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Sensor integration into microfluidic systems: trends and 
challenges
Marc A Buttkewitz1, Christopher Heuer1,2 and  
Janina Bahnemann2,3

The combination of sensors and microfluidics has become a 
promising approach for detecting a wide variety of targets 
relevant in biotechnology. Thanks to recent advances in the 
manufacturing of microfluidic systems, microfluidics can be 
manufactured faster, cheaper, and more accurately than ever 
before. These advances make microfluidic systems very 
appealing as a basis for constructing sensor systems, and 
microfluidic devices have been adapted to house (bio)sensors 
for various applications (e.g. protein biomarker detection, cell 
culture oxygen control, and pathogen detection). This review 
article highlights several successfully integrated microfluidic 
sensor systems, with a focus on work that has been published 
within the last two years. Different sensor integration methods 
are discussed, and the latest trends in wearable- and 
smartphone-based sensors are described.
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Introduction
In recent years, (bio)sensors have become a promising 
tool for the detection of a wide variety of target analytes 
such as cancer biomarkers, bacterial pathogens, and/or 

metabolites. To enable point-of-care diagnostics and 
reduce required volumes and space, sensor integration 
into microfluidic systems has become a primary focus of 
research [1]. Yet, such systems also hold great promise 
for industrial use [2,3], thanks to advances in manu-
facturing methods that have rendered microfluidic 
sensor systems surprisingly cost-effective (as little as 
$0.15 per device) to produce [4].

The use of microfluidic systems with integrated sensors 
has become particularly widespread in the field of bio-
technology, and the usefulness of combining different 
sensor types and microfluidic systems has been well- 
demonstrated at this point (as shown in Table 1). For 
example, Arshavsky-Graham et al. [5•] integrated a si-
licon-based optical sensor into 3D-printed microfluidics, 
while Aleman et al. [6] incorporated an electrochemical 
impedance-based biosensor into a polydimethylsiloxane 
(PDMS) housing. Frey et al. have also successfully in-
tegrated different microsensors into a microbioreactor 
system, permitting them to monitor process parameters 
such as the O2 and CO2 concentration or the pH value 
during a cultivation of Saccharomyces cerevisiae (S. cerevi-
siae) [7]. This work highlights that the miniaturization of 
bioreactors or point-of-care devices also requires the 
miniaturization of the sensor itself, however — a fact 
that also poses a new challenge for (bio)sensor devel-
opment. Nevertheless, a few miniaturized sensors, such 
as sensor plugs for bioprocess control (pH, O2, and CO2) 
[8], are already commercially available. Having said that, 
the sheer variety of different sensor (e.g. optical, elec-
trochemical) and microfluidic housing (e.g. plastics, 
PDMS, and glass) combinations highlights that there is 
still no standardized method for sensor integration. In-
stead, different integration techniques have been de-
veloped and adapted to fit specific experimental 
requirements — and a number of different difficulties 
and challenges (including leakage issues [5•], pressure 
stability [9], and mechanical integrity [10]) must be 
considered and confronted by researchers looking to 
develop such a system for their own particularized use.

This review article focuses on surveying some of the re-
cent microfluidic systems with integrated sensors that 
have been developed in the last two years for biotechno-
logical/biochemical applications. Accordingly, we offer an 
overview of sensors employed and integration methods 
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used while also flagging some of the current challenges 
and emerging trends in sensor integration efforts. 

Integration methods — state-of-the-art 
Integrating sensors into microfluidic systems is a topic of 
great sensitivity and importance to researchers working 
with such systems. Owing to the very small sizes of 
microfluidic systems, as well as the incredible diversity 
of materials that are used for microfluidics production 
and sensor systems [28], selecting the right integration 
method is something that must be given careful thought. 
In all cases, however, the sensor must be installed into 
the system in a leakage-free manner that does not impair 
its sensing performance. 

The vast majority of sensor-integrated microfluidic sys-
tems deploy a modular design [5•,29,30,31]. Put differ-
ently, these systems are manufactured in individual 
parts, which are then subsequently connected to form a 
complete system. Attempts to manufacture both the 
microfluidics element and the sensors in a single step are 
very rare, given the very different types of materials and 
manufacturing techniques that are typically used to de-
velop and assemble both of those elements. An overview 
of the integration methods recently reported is sum-
marized in Figure 1. 

Integration of sensors into microfluidic devices is often 
achieved via adhesives. In their work, Arshavsky- 
Graham et al. [5•] spread a UV-curable liquid glue in a 
thickness of just a few micrometers on a transfer wafer. 
Subsequently, the 3D-printed microfluidic system with 

channels open to their bottom was placed on the ad-
hesive and then once again removed, with the adhesive 
remaining on the glued area. The 3D-printed object was 
then placed on the silicon sensor, and bonding was 
achieved by curing the adhesive under UV light. The 
successful integration of such photonic silicon chips into 
a 3D-printed gradient generator to accomplish auto-
mated generation of desired antibiotic concentrations 
(twofold dilutions) for on-chip antimicrobial suscept-
ibility testing has already been demonstrated by Heuer 
and Preuß et al. [37]. 

Alternatively, solid adhesives are also frequently used to 
form a connection. The simplest method uses double- 
sided adhesive tape [4,32,33••,34] or pressure-sensitive 
adhesive tape [38], which is cut via a suitable method 
(such as by using a laser cutter). The tape is then applied 
to the microfluidic device or the sensor and bonded to 
the respective counterpart [33••]. Because all tape has a 
certain thickness, however, this approach fundamentally 
limits the size of the microchannels due to the additional 
layer. Nevertheless, adhesive tape can also be exploited 
to directly create microfluidic channels and adjust the 
channel height [32,34]. 

In a different integration method, Müller et al. [12•] 
used a microdispenser capable of applying small vo-
lumes with pinpoint accuracy to include sensor spots 
into microfluidic systems. The integration was per-
formed as follows: the microfluidic system was pro-
duced with open channels, the sensor spots were 
applied at the appropriate locations, and then the 

Table 1 

Overview of different sensors recently integrated into microfluidic systems — divided into optical versus electrochemical sensor types 
(since those are the two primary types reported in the literature).     

Principle Application Housing  

Optical sensors 
Colorimetric sensor Aptamer-based pathogen detection [11] Glass [11] 
Luminescence sensor Sensor spots for pH and oxygen control in cell culture [12•] 

Detection of protein biomarkers [13] 
Thermoplastic polymer [12•], 
3D-printed plastic [13] 

Raman sensor Analysis of cells [14]Analysis of molecules [15] 3D-printed plastic [14], 
PDMS [15] 

Fluorescence sensor Sensor spots for pH and oxygen control in cell 
culture [7,16]Glucose measurement [17]Antibody detection [18] 

3D-printed plastic [7,17], PDMS [16]Combination of 
3D-printed and non-3D-printed plastic [18] 

Reflectance 
measurement 

Aptamer-based biomarker detection [5•] 3D-printed plastic and PDMS [5•] 

ELISA Detection of immunoglobulin E [19] 3D-printed plastic [19] 
Microring resonator Detection of streptavidin [20] PDMS [20] 
Electrical/electrochemical sensors 
Resistive pulse sensor Characterizing algae and microplastic particles [21] 3D-printed plastic [21] 
Electrical current 
measurement 

Exosome detection [22] 3D-printed plastic [22] 

Microwave sensor Detection of metal ions in water [23] Blood glucose 
measurement [24]Determination of fluid mixtures [25] 

Low-temperature cofired ceramic [23]Metal [24,25] 

Ultrasound sensor Density measurement of fluids [26] PDMS [26] 
Impedance 
spectroscopy 

Evaluating basic tastes [2]Aptamer-based pathogen 
detection [27]Antibody and aptamer-based detection of GTS-
and CK-MB [6] 

PDMS [2,6]3D-printed plastic [22,27] 
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channels were closed using a cover foil and a suitable 
bonding method (e.g. double-sided adhesive tape). 
This approach produced sensor spots with a diameter of 
as low as 0.5 mm and a height of just 4 µm. Another 
advantage of these sensor spots is that the measure-
ment can be performed directly through the housing 
material (thermoplastic polymer), thereby reducing the 
risk of contamination — which is of course enormously 
important, especially in bioprocesses. 

Plasma bonding [30,35] has also been widely used for es-
tablishing a connection between the sensor and the mi-
crofluidic channel system. In this approach, the microfluidic 
components are treated with oxygen plasma, creating a 
highly reactive surface. This activated surface can then be 
bonded to the sensor unit, creating a stable and effective 
connection. To date, this approach has mainly been used 
within PDMS-based microfluidic systems. Another in-
tegration method when using PDMS microfluidics is to 
insert the sensor while casting the PDMS [39]. 

Heidt et al. [9] describe another method of sensor in-
tegration into microfluidic systems. In this case, a 
channel system is fabricated exhibiting open channels. 
To seal the system, a thermoplastic polyethylene ter-
ephthalate glycol (PETG) film is placed on the structure 
of the system in a vacuum former for a precise fit. This 
method is suitable for the fabrication of complex geo-
metries, and the resulting sensor system has been used 
for a colorimetric assay (drug detection) enabled by the 
excellent optical transmission of the film. 

A further interesting method for integrating sensors is 
based on the swelling of a hydrogel layer to create mi-
crotubes. In this process, platinum electrodes are de-
posited on a polyimide layer, which in turn sits on a 
hydrogel swelling layer. By soaking the substrate in a 
suitable solution, the hydrogel swells and expands. The 
polyimide layer attached to the hydrogel does not swell, 
resulting in curling of the layer. The result is a micro-
tube carrying a platinum electrode with a diameter of 

Figure 1  
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Overview of sensor integration methods recently described in the literature. (I) Liquid adhesive can be used as a bonding agent (utilized in Ref. [5•]), or 
alternatively, (II) adhesive tape can be employed (utilized in Refs. [4,12•,32,33••,34]). (III) Plasma bonding is often used with PDMS-based microfluidics 
(utilized in Refs. [30,35]). (IV) Moreover, thermoplastic foil (utilized in Ref. [9]) or (V) multilayer nanotubes (utilized in Ref. [36••]) can be used for sensor 
integration.   
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25 µm inside the channel. The fabricated tubes were 
stabilized by a suitable drying and fixing procedure, and 
the authors subsequently integrated the obtained tubes 
into a PDMS chip [36••]. 

Challenges and trends 
Combining and integrating sensors into microfluidic 
devices is rarely a simple process. A wide variety of 
parameters and criteria must be considered when se-
lecting the bonding process; if an adhesive is used, then 
compatibility with the materials of the microfluidic 
system and the sensor must be verified (e.g. UV-curing 
adhesives may be incompatible with sensors due to the 
required radiation) [5•]. But the compatibility of the 
solvents that are to flow in the channels must also be 
investigated and taken into account. An overview of the 
recent challenges and the trends to tackle these issues is 
given in Figure 2. 

One emerging method of sensor integration is the 
combined production of microfluidics and sensor sys-
tems. Inkjet printing technology, for example, can po-
tentially facilitate the production of paper-based 
microfluidics in a single step [40•]. Different inks are 
typically used for this purpose: one ink can contain the 

sensor material, while another ink can print a hydro-
phobic barrier, and thus create channels for a water- 
based sample [40•]. In addition to this 2D-printing 
technology, a similar approach can be used for 3D 
printing. Here, two or more different materials might be 
applied to fabricate a combined microfluidic sensor 
system within a single step. It was, for instance, de-
monstrated that the use of an electrically conducting and 
an insulating printing material enables flow cell fabri-
cation for electrochemical detection of target analytes 
(catechol, ferrocenemethanol) [41]. It is also possible to 
print a 3D microfluidic system directly onto a pre-
fabricated microarray [42], so that the sensor is also di-
rectly integrated during the creation of the microfluidic 
system. 

Challenges also extend to encompass the comparatively 
large periphery of required devices. Although micro-
fluidic devices can be manufactured in very small di-
mensions — thus offering researchers a substantial space 
advantage over conventional measuring systems — large 
and unwieldy devices are often used to monitor and read 
out the measured values [24]. This can undercut the 
space-saving advantage of using microfluidics in the first 
place, and because a large number of the sensor systems 

Figure 2  
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Overview of current challenges and emerging trends to overcome these limitations. (I) Combined 3D printing of microfluidics and sensors can be used 
to avoid the need for integration processes (utilized in Refs. [40•,41,42]). (II) Smartphones as analysis tools can help to cut the need for bulky analysis 
tools (utilized in Refs. [24,33••,43,44••]). (III) Wearable microfluidic devices for point-of-care diagnostics to replace stationary equipment (utilized in 
Refs. [24,45–48]). (IV) Application of DMF for single-droplet manipulation and analysis (utilized in Refs. [50•,51,52]). (V) Ooc device for the replication 
and simulation of tissues and organs in microfluidics (utilized in Refs. [6,16,53]). 
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described in the literature are intended for use in point- 
of-care diagnostic applications, this is not an insignificant 
problem. A common approach to address this issue is to 
use generally available devices (such as smartphones) to 
read out the sensors [33••,43,44••]. In general, two op-
tions are possible. The first method integrates the 
smartphone directly into the detection process and uses, 
for example, the built-in camera as an optical readout 
system, this is utilized by Xiao et al. [33••] for the de-
tection of β2-microglobulin via surface plasmon re-
sonance. By contrast, the second method utilizes a 
radiotransmitter that transmits the measured values to 
the smartphone, which then performs the analysis. This 
has been used to allow sweat analysis for ions such as 
sodium or potassium using an electrochemical sensing 
system [44••]. 

Such portable microfluidic applications [10,31] are 
proving to be increasingly important in the emerging 
field of microfluidic sensor research, since they can po-
tentially be used to monitor critical body parameters in 
sick patients or in modern fitness equipment. A fre-
quently used method is the analysis of perspiration [45] 
occurring on the skin. Common applications include the 
measurement of various anions such as sodium or po-
tassium [46] and the pH value. In addition, molecules 
such as lactate [47] or glucose [24,48] can also be mea-
sured. Indeed, a portable sensor that is even able to 
collect blood samples by means of microneedles has 
been described in the literature: this sensor device en-
abled the detection of relevant cancer biomarkers using 
a biochemical fluorescence reaction [49]. 

Another emerging trend in microfluidic sensor systems is 
the field of digital microfluidics (DMF). In DMF, elec-
trodes or magnetic particles are used to move fluids via 
electrowetting or magnetic interactions. This mitigates 
the need for pressure-driven control of the fluids, which 
facilitates the integration of various sensor systems that 
are otherwise difficult to combine with conventional 
systems. For example, antimicrobial susceptibility tests, 
immunoassays, or spectrometer-based protein quantifi-
cation by the bicinchoninic acid assay have been in-
tegrated into these DMF systems [50•,51,52]. Moreover, 
Kanitthamniyom et al. [50•] combined a DMF system 
with different 3D-printed manipulating/measuring 
modules. The system is modularly designed and allows 
for plugging in different modules with different func-
tions (mixing, particle extraction, and liquid dispensing) 
that enable manipulation or analysis of the fluids that are 
moved through the microfluidic device by magnetic 
force. Owing to this simple and adjustable design, it is 
easy to adapt the system to different experimental re-
quirements, and also the integration/exchange of dif-
ferent sensors is envisioned. 

Finally, the miniaturization of sensors has also become 
increasingly important in the field of organ-on-a-chip 
(OoC) systems. OoC systems allow organs to be re-
plicated on microfluidic chips — facilitating a variety of 
possibilities, such as the in vitro evaluation of virus in-
fection [53] or the investigation of physiologically re-
levant oxygen gradients [16]. Such devices also require 
miniaturized analytics. For this purpose, reusable elec-
trochemical affinity-based biosensors have been devel-
oped [6] to allow universal biomarker detection in the 
cell culture microenvironment. In particular, the detec-
tion of the biomarkers GTS-α and CK-MB has been 
shown. 

Conclusions 
Progress in the field of designing and assembling mi-
crofluidic sensor systems has been remarkable in recent 
years, and a large number of different sensor types has 
been successfully incorporated into such systems using a 
wide variety of integration strategies. Several develop-
ments in particular have tremendous potential for broad 
application in the future: the integration of 2D/3D 
printing techniques into the manufacturing process al-
lows fabricating sensors and surrounding housing in one 
step, avoiding the need for manual and potentially un-
reliable sensor integration. These techniques also permit 
researchers to adjust the microfluidic sensor systems to 
changing experimental requirements in a simple and 
straightforward manner. Recently, the development of 
wearable microfluidic- and smartphone-based sensors 
has become an emerging research field for potential 
widespread self- and point-of-care testing. 

Although most reported microfluidic sensor systems re-
main firmly in their initial development phase, and have 
not yet been commercialized (or even demonstrated 
success in real-world field applications), we nevertheless 
envision that the improvement of sensor integration and 
its reproducibility will lead to market-wide applications 
of such microfluidic-integrated sensing systems in the 
near future. 
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