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Abstract

Clostridioides difficile is the primary infectious cause of antibiotic-associated diarrhea. Local transmissions and international 
outbreaks of this pathogen have been previously elucidated by bacterial whole-genome sequencing, but comparative genomic 
analyses at the global scale were hampered by the lack of specific bioinformatic tools. Here we introduce a publicly acces-
sible  database  within  EnteroBase  (http://​enterobase.​warwick.​ac.​uk)  that  automatically  retrieves  and  assembles  C.  difficile 
short-reads from the public domain, and calls alleles for core-genome multilocus sequence typing (cgMLST). We demonstrate 
that comparable levels of resolution and precision are attained by EnteroBase cgMLST and single-nucleotide polymorphism 
analysis. EnteroBase currently contains 18 254 quality-controlled C. difficile genomes, which have been assigned to hierarchical 
sets of single-linkage clusters by cgMLST distances. This hierarchical clustering is used to identify and name populations of 
C. difficile at all epidemiological levels, from recent transmission chains through to epidemic and endemic strains. Moreover, 
it puts newly collected isolates into phylogenetic and epidemiological context by identifying related strains among all previ-
ously published genome data. For example, HC2 clusters (i.e. chains of genomes with pairwise distances of up to two cgMLST 
alleles) were statistically associated with specific hospitals (P<10−4) or single wards (P=0.01) within hospitals, indicating they 
represented local transmission clusters. We also detected several HC2 clusters spanning more than one hospital that by ret-
rospective epidemiological analysis were confirmed to be associated with inter-hospital patient transfers. In contrast, cluster-
ing at level HC150 correlated with k-mer-based classification and was largely compatible with PCR ribotyping, thus enabling 
comparisons to earlier surveillance data. EnteroBase enables contextual interpretation of a growing collection of assembled, 
quality-controlled C. difficile genome sequences and their associated metadata. Hierarchical clustering rapidly identifies data-
base entries that are related at multiple levels of genetic distance, facilitating communication among researchers, clinicians 
and public-health officials who are combatting disease caused by C. difficile.

DATA SUMMARY
All  genome sequencing data  were  submitted  to  the  Euro-
pean Nucleotide Archive (​www.​ebi.​ac.​uk/​ena) under study 
numbers PRJEB33768, PRJEB33779 and PRJEB33780. The 
Clostridioides  database within EnteroBase is publicly acces-
sible at http://​enterobase.​warwick.​ac.​uk. In addition, stand-
alone versions of all EnteroBase tools are available at https://​
github.​com/​zheminzhou/​EToKi.

INTRODUCTION
The  anaerobic  gut  bacterium  Clostridioides  difficile 
(formerly Clostridium  difficile)  [1]  is  the  primary  cause  

of  antibiotic- associated  diarrhea  in  Europe  and  North  
America [2].  Molecular genotyping of  C. difficile  isolates  
has demonstrated international  dissemination of  diverse 
strains through healthcare systems [3–5], the community 
[6]  and livestock  production facilities  [7,  8].  Previously,  
genotyping was commonly performed by PCR ribotyping 
or DNA macrorestriction.  More recent publications have 
documented  that  genome- wide  single- nucleotide  poly-
morphisms (SNPs) from whole-genome sequences provide 
improved discrimination, and such analyses have enabled 
dramatic progress in our understanding of the emergence 
and spread of  epidemic strains [9–12] and the epidemi-
ology of  local  transmission [13,  14].  Eyre and colleagues 
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have argued that transmission of C. difficile isolates within 
a hospital environment can be recognized with high prob-
ability as chains of genomes, which differ by up to two SNPs 
whereas  genomes,  which  differ  by  at  least  ten  genomic  
SNPs represent unrelated bacteria [13, 15]. However, SNP 
analyses require sophisticated bioinformatic tools and are 
difficult to standardize [16, 17]. A convenient alternative to 
SNP-based genotyping is  offered by the commercial  soft-
ware SeqSphere, which implements a core-genome multi-
locus sequence typing scheme (cgMLST) for the analysis 
of genomic diversity in C. difficile  [18] and other organ-
isms. Indeed, cgMLST [18] confirmed the prior conclusion 
from genomic SNP analyses [19] that a common clone of 
C. difficile  had been isolated over two successive years at 
a hospital  in  China [18].  However,  a  recent  quantitative 
comparison of  the two methods showed that  SeqSphere's 
cgMLST achieved a low predictive value (41 %) for identi-
fying isolate pairs that were closely related by the ≤2 SNPs' 
criterion [20]. cgMLST of genomic sequences of a variety 
of bacterial pathogens can also be performed with Enter-
oBase (http://​enterobase.​warwick.​ac.​uk/), which has been 
developed over the last few years with the goal of facilitating 
genomic  analyses  by  microbiologists  [21].  EnteroBase  
automatically retrieves Illumina short-read sequences from 
public  short- read archives.  It  uses  a  consistent  assembly 
pipeline to automatically assemble these short- reads into 
draft genomes consisting of multiple contigs, and presents 
the assembled genomes together with their  metadata for 
public access [22]. It also performs the same procedures on 
sequencing data uploaded by its  registered users.  Assem-
bled genomes that pass quality control  are genotyped by 
MLST at the levels of seven-gene MLST, ribosomal MLST 
(rMLST),  cgMLST and whole-genome MLST (wgMLST) 
[21,  22].  EnteroBase supports subsequent analyses based 
on  either  SNPs  or  cgMLST  alleles  using  the  GrapeTree  
or Dendrogram visualization tools  [23].  EnteroBase also 
assigns these genotypes to populations by hierarchical clus-
tering (HierCC), which supports the identification of close 
relatives at the global level [22]. Originally, EnteroBase was 

restricted to the bacterial  genera Salmonella,  Escherichia, 
Yersinia and Moraxella but since January 2018, EnteroBase 
has included a database for genomes and their metadata for 
the genus Clostridioides. In June 2020, EnteroBase contained 
18  254  draft  genomes  of  C.  difficile  plus  one  genome  of   
C. mangenotii. These included over 900 unpublished draft 
genomes  that  were  sequenced  at  the  Leibniz  Institute  
DSMZ, as well as 80 complete genome sequences based on 
Pacific Biosciences plus Illumina sequencing technologies. 
It also included 862 unpublished draft genomes that were 
sequenced at the Wellcome Sanger Institute.

Here  we  show  that  comparable  levels  of  resolution  and  
precision are attained by EnteroBase cgMLST as by SNP 
analyses.  We also summarize the genomic diversity  that 
accumulated  during  recurring  infections  within  single  
patients as well  as  transmission chains within individual 
hospitals and between neighbouring hospitals in Germany, 
and  show  that  it  can  be  detected  by  HierCC.  We  also  

Impact Statement

Clostridioides  difficile  is  a  major  cause  of  healthcare-
associated diarrhea and causes large infection outbreaks. 
Whole- genome  sequencing  is  increasingly  applied  for  
genotyping C. difficile, with the objectives to monitor and 
curb the pathogen's spread. We present a publicly acces-
sible database for quality-controlled genome sequences 
from C. difficile that enables contextual interpretation of 
newly  collected  isolates  by  identifying  related  strains  
among published data. It  also provides a  nomenclature 
for  genomic  types  to  facilitate  communication  about  
transmission  chains,  epidemics  and  phylogenetic  line-
ages. Finally, we demonstrate that  genome-based hier-
archical  clustering  is  largely  compatible  with  previ-
ously  used  molecular  typing  techniques,  thus  enabling  
comparisons to earlier surveillance data.
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demonstrate that HierCC can be used to identify bacte-
rial populations at various epidemiological levels ranging 
from recent transmission chains through to epidemic and 
endemic spread, and relate these HierCC clusters to geno-
types that  were identified by PCR ribotyping and k-mer-
based diversity analysis.  These observations indicate that 
cgMLST  and  HierCC  within  EnteroBase  can  provide  a  
common language for communications and interactions 
by the global community who is combatting disease caused 
by C. difficile.

RESULTS
Implementation of MLST schemes in EnteroBase
cgMLST in EnteroBase consists of a defined subset of genes 
within a whole-genome MLST scheme that represents all 
single-copy orthologues within the pan-genome of a repre-
sentative set  of  bacterial  isolates.  To this  end,  we assem-
bled the draft genomes of 5232 isolates of C. difficile from 
public short-read archives, and assigned them to ribosomal 
sequence types (rSTs) according to rMLST, which indexes 
diversity at  53 loci  encoding ribosomal protein subunits 
on the basis of existing exemplar alleles at PubMLST [24]. 
We then created a reference set of 442 genomes consisting 
of one genome of C. mangenotii [1], 18 complete genomes 
from GenBank, 81 closed genomes from our work and the 
draft genome with  the  smallest  number  of  contigs  from 
each of  the 343 rSTs (https://​tinyurl.​com/​Cdiff-​ref).  The 
Clostridioides  pan- genome  was  calculated  with  PEPPA  
[25]  and  used  to  define  a  wgMLST  scheme  consisting  
of  13  763  genetic  loci  (http://​enterobase.​warwick.​ac.​uk/​
species/​clostridium/​download_​data). EnteroBase uses the 
wgMLST scheme to call loci and alleles from each assembly, 
and extracts the allelic assignments for the subsets corre-
sponding to cgMLST, rMLST and seven-gene MLST from 
those allelic calls [22]. The cgMLST subset consists of 2556 
core genes, which were present in ≥98% of the reference set, 
intact in ≥94% and were not excessively divergent (Fig. 1).

Comparison of cgMLST and SNPs for analyses of 
transmission chains
We compared the numbers of  cgMLST allelic  differences 
and  the  numbers  of  non- recombinant  SNPs  in  isolates  
from multiple epidemiological chains. These included 176 
isolates from four patients with recurring CDI (C. difficile 
infection),  63  isolates  from  four  transmission  chains  in  
multiple hospitals [14, 19, 26], and a comprehensive sample 
of 1158 isolates collected over several years in four hospitals 
in Oxfordshire, UK [13]. A strong linear relationship (R2, 
0.71–0.93) was found in all three analyses between the pair-
wise differences in cgMLST alleles  and non-recombinant 
SNPs (Fig. S1, available in the online version of this article). 
The slope of the regression lines was close to 1.0, indicating 
a 1 : 1 increase in cgMLST allelic differences with numbers 
of SNPs. The same data were also investigated with cgMLST 
calculated with the commercial  program SeqSphere [18], 
with similar correlation coefficients but a lower slope due 

Fig. 1. Criteria for inclusion in a cgMLST scheme of a subset of wgMLST 
genes  based  on  their  properties  in  a  reference  set  of  442  genomes  
(https://tinyurl.com/Cdiff-ref).  (a)  Numbers  of  genes  versus  frequency  
(%  presence)  within  the  reference  set.  In  total,  2634  genes  satisfied  
the cut- off criterion of  ≥98 % presence (dashed line).  (b)  Numbers of  
genes  versus  intact  ORF  (%  intact  ORF)  within  the  2634  genes  from  
(a).  Overall,  2560 genes satisfied the  cut- off criterion  of  ≥94 % intact  
ORF  (dashed  line).  (c)  Frequency  of  allelic  variants  versus  gene  size  
among the 2560 genes from (b). The genetic diversity was calculated 
using the GaussianProcessRegressor function in the sklearn module in 
Python. This function calculates the Gaussian process regression of the 
frequency of genetic variants on gene sizes, using a linear combination 
of  a  radial  basis  function  kernel  (RBF)  and  a  white  kernel  [57].  The  
shadowed region shows a single-tailed 99.9% confidence interval (≤3 
sigma) of the prediction. Altogether, 2556 loci fell within this area and 
were retained for the cgMLST scheme, while four were excluded due to 
excessive numbers of alleles.

https://tinyurl.com/Cdiff-ref
http://enterobase.warwick.ac.uk/species/clostridium/download_data
http://enterobase.warwick.ac.uk/species/clostridium/download_data
https://tinyurl.com/Cdiff-ref
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to lesser discriminatory power of the SeqSphere cgMLST 
scheme (lower panels in Fig. S1).

Eyre et al. [13] concluded that direct transmission between 
two hospital patients can be detected because their bacterial 
genomes differ by two SNPs or less. Our analysis indicated 
that  these  transmission  chains  in  the  Oxfordshire  dataset  
would also have been recognized by cgMLST in EnteroBase. 
Genomes that differed by two cgMLST alleles usually also 

differed by ≤2 SNPs according to a binary logistic regression 
model (probability=89%; 95% confidence interval, 88–89%) 
(Fig. 2). Of 3807 pairs of genomes with ≤2 allelic differences, 
3474 also differed by ≤2 SNPs, yielding a positive predictive 
value of 91 % for identifying isolate pairs with ≤2 SNPs by 
EnteroBase cgMLST and a sensitivity of 62 % (≤2 cgMLST 
allelic differences were found in 3474 of 5707 pairs with ≤2 
SNPs). The comparable values for SeqSphere were 78 % posi-
tive predictive value and 99% sensitivity.

We also compared the genetic distances between 242 genomes 
from Oxfordshire, which had been isolated during the initial 
6 months and 916 genomes from the actual testing period 
(April 2008 to March 2011) [13]. Overall, 35% (318/916) of 
the latter genomes matched at least one genome collected 
earlier by two or less EnteroBase cgMLST alleles and 34% 
(316/916) matched an earlier genome by ≤2 SNPs. The two 
sets  of  genomes  were  89%  concordant.  Thus,  cgMLST  is  
equivalent to SNP analysis for detecting inter-patient trans-
mission chains.

Hierarchical clustering for tracing local and 
regional spread
SNP analyses are computer intensive, and are only feasible 
with  limited  numbers  of  genomes  [27].  cgMLST- based  
relationships  can  be  analysed  for  up  to  100  000  genomes  
with  GrapeTree,  but  analyses  involving  more  than  10  000  
genomes remain computer intensive [23]. EnteroBase imple-
ments  single- linkage  hierarchical  clustering  (HierCC  V1)  
of cgMLST data in pairwise comparisons at multiple levels 
of relationship after excluding missing data [22]. These are 
designated as HC0 for hierarchical clusters of indistinguish-
able core-genome sequence types (cgSTs), HC2 for clusters 
with  pairwise  distances  of  up  to  two  cgMLST  alleles,  etc. 
EnteroBase  presents  cluster  assignments  for  C.  difficile  at  
the levels of HC0, HC2, HC5, HC10, HC20, HC50, HC100, 
HC150, HC200, HC500, HC950, HC200 and HC2500. Here 
we address the nature of the genetic relationships that are 
associated with these multiple levels of HierCC among 13 515 
publicly available C. difficile  genomes, and examine which 
levels of pairwise allelic distances correspond to epidemic 
outbreaks and to endemic populations.

In our analyses of 176 C. difficile isolates from four patients 
with two recurrent episodes of CDI, multiple genomes were 
assigned  to  patient- specific  HC2  clusters,  some  of  which  
were isolated from the initial episode as well as the recur-
rence 80–153 days later (Fig. 3, patients D, F and G; 4 to 36 
isolates had been collected per episode; Table S1). For these 
patients, relapsing disease likely reflected continued coloniza-
tion after initially successful therapy. However, some isolates 
from patient F differed by 12–21 cgMLST alleles from the 
bulk  population  (Fig.  3),  which  indicates  that  the  patient  
was co-infected simultaneously with multiple related strains. 
In patient E, the two genomes from the two CDI episodes 
differed by >2000 allelic differences (Fig. 3), which indicates 
that the second incident of CDI represented an independent 
infection  with  an  unrelated  strain.  Hence,  discrimination  

Fig.  2.  Binary  logistic  regression  model  to  determine  the  probability  
that two genomes are related at ≤2 SNPs, given a certain difference in 
their cgMLST allelic profiles, based on the Oxfordshire dataset [13]. The 
number of SNPs was encoded as a binary dependent variable (1 if ≤2 
SNPs, 0 if otherwise) and the number of allelic differences was used as 
a predictor variable.

Fig.  3.  Minimum- spanning  trees  indicating  the  population  structure  
of C.  difficile  in  four  patients  with  recurrent  CDI  episodes.  Red,  first  
episode; blue, second episode.
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between relapse and reinfection based on cgMLST appears 
to be straightforward except that two episodes of CDI might 
arise by reinfection with identical strains from an environment 
that is heavily contaminated with C. difficile spores [28]. We 
note that the time intervals (16–22 weeks) investigated here 
exceeded the currently recommended threshold of 8 weeks 
for surveillance-based detection of CDI relapses [29, 30] but 
still yielded almost identical strains in three of four patients.

Our examinations of multiple local outbreaks have revealed 
individual,  outbreak- specific  HC2  clusters.  However  it  
is  also  conceivable  that  multiple  HC2  clusters  might  be  
isolated  from  a  single  epidemiological  outbreak  due  to  
the accumulation of  genetic  diversity over time.  Alterna-
tively, multiple HC2 clusters within a single outbreak may 
represent the absence of  crucial  links due to incomplete 
sampling. Incomplete sampling of outbreaks is not unlikely 
because asymptomatic patients are only rarely examined for 
colonization with C. difficile [31–33] even though they may 
constitute an important reservoir for transmission. Indeed, 
some of the outbreaks investigated here did consist of more 
than one HC2 cluster (Fig. 4).  For example,  nine isolates 
from a recently reported ribotype 018 (RT018) outbreak in 
Germany [26] encompassed four related HC2 clusters, and 
outbreaks with RT027 and RT106 in a hospital in Spain [14] 
were each affiliated with two or three HC2 clusters (Fig. 4).

We identified 23 HC2 clusters encompassing 133 genome 
sequences in a dataset of 309 C. difficile genome sequences 
collected from CDI patients in six neighbouring hospitals 
in  Germany.  These  HC2  clusters  were  associated  with  
individual  hospitals  (Χ2, P=8.6×10−5;  Shannon  entropy,  
P=4.2×10−5) and even with single wards in these hospitals 
(Χ2, P=0.01; Shannon entropy, P=6.2×10−3). We investigated 
whether these HC2 clusters reflected the local  spread of 
C. difficile  within institutions by retrospective analyses of 

patient location data. Sixty six patients (50 %) were found to 
have had ward contacts with another patient with the same 
HC2  cluster  (median  time  interval  between  ward  occu-
pancy: 63 days; range, 0 to 521). These results are consistent 
with the direct transmission on wards of C. difficile isolates 
of the same HC2 cluster (Fig. 5). For patients such as P1 and 
P2 where the shared ward contacts were separated in time 
(Fig. 5), transmission may have occurred indirectly through 
asymptomatically colonized patients or from a common 
reservoir,  such  as  environmental  spore  contamination  
[14, 31, 32]. We also detected 15 HC2 clusters that included 
isolates from two or more hospitals  in the region. Subse-
quent analyses of patient location data confirmed that some 
of these HC2 clusters were associated with patient trans-
ferrals between the hospitals (Fig. 5). Hence, hierarchical 
clustering of C. difficile genome sequences in conjunction 

Fig.  4.  Neighbour- joining  trees  based  on  cgMLST  showing  the  
phylogenetic  relationships  among  C.  difficile  isolates  from  previously  
published CDI outbreaks as indicated [14, 19, 26]. Nodes are coloured by 
HC2. CC, cgST complex, i.e. related at level HC150; RT, PCR ribotype. The 
scale, indicating one allelic difference, applies to all trees.

Fig. 5. Timelines of two transmission chains, discovered retrospectively 
through  inspection  of  files  from  CDI  patients  with  closely  related   
C.  difficile  isolates  (HC2).  Colours  indicate  hospital  wards,  'X'  indicate  
diagnosis  of  CDI,  and  arrows  indicate  presumed  transmission  
pathways.  Minimum- spanning  trees  indicating  genomic  distances  
among C. difficile isolates are shown on the right. Upper panel: patient 
P1 was diagnosed with CDI in hospital H2 and transferred to hospital 
H3 15 days later. Another five and 6 days later, respectively, patients 
P2 in  hospital  H2 and P3 in  hospital  H3 got  diagnosed with  CDI  with  
closely related strains. Both these patients were on the same wards as 
the initial patient, who probably had been the source for the pathogen. 
Since there was no temporal overlap between patient P2 and the other 
patients  in  hospital  H2,  transmission  may  have  occurred  indirectly,  
possibly  through environmental  contamination. Lower panel:  another  
putative  transmission  chain  involved  three  patients  that  had  shared  
time  in  hospital  H2.  Patients  P4  and  P5  got  diagnosed  with  CDI  on  
the same day after  they had shared 7 days in  this  hospital, albeit  on 
different medical wards. The third patient developed CDI with the same 
C. difficile cgST 4 days after being transferred to another hospital (h5), 
but had previously stayed at hospital H2 during the time when CDI got 
diagnosed  in  the  first  two  patients.  Since  the  three  patients  stayed  
on different wards in hospital  H2, transmission presumably occurred 
indirectly.
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with retrospective analysis of patient movements revealed 
multiple  likely  nosocomial  transmission events,  none of 
which had been detected previously by routine surveillance.

Hierarchical clustering for identification of 
epidemic strains and endemic populations
International epidemic spread of C. difficile over up to 25 
years has been inferred previously on the basis of molecular 
epidemiology with lower resolution techniques [34].  For 
multiple  representatives  of  those  epidemic  strains  in  
EnteroBase, the majority of these epidemic groups corre-
sponded to HC10 clusters, including epidemic RT017 [11] 
(HC10_17),  the  two  fluoroquinolone- resistant  lineages  
of RT027 [9] (HC10_4,  HC10_9),  or livestock-associated 
RT078/126 [35] (HC10_1) (Fig. 6).

Endemic populations have also been described by ribotyping 
and phylogenetic  analyses,  some of  which have acted as 
sources for the emergence of epidemic strains [2, 9]. Many 
endemic  populations  seem  to  be  represented  by  HC150 
clusters. Clustering at HC150 was well supported statisti-
cally (Fig. S2), and the frequency distribution of pairwise 
genomic distances indicated that multiple database entries 
clustered  at  <150  cgMLST  allelic  differences  (Fig.  S3).  
HC150 clusters also correlated well with k-mer-based clas-
sification [36]. When applied to the dataset of 309 C. difficile 

genomes from six hospitals in Germany, the two methods 
implemented in EnteroBase and PopPUNK found 51 and 
48 clusters,  respectively,  the majority of  which coincided 
(adjusted Rand coefficient, 0.97).

A  cgMLST- based  phylogenetic  tree  of  13515  C.  difficile 
genomes showed 201 well-separated HC150 clusters, each 
encompassing a set of related isolates, plus 209 singletons 
(Fig. 7). Because these HC150 clusters are based on cgMLST 
genetic  distances,  we  refer  to  them as  'cgST complexes',  
abbreviated as CCs. Genomes from each of the major CCs 
have been collected over many years in multiple countries, 
indicating their long-term persistence over wide geographic 
ranges (Table 1).

We  compared  HC150  clustering  with  PCR  ribotyping  
for 2263 genomes spanning 84 PCR ribotypes for which 
PCR ribotyping data were available in EnteroBase.  These 
included 905 genomes, which we ribotyped (Table S2), as 
well as several hundred other genomes for which ribotype 
information was manually retrieved from published data. 
The correlation between HC150 clustering and ribotyping 
was high (adjusted Rand coefficient, 0.92; 95% confidence 
interval, 0.90–0.93). However, our analysis also revealed that 
PCR ribotypes did not always correspond to phylogeneti-
cally coherent groupings. PCR ribotypes 002, 015 and 018 

Fig. 6. Phylogenetic structure of three international C. difficile epidemics, each of which has spread for about 25 years [9, 11]. Within each 
epidemic, the majority of isolates is related at level HC10, as indicated by the colours. CC, cgST complex, i.e. related at level HC150; RT, 
PCR ribotype.
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were each distributed across multiple phylogenetic branches 
(Fig. 8).  Furthermore,  some genomes with indistinguish-
able cgMLST alleles were assigned to multiple ribotypes, 
including RT001/RT241, RT106/RT500 and RT126/RT078 
(Fig. 8, Table 1).  In these cases,  both ribotypes occurred 
in  several,  closely  related clades  (Fig. 8),  indicating that 
similar  ribotype  banding  patterns  had  evolved  multiple  
times. In contrast, HC150 clusters corresponded to clear-
cut phylogenetic groupings within a phylogenetic tree of 
core genes (Fig. 8b).

Higher population levels
HierCC can also identify clusters at still  higher taxonomic 
levels,  up  to  the  levels  of  species  and  sub- species  [22].  In  
C.  difficile,  HC950  clusters  seem  to  correspond  to  deep  
evolutionary branches (Fig. S4) and HC2000 clusters were 
congruent with the major clades reported previously [37], 
except that cluster HC2000_2 encompassed clade 1 plus clade 
2 (Fig. S5). Finally, HC2500 may correspond to the subspe-
cies level, because it distinguished between C. difficile  and 
distantly related ‘cryptic clades’ (Fig. S6).

Fig. 7. Rapid-neighbour-joining phylogenetic tree based on cgMLST variation from 13 515 C. difficile genomes. Colours and numerals 
indicate CCs (HC150 clusters) with ≥10 entries, and information on predominant PCR ribotypes is provided in brackets.
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DISCUSSION
Infectious disease epidemiologists frequently seek to know 
if new isolates of bacterial pathogens are closely related to 
others  from  different  geographical  origin,  i.e.  if  they  are  
part of a widespread outbreak. Unlike a previous cgMLST 
implementation [18], EnteroBase supports this goal by taking 
full  advantage  of  rapidly  growing,  public  repositories  of  
short-read genome sequences [22]. In contrast to short-read 
archives, however, where stored sequence data are not readily 
interpretable  without specialized bioinformatic  tools  [38],  
EnteroBase enables contextual interpretation of a growing 
collection  (18  254  entries  as  of  June  2020)  of  assembled,  
quality-controlled C.  difficile  genome sequences  and their  
associated metadata. At least the collection date (year), the 
geographic origin (country) and the source (host species) are 
available for the majority of database entries. Importantly, 
phylogenetic  trees  based  on  cgMLST  allelic  profiles  from  

many  thousand  bacterial  genomes  can  be  reconstructed  
within a few minutes, whereas such calculations are currently 
prohibitively slow based on SNP alignments [22]. Genome-
sequencing  reads  from  newly  sampled  C.  difficile  isolates  
can be uploaded to EnteroBase and compared to all publicly 
available genome data within hours, without requiring any 
command-line skills.

We demonstrate that the application of cgMLST to investiga-
tions of local C. difficile epidemiology yields results that are 
quantitatively equivalent to those from SNP analyses. This is 
a major advance because SNP analyses require specific bioin-
formatic skills and infrastructure, are time consuming and 
not easily standardized [16]. A web platform for centralized, 
automated SNP analyses on bacterial genomes is limited to 
food pathogens currently, and does not offer any analyses on 
C. difficile genomes [39]. Even though a cgMLST scheme for  

Table 1. Characteristics of cgST complexes (CC) with ≥100 entries

CC 
(HC150)

PCR Ribotype Number of entries Sampling years Number of countries % isolates in HC2>21 % isolates from animal 
hosts

4 027 2669 1985–2018 27 77 0

1 078, 126, 066 1222 1994–2018 26 61 17

17 017 769 1990–2017 24 64 0

3 001 768 1980–2017 16 62 0

6 020, 404 768 1995–2017 14 43 1

2 002 702 2006–2017 15 51 1

22 106, 500 531 1997–2017 7 59 3

86 005 468 1980–2017 8 41 0

34 014 421 1995–2017 10 35 0

55 015 318 2006–2017 6 37 0

71 014, 020 315 2004–2017 16 40 1

145 015 284 2006–2016 7 39 0

256 023 268 2001–2015 6 40 0

79 010 249 2003–2018 7 53 3

178 018, 356 243 2006–2017 7 52 0

242 039 199 2008–2017 4 58 1

10 012 159 1996–2017 7 52 0

88 014 132 1996–2016 9 33 8

11 070 110 2006–2017 6 32 0

187 054 109 2007–2018 6 47 0

141 001, 026 107 2007–2016 2 7 0

391 081 105 1996–2016 4 31 0

49 011, 056, 446 103 2001–2017 5 35 0

1isolates in HC2 clusters with >2 entries.
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C.  difficile  had  been  published  recently  [18],  its  ability  to  
identify  closely  related  isolates  and  the  inferred  genomic  
distances was shown to be inferior to SNP analyses due to 
an excess of errors introduced by the de novo  assembly of 
sequencing reads and a lack of per-base quality control [20]. 
In EnteroBase, cgMLST is also based on de novo assembly, but 
EnteroBase uses Pilon [40] to polish the assembled scaffolds 
and evaluate the reliability of consensus bases of the scaffolds, 
thereby achieving comparable accuracy to mapping-based 
SNP analyses. When applied to a large dataset of C. difficile 
genomes from hospital patients in the Oxfordshire region 
(UK),  cgMLST  and  SNP  analysis  were  largely  consistent  

(89% match)  at  discriminating  between isolates  that  were  
sufficiently closely related to have arisen during transmissions 
chains from others that were epidemiologically unrelated.

After  assembly,  draft  genomes  contain  missing  data  and  
many cgSTs have unique cgST numbers but are identical to 
other cgSTs, except for missing data. Hence, individual cgST 
numbers are only rarely informative. However, indistinguish-
able cgSTs are clustered in common HierCC HC0 clusters, 
which ignore missing data. In June 2020, the Clostridioides 
database  contained  >12  000  HC0  clusters,  indicating  that  
the majority of genomes was unique. Similarly, EnteroBase 

Fig. 8. Rapid-neighbour-joining phylogenetic tree based on cgMLST variation from 2263 C. difficile genomes, for which PCR ribotyping 
information is available. Upper panel: nodes are coloured by PCR ribotype as indicated. Lower panel: nodes are coloured by CC (HC150 
clusters).
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provides cluster designations at multiple levels of HierCC, 
enabling rapid identification of all cgSTs that are related at 
multiple levels of genetic distance. The data presented here 
shows that HierCC designations can facilitate communica-
tions between researchers, clinicians and public-health offi-
cials about transmission chains, epidemic outbreaks, endemic 
populations and higher phylogenetic lineages up to the level 
of subspecies.

EnteroBase  cgMLST  identified  numerous  HC2  clusters  
of  strains  in  C.  difficile  isolates  that  seem  to  have  arisen  
during transmission chains in six neighbouring hospitals in 
Germany.  These assignments  were in part  consistent  with 
retrospective investigation of patient location data, although 
none of the nosocomial outbreaks (defined by German law as 
two or more infections with likely epidemiological connec-
tions  [http://www.​gesetze-​im-​internet.​de/​ifsg/])  had  been  
detected  previously  by  standard  epidemiological  surveil-
lance by skilled clinical microbiologists. Recent publications 
propose that prospective genome sequencing of nosocomial 
pathogens should be applied routinely at the hospital level to 
guide epidemiological surveillance [41]. Our data indicates 
that the combination of genome sequencing with cgMLST 
and HierCC may identify nosocomial transmission routes 
of C. difficile more effectively than presently common prac-
tice, and hence could help to reduce pathogen spread and 
the burden of disease. Reliable identification of transmission 
chains requires interpretation of pathogen genome sequence 
data in its epidemiological context, however [42].

HierCC will also enable comparisons to previously published 
data  because  we  have  provided  a  correspondence  table  
between HC150 clusters and PCR ribotypes (Table 1). Rare-
faction analysis indicated that the currently available genome 
sequences represent about two-thirds of extant HC150 (CC) 
diversity, which extrapolated to about 600 CCs (Fig. S7). At 
least some of this enormous diversity may be due to the occu-
pation of multiple, distinct ecological niches, as exemplified 
by differential propensities for colonizing non-human host 
species (Table 1) [43, 44]. Individual CCs may also differ in 
their aptitudes for epidemic spread, as indicated by drastically 
different proportions of genomes assigned to HC2 chains: 
only 7% of CC141 were assigned to HC2 clusters versus 35% 
of CC34 and 77% of CC4 (Table 1). A full understanding of 
the population structure of C. difficile and its relationship to 
epidemiological patterns will require additional study because 
many of the clusters described here have not yet been studied 
or  described.  However,  this  task  can  be  addressed  by  the  
global community due to the free public access to such an 
unprecedented amount of genomic data from this important 
pathogen.

METHODS
Sampling
In total, 309 C. difficile isolates were collected at a diagnostic 
laboratory providing clinical microbiology services to several 
hospitals in central Germany. To assemble a representative 

sample,  we  included  the  first  20  isolates  from  each  of  six  
hospitals from each of three consecutive calendar years (Table 
S2). For investigation of recurrent CDI, a set of 176 C. difficile 
isolates were collected in a diagnostic laboratory in Saarland, 
Germany. Here, primary stool culture agar plates were stored 
at  4  °C  for  5  months  to  eventually  enable  the  analysis  of  
multiple plates representing episodes of recurrent C. diffi-
cile  infection from individual patients, who had developed 
recurrent disease by then and could be chosen with hind-
sight. It was attempted to pick and cultivate as many bacterial 
colonies from each selected plate as possible, resulting in 6 
to 36 isolates per CDI episode (Table S1).  In addition, we 
sequenced the genomes from 383 isolates that had been char-
acterized by PCR ribotyping previously, including 184 isolates 
sampled from piglets [8], 71 isolates from various hospitals in 
Germany [3], and 108 isolates from stool samples collected 
from nursery home residents (unpublished; Table S2).

PCR ribotyping
PCR ribotyping was performed as described previously [45], 
applying an ABI Prism 3100 apparatus for capillary electro-
phoresis  and comparing banding patterns to the Webribo 
database (https://​webribo.​ages.​at/).

Whole-genome sequencing
For Illumina sequencing, genomic DNA was extracted from 
bacterial isolates by using the DNeasy Blood and Tissue kit 
(Qiagen), and libraries were prepared as described previously 
[46] and sequenced on an Illumina NextSeq 500 machine 
using a Mid-Output kit (Illumina) with 300 cycles. For gener-
ating complete genome sequences, we applied SMRT long-
read sequencing on an RSII instrument (Pacific Biosciences) 
in combination with Illumina sequencing as reported previ-
ously [46]. All genome sequencing data were submitted to 
the European Nucleotide Archive (​www.​ebi.​ac.​uk/​ena) under 
study numbers PRJEB33768, PRJEB33779 and PRJEB33780.

SNP detection and phylogenetic analysis
Sequencing  reads  were  mapped  to  the  reference  genome  
sequence from C. difficile strain R20291 (sequence accession 
number FN545816) by using BWA-MEM and sequence varia-
tion was detected by applying VarScan2 as reported previously 
[46]. Sequence variation likely generated by recombination 
was  detected  through  analysis  with  ClonalFrameML  [47]  
and removed prior to determination of pairwise sequence 
distances [15] and to construction of maximum-likelihood 
phylogenetic trees with RAxML (version 8.2.9) [48].

Genome assembly, quality control and wgMLST 
allele calling
Genomic data was processed by automated pipelines within 
EnteroBase, which were described in detail previously [22]. 
Briefly, Illumina sequencing reads were assembled by using 
Spades v3.10 [49] and assemblies were improved by applying 
Pilon [40]. To pass quality control, assemblies were required 
to comply with the following thresholds: total length, 3.6 to 
4.8 Mbp; N50, ≥20 000; number of contigs, ≤600; number of 

http://www.gesetze-im-internet.de/ifsg/
https://webribo.ages.at/
www.ebi.ac.uk/ena
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unresolved  nucleotides,  ≤3%;  proportion  of  Clostridioides 
sequences, >65 % (as determined by Kraken with MiniKraken 
database [50]). Assemblies were aligned to exemplar alleles by 
using blast n [51] and the usearch module U blast P [52], 
and allele numbers, STs and HC numbers assigned by using 
the EnteroBase module MLSType [22]. All EnteroBase tools 
are available at https://​github.​com/​zheminzhou/​EToKi.

Statistical analyses
To determine the probability that two genomes are related 
at  ≤2  SNPs,  given  a  certain  difference  in  their  cgMLST  
allelic profiles, we inferred a logistic regression model using 
R ([53], pp. 593–609). Genomic relatedness was encoded as 
a binary response variable (1 if ≤2 SNPs, 0 if otherwise) and 
the number of core-genome allelic differences was used as 
a predictor variable. We applied this model to a dataset of 
1158 genome sequences from a previous study, representing 
almost all symptomatic CDI patients in Oxfordshire, UK, 
from 2007 through 2011 [13].  While  that  original  study 
had encompassed a slightly larger number of  sequences, 
we restricted our analysis to the data (95 %) that had passed 
quality control as implemented in EnteroBase [21]. We used 
the SNP data from Eyre's report [13].

The  hierarchical  single- linkage  clustering  of  cgMLST  
sequence  types  was  carried  out  as  described [22]  for  all  
levels of allelic distances between 0 and 2556. We searched 
for stable levels of differentiation by HierCC according to 
the Silhouette index [54],  a  measure of  uniformity of  the 
divergence within clusters. The Silhouette index was calcu-
lated based on d^', a normalized genetic distance between 
pairs of STs, which was calculated from their allelic distance 
d as follows: d^'=1-(1-d)^(1/l), where l is the average length 
(937 bp) of the genes in the cgMLST scheme.

We  further  evaluated  the  ‘stability’  of  hierarchical  clus-
tering  using  two  other  criteria.  The  Shannon  index  is  a  
measure of  diversity in a given population.  The Shannon 
index drops from nearly 1 in HC0, because most cgSTs are 
assigned to a unique HC0 cluster, to 0 in HC2500, which 
assigns all  sequence types to one cluster.  The gradient of 
the Shannon index between the two extremes reflects the 
frequencies of  coalescence of  multiple clusters at  a  lower 
HC level.  Thus,  the  plateaus  in  the  curve  correspond to 
stable hierarchical levels, where the Shannon index does not 
change dramatically with HC level. We also evaluated the 
stability of hierarchical clustering by pairwise comparison 
of the results from different levels based on the normalized 
mutual information score [55] (Fig. S3).

For clustering C. difficile  diversity with PopPUNK [36], we 
used a sketch size of 105 and a K value (maximum number of 
mixture components) of 15. Of note, the resulting number of 
clusters for the tested dataset was identical for all K between 
15 and 30.

To  estimate  concordance  between  cgMLST- based  hier-
archical  clustering  and  PCR  ribotyping  or  PopPUNK  
clustering,  respectively,  we calculated the adjusted Rand 

coefficient [56] by using the online tool available at http://
www.​comparingpartitions.​info/. To test statistical associa-
tions of  HC2 clusters with specific hospitals  and hospital 
wards, respectively, we compared Χ2 values and normalized 
Shannon entropy values (R package ‘entropy’ v.1.2.1) from 
contingency  tables  containing  real  isolate  distributions  
(Table S3) and randomly permuted distributions (n=1000), 
by using the non-parametric, two-sided Mann–Whitney U 
test (R package ‘stats’ v.3.5.0).
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