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1. Introduction

Process-based crop growth models are frequently used to simulate
climate change impacts on agricultural crops in sub-Saharan Africa
and many studies can be found in the literature for either the whole re-
gion (Jones and Thornton, 2003; Liu et al., 2008; Thornton et al., 2011;
Folberth et al., 2012) or for individual African countries (Adejuwon,
2006; Thornton et al., 2009; Laux et al., 2010). These models compute
important biophysical and biochemical processes, like photosynthesis,
respiration and transpiration or the dynamics of carbon and water at
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the leaf-level (Tubiello and Ewert, 2002; Bondeau et al., 2007) and are
therefore able to simulate the effect of increasing temperatures, chang-
ing precipitation and elevated atmospheric CO2 concentrations on crop
development and yields. Climate projections from general circulation
models (GCMs) on air temperature, precipitation and annual atmo-
spheric CO2 concentrations are typically used as input for thesemodels.

For sub-Saharan Africa GCM projections agree well in the level of av-
erage temperature increases between 3 to 4 K in the 2090s compared to
the 1990s in the A1b projections, with deviations between seasons and
regions (Christensen et al., 2007). The likelihood that the summer aver-
age temperature will exceed the current highest summer temperature
on record is greater than 90% in West and East Africa in the 2050s and
in nearly all parts of sub-Saharan Africa in the 2090s (Battisti and
Naylor, 2009). In contrast GCM projections of changes in precipitation
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are more diverse and agreement on the direction of change is high only
for eastern and southern Africa. Changes in precipitation in the Sahel
and along the Guinean Coast are highly uncertain. Rainfall is likely to in-
crease over eastern Africa and likely to decrease in southern Africa during
winter and in western parts of southern Africa (Christensen et al., 2007).
Analysing an ensemble of 14GCMprojections and three emission scenar-
ios shows that the length of the growing season in the 2090s will be re-
duced by 5 to 20% relative to current conditions in most parts of Africa
and by more than 20% in the Sahel and southern Africa (Thornton et al.,
2011). As a result arid areas with a growing season length of less than
120 days are likely to expand by 5–8% in the 2080s for two emission sce-
narios (B2, A2) (Fischer et al., 2002). Additionally an increase in the num-
ber of extremelywet seasons inWest Africa and East Africa by 20% and an
increase of extremely dry seasons by 20% in southern Africa combined
with an increase in the rainfall intensity is expected (Christensen et al.,
2007).

Temperature and precipitation changes might limit crop growth and
development to a different extent depending on the current growing
conditions and the magnitude of climate change. Published studies
either analyze the combined effect of precipitation and temperature
changes on crops in a climate change impact study or highlight only
the importance of one climate variable for crops. To our knowledge
there is only one study separating the effects of temperature and precip-
itation on crop yields in Africa. In this statistical analysis for individual
countries in sub-Saharan Africa Schlenker and Lobell (2010) show that
impacts on aggregated crop yields due to temperature changes are
much stronger (−38% to +12%) than impacts due to precipitation
changes (−3% to +3%) for five different crops. Consequently they
doubt that shifts in the distribution of growing season rainfall will out-
weigh temperature effects on yield. This is contradictory to findings
from studies on the effect of rainfall variability on crops which highlight
the importance of variable wet season starts and the occurrence of dry
spells for crop yields (Barron et al., 2003; Sultan et al., 2005). Dry spells
in the flowering phase at two semi-arid locations in East Africa are esti-
mated to reduce potential maize yields by 15–75% depending on the
soil water-holding capacity (Barron et al., 2003). Long periods of drought
in low-rainfall years have already seriously affected Africa's agriculture
and economy in the past (Sivakumar et al., 2005) andwill remain a dan-
ger in water-limited environments. A recent survey among crop model-
ing experts suggests that in a crop model which investigates crop
response to climate variability, precipitation variation has the greatest
influence on crop yields (Rivington and Koo, 2011).

We test the hypothesis that both, changes in temperature andprecip-
itation will have an important influence on crop yields in sub-Saharan
Africa depending on the location, the current climatic conditions and
the projected climate change. To analyze the effects of precipitation
and temperature changes separately and in combination is important
for understanding and modeling climate change impacts on agriculture.
We also investigate the effects of changing precipitation variability on
crop yields by varying the mean daily precipitation, the total wet season
precipitation and the number of small and large precipitation events in
our simulations. On the one hand this analysis helps to identify the lim-
iting factors for agricultural production in different environments and
prioritize adaptation strategies to climate change. The success of breed-
ing programs and farmers in selecting drought- or heat-tolerant crop
cultivarswill depend on their knowledge about changing growing condi-
tions and the severity of different types of abiotic stresses. On the other
hand it enhances the understanding of temperature and water stress
effects in the vegetation model in order to identify future research and
model development needs. Comparing the separated effects of changing
temperature and precipitation with the combined effect will also reveal
if a combination of drought and heat stress would have an even more
significant effect on maize yields as known from several studies with
maize, sorghum, barley and various grasses (Barnabas et al., 2008). We
choose maize (Zea mays L.) as an example crop as it is the most impor-
tant food crop in sub-Saharan Africa in terms of harvested area.
2. Materials and methods

2.1. Climate data

The study area comprises all land area in Africa from 40° N to 40° S
and from 20° W to 60° E. Daily precipitation data for the baseline cli-
mate 1991–2000, b-1995 hereafter, were taken from the WATCH Forc-
ing Data (WFD) (Weedon et al., 2011). This data set combines monthly
precipitation totals from the Global Precipitation Climatology Center
(GPCCv4) (Rudolf et al., 2005; Schneider et al., 2008; Fuchs, 2009) and
reanalysis data on day to day variability from the European Centre for
Medium-Range Weather Forecasts database (ERA — 40) (Dee et al.,
2011). Monthly mean air temperature and monthly cloudiness for the
baseline climate b-1995were taken from the Climate Research Unit da-
tabase (CRU TS 3.0 1961–2005) (Mitchell and Jones, 2005).

Projections on daily precipitation, monthly mean air temperatures
and monthly cloudiness for two future time periods were taken from
nine GCMs for the A1b emission scenario from the World Climate Re-
search Programme's (WCRP's) Coupled Model Intercomparison Project
phase 3 (CMIP3) multi-model dataset (Meehl et al., 2007). We choose
these GCMs with available and complete data on daily precipitation,
air temperature and cloudiness (see Appendix A) and the emission sce-
nario projecting global warming of 2.8 K which is in the middle of the
projections (1.8 K in SRES B1 and 3.4 K in SRES A2). The two projection
periods are p-2060, represented by climate data in 2056–2065, and
p-2085, represented by the time period 2081–2090.

For combining current and future climate into one time series,
monthly temperature and cloudiness anomalies from each GCM were
calculated for each year and month relative to current monthly climate
data fields constructed from CRU TS 3.0 1961–2005 data after interpo-
lating data to a resolution of 0.5° × 0.5° and smoothing using a
30-year running mean (as described for CRU TS 3.1 in Heinke et al.,
2012, p.3534). For temperatures, the anomalies were simply added
and for cloudiness the relative changeswere applied (for further details
see Gerten et al., 2011). Future daily precipitation is generated from
GCM projections according to climate experiments described below in
order to study the effect of changes in the wet season length and wet
season precipitation separately.

Daily mean temperatures in the baseline and projection periods are
obtained by linear interpolation between meanmonthly temperatures.
Increasing atmospheric CO2 concentrations can increase plant produc-
tivity if managed accordingly (Ainsworth and Long, 2005; Long et al.,
2006). Given agriculturalmanagement deficiencies in sub-SaharanAfri-
ca, and to avoidmixing the effects of changing temperature and precip-
itation with possible effects of CO2 fertilization on crop yields we here
assume no effective CO2 fertilization by keeping the atmospheric CO2

concentrations constant at 370 ppm in our simulations.

2.2. Climate experiments

Generating synthetic climate experiments from GCM projections al-
lows for analyzing the effects of changes in the wet season length and
the wet season precipitation both separately and in combination with
temperature changes in each grid cell. We are therefore able to test the
sensitivity of the crop model to each agroclimatic variable separately.

In a first step, we calculate the relative change in the length and the
precipitation amount of the wet season in p-2060 and in p-2085 com-
pared to b-1995 for each grid cell from daily precipitation data of nine
GCMs. The onset of the wet season is defined following Dodd and
Jolliffe (2001) as a period of six consecutive days with at least 25 mm
rainfall in which the start day and at least two other days are wet and
no dry period of ten or more days occurs in the following 40 days. Ac-
cordingly, the wet season ends if there is no precipitation for ten con-
secutive days. In a second step we identify the GCM projecting the
largest relative change in the length and total precipitation of the wet
season for each grid cell after removing the outliers that deviate from



                                                  
the mean by more than two standard deviations to avoid extreme
changes (see Appendix B). This procedure leads to rather negative pre-
cipitation projections for each grid cell, neglecting the large range of
precipitation projections among the GCMs, but ensuring a reasonable
level of changes in accordance with at least one GCM. These changes
inwet season characteristics are applied to the daily precipitation series
of the baseline climate (Fig. 1) both separately and in combinationwith
corresponding temperature changes studying the effect of:

(1) changes in the precipitation during the wet season only (Cp),
(2) changes in the length of the wet season only (Cl),
(3) changes in the monthly mean temperatures only (Ct), and
(4) changes in all three agroclimatic variables (Cplt) on crop yields.

If the length of the wet season decreases, experiment Cl is realized
by distributing the precipitation sum of the removed days equally to
the remaining rain days in order to avoid altering the precipitation
amount in the wet season. Consequently, the number of rain days de-
creases and themean rainfall per rain day as well as the risk of extreme
rainfall events increases. In contrast, mean rainfall per rain day de-
creases in experiment Cp, which reduces the risk of extreme rainfall
events. The mean rainfall per rain day in experiment Cplt depends on
the magnitude of both changes and on the precipitation amounts at
the end of the wet season. The length of dry spells within the (short-
ened) wet season is not changed in any of these experiments, only the
number of rain days and the number of small and large precipitation
events (Fig. B-1 in Appendix B).

For the two future time periods in experiments Cp and Cl, monthly
mean temperatures and cloudiness are kept constant over time with the
baseline climate and are changing according to GCMprojections in exper-
iments Ct and Cplt. Temperature and cloudiness datawere chosen in each
grid cell from the GCM that was selected for precipitation projections in
this grid cell. In total four climate experiments (three experiments for
separated effects, one for combined effect) per grid cell are conducted.

2.3. Modelling the impact on agricultural vegetation

The impact of changing precipitation patterns and temperature in-
creases on agricultural vegetation in sub-SaharanAfrica can be simulated
with the global process-based vegetation and agricultural model LPJmL
(Sitch et al., 2003; Gerten et al., 2004; Bondeau et al., 2007). LPJmL is
Fig. 1. Precipitation in the wet season (mm), length of the wet season (days) and annual me
peratures. White areas are regions with a bimodal rainfall regime (eastern Africa) or deser
designed to simulate biophysical and biogeochemical processes as well
as productivity and yield of the most important crops at daily time
steps on global scale. The model is able to simulate maize and wheat
yields globally (Fader et al., 2010) as well as crop yields of the major
food crops in Africa (Waha et al., 2013). Water stress influences leaf
growth (Bondeau et al., 2007) and root growth (Waha et al., 2013),
which both affect the amount of harvestable biomass. Modifications of
leaf and root growth are based on awater stress factor (WSF [0,1]) calcu-
lated for each day and accumulated for all dayswithwater stress for root
growth. WSF is calculated from the ratio of daily water supply, i.e. plant
water uptake from the soil, and daily atmospheric water demand, i.e. po-
tential evapotranspiration (Sitch et al., 2003). Temperatures below or
above crop-specific optimal temperatures for photosynthesis (21–26 °C
for maize) reduce the photosynthesis rate (Haxeltine and Prentice,
1996), and increasing temperatures accelerate plant development and
therefore lead to lower grain yields.

The start of the growing period in all time steps is determined by
the start of the rainy season from daily precipitation in b-1995 as de-
scribed above (section “Climate data”). The length of the growing pe-
riod is represented individually for each crop by the phenological
heat units (PHUs) required to reach maturity. They are calculated
from a multiple linear regression model between PHUs and climatic
variables in each grid cell for each crop separately (Waha et al.,
2013). For maize this relationship is rather weak but PHUs are in a
reasonable range between 1880°Cd and 3640°Cd. Sowing dates and
PHUs for maize are calculated once for climate conditions in the base-
line climate and are kept constant over time. We do not allow for ad-
aptation of sowing dates or crop cultivar in order to clearly separate
the climate effects from possible adaptation measures. For the same
reason only rainfed, single cropping systems are simulated as irriga-
tion or growing a second crop if the growing season is long enough
would influence crop yields considerably. The management intensity
in a grid cell influences the attainable crop yield and is described by
three parameters: the maximal attainable leaf area index, the maxi-
mal harvest index and a parameter scaling leaf-level biomass to
field level as described in Fader et al. (2010). The management inten-
sities per country were chosen to match observed production levels
of FAO in the 5-year period 1999–2003.

For this study,maize yieldswere calculated by forcing LPJmLwith the
four climate experiments described above. The change in yield for each
an temperature (°C) in b-1995 as calculated from daily precipitation and monthly tem-
t areas (southern Africa) where no main wet season could be identified.



                                                  
grid cell and the two projection periods compared to the baseline period
is calculated as a result of changes in mean annual temperature only
(ΔYICt), wet season precipitation only (ΔYICp), wet season length only
(ΔYICl) and in all three agroclimatic variables (ΔYICplt) (see Appendix C).
The methodology and expected results are summarized in Fig. 2.

2.4. Statistical analysis

We show results on the grid cell level and later also discuss differ-
ences between groups of grid cells with similar crop yield changes. We
group the grid cells according to changes inmaize yields due to the com-
bined effects of temperature and precipitation changes in p-2060, apply-
ing hierarchical cluster analysis with the Ward's minimum variance
method as a criterion for building clusters with the R function hclust
(Murtagh, 1985). The distance between 1-dimensional clusters is calcu-
lated as the Euclidean distance. Each cluster can be described by the
future crop yield changes, the initial climatic conditions in the baseline
climate and the separated and combined effects of changes in tempera-
ture, the length and the precipitation amount of the wet season.

3. Results

We focus on results for grid cells with unimodal rainfall distributions,
and if at least 0.1% of the grid cell area is used for maize production. We
show changes inmean annual temperature, length of thewet season and
precipitation during the wet season used as input data for the global dy-
namic vegetation model and impacts of these changes on maize yield in
p-2060 and p-2085 relative to the baseline period b-1995. As crop yield
changes are simulated using stylized climate scenarios for each grid cell,
results are shown and discussed on the grid cell level and cannot be
aggregated to country or regional level.
Fig. 2. Graphical abstract of the most relevant data
3.1. Changes in temperature, wet season length andwet season precipitation

GCM-projected daily precipitation data was analyzed with regard
to the largest changes in the wet season precipitation and wet
season length per grid cell after removing the outliers. The GCMs
GFDL-CM2.1, GFDL-CM2.0 and CNRM-CM3 project the largest changes
in the length and precipitation amount of the wet season in many
parts of SSA, therefore the stylized climate experiments in almost half
of the grid cells are based on climate change projections from one of
these models. In the second half climate data from the remaining six
GCMs is used in equal parts as input for the crop model. Most parts of
sub-Saharan Africa experience decreases in both precipitation variables
of up to 20% in both projection periods (Fig. 3). The wet season length
and wet season precipitation decrease most severely in parts of the
Sahel, southern Africa and central Africa. The spatial patterns of changes
in the wet season precipitation and length of the wet season are very
similar in most parts. However, in some regions the precipitation
amount in the wet season decreases more than the length of the wet
season, e.g. in West and East Africa between 5°N and 18°N. In contrast,
the length of the wet season decreases more than the wet season pre-
cipitation in parts of Tanzania, northernMozambique, Ethiopia or Ango-
la. In 2–6% of all grid cells (depending on the projection period) thewet
season length andwet season precipitation increase. Annualmean tem-
peratures increase by 2–3 K in p-2060 and by 4–5 K in p-2085 whereas
the increase is strongest in southern Africa and in the Sahel (Fig. 3).
3.2. Impacts on agricultural vegetation in sub-Saharan Africa

Temperature increases lead to crop yield reductions in the
maize-growing regions of sub-Saharan Africa of 3–20% in p-2060, except
for mountainous regions in South and East Africa and parts of western
, processes and expected results in this study.
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Fig. 3. Change in important agroclimatic variables according to GCM projections in p-2060 (top) and p-2085 (bottom) compared to b-1995 (from left to right): wet season precip-
itation, wet season length and annual mean temperature. The largest changes in the length and precipitation amount of the wet season per grid cell after removing the outliers and
the corresponding temperatures are shown. Dark violet colors in the leftmost and middle panel indicate a reduction of 50% or more. White areas are regions with a bimodal rainfall
regime (eastern Africa) or desert areas (southern Africa) where no main wet season could be identified.

                                                  
Africa (Fig. 4). In most regions maize yields are lower in p-2085 than in
p-2060. The effect of reduced precipitation onmaize yields is even stron-
ger in southern Africa, southern parts of Mozambique and Zambia, the
Sahel and parts of eastern Africa, with yield reductions of up to 30% or
even more. The effect of reduced precipitation in these regions clearly
prevails over the effect of increased temperatures in p-2060 and
p-2085. In all other parts, e.g. in Central and western Africa south of
13° N, the effect of increasing temperature is limiting because of very
slight yield changes due to changes in wet season precipitation of −3%
to +3%. In the mountainous regions of eastern and southern Africa,
increasing temperatures lead to strong relative increases in maize pro-
ductivity, making reduced precipitation the only limiting effect. The re-
ductions in maize yields of 30% or more in southern Africa result from
very different precipitation decreases of 50% and more in southern
Mozambique and Zimbabwe, but only 10–20% in South Africa (Fig. 3).
A shortening of the rainy season while conserving total wet season
precipitation amounts (Cl) does not affect maize yield negatively in
most regions but partly leads to increasing crop yields. Maize yields in
central Africa with an already long rainy season (>200 days) are not
affected negatively by a shortened wet season at all.

4. Discussion

4.1. Understanding crop yield changes

The crop yield changes presented in Fig. 4 result from stylized climate
experiments with rather large changes in the wet season precipitation
and the wet season length and show the climate change effect on
maize yields in each grid cell. They differ a lot between regions reflecting
the differences in initial climate conditions and the corresponding crop's
growing conditions aswell as themagnitude of climate change. A cluster
analysis allows for identifying groups of grid cells with similar crop yield
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Fig. 4. Changes in rainfed maize yield calculated with LPJmL in p-2060 (top) and p-2085 (bottom), due to (from left to right) increasing annual mean temperature (Ct), shortened
wet season (Cl), reduced wet season precipitation (Cp), and the combined effect from all three (Cplt). White areas in sub-Saharan Africa are excluded because the maize area is
smaller than 0.1% of the grid cell area.

                                                  
changes and for understanding the reasons for changes in crop yield
under climate change. Fig. 5 shows these cluster groups and their initial
climatic conditions in the baseline climate. The cluster groups differ in
their future crop yield changes with boundaries at −33%, −10% and
+6% (Fig. 6).

Grid cells attributed to group A are located in the Sahel, in southern
Africa and in parts of eastern Africa. In this group strong negative effects
on maize yields arise from climate change with crop yield decreases of
at least 33% (Fig. 6). Mean annual temperature in the baseline climate
is mostly above 28 °C, the wet season length is typically below
120 days and the wet season precipitation is often below 500 mm
(Fig. 5, right side). High mean annual temperatures in the baseline
climate and temperature increases of 2–3 K until 2060 indicate an in-
creasing risk of extreme daily temperatures in group A. However,
according to our results a reduction in the wet season precipitation
causes a stronger decrease in crop yields than increasing temperatures
in nearly all grid cells assigned to this group (Fig. 6).

In group B and group Cmoderate to slight negative effects result from
climate change with maize yield changes between −33% to −10% and
−10% to +6%, respectively (Fig. 6). Group C extends over parts of
western Africa south of 13° N and of Central and East Africa. This group
is characterized by high annual mean temperature (24–28 °C) and suffi-
cient amounts of precipitation in the wet season (>750 mm). In most
grid cells of group B or C the growing season is long and wet enough
for the cultivation of maize in a single cropping system so that even con-
siderable changes in the length of the wet season have little effect on
yields. For the same reason the effect of a reduced wet season precipita-
tion is less strong than the effect of increasing temperatures (Fig. 6).
Temperature increase is slightly stronger in parts of southern Africa for
group B (Fig. 3) leading to a stronger temperature effect on maize yields
than in group C. A shorter wet season (Cl) only has a marginal effect on
maize yields in group B andC as the growing conditions are not necessar-
ily affected if the crop reachesmaturity before the end of thewet season.

Group D is the smallest group and is characterised by positive effects
of climate change on maize yields. Maize yield increases by at least 6%
(Fig. 6) because increasing temperatures are favourable in an environ-
ment with an annual mean temperature between 13 °C and 15 °C and
a long wet season (Fig. 5, right side). As also the mean rainfall per rain
day is increased in the Cl experiment with a shortened wet season,
the growing conditions improve leading to increasing maize yields in
some regions.

In groups A to C with large to slight reductions in maize yields, the
main limiting effect in each grid cell also determines the direction of
yield change if all three effects are combined and negative effects
from increasing temperature and changing precipitation exacerbate
each other (Fig. 4 for e.g. Zimbabwe, southern Mali or Burkina Faso).
In group D, in contrast the combined effect of changing temperatures
and precipitation is positive following mostly from the beneficial effect
of increasing temperatures.

Even slight to moderate yield changes might seriously endanger
local food security if food production is already low or crop productivity
is instable. The maize yields in all four groups range between 0.65 t/ha
and 2.6 t/ha (Q5–Q95) and are evenly distributed over the groups
therefore similar yield changes will have a very different effect on
local food security. This becomes evident when comparing yield
changeswith an indicator of food security like the number of people un-
dernourished in a country (FAO, 2011). Most parts of e.g. the Central
African Republic belong to group C with only slight yield changes but

image of Fig.�4


Fig. 5. Distribution and characteristics of four groups resulting from hierarchical cluster analyses of yield changes in p-2060 (Fig. 4, panel top right). White areas in sub-Saharan
Africa are excluded because the maize area is smaller than 0.1% of the grid cell area. The stacked bar plots on the right side show the probability that grid cells within a group belong
to a certain temperature class, wet season length class and wet season precipitation class. Labels at the x-axis are the lower class limits.

                                                  
here 40% of the population was undernourished in 2006–2008 making
the country much more vulnerable to yield reductions compared to
Ugandawithmost parts of the country belonging to groupBwith higher
yield decreases but less people undernourished today (22%).
Fig. 6. Crop yield changes in p-2060 from the combined and separated effects of chang-
ing temperature (Ct), wet season precipitation (Cp) and wet season length (Cl) in
groups shown in Fig. 5. Extreme data points that deviate from the borders of the box
(Q25–Q75) by more than 1.5 times the interquartile range are not shown.
4.2. Uncertainty in GCM projections of precipitation

Although GCM projections agree on the level of median temperature
increase, they project very different precipitation patterns in various re-
gions of sub-SaharanAfrica due to a large variety ofmodel setting caused
by the models' resolution and model physics, affecting e.g. the occur-
rence of convection or the vertical transport of moisture in the tropics
(Lin, 2007). This influences the distribution of wet and dry days and
the precipitation amount per wet day simulated in each GCM and in
turn the severity of water stress in the growing season. There is some
consistency between GCMs with respect to the projected increase of an-
nual precipitation amount in East Africa and a drying in southern Africa.
A consistent increase in the number of extremely wet seasons in West
Africa and East Africa by 20% and an increase of extremely dry seasons
by 20% in southernAfrica combinedwith an increase in the rainfall inten-
sity are also expected (Christensen et al., 2007). Most of the GCMs pro-
ject excessive precipitation over much of the tropics and, associated
with that, insufficient precipitation over much of the Equatorial Pacific
(Lin, 2007). This double-ITCZ (Inter-Tropical Convergence Zone) prob-
lem together with another common bias of GCMs, the too strong persis-
tence of tropical precipitation (Lin et al., 2006), might lead to poor
representation of tropical precipitation patterns in some GCMs. An im-
portant element of tropical intra-seasonal variability and thus weather
and climate forecasting between 15° N and 15° S, the Madden–Julian
oscillation, is simulated nearly realistic from ECHAM5/MPI-OM and
CNRM-CM3 (Lin et al., 2006). These models were chosen for our study
as well and provide the climate input data in 26% of all grid cells in the
studied region.
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4.3. Limitations of modeling stress on crop growth and development

The global dynamic vegetation model LPJmL considers the effects of
water stress on crop growth and development and temperature effects
on the photosynthesis rate and length of the growing period (as
described in the section “Modelling the impact on agricultural
vegetation”). Results from previous studies on heat stress effects on
crop yields in sub-Saharan Africa indicate that the Sahel and southeast-
ern Africa are most affected by heat stress (Teixeira et al., 2013) and
that maize yields are negatively affected in areas with an annual mean
temperature above 25 °C because daily temperatures commonly exceed
30 °C. A yield loss of 10% per 1 °C of warming is possible in these regions
(Lobell et al., 2011). These results agree well with the large yield reduc-
tions of at least 33% in grid cells in the Sahel and parts of southern Africa
assigned to group A with an annual mean temperature above 28 °C and
temperature increases of 2–3 °C in p-2060. It is however not clear to
what extent maize yield is reduced because of shortened development
phases, leading to reduced light interception in an accelerated life cycle
and because of limited photosynthesis. This study does not consider sev-
eral damaging effects of heat and water stress; on the other hand, the
plants' ability to develop heat and desiccation tolerance is also omitted.
This will be an important challenge of future research also with respect
to projected changes in the occurrence of extreme events (Shongwe et
al., 2009; Diffenbaugh and Scherer, 2011; Shongwe et al., 2011). The
study of Barnabas et al. (2008) gives an overview of these damaging ef-
fects which are also important for the growth and development of ce-
reals but not considered in the model. Among the most important
effects are oxidative damage, modifications in membrane functions, de-
naturation of existing proteins, reductions in pollen germination ability
due to high temperatures (>30 °C) and the delay or even depression
of flowering due to limited water supply. For maize, daily temperatures
above 33.5 °C and 38 °C were shown to reduce the kernel growth rate
and the pollen germination ability, respectively (Barnabas et al., 2008).

The beneficial effect of elevated CO2 concentrations on plant growth
and above-ground biomass can be computed with LPJmL. This effect is
not considered in the study, as its effectiveness, especially in nutrient-
limited production systems that are coming in sub-Saharan Africa, is
questionable without large additional nitrogen inputs (Long et al.,
2006). The risk of crop damage due to increased temperature or water
stress does not only depend on the magnitude of temperature and pre-
cipitation changes but also on the vulnerability of a region to these
changes determined by current climatic conditions and farmer's man-
agement strategies for adaptation such as choosing an adapted sowing
date or cropping system (Tingem et al., 2008; Laux et al., 2010). Selecting
heat-resistant crop varieties is another adaptation option helping to re-
duce negative climate change impacts considerably e.g. in Mali, Butt et
al. (2005) showed that heat-resistant maize varieties simulated with
EPIC are less affected from climate change i.e. yields are reduced by
8.6% compared to a reduction of 11.2% without adaptation for a
HadCM3 climate scenario. Applying water-harvesting techniques (Rost
et al., 2009) and increasing rainwater productivity through conservation
farming strategies (Rockströmet al., 2009)might also lower the negative
climate change impacts on crop yields considerably and are sometimes
very cost-effective at the same time (Ebi et al., 2011). Future research
on the effectiveness of various adaptive management strategies will
therefore be important.

5. Summary and conclusions

We show that the importance of the agro-climatic variables temper-
ature, wet season precipitation and wet season length for maize yields,
varies in space depending on the initial climate limitations and themag-
nitude of climate change. Crop yields change considerably in regions
with unsuitable or extreme growing conditions where even slight cli-
mate change results in strong relative effects on crop yields and in re-
gions which are exposed to strong temperature and precipitation
changes. The regions most vulnerable to temperature increases are
southernAfrica and parts of East andWest Africawith annualmean tem-
peratures of 18–24 °C which are exposed to annual temperature in-
creases of 2–3 K leading to maize yield decreases of more than 20%.
Parts of South Africa, Zimbabwe, Mozambique and the Sahel with higher
annual mean temperatures above 28 °C are exposed to extreme daily
temperatures but the temperature effect in themodel is similar to the ef-
fect in regions with cooler temperature. This indicates that in the model
increasing temperatures only affect the crop by shortening the growing
season and limiting photosynthesis but that damage from extreme
daily temperatures above 30 °C is largely underestimated in the model.
The same regions are even more affected by precipitation changes as
they have short (b120 days) and dry (b500 mm) growing seasons and
reduced wet season precipitation leads to maize yield reductions of
30% or more. In the mountainous regions of South Africa and East Africa
temperature increases are beneficial for maize growth and lead to in-
creasing crop yields of at least 6%. These findings should be considered
in drought and heat stress breeding programs and in studies on adapta-
tion to climate change impacts. With climate change both, temperature
and precipitation will change but determining the limiting effect helps
to prioritize future research needs and to identify adequate crop varieties
and adaptation options in different environments.

Themodel is sensitive to all three agro-climatic variableswet season
length,wet season precipitation and temperature but reductions of crop
yieldsmostly arise from changes in temperature andwet season precip-
itation. A shortened wet season with conserved total precipitation
amounts does not affect maize growth in most parts of sub-Saharan Af-
rica as maize is simulated to grow at the beginning of the wet season
and mostly reaches maturity before the end of the wet season. Only in
small parts of southern Africa and the Sahel with a wet season length
not exceeding 100 days, maize yields are reduced because of a short-
ened wet season. The effect of a reduced wet season length would be
much stronger in multiple cropping regions where the second crop is
at higher risk to be influenced negatively from a shorter wet season.
However, African farmers like many farmers in developing countries
tend to be risk averse and might not take the risk of exposing them-
selves to a chance of yield loss in the second half of the growing period.
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Appendix A. Global circulation models used in this study

Table A-1

Global circulation models used in this study (Randall et al., 2007).

Model name Research group(s) Country Available
reporting
periods

CGCM3.1(T47) Canadian Centre for Climate
Modelling and Analysis

Canada 2046–2065,
2081–2100

CNRM-CM3 Météo-France / Centre National
de Recherches Météorologiques

France 2046–2065,
2081–2100

CSIRO-Mk3.0 Commonwealth Scientific and
Industrial Research Organisation,
Atmospheric Research

Australia 2046–2065,
2081–2100

ECHAM5/MPI-OM Max Planck Institute for
Meteorology

Germany 2046–2065,
2081–2100

GFDL-CM2.0 U.S. Department of Commerce /
National Oceanic and
Atmospheric
Administration / Geophysical
Fluid Dynamics Laboratory

USA 2046–2065,
2081–2100

GFDL-CM2.1 2046–2065,
2081–2100

IPSL-CM4 Institut Pierre Simon Laplace France 2046–2065,
2081–2100

MRI-CGCM2.3.2 Meteorological Research Institute Japan 2046–2065,
2081–2100

PCM National Center for Atmospheric
Research

USA 2046–2065,
2080–2099

Fig. B-1. Daily precipitation changes in p-2060 for an example cell (Gambia: Lat = 13° 25
(WFD) and projected changes in total precipitation and length of the wet season from nine G
bined), Cp (Changed precipitation), and Cl (Changed length).
The Coupled Model Intercomparison Project phase 3 (CMIP3)
multi-model dataset contains more than these GCMs. For this study
eight GCMs were excluded because the data was not complete and
one GCM was excluded because data on the precipitation amount in
the wet season deviates from the mean by more than three standard
deviations.

Appendix B. Method of generating stylized precipitation scenarios

Identifying the largest change in wet season characteristics

We first calculate the largest relative changes in total precipitation
and length of the wet season in combination for each grid cell after ex-
cluding all outliers that deviate from the mean by more than two stan-
dard deviations to avoid overly emphasizing on extremes. We do this
for the two time periods p-2060 and p-2085 separately as follows:

min
Pi;t−Pi;1995

Pi;1995
þ Li;t−Li;1995

Li;1995

!
∀ i ¼ 1;…;9

with n = 9, where Pi,t and Li,t are the precipitation in the wet season
and length of the wet season, respectively at time t and for GCM i,
Pi,1995 and Li,1995 the precipitation in the wet season and length of the
wet season in b-1995 and for GCM i.

We then assign the individual relative changes in both variables to
the baseline climate of the WATCH Forcing Data (WFD) to obtain the
daily precipitation for the climate experiments Cp, Cl and Cplt described
′ N, Lon = 16° 75′ W). Top: Daily precipitation in b-1995 from WATCH Forcing Data
CMs. Bottom: Daily precipitation in p-2060 in the three climate experiments Cplt (com-

image of Fig. B-1


                                                   
in the methods section. Fig. B-1 shows an example for changes in daily
precipitation in p-2060 for the GCM ECHAM5.

Overestimation of precipitation changes

It is assumed that assigning relative changes from GCM data to
WATCH Forcing Data (WFD) as a common baseline climate is an ade-
quate procedure, as this data lies within the range of baseline climates
from all GCMs (Fig. B-2). However, the Kolmogorov–Smirnov test on
the equality of distributions indicates that the total precipitation and
the length of the wet season in b-1995 calculated from GCMs and
fromWFD differ significantly (p b 0.001) (Fig. B-2). Therefore, changes
in p-2060 and p-2085 in total precipitation and length of thewet season
may be overestimated if GCMs significantly underestimate actual values
(Füssel, 2003).

The test statistic of the Kolmogorov–Smirnov test D gives an indica-
tion of the direction and strength of these differences. D is themaximum
vertical deviation between two cumulative distribution functions, i.e. for
the comparison between WFD and the GCM ECHAM5 with D = 0.11,
the precipitation amount in the wet season is below ~1800 mm in
Fig. B-2. Distribution function (top) and cumulative distribution function (bottom) of the le
the baseline climate calculated from the WATCH Forcing Data (WFD) and from nine GCMs
~98% of all grid cells in the GCM but only in ~87% of all grid cells in
WFD (Fig. B-2, bottom panel right). ECHAM5 therefore significantly un-
derestimates the precipitation amount in the wet season, just like three
other GCMs in which D ranges from 0.08 to 0.33. Furthermore, seven
out of nine GCMs always significantly underestimate the length of the
wet season (Fig. B-2, bottom panel left, curves above WFD curve), with
D ranging from 0.18 to 0.36. However, the quality of agreement to
WFD varies regionally for all GCMs, e.g. the GCMGFDL-CM2.1 underesti-
mates the precipitation amount in the wet season lower than 1000 mm
but overestimates precipitation amounts between 1000 mm and
2000 mm (Fig. B-2, panel top right).

However, we assume that the risk to extremely under- or
overestimate the wet season length and wet season precipitation in
the future is reduced by removing GCMs as outliers if they deviate
from the mean by more than two standard deviations.

Appendix C.Method for calculating crop yield and crop yield changes

The combined (ΔYICplt) and separated effects of temperature,
length of rainy season and total precipitation in the rainy season
ngth of the wet season (left) and the precipitation amount in the wet season (right) in
.

image of Fig. B-2


                                                   
(ΔYICt, ΔYICl and ΔYICp) on crop yield in each grid cell for two time pe-
riods are calculated as follows:

ΔYICplt ¼
YI Pt ; Lt ; T t½ �−YI P95; L95; T95½ �

YI P95; L95; T95½ �
ΔYICp ¼ YI Pt ; L95; T95½ �−YI P95; L95; T95½ �

YI P95; L95; T95½ �
ΔYICl ¼

YI P95; Lt ; T95½ �−YI P95; L95; T95½ �
YI P95; L95; T95½ �

ΔYICt ¼
YI P95; L95; T t½ �−YI P95; L95; T95½ �

YI P95; L95; T95½ �

where YI[P95,L95,T95] is themaize yield under precipitation (total precip-
itation in rainy season and length of rainy season) and temperature con-
ditions kept constant at b-1995 level; YI[Pt,Lt,Tt] the maize yield if the
precipitation (total precipitation in rainy season and length of rainy sea-
son) and temperature conditions change over time (t is the 10-year
period p-2060 or p-2085); YI[Pt,L95,T95], YI[P95,Lt,T95], YI[P95,L95,Tt]
are the maize yields under changed total precipitation in the rainy sea-
son, changed length of the rainy season and increased temperature,
respectively.

References

Adejuwon, J.O., 2006. Food crop production in Nigeria. II. Potential effects of climate
change. Climate Research 32, 229–245.

Ainsworth, E.A., Long, S.P., 2005. What have we learned from 15 years of free-air CO2

enrichment (FACE)? A meta-analytic review of the responses of photosynthesis,
canopy properties and plant production to rising CO2. New Phytologist 165,
351–372.

Barnabas, B., Jäger, K., Feher, A., 2008. The effect of drought and heat stress on repro-
ductive processes in cereals. Plant, Cell & Environment 31, 11–38.

Barron, J., Rockström, J., Gichuki, F., Hatibu, N., 2003. Dry spell analysis and maize yields
for two semi-arid locations in East Africa. Agricultural and Forest Meteorology 117,
23–37.

Battisti, D.S., Naylor, R.L., 2009. Historical warnings of future food insecurity with un-
precedented seasonal heat. Science 323, 240–244.

Bondeau, A., Smith, P.C., Zaehle, S., Schaphoff, S., Lucht, W., Cramer, W., Gerten, D.,
Lotze-Campen, H., Müller, C., Reichstein, M., Smith, B., 2007. Modelling the role
of agriculture for the 20th century global terrestrial carbon balance. Global Change
Biology 13, 679–706.

Butt, T., McCarl, B., Angerer, J., Dyke, P., Stuth, J., 2005. The economic and food security
implications of climate change in Mali. Climatic Change 68, 355–378.

Christensen, J.H., Hewitson, B., Busuioc, A., Chen, A., Gao, X., Held, I., Jones, R., Kolli, R.K.,
Kwon, W.-T., Laprise, R., Magaña Rueda, V., Mearns, L., Menéndez, C.G., Räisänen, J.,
Rinke, A., Sarr, A., Whetton, P., 2007. Regional climate projections. In: Solomon, S.,
et al. (Ed.), Climate Change 2007: The Physical Science Basis. Contribution of
Working Group I to the Fourth Assessment Report of the Intergovernmental
Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom
and New York, NY, USA, pp. 849–940.

Dee, D.P., Uppala, S.M., Simmons, A.J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U.,
Balmaseda, M.A., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A.C.M., van de Berg, L.,
Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer, A.J., Haimberger, L.,
Healy, S.B., Hersbach, H., Hólm, E.V., Isaksen, L., Kållberg, P., Köhler, M., Matricardi, M.,
McNally, A.P., Monge-Sanz, B.M., Morcrette, J.J., Park, B.K., Peubey, C., de Rosnay, P.,
Tavolato, C., Thépaut, J.N., Vitart, F., 2011. The ERA-Interim reanalysis: configuration
and performance of the data assimilation system. Quarterly Journal of the Royal Meteo-
rological Society 137, 553–597.

Diffenbaugh, N.S., Scherer, M., 2011. Observational and model evidence of global emer-
gence of permanent, unprecedented heat in the 20th and 21st centuries. Climatic
Change 107, 615–624.

Dodd, D.E.S., Jolliffe, I.T., 2001. Early detection of the start of the wet season in semiarid
tropical climates of western Africa. International Journal of Climatology 21, 1251–1262.

Ebi, K., Padgham, J., Doumbia, M., Kergna, A., Smith, J., Butt, T., McCarl, B., 2011. Small-
holders adaptation to climate change in Mali. Climatic Change 108, 423–436.

Fader, M., Rost, S., Müller, C., Bondeau, A., Gerten, D., 2010. Virtual water content of
temperate cereals and maize: present and potential future patterns. Journal of
Hydrology 384, 218–231.

FAO, 2011. The State of Food Insecurity in the World 2011. How Does International
Price Volatility Affect Domestic Economies and Food Security? FAO, Rome.

Fischer, G., Shad, M., van Velthuizen, H., 2002. Climate Change and Agricultural Vulnerabil-
ity. IIASA, Vienna.

Folberth, C., Gaiser, T., Abbaspour, K.C., Schulin, R., Yang, H., 2012. Regionalization of a
large-scale crop growth model for sub-Saharan Africa: model setup, evaluation, and
estimation of maize yields. Agriculture, Ecosystems & Environment 151, 21–33.

Fuchs, T., 2009. GPCC annual report for year 2008. Development of the GPCC Data Base
and Analysis Products.Deutscher Wetterdienst, Offenbach am Main.

Füssel, H.-M., 2003. Impacts analysis for inverse integrated assessments of climate
change. Thesis, Universität Potsdam, Potsdam.
Gerten, D., Schaphoff, S., Haberlandt, U., Lucht, W., Sitch, S., 2004. Terrestrial vegetation
and water balance — hydrological evaluation of a dynamic global vegetation
model. Journal of Hydrology 286, 249–270.

Gerten, D., Heinke, J., Hoff, H., Biemans, H., Fader, M., Waha, K., 2011. Global water
availability and requirements for future food production. Journal of Hydrometeorology
12, 885–899.

Haxeltine, A., Prentice, I.C., 1996. BIOME3: an equilibrium terrestrial biosphere model
based on ecophysiological constraints, resource availability, and competition
among plant functional types. Global Biogeochemical Cycles 10, 693–709.

Heinke, J., Ostberg, S., Schaphoff, S., Frieler, K., Müller, C., Gerten, D., Meinshausen, M.,
Lucht, W., 2012. A new dataset for systematic assessments of climate change im-
pacts as a function of global warming. Geoscientific Model Development Discus-
sions 5, 3533–3572.

Jones, P.G., Thornton, P.K., 2003. The potential impacts of climate change on maize pro-
duction in Africa and Latin America in 2055. Global Environmental Change 13, 51–59.

Laux, P., Jäckel, G., Tingem, R.M., Kunstmann, H., 2010. Impact of climate change on ag-
ricultural productivity under rainfed conditions in Cameroon. A method to im-
prove attainable crop yields by planting date adaptations. Agricultural and Forest
Meteorology 150, 1258–1271.

Lin, J.-L., 2007. The double-ITCZ problem in IPCC AR4 coupled GCMs: ocean atmosphere
feedback analysis. Journal of Climate 20, 4497–4525.

Lin, J.-L., Kiladis, G.N., Mapes, B.E., Weickmann, K.M., Sperber, K.R., Lin, W., Wheeler,
M.C., Schubert, S.D., Del Genio, A., Donner, L.J., Emori, S., Gueremy, J.-F.,
Hourdin, F., Rasch, P.J., Roeckner, E., Scinocca, J.F., 2006. Tropical intraseasonal
variability in 14 IPCC AR4 climate models. Part I: convective signals. Journal
of Climate 19, 2665–2690.

Liu, J., Fritz, S., van Wesenbeeck, C.F.A., Fuchs, M., You, L., Obersteiner, M., Yang, H.,
2008. A spatially explicit assessment of current and future hotspots of hunger in
Sub-Sahara Africa in the context of global change. Global and Planetary Change
64, 222–235.

Lobell, D.B., Bänziger, M., Magorokosho, C., Vivek, B., 2011. Nonlinear heat effects on Af-
rican maize as evidenced by historical yield trials. Nature Climate Change 1, 42–45.

Long, S.P., Ainsworth, Elizabeth A., Andrew, D.B., Leakey, Josef Nösberger, Ort, D.R.,
2006. Food for thought: lower-than-expected crop yield stimulation with rising
CO2 concentrations. Science 312, 1918–1921.

Meehl, G.A., Covey, C., Delworth, T., Latif, M., McAvaney, B., Mitchell, J.F.B., Stouffer, R.J.,
Taylor, K.E., 2007. The WCRP CMIP3 multi-model dataset: a new era in climate
change research. Bulletin of the American Meteorological Society 88, 1383–1394.

Mitchell, T.D., Jones, P.D., 2005. An improved method of constructing a database of
monthly climate observations and associated high-resolution grids. International
Journal of Climatology 25, 693–712.

Murtagh, F., 1985. Multidimensional clustering algorithms. COMPSTAT Lectures, 4
(Würzburg).

Randall, D.A., Wood, R.A., Bony, S., Colman, R., Fichefet, T., Fyfe, J., Kattsov, V., Pitman, A.,
Shukla, J., Srinivasan, J., Stouffer, R.J., Sumi, A., Taylor, K.E., 2007. Climate models
and their evaluation. In: Solomon, S., Qin, D., Manning, M., et al. (Eds.), Climate
Change 2007: The Physical Science Basis. Contribution of Working Group I to the
Fourth Assessment Report of the Intergovernmental Panel on Climate Change.
Cambridge University Press, pp. 589–662.

Rivington, M., Koo, J., 2011. Report on the meta-analysis of crop modelling for climate
change and food security survey. Climate Change, Agriculture and Food Security
Challenge Program, Frederiksberg.

Rockström, J., Kaumbutho, P., Mwalley, J., Temesgen, M., Mawenya, L., Mutuba, J.,
Damgaard-Larsen, S., 2009. Conservation farming strategies in east and southern
Africa: yields and rain water productivity from on-farm action research. Soil and
Tillage Research 103, 23–32.

Rost, S., Gerten, D., Hoff, H., Lucht, W., Falkenmark, M., Rockström, J., 2009. Global poten-
tial to increase crop production through water management in rainfed agriculture.
Environmental Research Letters 4, 044002 (pp. 9).

Rudolf, B., Schneider, U., Rudolf, B., Schneider, U., 2005. Calculation of gridded precipitation
for the global land-surface using in-situ gauge observations. Deutscher Wetterdienst,
Offenbach am Main.

Schlenker, W., Lobell, D.B., 2010. Robust negative impacts of climate change on African
agriculture. Environmental Research Letters 5, 014010 (8 pp.).

Schneider, U., Fuchs, T., Meyer-Christoffer, A., Rudolf, B., 2008. Global precipitation
analysis products of the GPCC. Deutscher Wetterdienst, Offenbach am Main.

Shongwe, M.E., van Oldenborgh, G.J., van den Hurk, B.J.J.M., de Boer, B., Coelho, C.A.S., van
Aalst, M.K., 2009. Projected changes in mean and extreme precipitation in Africa
under global warming. Part I: southern Africa. Journal of Climate 22, 3819–3837.

Shongwe, M.E., van Oldenborgh, G.J., van den Hurk, B., van Aalst, M., 2011. Projected
changes in mean and extreme precipitation in Africa under global warming. Part
II: East Africa. Journal of Climate 24, 3718–3733.

Sitch, S., Smith, B., Prentice, I.C., Arneth, A., Bondeau, A., Cramer, W., Kaplan, J.O., Levis,
S., Lucht, W., Sykes, M.T., Thonicke, K., Venevsky, S., 2003. Evaluation of ecosystem
dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global
vegetation model. Global Change Biology 9, 161–185.

Sivakumar, M.V.K., Das, H.P., Brunini, O., 2005. Impacts of present and future climate
variability and change on agriculture and forestry in the arid and semi-arid tropics.
In: Salinger, J., et al. (Ed.), Increasing Climate Variability and Change. Springer,
Netherlands, pp. 31–72.

Sultan, B., Baron, C., Dingkuhn, M., Sarr, B., Janicot, S., 2005. Agricultural impacts of
large-scale variability of the West African monsoon. Agricultural and Forest Mete-
orology 128, 93–110.

Teixeira, E.I., Fischer, G., van Velthuizen, H., Walter, C., Ewert, F., 2013. Global hot-spots
of heat stress on agricultural crops due to climate change. Agricultural and Forest
Meteorology 170, 206–215.



                                                   
Thornton, P.K., Jones, P.G., Alagarswamy, G., Andresen, J., 2009. Spatial variation of crop
yield response to climate change in East Africa. Global Environmental Change 19,
54–65.

Thornton, P.K., Jones, P.G., Ericksen, P.J., Challinor, A.J., 2011. Agriculture and food sys-
tems in sub-Saharan Africa in a 4 °C+ world. Philosophical Transactions of the
Royal Society A 369, 117–136.

Tingem, M., Rivington, M., Bellocchi, G., Azam-Ali, S., Colls, J., 2008. Comparative assess-
ment of crop cultivar and sowing dates as adaptation choice for crop production in
response to climate change in Cameroon. The African Journal of Plant Science and
Biotechnology 2, 10–17.
Tubiello, F.N., Ewert, F., 2002. Simulating the effects of elevated CO2 on crops: approaches
and applications for climate change. European Journal of Agronomy 18, 57–74.

Waha, K., Müller, C., Bondeau, A., Dietrich, J.P., Kurukulasuriya, P., Heinke, J., Lotze-
Campen, H., 2013. Adaptation to climate change through the choice of cropping
system and sowing date in sub-Saharan Africa. Global Environmental Change 23,
130–143.

Weedon, G.P., Gomes, S., Viterbo, P., Österle, H., Adam, J.C., Bellouin, N., Boucher, O.,
Best, M., 2011. Creation of the WATCH forcing data and its use to assess global
and regional reference crop evaporation over land during the twentieth century.
Journal of Hydrometeorology 12, 823–848.


	Separate and combined effects of temperature and precipitation change on maize yields in sub-Saharan Africa for mid- to lat...
	1. Introduction
	2. Materials and methods
	2.1. Climate data
	2.2. Climate experiments
	2.3. Modelling the impact on agricultural vegetation
	2.4. Statistical analysis

	3. Results
	3.1. Changes in temperature, wet season length and wet season precipitation
	3.2. Impacts on agricultural vegetation in sub-Saharan Africa

	4. Discussion
	4.1. Understanding crop yield changes
	4.2. Uncertainty in GCM projections of precipitation
	4.3. Limitations of modeling stress on crop growth and development

	5. Summary and conclusions
	Authors' contribution
	Acknowledgments
	Appendix A. Global circulation models used in this study
	Appendix B. Method of generating stylized precipitation scenarios
	Identifying the largest change in wet season characteristics
	Overestimation of precipitation changes

	Appendix C. Method for calculating crop yield and crop yield changes
	References


