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Abstract

Farmers in Africa have long adapted to climatic and other risks by diversifying their

farming activities. Using a multi-scale approach, we explore the relationship between

farming diversity and food security and the diversification potential of African agricul-

ture and its limits on the household and continental scale. On the household scale, we

use agricultural surveys from more than 28,000 households located in 18 African

countries. In a next step, we use the relationship between rainfall, rainfall variability,

and farming diversity to determine the available diversification options for farmers on

the continental scale. On the household scale, we show that households with greater

farming diversity are more successful in meeting their consumption needs, but only up

to a certain level of diversity per ha cropland and more often if food can be purchased

from off-farm income or income from farm sales. More diverse farming systems can

contribute to household food security; however, the relationship is influenced by

other factors, for example, the market orientation of a household, livestock owner-

ship, nonagricultural employment opportunities, and available land resources. On the

continental scale, the greatest opportunities for diversification of food crops, cash

crops, and livestock are located in areas with 500–1,000 mm annual rainfall and 17%–

22% rainfall variability. Forty-three percent of the African cropland lacks these oppor-

tunities at present which may hamper the ability of agricultural systems to respond to

climate change. While sustainable intensification practices that increase yields have

received most attention to date, our study suggests that a shift in the research and

policy paradigm toward agricultural diversification options may be necessary.
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1 | INTRODUCTION

Achieving global food security remains a key challenge for the

future, particularly given continued population increases, dietary

shifts, and global climate change. Attention has been largely focused

on agricultural intensification as a mechanism for producing more,

even though food insecurity in many places is largely an income and

distribution problem (Hazell & Wood, 2008). Also, there has been

much less research focusing on the contribution of farming diversity

toward achieving food security, despite evidence that more diverse

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium,

provided the original work is properly cited.

© 2018 The Authors Global Change Biology Published by John Wiley & Sons Ltd

Received: 18 December 2017 | Revised: 19 February 2018 | Accepted: 10 March 2018

DOI: 10.1111/gcb.14158

3390 | wileyonlinelibrary.com/journal/gcb Glob Change Biol. 2018;24:3390–3400.

http://orcid.org/0000-0002-8631-8639
http://orcid.org/0000-0002-8631-8639
http://orcid.org/0000-0002-8631-8639
http://creativecommons.org/licenses/by/4.0/
http://www.wileyonlinelibrary.com/journal/GCB
http://crossmark.crossref.org/dialog/?doi=10.1111%2Fgcb.14158&domain=pdf&date_stamp=2018-04-25


agroecosystems are likely to perform better today and under chang-

ing environmental conditions because a broader range of functions

and responses to change will stabilize the system (Altieri, 1999; Lin,

2011; Michler & Josephson, 2017).

Farmers in Africa have long adapted to climatic and other risks

by diversifying their farming activities (Ebi et al., 2011; Smith, 1990),

which may increase their ability to cope with change. This can hap-

pen by spreading the risk among different crop and livestock types

(Antwi-Agyei, Stringer, & Dougill, 2014; Below et al., 2012; Bryan

et al., 2013; Mary & Majule, 2009; Waha et al., 2013), income diver-

sification (Block & Webb, 2001) or by increasing the range of agri-

cultural products for markets or subsistence (McCord, Cox, Schmitt-

Harsh, & Evans, 2015). Selling own products is also very important

for overall food security outcomes for farmers in sub-Saharan Africa.

Purchased food accounts for a large proportion of household con-

sumed calories, for example, in Ethiopia one third to more than half

of all calories (Sibhatu & Qaim, 2017). Eighty-three percentage of

farm households in sub-Saharan Africa sell part of their crop pro-

duce, sometimes even before they produce enough to be self-suffi-

cient (Frelat et al., 2016). Also many African farmers own livestock

as an insurance during periods of drought (Kazianga & Udry, 2006).

One way of measuring agricultural diversity is to assess the crop and

farming diversity, that is, the number of crops grown and the num-

ber of overall farming activities including livestock husbandry.

The aim of this paper is to establish the relationship between

diversity and food availability for Africa both at continental and

household levels and to identify areas of low and high farming diver-

sity using basic climatology. For this, we are using information from

more than 28,000 agricultural household surveys and spatially expli-

cit data on crop and livestock production. Crop and farming diversity

are related to rainfall and rainfall variability (Bezabih & Sarr, 2012;

Bhatta, Aggarwal, Shrivastava, & Sproule, 2016; Rufino et al., 2013)

in that very low rainfall, very high rainfall variability, and high total

rainfall will limit agriculture. Thus, by using information on rainfall,

land cover and spatially explicit data on crop presence and livestock

production, we map the spatial distribution of farming diversity in

Africa to highlight areas with potentially limited options of switching

to an alternative farming activity under adverse climatic conditions.

Increased understanding of where diversification potentials are high

and where farmers are more or less likely to adapt to a changing cli-

mate can inform risk management strategies as part of a climate-

related risk assessment for the African continent.

2 | MATERIALS AND METHODS

2.1 | Climate data

Rainfall data were obtained from the WorldClim version 1.4 (release

3) dataset (Hijmans, Cameron, Parra, Jones, & Jarvis, 2005), which

contains monthly rainfall climatology from 1950 to 2000 for the

entire globe at a 30 arc second resolution (~1 km). The data have

been calculated as means of all rainfall observations from weather

stations from various sources interpolated to climate surfaces. The

rainfall data were aggregated to a 30 arc minute (~50 km) resolution.

Rainfall variability, measured as the coefficient of variation (CV) of

annual rainfall for the same period, was estimated using the weather

generator MarkSim (Jones & Thornton, 1999, 2013). The coefficient

of variation is a measure of relative variability, that is, the variation

in rainfall does not depend on total rainfall and is useful because we

are comparing locations in different climate zones.

The rainfall data were classified into 41 equal intervals ranging

from 0 to 3,000 mm rainfall in 100 mm steps, where the leftmost

interval corresponds to class one, the next leftmost to class two and

so on, and the intervals are closed on the right and open on the left

(e.g., class 700–800 mm does include values larger than 700 mm

and equal to or lower than 800 mm). Similarly, rainfall variability data

were classified into 32 equal intervals ranging from 10% to 90% CV

of rainfall in 2.5% steps.

2.2 | Land cover

Land cover from GLC2000 (Fritz et al., 2003) and MODIS (Friedl

et al., 2010; MCD12Q1 Collection 5) land cover products were used

and their land cover classes simplified as shown in Table S2. The

MODIS land cover product was generated using an ensemble super-

vised classification algorithm and training data from 1,860 sites

across the World’s land areas. GLC2000 is a harmonized land cover

product from 19 World regions based on imagery from the SPOT-4

VEGETATION instrument. The GLC2000 was generated at a 1 km

spatial resolution for the reference year 2000, while the MODIS land

cover product for 2001 is available at a 500 m resolution. Both data

sets were aggregated to a 30 arc minute resolution.

2.3 | Crop area and livestock production data for
continental analysis

Crop area for 23 crops and crop groups was obtained from M3-Crop

(Monfreda, Ramankutty, & Foley, 2008) for 1998–2002 and Map-

SPAM 2000 (version 3.0.6/2012; You et al., 2013) for 1999–2001

on a 5 arc minute resolution and aggregated to 30 arc minutes. M3-

Crop reports harvested area from 175 crops and 11 crop groups as

fractions of the grid cell area. Map-SPAM 2000 reports harvested

and physical area from 20 crops.

The following 16 crop types were used for the analysis: barley,

bean, cassava, cocoa, coffee, cotton, groundnut, maize, millet, potato,

rice, sorghum, soybean, sugar beet, sugarcane, and wheat (cocoa is

only included in M3-Crop). In addition, seven groups of crops were

used: banana & plantain, other fibers, other fruits, other pulses, other

oil crops, sweet potato & yam, vegetables & melons (other fruits and

vegetables & melons are only included in M3-Crop, Table S1). In

MapSPAM 2000, the groups fibers, oil crops, and pulses are defined

as fibers: flax fiber & tow, hemp fiber & tow, kapok fiber, jute, jute-

like fibers, ramie, sisal, agave fibers nes (not elsewhere specified),

abaca manila hemp, fiber crops nes, oil crops: coconut, oil palm fruit,

olives, karite nuts (sheanuts), castor beans, sunflower, rapeseed, tung

nuts, safflower seed, sesame, mustard seed, poppy seed, oilseeds nes
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(not elsewhere specified) and pulses: dry broad beans, dry peas,

chickpea, cowpeas, pigeon peas, lentils, bambara beans, vetches,

lupins, and pulses nes (not elsewhere specified). In M3-Crop, the

group fibers also contain coir and kapok seed, the group oil crops

also contain hempseed, linseed, and melon seed.

We use data on livestock productivity (kg/km2) for two livestock

products (meat, milk) and three types of animals (bovine, sheep and

goats) as reported in Herrero et al. (2013). The data are for the year

2000, were converted to livestock production (kg), and then aggre-

gated to a 30 arc minute resolution.

The harvested area fractions reported in the M3-Crop data set

were transformed to total area in hectares by multiplying with grid cell

area. The livestock productivity data were converted to livestock pro-

duction in kilogram. We excluded grid cells with more than 10% area

equipped for irrigation (Siebert, Henrich, Frenken, & Burke, 2013)

from the analysis to focus on rainfed agriculture solely. Areas of land

cover classes, crop areas, and livestock production of all African land

cells including Madagascar were summed up per rainfall class.

2.4 | Measures of food security and farming
diversity for household-level analyses

We calculate food availability for 28,361 households across Africa

(Table 1) by dividing the food energy potentially available by the

energy requirements of a household following the approach of Frelat

et al. (2016). Available energy is calculated from on-farm produce

and food purchases using off-farm income and sales of farm prod-

ucts. A food availability value higher than one means that the farm

household can generate enough energy with their activities to feed

the family while a value of less than one means that the farm house-

hold is likely to be food insecure. Although a simple indicator of food

security, it has been shown to be well related to other indicators of

food security status and diet diversity across systems in Africa (Ham-

mond et al., 2017). We also calculate an alternative measure of food

security—food self-sufficiency for which we exclude food bought

from off-farm income and sold farm produce. In addition to the six

household surveys originally used in Frelat et al. (2016), we added

10,195 households from the World Bank Living Standards Measure-

ment Study—Integrated Surveys on Agriculture (LSMS ISA), country

programs for Ethiopia, Tanzania, Niger, and Uganda (World Bank,

2014). Four households were removed as outliers with food self-suf-

ficiency ratios exceeding the standard deviation more than 10 times.

Farming diversity is the number of crops grown and the number

of overall farming activities including livestock husbandry in a given

year, irrespective of the economic importance of each activity. We

calculate the overall farming diversity per household and the farming

diversity per ha cropland and later discuss differences in these two

measures. The individual crop and livestock types distinguished in

each survey are different, reflecting the farming systems studied, but

broad categories, for example, large and small ruminants, nonrumi-

nants, cash crops, and food crops, are covered equally well. Crop

area information in the surveys considers that a household might

own more than one plot or field but would usually only refer to the

primary crop or land use. Hence, farming diversity needs to be

understood as diversity across different plots or fields within 1 year

not necessarily within. Further, farming diversity as defined here is

different to agrobiodiversity in that we do not consider species that

support food production indirectly, for example, soil organisms bene-

ficial for soil fertility or insects, bacteria and fungi that control insect

pests and diseases of plants and animals (Thrupp, 2000).

3 | RESULTS

3.1 | Are more diverse farming systems more food
secure?

We find that food availability on the household scale increases with

farming diversity, irrespective of land size, livestock ownership, and

off-farm income, but only up to a certain level of diversity. The med-

ian food availability in the four farming diversity classes shown in

Figure 1a increases, and there is strong evidence that the medians

differ. This observation is based on the nonoverlapping 95% confi-

dence interval around the medians of the four classes with different

farming diversity approximated as median � 1.57 9 IQR/n0.5. The

median and 95% confidence intervals for farming diversity in Fig-

ure 1a are low diversity (1.22, 1.11–1.32), medium diversity (1.59,

1.53–1.66), high diversity (2.19, 2.11–2.28), and highest diversity

(2.42, 2.29–2.53). Also the Kruskal–Wallis rank sum test indicates

that the differences between some of the medians are statistically

significant.

TABLE 1 Household surveys used in this study

Dataset Countries (ISO code)
No. of
Households

No. of
Geo-referenced sites Year(s) Reference

FR16 BDI, BFA, COD, ETH, GHA, KEN,

MLI, MWI, MOZ, NER, NGA, RWA,

SEN, TZA, UGA, ZMB, ZWE

18,166 94 2006–2012 Frelat et al. (2016)

LSMS-ISA NER 2,272 214 2014 Niger National Institute of Statistics (2014)

TZA 2,567 26 2010/2011 Tanzania National Bureau of Statistics (2011)

ETH 2,654 296 2015/2016 Central Statistical Agency of Ethiopia (2015)

LSMS-ISA UGA 2,702 123 2010/2011 Uganda Bureau of Statistics (2010), Wichern,

Van Wijk, and Descheemaeker (2017)
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F IGURE 1 Farming diversity influences food security. Farming diversity is calculated by counting the number of crops grown and the
number of livestock products shown as total count (a) and divided by cropland (b, d). Food availability as one dimension of food security is
calculated as a ratio of energy available (sum of on-farm consumption of food crops, food purchased using money earned through on-farm,
off-farm activities) and energy requirements of a household. While (a) shows the basic relationship between diversity and food availability, the
other three plots show the relationship while also controlling for size of cropland (b), livestock ownership (c) and income from farm sales and
off-farm activities (d). Please note that farm sizes can be very small, below 1 ha, so a maximum crop diversity of >30 can also relate to 10
crops grown on 0.3 ha. Boxplot widths are drawn proportional to the square roots of the number of households in each group. The red
dashed line distinguishes households that meet their energy requirements (>1) from those that don’t (<1). Outliers beyond the extremes of the
whiskers (median � 1.5 9 IQR) are not shown. Please see the boxplot statistics in Table S3
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Seventy-five percentage of the households with high or highest

farming diversity (>6 species) are able to meet their consumption

needs, in contrast to only 55% of the households with low diversity

(1–3 species; Figure 1a). The food secure households with high or

highest farming diversity own on average two livestock units (e.g.,

two cows and three goats or sheep) and grow six different crops in

contrast to the food secure households with low diversity that own

only 0.1 livestock units (e.g., one goat or sheep) and grow only two

different crops. This means that households with higher farming

diversity tend to be more successful in meeting their consumption

needs than households with lower diversity.

One reason for this is that the more diverse households also tend

to own more cropland (see Benin, Smale, Pender, Gebremedhin, &

Ehui, 2004; Makate, Wang, Makate, & Mango, 2016 and Figure S11),

allowing them to grow a wider variety of crops which influences the

overall farming diversity measure used here. Sixty percentage of all

households studied own up to 2.2 ha, 80% own up to 5.5 ha. Adjust-

ing for this effect, by calculating farming diversity per ha cropland,

yields similar results with the exception of households with more than

seven different crop and animal types per ha cropland (Figure 1b).

Food availability scores differ between countries but with similar rela-

tionships between food availability and farming diversity (Figure S12).

Also using an alternative measure of food security—food self-

sufficiency for which we excluded food bought from off-farm

income and sold farm produce showed a similar relationship to farm-

ing diversity (Figure 1d). We control for off-farm income and sold

farm produce because it has been shown to increase household

income which can influence food (e.g., Frelat et al., 2016; Sibhatu &

Qaim, 2017) and farming diversity (McCord et al., 2015; Wenc�elius,

Thomas, Barbillon, & Garine, 2016). Indeed, when excluding food

bought from off-farm income and sold farm produce, only 12%–27%

of households are food secure. Households with a farming diversity

of 2–3 per ha cropland have highest food self-sufficiency scores but

without the additional income from farm sales only 29% of house-

holds in this group are food secure (compared with 74% when off-

farm income and farm sales are included).

Also using an alternative measure of diversity, crop diversity for

which we exclude livestock husbandry from the analysis shows an

upward trend in food availability with increasing diversity and then a

decline from 3 to 4 crops per hectare (Figure 1c). Thus, diversifying

farming activities by growing more crops and engaging in a wider vari-

ety of farming activities can be a form of risk management or general

livelihood strategy for a majority of households. In some situations,

diversification using different crops may be more likely attributable to

the benefits of rotating crops on the same area of land using the same

amount of input (Barrett, Reardon, & Webb, 2001; Bationo & Ntare,

2000) than to risk management, given that yields are often correlated.

3.2 | Diversification potential on the continental
scale

In a next step, we explore the diversity of African farming systems

on the continental scale using basic climatology. The spatial

distribution of plants and animals globally is influenced by climate

(Thomas, 2010; Woodward & Williams, 1987), and we are using

these relationships here. Using two land cover products (Friedl et al.,

2010; Fritz et al., 2003), we find that cultivated land is most likely to

be located in areas with annual rainfall of 600–700 mm, which con-

trasts sharply with trees (>900 mm) and grassland and shrubs (300–

400 mm; Figures 2a and S1; Table S2). The land cover class “culti-

vated land” comprises many different land uses, including a large

number of individual crops that are grown and a variety of animals

that are kept for meat, milk, draught, and insurance. Thus, we inves-

tigated the number of crops and livestock groups present over a gra-

dient of annual rainfall using two different data sets reporting

harvested areas of 23 crops (Monfreda et al., 2008; You et al.,

2013) and meat and milk production from two animal groups (Her-

rero et al., 2013). Different crops and livestock are most likely to be

present under different rainfall conditions, and these can be identi-

fied by the distribution of their area and production across rainfall

gradients (Figures 2b, S2–S9). More specifically, we are interested in

the peaks of the distributions in Figure 2b, as they represent the

rainfall zone in which agricultural activity is highest. We then use

the peaks to identify areas of overall high and low diversity. Many

crops are most frequently grown at annual rainfall between 500 mm

and 1,000 mm, while the peaks are lower for crops like wheat,

pulses, forage, and sorghum/millet and higher for rice (Table S4, Fig-

ures S2 and S4). When testing the alternative data set reporting crop

area, the peaks are identical or differ by only 100 mm in both data

sets for all crops and crop groups except for soybean, potato, sugar

beet and fiber crops. Livestock production generally peaks at annual

rainfall of 600–700 mm (Figure 2b).

Several key observations can be made from the distributions in

Figure 2. The constraints to agriculture at low rainfall are clear

enough, but at high rainfall, few field crops tolerate prolonged

water-logging, which affects nutrient and water uptake, and land

cover shifts increasingly to forest (Figure 2a). In addition, conditions

of high rainfall and uniform warm temperatures are highly conducive

to the development of many crop diseases (Anderson et al., 2004;

Pautasso, D€oring, Garbelotto, Pellis, & Jeger, 2012), which is part of

the reason why crop losses due to disease in tropical humid regions

may be double those in temperate regions (Ploetz, 1963). For several

crops, more than one peak exists in at least one of the two crop

area data sets (Table S4), probably as a result of genetically highly

plastic crop types and/or grouping crops together with different

moisture requirements or input levels.

A second constraint to agriculture is rainfall variability. Here, we

define rainfall variability as the coefficient of variation (CV in %), which

is statistically related to annual rainfall (Conrad, 1941). Rainfall vari-

ability decreases with increasing annual rainfall up to 1,500 mm after

which this relationship disappears. Conrad (1941) first described this

hyperbolic curve (Figure S10). Rainfall variability is a measure of the

likelihood of extreme rainfall (drought and glut) and thus is closely

related with crop failure. The majority of crops are most likely to be

grown in areas with a rainfall CV of between 17% and 22% (Table S4,

Figure 3). Some crops are outside this interval, for example, oil crops
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are most likely to be grown in areas with a rainfall CV of 15%; wheat

is most likely to be grown at a CV of 27%. Livestock production peaks

occur at similar CV as for the crop area.

These analyses indicate that the vast majority of rainfed agricul-

tural activity takes places in rainfall zones between 500 and

1,000 mm with a mean of 747 mm and with rainfall variability

between 17% and 22%. This is the high diversity window with 43%

of cropland and 25% of pastures located in this interval.

For example, households in the Southern Nations, Nationalities,

and Peoples’ region in Ethiopia with annual rainfall of 720 mm and

rainfall CV of 22% grow on average eight crops a year, more than

households in the Kaffrine region in Senegal and the Walungu terri-

tory in D.R. Congo that grow on average two and five crop species,

respectively, and are located in rainfall zones with lower or higher

rainfall variability (Figure 3). Crop diversity has a significant positive

effect on food self-sufficiency (Figure 1c), a key relationship under-

pinning the overall food availability, which is reflected in the farming

diversity relation shown in Figure 1a. Therefore, farms with more

diverse cropping systems are, in general, better able to feed them-

selves from their own produce.

Spatially, farming diversity differs. Farming diversity is high in

major agricultural areas of humid West Africa, and Ethiopia, Rwanda,

Burundi and Uganda in East Africa (Figure 4a). We think of these

areas as the ones with high diversification potentials, in that farmers

have more choices what to grow and can more easily diversify their

farming activities and, thus, are at lower risk to suffer negative

impacts of future climate change. The potential for diversification by

switching to a different crop or between crop and livestock farming

in such areas with a CV between 17% and 22% is higher than in

areas with lower or higher rainfall variability. An exception to the

high farming diversity in West Africa is the cropping region along

the Atlantic coast with high rainfall above 1,500 mm (Figure 4c), but

which are unlikely to experience a shortage of rainfall in the future.

In contrast, cropping areas in East Africa south of Ethiopia, South

Africa, the Sahel, and the Mediterranean coast of Morocco and Alge-

ria are characterized by low farming diversity (Figure 4b). In these

areas, already today rainfall limits agriculture and diversification

potentials are low. Farmers in such area are less likely to diversify

their farming activities by incorporating alternative crops or live-

stock. However, there are other means of adaptation such as

F IGURE 2 Rainfall constraints land cover and land use. Relationship between annual rainfall and MODIS land cover (a) and between annual
rainfall and harvested area of rainfed tropical cereals, tropical roots and maize as in M3-Crop and production of bovine meat and bovine milk
(b). “Rf. cultivated land” is “Rainfed cultivated land.” The x-axes show lower bounds of rainfall classes of 100 mm width. See supplementary
materials for all crops and livestock products and for a comparison between M3-Crop and MapSPAM2000 crop areas and between MODIS
and GLC2000 land cover
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adjusting to changing growing conditions by growing an earlier

maturing crop cultivar. In semi-arid environments with high rainfall

variability, farmers might adjust by specializing to a few drought-tol-

erant crop and livestock.

Future changes in rainfall and rainfall variability are difficult to

project, but there is some evidence for a likely intensification of

droughts in the 21st century in some seasons and areas in East and

southern Africa (Funk et al., 2008), which can negatively impact

cropping and livestock husbandry. In Eastern Africa, extreme precipi-

tation changes such as droughts and heavy rainfall were experienced

more frequently during the last 30–60 years (Williams & Funk,

2011), but the future direction of rainfall change is uncertain.

4 | DISCUSSION

Our analyses have demonstrated that diversification will have an

essential role to play in ensuring food security and stabilizing food

production in Africa where possible. Our empirical analyses showed

clear relations between farming diversity and food security, and a

linkage to nutritional diversity also been demonstrated previously

(e.g., Jones, Shrinivas, & Bezner-Kerr, 2014), but there are mixed

conclusions on how market orientation influences the relationship

(Sibhatu, Krishna, & Qaim, 2015). This suggests the need of incen-

tives to promote diversification, while intensifying production sys-

tems. Certification schemes, niche product markets, price and credit

incentives could help promote the cultivation of nutrient-rich,

diverse foods in these environments.

At continental level, we can show where households are more

or less likely to be able to adapt to changes in climate and climate

variability (all other things being equal), because of their ability (or

lack of ability) to make changes in crop and livestock types and to

switch between them. While many other factors influence crop-

ping and livestock production decisions, and there are other

options for adaptation, we are able to demonstrate that rainfall

and rainfall variability have explanatory power in relation to the

current distribution of crop and livestock production in Africa.

These simple, but robust relationships provide opportunities to

rapidly assess feasible diversification options for different regions,

thus offering a valuable input into policy and investment formula-

tion. It was not possible to confirm the relationship between rain-

fall, rainfall variability, and farming diversity on the household

scale. Some surveys assign GPS coordinates to larger sample units

or clusters of households or only report the name of the respec-

tive district or province, partly to prevent identification of individ-

ual households and communities but also because GPS coordinate

were not recorded during the time of the interview. This makes it

difficult to combine household survey information with other spa-

tial variables like rainfall or soil quality. However, there are meth-

ods for protecting confidential information and at the same time

releasing useful spatially referenced household data (Perez-Hey-

drich, Warren, Burget, & Emch, 2013).

F IGURE 3 Rainfall zones with highest
agricultural activity. Codes are BAP,
Banana/Plantain; BEA, Beans; BME, Bovine
meat; BMI, Bovine milk; COC, Cocoa; COF,
Coffee; COT, Cotton; FIB, Fibers; FOR,
Forage; FRU, Fruits; GRO, Groundnut;
MAI, Maize; OIL, Other Oil Crops; POS,
Potato/Sugarbeet; PUL, Other Pulses; RIC,
Rice; SME, Sheep & goat meat; SMI, Sheep
& goat milk; SOR, Sorghum/Millet; SOY,
Soybean; SUG, Sugarcane; SYC,
Sweetpotato/Yam/Cassava; VEG,
Vegetables/Melons; WHE, Wheat/Barley;
DRC, D.R. Congo, Walungu territory; ETH,
Ethiopia, Southern Nations, Nationalities,
and Peoples’ region; SEN, Senegal, Kaffrine
region
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While rainfall is a strong driver and rainfall variability is a good

measure for identifying areas with high diversification potential, it is

not the only factor determining crop choice and livestock production

under current and future climate. Households might still be limited

in their ability to diversify because of unfavorable soils, labor, input,

and land constraints or because of their remote location without

access to extension services that provide support for new crops or

crop management techniques. It is estimated that about 64 Mha of

African cropland (33% of total cropland) is of marginal quality (Cai,

Zhang, & Wang, 2011) and 45 Mha of African land area is affected

by nutrient depletion (1.5% of total land area and 23% of total crop-

land; Bai, Dent, Olsson, & Schaepman, 2008). This land, however,

can often still be used for grazing animals and, therefore, contribute

to farming diversity. Adjustments in farming practices will also

require access to inputs and markets and an economic incentive for

producing a certain crop or livestock product. Animal trypanosomia-

sis is prevalent in West and Central Africa and greatly affects live-

stock distributions (Meyer, Holt, Selby, & Guitian, 2016). Further

multiple institutional, social, political, and economic barriers to adap-

tation in African agriculture will need to be removed. Crop and

farming diversification need to be understood as part of overall

livelihood diversification strategies (Mortimore & Adams, 2001;

Newsham & Thomas, 2011), but this study clearly shows its

importance for the current and future food security of smallholder

farmers.

We found that diversification has a positive effect on food secu-

rity, and although this is based on explorative results, the limits to

diversification are at around 3–4 crops per ha cropland, or 4–7 crop

and animal types per ha cropland. The limits to crop diversification

are likely related to plants competing for light, water, and nutrients

(Donald, 1963) in small fields with plant densities above optimum

which affects growth and biomass production. When additional

income from off-farm employment and farm sales is not available,

the most food secure households have only half of that farming

diversity on average, highlighting again the importance of market

access and employment options outside agriculture. However, it can-

not be assumed that creating nonfarming employment opportunities

will have uniform benefits or are uniformly desirable, for example,

for the very poor or for enterprises operated by necessity (Block &

Webb, 2001; Nagler & Naud�e, 2017). Solutions for increasing food

security need to consider both the agriculture and nonagricultural

sectors, and we, here, focused on the relevance of farming diversity

for achieving food security.

The needed adjustments in farming practices have significant pol-

icy and investment implications. Apart from requiring support from

extension services, access to inputs and markets, and an economic

incentive for producing a certain crop or livestock product, there is a

need to shift the policy and research funding space so that it accom-

modates explicitly investments in diversification as well as improve-

ments in the varieties of major staples that are more resilient to a

changing climate. The Consortium of International Agricultural

Research (CGIAR) allocated more than half of its crop-specific

resources to just two crops in 2012, rice and maize and more than

75% of its resources to five crops (Khoury & Jarvis, 2014). This shift

will require acknowledgement that “different” can be an equally

important solution as producing “more of the same.” Diversification

will also have an essential role to play in ensuring nutritional security

and tackling the problems of hidden hunger through micro-nutrient

deficiencies (Sibhatu et al., 2015) that will continue to affect increas-

ing human population in Africa. Crop and farming diversification

strategies need to be understood as a critical component of farmers’

adaptation to a changing climate.
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