = . \Q = l T’ = I \V’ i I |_|
1 2 4 8 16 1 2 4 8 16
intruder kmeans
'103\ ! 9 '101‘ ‘ ‘
<
3 £
N
2 111 i
1r & 3? ™
oo S
1 2 8 1 2 4 8 16
labyrinth ssca?
'102\ ! 9 '101‘ ‘
3
173?0“35? XX XS L P L |
1+ N N
o
S TS SO S O I S S
0 I I I I I 0 T T T T T
1 2 4 8 16 1 2 4 8 16
vacation yada
5 100 | , 10° | |
Ne)
N
1y 11f 2 |
S .5
0 S ‘Q S O ‘Q S O ‘Q S ‘Q S ‘Q S 0 . ‘ ‘ I—I ‘ ,_l ‘ |—I | |—|
1 2 4 8 16 1 2 4 8 16

Figure 5.22: The bar charts show that the number of fallbacks generated when applying
the abort contention management strategy, are very similar to the number
of aborts achieved with the timestamp contention management strategy. For
reasons of comparison, we also depict the number of fallback executions
performed when the benchmarks are executed by the baseline HTM.

116 5 Hardware Transactional Memory for Embedded Systems

The number of fallback executions between the strategies timestamp and abort is quite
similar. Even though the numbers are only slightly different the effects can be observed
in Figure 5.21 since a variation of transactions executed in fallback mode for the execu-
tion performed on the extended HTM causes a slight speedup increase or decrease. The
lower the number of transactions executed in fallback mode the better the speedup. The
number of fallback executions is affected by the strategies (abort and timestamp) since
they effect in which order transactions are executed and therefore have an effect on the
content of the cache.

5.9.8 Unbounded Transactions

Unbounded transactions are an effective way to deal with transactions which exceed
their capacity concerning the RS and WS managed by the L1 cache. We utilize unbounded
transactions to eliminate the need to provide a fallback path. Eliminating the necessity of
the fallback path makes code development easier and potentially allows better speedups,
since transactions running in fallback mode prohibit parallelism. Eliminating the fallback
path from the benchmarks only works in combination with a contention management
strategy which guarantees progress. For this evaluation we chose the contention man-
agement strategy timestamp. As shown in Section 5.9.5 applying the timestamp strategy
eliminated the fallback executions related to non-capacity conflicts.

Figure 5.23 shows bar charts for the eight STAMP benchmarks. The bar charts allow the
comparison of the number of transactions executed in fallback mode for the extended
HTM applying the timestamp strategy and the extended HTM applying the timestamp
strategy as well as unbounded transactions. For better comparability we also added the
number of fallback executions which were accumulated by the benchmarks when exe-
cuted on the baseline HTM. The x-axis of the bar charts represents the number of cores.
The y-axis indicates how many transactions were executed in fallback mode. The leg-
end entry baseline refers to the execution performed on the baseline HTM. The legend
entries timestamp and timestampUnbounded refer to the execution performed on the
extended HTM applying the timestamp strategy. The execution referred to by timestam-
pUnbounded also activates unbounded transactions.

By combining the timestamp contention management strategy with unbounded trans-
actions we were able to eliminate the need of providing a fallback path. This is indicated
by Figure 5.23 since no fallback execution has to be performed when using the extended
HTM in combination with the timestamp strategy and unbounded transactions. Since
the timestamp strategy guarantees progress and the unbounded transactions can han-
dle transactions which exceed the size of the RS and WS of the L1 cache, every need of
having to execute a transaction in fallback mode is handled by the extended HTM.

5.9 Evaluation 117
U0 baseline ! timestamp U0 timestampUnbounded
bayes genome
, -10° | -10% |
g §
1 I I |
~ % @
83 8 8 ﬁ s 8 £ =
1 2 4 8 16 1 2 4 8 16
intruder kmeans
'103\ ! ! '101\ ! !
30 & ~
2
2 B [—
1) o S m
) S
1 2 4 8 16 1 2 4 8 16
labyrinth ssca’l
'101\ ! ! 2 '101\ !
7
ol 85 55 =5 =5 gs |
1 - =) .
Al
I I I I I T T T T T
1 2 4 8 16 1 2 4 8 16
10! vacc‘ztion 10° ya‘da |
2 2 -
~
1 1) 2 |
s ¢
. 2 ms Ps RS BE
1 2 4 8 16 1 2 4 8 16

Figure 5.23: This figure compares how often the fallback path was taken when the
STAMP benchmarks are executed by the baseline HTM, the extended HTM
applying the timestamp strategy and the extended HTM applying the times-
tamp strategy as well as unbounded transactions. When combining the
timestamp strategy with unbounded transaction no fallback path is exe-
cuted.

118 5 Hardware Transactional Memory for Embedded Systems

Implementing unbounded transactions not only eliminates the need for a fallback path
it also allows a performance gain for four of the eight STAMP benchmarks. Figure 5.24
depicts speedup graphs for the STMAP benchmarks. The x-axes represent the number of
cores used for the execution. The y-axes indicate the speedup compared to the reference
execution. The reference execution time refers to the run of the benchmarks with one
core and no synchronization. It is marked as solid horizontal line in every speedup graph.
The speedups for the benchmarks depicted in Figure 5.24 are calculated using Equation
(5.3).

The benchmark bayes profits from applying the functionality of unbounded transactions.
An unbounded transaction does not automatically abort the other transactions and also
allows more parallelism. Therefore, the benchmark profits in terms of performance com-
pared to the basline execution and the execution only applying the timestamp contention
management strategy.

Also, the benchmark genome profits of from unbounded transactions. For the run with
16 cores executed by the extended HTM, only applying the timestamp contention man-
agement strategy, the system has to execute quite a lot of transactions in fallback mode
compared to the other runs (see Figure 5.14 for more details). The run with 16 cores on
the extended HTM applying the timestamp strategy and unbounded transactions does
not have to execute transactions in fallback mode which is why performance can be
increased for the execution with 16 cores. Here also the run on the baseline HTM is
outperformed.

The benchmark labyrinth could be lifted above the solid line representing the reference
execution (one core, no synchronization) for the execution applying the timestamp con-
tention management strategy and unbounded transactions. Since almost all transactions
abort due to capacity conflicts unbounded transactions are very beneficial for the exe-
cution of this benchmark. Unfortunately, also a lot of other conflicts occur which is why
no greater performance gains were achieved.

The benchmark yada also has a lot of capacity related conflicts (see Figure 5.14 for more
details) for which unbounded transactions are beneficial. In contrast to the benchmark
labyrinth contention between the transactions is not as high which is why better per-
formance values could be achieved.

For the other benchmarks (intruder, kmeans, ssca2 and vacation) no speedups were ob-
served. Since the number of transactions executed in fallback mode could not be further
reduced, because it was already zero when only applying the timestamp strategy, no
speedups gains could be achieved.

5.9 Evaluation

119

—o— baseline —=— timestamp —— timestampUnbounded

bayes
2 T T
1 ~
| | | | |
12 4 8 16
intruder
T T
4 [-
2 [|
1
| | | |
12 4 8 16
labyrinth

4 8 16

16 —

genome

12 4 8 16

12 4 8 16

Figure 5.24: For the benchmarks bayes, labyrinth and yada performance was increased
when unbounded transactions are activated. For the benchmark genome per-
formance could only be improved for the run on 16 cores.

120 5 Hardware Transactional Memory for Embedded Systems

5.9.9 Contention Management Strategy: priority

The contention management strategy priority allows to set a priority for a transaction. If
a conflict occurs the priority is used to resolve the conflict favoring the transaction with
the higher priority. To show that the contention management strategy works as it should
we started all eight transactions of the STAMP benchmark suite with priorities. Although
it is possible to set priorities manually for every transaction, we tied the priority to the
core the transaction is running on. That means the priority a transaction has depends
on which core it is executed on. For our experiment core 1 has the lowest and core 16
the highest priority.

Since fallback executions due to capacity conflicts would add a lot of noise to our eval-
uation, we decided to combine the priority strategy with unbounded transactions. Now
no transactions are executed in fallback mode. In our opinion this makes sense, since it
shows the effects achieved in the best way possible.

Figure 5.25 shows a bar chart for every of the eight benchmarks of the STAMP bench-
mark suite. The name of the benchmark, to which the bar chart belongs, is written to the
left of the bar charts. The y-axis of the bar charts represents the number of aborts. The
x-axis of the charts relates to a specific core. Note that the bar charts only represent the
execution running with 16 cores. The assumption hereby is that it is sufficient to show
that the contention management strategy works by examining the run on 16 cores. If the
evaluation were made for every core count (2, 4 and 8) the evaluation overhead would be
very high and no additional realizations would be made. Figure 5.25 shows that core with
the highest priority (core 16) accumulated the least number of aborted transactions for
every benchmark accept vacation. Here the evaluation showed that a non-transactional
execution (false conflict) lead to the abort of a transaction running on core 16.

Although one would expect that the number of aborted transactions would increase, the
lower the priority of the core is, that does not necessarily occur. The number of aborted
transactions highly depends on how many of the transactions a core executes conflict.
Therefore, a higher prioritized core can accumulate more transactional aborts than a
lower prioritized core. This phenomenon can be observed for all benchmarks, since for
every benchmark there exists at least one core with a higher priority than another core
which accumulated a higher number of aborts.

Since e.g., the benchmark labyrinth executes a lot of unbounded transactions, which have
the highest priority, also transactions running on the the highest priority core (core 16)
are aborted. Also, false conflicts may cause a transaction running on the core with the
highest priority to abort. Therefore, they also accumulate aborts.

5.9 Evaluation 121
s U0 priority
‘10 ! ! !
@ _
S
N o © .
= T 28 € s o
T T T - T T
11 12 13 14 15 16
| | |
r ; *
™ ~ ~ S \O v N
2 A8 S S 2SS 28 55 5o |
o0 21 ~ -8
0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
104 | | | | | | | | | | | | | |
~
E 1700 o o N N [S) N N N N N ~ oo ~ ,in |
= s o
~ o
NMEEEEEEEEEEENN NI
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
.102
“ 5
=
N
9]
s
2
=
5
~
=
=
=3
N
IS
Q
a
o
2
=
)
N
=
<
N
=

8

9

10

11

12

13

14 15

16

Figure 5.25: Number of aborts per core when executing the extended HTM with 16 cores,

applying the priority contention management strategy as well as unbounded
transactions.

122 5 Hardware Transactional Memory for Embedded Systems

5.9.10 Abort-Aware Execution

For the benchmarks bayes, genome, intruder and yada the number of aborted transactions
is very high for the execution performed on the extended HTM applying the timestamp
contention management strategy (see Figure 5.15 for more details). To reduce the num-
bers we described a mechanism called abort-aware execution which allows to lower the
number of aborts (see Section 5.4 for more details). Lowering the number of aborts is
beneficial, since a core otherwise has to restart a transaction over and over again. This
is bad for energy consumption especially if the core has no chance of committing the
transaction.

Figure 5.26 shows bar charts for the eight STAMP benchmarks. The bar charts allow the
comparison of the number of aborts for the baseline HTM, the extended HTM applying
the timestamp strategy and the extended HTM applying the timestamp strategy as well
as activating the mechanism to reduce aborts. The x-axis of the bar charts represents
the number of cores. The y-axis indicates how many transactions were aborted. The leg-
end entry baseline refers to the execution performed on the baseline HTM. The legend
entries timestamp and timestampReduceAborts refer to the execution performed on the
extended HTM applying the timestamp strategy. The execution refered to by timestam-
pReduceAborts also activates the mechanism to reduce aborts.

For the three benchmarks bayes, genome and yada the mechanism is effective and the
number of aborts can be brought below the values achieved by the execution on the
baseline HTM and the extended HTM only applying the timestamp strategy. Lowering
the number of aborts only has marginal effects on performance. This makes sense, since
the execution of aborted transactions is paused because a conflicting transaction is cur-
rently running. Note that although the mechanism lowers the number of aborts it does
not necessarily lower the overall contention.

The benchmark intruder also profits from the mechanism compared to when only the
timestamp strategy is applied. The problem is that contention still remains so high that
the number cannot be brought below the number of aborts generated by the baseline
HTM.

For the remaining benchmarks (kmeans, labyrinth, ssca2 and vacation) the number of
aborts matched or could be slightly decreased compared to the number of aborts accu-
mulated by the extended HTM only applying the timestamp strategy. For seven execu-
tions (labyrinth (16 cores), ssca2 (4 and 16 cores), kmeans (4,8 and 16 cores) and vacation
(4 cores)) the number of aborts slightly increased. Since the order of how the transactions
are executed might be affected through the mechanism an execution pattern might oc-
cur which causes more aborts. In general though the mechanism is powerful and allows
the extended HTM to effectively reduce aborts.

123

genome

U0 paseline ! timestamp [0 timestampReduceAborts
bayes

5.9 Evaluation

690¢ , ‘
L o — lep 09¢7,]
i S0°c o . Iy o i I o 8429 o
06 [691 [<0z [Zzo:
[
i 0L S i 0PI T | 6ce S i £9b9¢ W ©
626 [£ e | N 06 [69+
I
i e (] < m‘ N:“4 S 80 3 P6b2e]
5 wy T T ey
-~ g
ouw L 6¢ | c 204
N T - . 8l - & [e] 68°r 1l
Orp Is | 9% ﬁ wmm,mm_
0 0 0 08r
- 0l — - 0} — - 0} — N ogr | —
S 0 S 0 = 0 Sm BSr
L L ’ ! ’ ! |
= A i\ o N — = — o — o
: AA, 9/ e T T T T T T
€Iz [R L) — g “ee
\vwmf | ©] 0r -9 | CIgg o | 0se o
855 | om&w O M%] Lo
i Lo . . 0Tr fl oo i 0y o | S .
7 0867} ﬁ $89 488
~ . = <
Opz 3 Feof E o 3 S
i Ocrg] ¢ S 48 [< 5 3 - S Iy -
Yor =5 245 ES e S |
€ S S S
Is Sro 81 AL E—
i Poe | o . 6827 | ~ - 98I T . 6Fbg SN
6er Orgp Ssr 6c¢
b 0 96 [0
- Pe | — - 0 — - MQ - — _— 0 —
= ge S 0 = 6 = 0
| | | | | | |
~ 4,l o — o — o N H N AN — O

benchmarks on the baseline HTM and the extended HTM applying the

Figure 5.26: The bar charts compare the number of aborts when executing the STAMP
timestamp strategy as well as the mechanism to reduce aborts.

124 5 Hardware Transactional Memory for Embedded Systems

5.9.11 Reducing False Conflicts

With the extended HTM we are able to reduce the number of false conflicts. To show
how effective the mechanism is we compare two executions on the extended HTM. For
both executions we applied the timestamp strategy and unbounded transactions. For one
we additionally applied the mechanism to reduce false conflicts. Note that we do not
provide a fallback path for the benchmarks executed (see Section 5.8 for more details).
The comparison is depicted by Figure 5.27.

Figure 5.27 shows eight bar charts. Every bar chart represents one of the eight STAMP
benchmarks. The y-axes refer to the number of false conflicts. The x-axes refer to the
number of cores the execution was performed with. The number on top of every bar
represents the exact number of false conflicts. The legend entry timestampUnbounded
refers to the execution where the extended HTM applies the timestamp strategy and
unbounded transactions. The legend entry timestampUnboundedRFC refers to the exe-
cution where additionally the mechanism to reduce false conflicts is activated.

For every benchmark, except the benchmarks labyrinth and yada, we were able to reduce
the number of false conflicts. The benchmark labyrinth in general does not suffer from
any false conflicts. Therefore, the number of false conflicts could here not be reduced.
For the benchmark yada the number of fallback executions could also not be lowered.
Instead, here one additional false conflict was accumulated by our measures (execution
with 8 cores) since a shift in the execution of the transactions occurred.

Every other benchmark generates false conflicts which our mechanism can eliminate
up to 100 %. The complete reduction of false conflicts for every core count can be ob-
served for the benchmarks ssca2 and kmeans. For the benchmarks bayes, genome, in-
truder, kmeans and vacation a significant reduction of false conflicts was achieved. This
ranges from 55% to 100% depending on the number of cores the execution was performed
with.

The reduction of the false conflicts only had a small impact on the performance, since
the number of false conflicts is quite low compared to the overall accesses. Therefore,
we do not provide a detailed analysis of the speedups. In general, the mechanism has
proven to work and is able to reliably reduce the number of false conflicts.

5.9 Evaluation

125

B8 timestampUnbounded ! timestampUnboundedRFC

-10!

bayes

-10!

genome

intruder
| |

|
)
>
S
-

403

labyrinth

18

1 10\1 l l l
S S O S © S O© O
0 T T T T T
1 2 4 8 16
vacation
10\2 l l l
3
S
2 g
~ &

1

2 4 8 16

2
S oS oo : S S)
T T T
1 2 4 16
yada
-10! ‘
S o oo S
1 2 4 16

Figure 5.27: The mechanism to reduce false conflicts works effectively. For all bench-
marks (except yada) contained in the STAMP benchmark suite the number

of false conflicts could be reduced.

126 5 Hardware Transactional Memory for Embedded Systems

5.10 Summary

This chapter describes the development of the extended HTM. Since we aim at improv-
ing embedded systems, we provide an HTM allowing extensive control over the transac-
tional execution. Therefore, the baseline HTM developed in Chapter 4 was adapted. Here
we shifted conflict detection and resolution to the LLC controller. Therefore, mainly the
cache controllers had to be adapted. In total 14 new coherence messages had to be added
to map the communication caused by the shift. Shifting conflict detection and resolution
to the LLC enables the implementation of contention management strategies. In total five
strategies are provided by our approach. Additionally, we enabled a form of unbounded
transactions allowing transactions to survive capacity conflicts. Our approach also al-
lows other techniques which e.g., lower the number of aborts or false conflicts. Since
the extended HTM also provides priorities, the interface was adapted to allow potential
users to set a priority for every transaction. The extended HTM also allows simplifying
the calculations for estimating the WCET. With the evaluation at the end of this chapter,
we show that our approach can reduce abort rates, is able to reduce false conflicts and
can eliminate the need for a fallback path. This is all done at acceptable performance.
For some benchmarks performance was even increased.

Summary and Conclusion

Contents

6.1 Summary 127
6.2 Future Work 130
6.3 Conclusion and Outlook 131

In the following we summarize the work presented in this thesis. Next, we describe
future work. Here we lay out the features and customizations that we would consider
useful but are not yet realized in the current version of the HTM for embedded systems.
To close this chapter, we summarize the findings of this work and provide an outlook.

6.1 Summary

The thesis starts with an introduction where we offer an overview of how our work is
structured. Here we also motivate our work and lay out the objectives of our work. Before
summarizing and laying out related work, we provide some background to explain the
underlying mechanisms of the work done in this thesis.

For our work we first implemented an HTM into the gem5 simulator exploiting the MOSI
cache coherence. We therefore first provide a detailed description of how we consider
the setup of the underlying hardware.

After we explain how cache coherence is implemented, we lay out the design choices

we made. Here we point out how we realized conflict detection, conflict resolution and
Versioning. For our HTM we chose to implement eager conflict detection. The potential

127

128 6 Summary and Conclusion

conflicts are hereby detected by one of the L1 cache controllers. A conflict is detected
if a transaction’s RS or WS overlaps with another transaction’s WS. To resolve the con-
flict, we picked a simple conflict resolution strategy which implies that the transaction
running on the corresponding core of the cache controller which detected the conflict
has to abort. To allow multiple versions of a cache line, we buffer written cache lines in
the L1 cache.

Next, we explain how we actually implemented the HTM. First, we here describe how
we extended the caches to manage the RSs and WSs. We continue by laying out how
we adapted cache coherence by adding additional messages. Then we give a detailed
description of how we adapted the cache controllers, so they offer the necessary func-
tionality to enable the execution of transactions.

After describing the interface, we continue by evaluating our HTM implementation.
Here we use the eight benchmarks of the STAMP benchmark suite to investigate how
our implementation performs. We here compare our HTM implementation to an ex-
ecution of the STAMP benchmarks using POSIX Thread synchronization. Overall, we
were able to show that the transactional execution performs well since the HTM can
achieve a speedup of almost 16 when executing the benchmark kmeans with 16 cores.
For the benchmarks which benefit from being executed with transactions our HTM also
achieves decent speedups, which we discuss in detail. We also lay out why the execution
using the HTM was beaten by the POSIX Thread synchronization for some benchmarks.
This mainly relates to transactions exceeding resources which are not supported by our
HTM.

Next, we focused on how we can adapt and augment the baseline HTM to offer the
functionality we believe should be available in embedded systems. The main change
performed here is that in the newly designed HTM conflicts are detected at the LLC
level. This allows a central point of control and enables us to implement a variety of
useful features (e.g., multiple contention management strategies, abort-aware execution,
etc.). We continue by laying out how we manage the RSs and WSs. This has to be done
locally (L1 cache level) as well as at the LLC level. The RSs and WSs managed on LLC
level are used to detect conflicts. The RSs and WSs managed locally are used to prevent
the LLC controller of having to walk through the entire LLC to clear the RS and WS of
a transaction after a commit or abort. Since shifting the conflict detection to the LLC
level requires more communication we added 14 new message types to the coherence
protocol. To handle all extra communication, we also extensively adjusted the cache
controllers. Especially the LLC controller had to be adapted, since it remained untouched
for the implementation of the baseline HTM.

After explaining how the interface works, we proceed to describe how we provide abort-
aware transactional execution. The feature yields at lowering abort rates to improve en-
ergy consumption. The main idea behind this option is to stall a transaction which had a
conflict with another transaction and therefore aborted, until the conflicting transaction

6.1 Summary 129

finishes. This reduces the number of aborts since a transaction only aborts once due to
a concurrent transaction and not multiple times.

Next, we lay out how the mechanism which supports transactions of arbitrary size
works. The mechanism supports one unbounded transaction at a time. An unbounded
transaction is started as soon as a transaction evicts a cache line which is contained in the
currently running transaction’s RS or WS. Every conflict of the unbounded transaction
with a concurrent transaction is resolved in favor of the unbounded transaction.

To offer a flexible HTM regarding contention management, we offer five conflict resolu-
tion policies. Except for one (strategy passive: it aborts the transaction which detects the
conflict), the strategies we implemented focus on performance, progress as well as fair-
ness. We implemented strategies which consider the start times, the number of commits,
the number of aborts and priorities of transactions.

Since we provide an HTM for embedded systems we look at the analyzability of our
HTM. Because of the nature of optimistic synchronization, it is quite difficult to ana-
lyze an execution which uses an HTM for synchronization. Nevertheless, we were able
to show that we can theoretically bound the execution time for our HTM to match the
execution as if the transactions were executed sequentially on a single core chip. This
is achieved by using unbounded transactions as well as a sufficient contention manage-
ment strategy such as timestamp.

Before concluding the chapter by summarizing it, we extensively evaluate our work.
We here first describe where potential overheads come from, which are mainly caused
by the additional communication necessary when shifting conflict detection to the LLC
level. Next, we evaluate the contention management strategies and compare them to
the executions performed on the baseline HTM. Here we are able to show that we were
able to significantly reduce the number of fallback executions. When we additionally
enable unbounded transactions also performance was improved for some benchmarks.
Furthermore, the results show that we are able to completely eliminate the necessity
of fallback paths. Since the contention management strategy which is able to handle
priorities uses unbounded transactions it is evaluated next. Here we are able to show that
the execution behaves as expected since the priority impacts the distribution of aborts.
For the abort-aware execution we were able to show that it works, since the abort rates
could be reduced for the benchmarks bayes, genome, intruder and yada. Last, we evaluate
the mechanism which was implemented to reduce false conflicts. The evaluation showed
that the mechanism works effectively since the number of false conflicts was reduced
for every benchmark except one that was affected by false conflicts.

130 6 Summary and Conclusion

6.2 Future Work

Our HTM cannot allow transactions to survive interrupts. Therefore, a mechanism could
be added to our HTM allowing transactions to survive interrupts. This would involve to
provide the ability to exactly track the RSs and WSs of the transactions started. Even
though transactions may currently not be running conflicts still have to be detected and
resolved. Allowing transactions to survive interrupts would further increase usability of
our HTM for embedded systems.

It might be possible to further optimize our HTM by reducing the communication needed
to assure cache coherence. This would most likely result in a performance gain and
would therefore be beneficial for every transactional execution.

State machines providing cache coherence are complex and therefore error prone. To
ensure the correctness of the implementation of our cache coherence a model check
could be performed.

The mechanism allowing to execute transactions of arbitrary size could be augmented
in a way that multiple unbounded transactions could be executed simultaneously. To
enable this feature the system has to be adapted in a way, so it is able to abort unbounded
transaction. This requires that the system has to be able to keep track of the RS and WS
even though some lines may have been evicted from the local caches.

The analyzability of the HTM could be further improved. Here the goal would be to
bound the execution time below the time needed for the transactions to be executed
sequentially.

Since we did not operate the HTM in combination with an operating system there are
some adaptions which have to be performed to allow the HTM to work in combination
with an operating system of choice (e.g. an operating system especially developed for
embedded systems). Therefore, the HTM could be adjusted, so it can be used in combi-
nation with an operating system. The operating system then could be used to interact
with the HTM to provide more functionality.

To further investigate how the HTM behaves it could be ported to a Field Gate Pro-
grammable Array (FPGA). An FPGA implementation allows a faster execution. There-
fore, a more accurate evaluation could be made since the FPGA is one step closer to real
hardware. Additionally, an FPGA implementation would help to demonstrate that the
underlying concepts of this work can actually be implemented in real hardware.

6.3 Conclusion and Outlook 131

6.3 Conclusion and Outlook

Offering more control over the transactional execution comes at a price. The increased
costs hereby mainly relate to the additional communication necessary to gain the extra
control needed to enable the desired functionality. Also, the complexity of the hardware
(in our case cache the controllers) increases.

Nevertheless, we were able to show that the features, we believe contribute to embed-
ded systems, could be enabled. Therefore, we provide a mechanism to allow transac-
tions of arbitrary size. To provide more flexibility concerning contention management
we implemented five contention management strategies. Even though we had to per-
form many adjustments our HTM offers acceptable performance. When combining un-
bounded transactions and contention management strategies we were able to even in-
crease performance for some benchmarks when compared to the HTM developed in
Chapter 4. Additionally, the necessity for a fallback path could be eliminated. Our mech-
anism meant to provide power saving options works since it is able to reduce the num-
ber of aborts. Furthermore, we present a mechanism which reduces the number of false
conflicts. By providing unbounded transactions and sufficient contention management
strategies we were able to bound the execution time for our HTM. Since mainly the
memory hierarchy was adapted the cores themselves did not have to be changed which
makes the system very portable. Other processors would most likely only need to make
small adjustments to be able to use our HTM implementation.

Due to the fact that multi-cores become highly relevant for embedded systems, it be-
comes more important to write parallel software to exploit the available computational
power. For this HTMs should certainly be considered. Especially for workloads which
operate on a big amount of data and therefore only have a few sporadic conflicts HTMs
perform well. With our work we provide an HTM suitable for embedded systems since
it eliminates the typical limitations of conventional HTMs, offers several conflict reso-
lution mechanisms and supplies a feature to conserve energy.

Bibliography

[1]

Allon Adir et al. “Verification of Transactional Memory in POWERS”. In: Proceed-
ings of the 51st Annual Design Automation Conference. DAC 14. 2014, pp. 1-6. DOI:
10.1145/2593069.2593241.

Rico Amslinger. “Loosely-coupled fail-operational execution on embedded het-
erogeneous multi-cores”. doctoralthesis. Universitiat Augsburg, 2021, p. 193.

C. S. Ananian et al. “Unbounded transactional memory”. In: 11th International
Symposium on High-Performance Computer Architecture. Feb. 2005, pp. 316-327.
por: 10.1109/HPCA.2005.41.

ARM Ltd. Transactional Memory Extension (TME) intrinsics. Accessed: 2022-11-28.
URL: https://developer.arm.com/documentation/101028/0012/16--Transactional-
Memory-Extension--TME--intrinsics.

N.L. Binkert et al. “The M5 Simulator: Modeling Networked Systems”. In: IEEE
Micro 26.4 (2006), pp. 52-60. po1: 10.1109/MM.2006.82.

Nathan Binkert et al. “The Gem5 Simulator”. In: SSIGARCH Comput. Archit. News
39.2 (2011), pp. 1-7. por: 10.1145/2024716.2024718.

Colin Blundell, E. Christopher Lewis, and Milo M.K. Martin. “Subtleties of trans-
actional memory atomicity semantics”. In: IEEE Computer Architecture Letters 5.2
(2006), pp. 17-17. por: 10.1109/L-CA.2006.18.

Harold W. Cain et al. “Robust Architectural Support for Transactional Memory
in the Power Architecture”. In: SSIGARCH Comput. Archit. News 41.3 (June 2013),
pp. 225-236. poI: 10.1145/2508148.2485942.

John M. Calandrino et al. “LITMUSRT : A Testbed for Empirically Comparing Real-
Time Multiprocessor Schedulers”. In: 2006 27th IEEE International Real-Time Sys-
tems Symposium (RTSS’06). 2006, pp. 111-126. Dor: 10.1109/RTSS.2006.27.

Calin Cascaval et al. “Software Transactional Memory: Why is It Only a Research
Toy?” In: Commun. ACM 51.11 (Nov. 2008), pp. 40-46. por: 10.1145/1400214.
1400228.

Luis Ceze et al. “Bulk Disambiguation of Speculative Threads in Multiprocessors”.
In: Proceedings of the 33rd Annual International Symposium on Computer Architec-
ture. ISCA 06. 2006, pp. 227-238. po1: 10.1109/ISCA.2006.13.

Shailender Chaudhry et al. “Rock: A High-Performance Sparc CMT Processor”.
In: IEEE Micro 29.2 (2009), pp. 6—16. po1: 10.1109/MM.2009.34.

XV

https://doi.org/10.1145/2593069.2593241
https://doi.org/10.1109/HPCA.2005.41
https://developer.arm.com/documentation/101028/0012/16--Transactional-Memory-Extension--TME--intrinsics
https://developer.arm.com/documentation/101028/0012/16--Transactional-Memory-Extension--TME--intrinsics
https://doi.org/10.1109/MM.2006.82
https://doi.org/10.1145/2024716.2024718
https://doi.org/10.1109/L-CA.2006.18
https://doi.org/10.1145/2508148.2485942
https://doi.org/10.1109/RTSS.2006.27
https://doi.org/10.1145/1400214.1400228
https://doi.org/10.1145/1400214.1400228
https://doi.org/10.1109/ISCA.2006.13
https://doi.org/10.1109/MM.2009.34

xXVvi

Bibliography

[13]

[14]

[20]

[21]

[24]

[25]

Chi Cao Minh et al. “STAMP: Stanford Transactional Applications for Multi-Pro-
cessing”. In: 2008 IEEE International Symposium on Workload Characterization.
Sept. 2008, pp. 35-46. por1: 10.1109/IISWC.2008.4636089.

Dave Christie et al. “Evaluation of AMD’s Advanced Synchronization Facility
within a Complete Transactional Memory Stack”. In: Proceedings of the 5th Eu-
ropean Conference on Computer Systems. EuroSys ’10. 2010, pp. 27-40. por: 10.
1145/1755913.1755918.

Jaewoong Chung et al. “ASF: AMD64 Extension for Lock-Free Data Structures and
Transactional Memory”. In: 2010 43rd Annual IEEE/ACM International Symposium
on Microarchitecture. 2010, pp. 39-50. por: 10.1109/MICR0O.2010.40.

Intel Corperation. Intel architecture instruction set extensions programming refer-
ence. Chapter 8: Intel transactional synchronization extensions. 2012.

R.H. Dennard et al. “Design of ion-implanted MOSFET’s with very small physical
dimensions”. In: IEEE Journal of Solid-State Circuits 9.5 (1974), pp. 256-268. DOI:
10.1109/JSSC.1974.1050511.

Marco Elver and Vijay Nagarajan. “RC3: Consistency Directed Cache Coherence
for x86-64 with RC Extensions”. In: 2015 International Conference on Parallel Ar-
chitecture and Compilation (PACT). 2015, pp. 292-304. po1: 10.1109/PACT.2015.37.

Marco Elver and Vijay Nagarajan. “TSO-CC: Consistency directed cache coher-
ence for TSO”. In: 2014 IEEE 20th International Symposium on High Performance
Computer Architecture (HPCA). 2014, pp. 165-176. por: 10.1109/HPCA .2014.
6835927.

Robert Ennals. Software transactional memory should not be obstruction-free. Tech.
rep. Technical Report IRC-TR-06-052, Intel Research Cambridge Tech Report, 2003.

Hadi Esmaeilzadeh et al. “Dark Silicon and the End of Multicore Scaling”. In:
SIGARCH Comput. Archit. News 39.3 (June 2011), pp. 365-376. DOI: 10.1145/2024723.
2000108.

Cesare Ferri et al. “Embedded-TM: Energy and complexity-effective hardware trans-
actional memory for embedded multicore systems”. In: Journal of Parallel and Dis-
tributed Computing 70.10 (2010), pp. 1042-1052. por: 10.1016/j.jpdc.2010.02.003.

Cesare Ferri et al. “Energy Efficient Synchronization Techniques for Embedded
Architectures”. In: Proceedings of the 18th ACM Great Lakes Symposium on VLSL
GLSVLSI °08. 2008, pp. 435-440. por1: 10.1145/1366110.1366213.

Keir Fraser. Practical lock-freedom. Tech. rep. UCAM-CL-TR-579. University of
Cambridge, Computer Laboratory, Feb. 2004. po1: 10.48456/tr-579.

Rachid Guerraoui, Maurice Herlihy, and Bastian Pochon. “Toward a Theory of
Transactional Contention Managers”. In: Proceedings of the Twenty-Fourth Annual
ACM Symposium on Principles of Distributed Computing. 2005, pp. 258-264. DOTI:
10.1145/1073814.1073863.

https://doi.org/10.1109/IISWC.2008.4636089
https://doi.org/10.1145/1755913.1755918
https://doi.org/10.1145/1755913.1755918
https://doi.org/10.1109/MICRO.2010.40
https://doi.org/10.1109/JSSC.1974.1050511
https://doi.org/10.1109/PACT.2015.37
https://doi.org/10.1109/HPCA.2014.6835927
https://doi.org/10.1109/HPCA.2014.6835927
https://doi.org/10.1145/2024723.2000108
https://doi.org/10.1145/2024723.2000108
https://doi.org/10.1016/j.jpdc.2010.02.003
https://doi.org/10.1145/1366110.1366213
https://doi.org/10.48456/tr-579
https://doi.org/10.1145/1073814.1073863

XVii

[26]

[27]

(28]

[29]

Florian Haas. “Fault-tolerant Execution of Parallel Applications on x86 Multi-
core Processors with Hardware Transactional Memory”. doctoralthesis. Univer-
sitat Augsburg, 2019, p. 164.

Per Hammarlund et al. “Haswell: The Fourth-Generation Intel Core Processor”.
In: IEEE Micro 34.2 (2014), pp. 6—20. po1: 10.1109/MM.2014.10.

Tim Harris and Keir Fraser. “Language Support for Lightweight Transactions”. In:
SIGPLAN Not. 49.4S (July 2014), pp. 64-78. po1: 10.1145/2641638.2641654.

Tim Harris, James Larus, and Ravi Rajwar. Transactional Memory, 2nd edition. Syn-
thesis Lectures on Computer Architecture. Morgan & Claypool Publishers, 2010.
ISBN: 1608452352.

Tim Harris et al. “Transactional Memory: An Overview”. In: IEEE Micro 27.3 (2007),
pp. 8-29. por: 10.1109/MM.2007.63.

J.L. Hennessy and D.A. Patterson. Computer Architecture: A Quantitative Approach.
The Morgan Kaufmann Series in Computer Architecture and Design. Elsevier Sci-
ence, 2017. 1SBN: 9780128119051.

Maurice Herlihy. “Transactional Memories”. In: Encyclopedia of Parallel Comput-
ing. Ed. by David Padua. Boston, MA: Springer US, 2011, pp. 2079-2086. 1SBN:
978-0-387-09766-4. pO1: 10.1007/978-0-387-09766-4_122.

Maurice Herlihy and J. Eliot B. Moss. “Transactional Memory: Architectural Sup-
port for Lock-Free Data Structures”. In: Proceedings of the 20th Annual Interna-
tional Symposium on Computer Architecture. 1993, pp. 289-300. por: 10.1145/
165123.165164.

Maurice Herlihy et al. “Software Transactional Memory for Dynamic-Sized Data
Structures”. In: Proceedings of the Twenty-Second Annual Symposium on Principles
of Distributed Computing. PODC ’03. 2003, pp. 92-101. por1: 10.1145/872035.872048.

Christian Jacobi, Timothy Slegel, and Dan Greiner. “Transactional Memory Archi-
tecture and Implementation for IBM System Z”. In: 2012 45th Annual IEEE/ACM In-
ternational Symposium on Microarchitecture. 2012, pp. 25-36. por: 10.1109/MICRO.
2012.12.

Jason Lowe-Power. Ruby. Accessed: 2022-11-28. URL: https://www.gem5.org/
documentation/general_docs/ruby/.

Jason Lowe-Power. Syscall Emulation Mode (SE mode). Accessed: 2022-11-28. URL:
https://www.gem5.org/documentation/learning_gem5/introduction/.

Eric H Jensen, Gary W Hagensen, and Jeffrey M Broughton. A new approach to
exclusive data access in shared memory multiprocessors. Tech. rep. Technical Report
UCRL-97663, Lawrence Livermore National Laboratory, 1987.

James Larus and Christos Kozyrakis. “Transactional Memory”. In: Commun. ACM
51.7 (July 2008), pp. 80-88. po1: 10.1145/1364782.1364800.

https://doi.org/10.1109/MM.2014.10
https://doi.org/10.1145/2641638.2641654
https://doi.org/10.1109/MM.2007.63
https://doi.org/10.1007/978-0-387-09766-4_122
https://doi.org/10.1145/165123.165164
https://doi.org/10.1145/165123.165164
https://doi.org/10.1145/872035.872048
https://doi.org/10.1109/MICRO.2012.12
https://doi.org/10.1109/MICRO.2012.12
https://www.gem5.org/documentation/general_docs/ruby/
https://www.gem5.org/documentation/general_docs/ruby/
https://www.gem5.org/documentation/learning_gem5/introduction/
https://doi.org/10.1145/1364782.1364800

xXVviii

Bibliography

[40]

[41]

[42]

[45]

[46]

Jason Lowe-Power et al. “The gem5 simulator: Version 20.0+”. In: arXiv preprint
arXiv:2007.03152 (2020).

Virendra J. Marathe, William N. Scherer, and Michael L. Scott. “Adaptive Software
Transactional Memory”. In: Distributed Computing. Ed. by Pierre Fraigniaud. 2005,
pp- 354-368. po1: 10.1007/11561927_26.

Milo M. K. Martin et al. “Multifacet’s General Execution-Driven Multiprocessor
Simulator (GEMS) Toolset”. In: SIGARCH Comput. Archit. News 33.4 (Nov. 2005),
pp- 92-99. por: 10.1145/1105734.1105747.

K. E. Moore et al. “LogTM: log-based transactional memory”. In: The Twelfth Inter-
national Symposium on High-Performance Computer Architecture, 2006. Feb. 2006,
pp- 254-265. por: 10.1109/HPCA.2006.1598134.

Christian Piatka et al. “Investigating transactional memory for high performance
embedded systems”. In: International Conference on Architecture of Computing Sys-
tems. Springer. 2020, pp. 97-108. 1SBN: 978-3-030-52794-5.

Fong Pong and Michel Dubois. “Verification Techniques for Cache Coherence Pro-
tocols”. In: 29.1 (Mar. 1997), pp. 82—-126. po1: 10.1145/248621.248624.

Ricard Quislant, Eladio Gutierrez, and Oscar Zapata Emilio L.and Plata. “Conflict
Detection in Hardware Transactional Memory”. In: Transactional Memory. Foun-
dations, Algorithms, Tools, and Applications: COST Action Euro-TM IC1001. 2015,
pp- 127-149. por: 10.1007/978-3-319-14720-8_6.

R. Rajwar and J.R. Goodman. “Speculative lock elision: enabling highly concur-
rent multithreaded execution”. In: Proceedings. 34th ACM/IEEE International Sym-
posium on Microarchitecture. MICRO-34. 2001, pp. 294-305. por: 10.1109/MICRO.
2001.991127.

R. Rajwar, M. Herlihy, and K. Lai. “Virtualizing transactional memory”. In: 32nd
International Symposium on Computer Architecture (ISCA’05). 2005, pp. 494-505.
DOI: 10.1109/ISCA.2005.54.

Ravi Rajwar and James R. Goodman. “Transactional Lock-Free Execution of Lock-
Based Programs”. In: ASPLOS X. 2002, pp. 5-17. por: 10.1145/605397.605399.

J. Ruppert. “A Delaunay Refinement Algorithm for Quality 2-Dimensional Mesh
Generation”. In: Journal of Algorithms 18.3 (1995), pp. 548—-585. por: https://doi.
org/10.1006/jagm.1995.1021.

Toufik Sarni, Audrey Queudet, and Patrick Valduriez. “Real-Time Support for Soft-
ware Transactional Memory”. In: 2009 15th IEEE International Conference on Em-
bedded and Real-Time Computing Systems and Applications. 2009, pp. 477-485. DOI:
10.1109/RTCSA.2009.57.

R.R. Schaller. “Moore’s law: past, present and future”. In: IEEE Spectrum 34.6 (1997),
pp. 52-59. por: 10.1109/6.591665.

https://doi.org/10.1007/11561927_26
https://doi.org/10.1145/1105734.1105747
https://doi.org/10.1109/HPCA.2006.1598134
https://doi.org/10.1145/248621.248624
https://doi.org/10.1007/978-3-319-14720-8_6
https://doi.org/10.1109/MICRO.2001.991127
https://doi.org/10.1109/MICRO.2001.991127
https://doi.org/10.1109/ISCA.2005.54
https://doi.org/10.1145/605397.605399
https://doi.org/https://doi.org/10.1006/jagm.1995.1021
https://doi.org/https://doi.org/10.1006/jagm.1995.1021
https://doi.org/10.1109/RTCSA.2009.57
https://doi.org/10.1109/6.591665

Xix

[53]

William N. Scherer and Michael L. Scott. “Advanced Contention Management for
Dynamic Software Transactional Memory”. In: Proceedings of the Twenty-Fourth
Annual ACM Symposium on Principles of Distributed Computing. 2005, pp. 240-248.
DoI: 10.1145/1073814.1073861.

William N Scherer and Michael L Scott. “Contention management in dynamic
software transactional memory”. In: PODC Workshop on Concurrency and Syn-
chronization in Java programs. 2004, pp. 70-79. por: 10.1145/1073814.1073861.

Martin Schoeberl, Florian Brandner, and Jan Vitek. “RTTM: Real-Time Transac-
tional Memory”. In: Proceedings of the 2010 ACM Symposium on Applied Comput-
ing. SAC ’10. 2010, pp. 326—333. por1: 10.1145/1774088.1774158.

Nir Shavit and Dan Touitou. “Software transactional memory”. In: Proceedings of
the fourteenth annual ACM symposium on Principles of distributed computing. 1995,
pp- 204-213.

Daniel J Sorin, Mark D Hill, and David A Wood. A primer on memory consistency
and cache coherence. Synthesis lectures on computer architecture. Morgan & Clay-
pool Publishers, 2020. 1sBN: 1681737094.

Nigel Stephens. New Technologies for the Arm A-Profile Architecture. Accessed:
2022-11-28. URL: https://community.arm.com/arm- community - blogs/b/archi
tectures-and-processors-blog/posts/new-technologies-for-the-arm-a-profile-
architecture.

J.M. Stone et al. “Multiple reservations and the Oklahoma update”. In: IEEE Parallel
& Distributed Technology: Systems & Applications 1.4 (1993), pp. 58-71. por: 10.
1109/88.260295.

P. Sweazey and A. J. Smith. “A Class of Compatible Cache Consistency Protocols
and Their Support by the IEEE Futurebus”. In: SSGARCH Comput. Archit. News 14.2
(May 1986), pp. 414-423. por: 10.1145/17356.17404.

Rubén Titos, Manuel E. Acacio, and José M. Garcia. “Directory-Based Conflict De-
tection in Hardware Transactional Memory”. In: High Performance Computing -
HiPC 2008. 2008, pp. 541-554. 1SBN: 978-3-540-89894-8.

Amy Wang et al. “Evaluation of Blue Gene/Q Hardware Support for Transactional
Memories”. In: Proceedings of the 21st International Conference on Parallel Archi-
tectures and Compilation Techniques. PACT *12. 2012, pp. 127-136. por: 10.1145/
2370816.2370836.

Luke Yen et al. “LogTM-SE: Decoupling Hardware Transactional Memory from
Caches”. In: 2007 IEEE 13th International Symposium on High Performance Com-
puter Architecture. 2007, pp. 261-272. por: 10.1109/HPCA.2007.346204.

https://doi.org/10.1145/1073814.1073861
https://doi.org/10.1145/1073814.1073861
https://doi.org/10.1145/1774088.1774158
https://community.arm.com/arm-community-blogs/b/architectures-and-processors-blog/posts/new-technologies-for-the-arm-a-profile-architecture
https://community.arm.com/arm-community-blogs/b/architectures-and-processors-blog/posts/new-technologies-for-the-arm-a-profile-architecture
https://community.arm.com/arm-community-blogs/b/architectures-and-processors-blog/posts/new-technologies-for-the-arm-a-profile-architecture
https://doi.org/10.1109/88.260295
https://doi.org/10.1109/88.260295
https://doi.org/10.1145/17356.17404
https://doi.org/10.1145/2370816.2370836
https://doi.org/10.1145/2370816.2370836
https://doi.org/10.1109/HPCA.2007.346204

List of Figures

2.1
2.2

3.1
3.2

4.1
4.2
4.3
4.4
4.5

5.1
5.2
5.3
5.4
55
5.6
5.7
5.8
5.9
5.10
5.11
5.12
5.13
5.14

5.15

5.16
5.17
5.18

5.19
5.20
5.21

Consistency-agnostic coherence 16
Relation of MOESI states 19
Overview VIM e 38
Description of XSN mechanism 40
BasicSystem 49
Communication Network 50
Redirection of non-processable coherence requests 60
Receiving a modified cache line from another core (transactional) 61
Performance evaluation of baseline HTM 67
Live lock for transactional execution 71
Fallback execution of transactions 71
Imbalanced transactional execution 72
Why the commit acknowledgment is necessary 76
How the commit acknowledgment works 77
Silent evicts: MESI versus MOST 80
Why a local cache line cannot be directly added to the local RS 83
How a shared cache line is added to the RS in the extended HTM 84
Why a local cache line cannot be directly added to the local WS 86
How a modified cache line is added to the WS in the exetended HTM . . 87
Balance in transactional execution 92
False conflicts in transactional execution 95
Deferring non-transactional accesses 95
Contention management strategy timestamp: Number of transactions

executed in fallback modeo oo 101
Contention management strategy timestamp: Number of aborted trans-

actions e 103
Contention management strategy timestamp: Performance evaluation . . 106
Contention management strategy commit: Number of aborted transactions 108
Contention management strategy commit: Number of transactions exe-

cuted in fallback modeo 109
Contention management strategy commit: Performance evaluation . . . 110
Contention management strategy abort: Number of aborted transactions 113
Contention management strategy abort: Performance evaluation 114

XX1

xxii List of Figures
5.22 Contention management strategy abort: Number of transactions exe-
cuted in fallbackmode 115
5.23 Unbounded transactions: Number of transactions executed in fallback
mode 117
5.24 Unbounded transactions: Performance evaluation 119
5.25 Contention management strategy priority: Distribution of aborts on cores 121
5.26 Abort-aware transactional execution: Number of aborted transactions . . 123
5.27 Reducing false conflicts: Number of false conflicts 125

List of Tables

2.1
2.2
2.3
2.4
2.5

31

4.1
4.2
4.3

5.1
5.2
5.3
5.4
5.5
5.6

Overview cache controller in MOSI protocol 21
Coherence messages used for MOSI cache coherence protocol 22
Overview directory controller in MOSI protocol 23
List of abbreviations used in Tables 2.1and 2.3 23
Properties of STAMP benchmarks 27
Comparision of Approaches 45
New message types for the baseline HTM 56
System Configuration o 64
Configuration of STAMP Benchmarks 65
New message types for the baseline HTM 78
Restoring coherence states after a transaction abort 82
Restoring coherence states in case of rejected requests 83
Data saved depending on the contention management strategy 93
System Configuration 98
Configuration of STAMP Benchmarks 98

XX1ii

	Zusammenfassung
	Abstract
	Danksagung
	Acronyms
	Introduction
	Motivation
	Objectives and Contributions
	Publications
	Overview

	Background
	Transactional Memories
	Properties of Transactional Memories
	Concurrency Control
	Conflict Detection
	Versioning
	Software Transactional Memories
	Hardware Transactional Memory
	Challenges and benefits of Transactional Memories

	Cache Coherence
	Overview
	Invariants
	States
	Snooping Based Cache Coherence
	Directory Based Cache Coherence
	MOSI Cache Coherence Protocol

	The Gem5 Simulator
	STAMP Benchmark Suite
	Summary

	Related Work
	Hardware Transactional Memory Approaches Devolved by Industry
	Sun Microsystems
	Proposal of Hardware Transactional Memory by AMD
	Hardware Transactional Memory approaches by IBM
	Intel TSX and ARM TME

	Contention Management Strategies
	Unbounded Conflict Detection
	Unbounded Transactional Memories
	Virtualizing Transactional Memory
	LogTM-SE: Decoupling Hardware Transactional Memory from Caches
	Directory-Based Conflict Detection in Hardware Transactional Memory
	Making the Fast Case Common and the Uncommon Case Simple in Unbounded Transactional Memory

	Embedded-TM
	Real-Time Transactional Memories
	Summary

	Implementing a Hardware Transactional Memory exploiting MOSI Cache Coherence
	Basic System
	Implementing Cache Coherence
	Design Choices for Hardware Transactional Memories
	Conflict Detection
	Conflict Resolution
	Versioning

	Integrating the Hardware Transactional Memory
	Managing the Read and Write-Set
	Additional Coherence Messages
	Modifying the Cache Controllers

	Interface
	Evaluation
	Estimation of Hardware Costs
	Benchmarks
	Methodology
	Analysis

	Summary

	Hardware Transactional Memory for Embedded Systems
	Motivation
	Adapting the baseline Hardware Transactional Memory
	Managing the Read- and Write-Set
	Additional Coherence Messages
	Conflict Detection
	Conflict Resolution
	Modifying the Cache Controllers

	Interface
	Abort-Aware Transactional Execution
	Unbounded Transactions
	Contention Management Strategies
	Estimating Execution Times for Extended HTM
	Reducing False Conflicts
	Evaluation
	Estimation of Hardware Costs
	Methodology
	Benchmarks
	Overhead of extended HTM
	Contention Management Strategy: timestamp
	Contention Management Strategy: commit
	Contention Management Strategy: abort
	Unbounded Transactions
	Contention Management Strategy: priority
	Abort-Aware Execution
	Reducing False Conflicts

	Summary

	Summary and Conclusion
	Summary
	Future Work
	Conclusion and Outlook

	Bibliography
	List of Figures
	List of Tables

