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HTTP Adaptive Streaming has become the de facto choice for multimedia delivery. However, the quality

of adaptive video streaming may fluctuate strongly during a session due to throughput fluctuations. So, it

is important to evaluate the quality of a streaming session over time. In this article, we propose a model

to estimate the cumulative quality for HTTP Adaptive Streaming. In the model, a sliding window of video

segments is employed as the basic building block. Through statistical analysis using a subjective dataset, we

identify four important components of the cumulative quality model, namely the minimum window quality,

the last window quality, the maximum window quality, and the average window quality. Experiment results

show that the proposed model achieves high prediction performance and outperforms related quality models.

In addition, another advantage of the proposed model is its simplicity and effectiveness for deployment in

real-time estimation. Our subjective dataset as well as the source code of the proposed model have been made

publicly available at https://sites.google.com/site/huyenthithanhtran1191/cqmdatabase.
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1 INTRODUCTION

HTTP Adaptive Streaming (HAS) has become the de facto choice for multimedia delivery [16]. In
HAS, a video is encoded into different quality versions. Each version is further divided into a series
of segments. Depending on throughput fluctuations, segments of appropriate quality versions will
be delivered from the server to the client, which results in quality variations during a session.
Therefore, a key challenge in HAS is how to evaluate the quality of a session over time. The
evaluation can provide service providers with suggestions to enhance the quality of services [71].
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Because of the utmost importance of quality assessment, quality modeling for HAS has gained
attention from both academic and industry in recent years [7, 36, 68]. Many previous studies have
deployed existing quality models to build effective adaptive streaming strategies that aim to pro-
vide the highest possible quality to users [5, 22, 64, 69, 70]. In spite of the potential applications,
it is currently still in urgent demand of both effective and efficient quality models that could not
only accurately reflect the human perceived quality but also be applicable to real-time quality
monitoring.

Here, we would like to differentiate three concepts of the quality as follows:

• Continuous quality means the instantaneous quality that is continuously perceived at any
moment of the session.

• Overall quality means the quality of a whole session.
• Cumulative quality means the quality cumulated from the beginning up to any moment of

the session. Obviously, the concept of overall quality is a special case of cumulative quality.

It should be noted that the concepts of continuous quality and overall quality have been mentioned
in Recommendations ITU-R BT.500-13 and ITU-T P.880 [38, 43].

Based on comprehensive surveys of related works on quality modeling for HAS in References [4,
23, 53], it is shown that the continuous and overall quality has been investigated in a large number
of previous studies. To the best of our knowledge, however, few existing studies have actually con-
sidered the cumulative quality. The work in Reference [45] was the first study on the cumulative
quality of a video streaming session, where the authors focused on the impact of quality variations.
However, this work employed very short sessions, only 5–15 s.

In this study, our goal is modeling the cumulative quality of HTTP adaptive video streaming.
We first carry out a subjective test to measure the cumulative quality of long sessions of 6 min-
utes. Then, the impacts of quality variations, primacy, and recency are investigated. Based on the
obtained results, a cumulative quality model (called CQM) is proposed. In the proposed model,
a sliding window of video segments is the basic unit of computation. It should be noted that, in
the following, the term “window” means either the conceptual sliding window or a window at a
certain location. Experiment results show that the quality of the last window, the average window
quality, the minimum window quality, and the maximum window quality are key components
of the cumulative quality model. Also, it is found that the proposed model outperforms 10 exist-
ing models in both cumulative and overall quality prediction. Moreover, the proposed model is
applicable to real-time quality monitoring thanks to its low computation complexity. To the best
of our knowledge, the proposed model is the first cumulative quality model for actual streaming
sessions.

The remainder of this article is organized as follows. Section 2 discusses the related work and
our contributions. Because the proposed model is based on an analysis of subjective results, the
subjective test is presented in Section 3. Then, Section 4 presents the proposed cumulative quality
model. In Section 5, we evaluate the performance and computation complexity of the proposed
model and compare it to ten existing models. Also, some remarks on cumulative quality prediction
are presented. Finally, conclusions are drawn in Section 6.

2 RELATED WORK AND CONTRIBUTIONS

In this section, we will discuss the works related to three types of quality, namely, (1) continuous
quality, (2) overall quality, and (3) cumulative quality. Also, our contributions in this study will be
presented at the end of this section.
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2.1 Continuous Quality

The recommendation ITU-R BT.500-13 describes the Single Stimulus Continuous Quality Evalu-
ation (SSCQE) method for subjective assessment of the continuous quality [38]. In this method,
test sessions are displayed in a random order. Each subject, while watching a video, is asked to
continuously move a slider along a continuous scale so that its position reflects his/her selection
of quality at that instant. All subjects’ quality ratings at each instant of each video are averaged to
compute a mean opinion score (MOS) of that instant.

The work in Reference [6] is the first study on the continuous quality of a streaming session.
Note that, in this article, the authors use the term “time-varying quality” to refer to “continuous
quality.” To measure the continuous quality, the authors conducted a subjective test similar to the
SSCQE method. Then, a continuous quality model is proposed, taking into account the impact of
the recency. In particular, a Hammerstein-Wiener model was employed to predict the continuous
quality of 5-minute-long sessions. As this work is focused on continuous quality, the model mainly
depends on the quality values of the last 15 s.

Reference [31] uses machine learning to predict initial delay, stalling, and video quality from
the network traffic in windows of 10 s. The considered features are derived from IP or TCP/UDP
headers only. ViCrypt [52] detects quality degradations on encrypted video streaming traffic in
real-time within 1 s by using a streamlike analysis approach with two continuous sliding windows
and a cumulative window. The features are based on packet-level statistics of the network traffic,
and allow to accurately recognize initial delay and stalling [52], as well as video resolution and
the average bitrate [65].

Reference [17] presents a continuous quality predictor using an ensemble of Hammerstein-
Wiener models, while [2, 15] developed neural-network-based continuous quality models. As dis-
cussed in Recommendation ITU-R BT.500-13 [38], the continuous quality values of a session can
be pooled to predict the overall quality. However, effective pooling strategies are currently under
study [3, 38, 50].

2.2 Overall Quality

The overall quality perceived by the end-users can be quantified with the concept of Quality of
Experience (QoE). In terms of video streaming, the QoE states to what extent users are annoyed
or delighted with the provided streaming [18, 26].

In Reference [20], it was found that the impact of the initial delay of the video stream is not se-
vere, whereas the impact of stalling, i.e., playback interruptions, is significant. To model the impact
of the interruptions, previous studies generally used some statistics such as the number of interrup-
tions [30, 55, 67], the average [55], the maximum [55], the sum [30, 49, 67], and the histogram [61]
of interruption durations. To ensure a smooth streaming when end-users face throughput fluctu-
ations, e.g., in mobile networks, HAS allows to adapt the video bit rate to the network conditions.
Thereby, initial delay and stalling can be reduced, which are severe QoE degradations of video
streaming. However, due to the bit rate adaptation, the visual quality of the video might vary,
which introduces an additional QoE factor, called quality variations [57].

Existing studies on overall quality were mostly limited to short sessions (about 1–3 minutes) [19,
21, 61, 63]. These studies mainly focused on the impact of the quality variations [4]. This impact
is generally modeled by some statistics of segment quality values and switching amplitudes (i.e.,
differences between consecutive segment quality values) such as average [9, 11, 47, 63], standard
deviation [63], minimum [19], median [19], histogram [61], and time duration on different quality
levels [21].

For long sessions, the primacy and recency are also important factors to be considered. Here,
the primacy (recency) factor refers to the influences of quality degradations near the beginning
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(end) of a session. The authors in Reference [57] found that the primacy and recency both have
significant impacts on the overall quality of a session. Reference [54] studies different temporal
pooling methods, which emphasize different aspects (e.g., recency, lowest quality), for aggregating
objective quality metrics into an overall quality score. In Reference [49], the authors proposed
an overall quality model, taking into account the impacts of the quality variations, primacy, and
recency. Specifically, a session is divided into three temporal intervals. In each interval, the impact
of quality variations is modeled by the frequencies of switching types. Each switching type is
defined based on resolutions and frame rates. To take into account the impact of the primacy
and recency, each interval is simply assigned a weight to represent its contribution to the overall
quality of the session. The experiment results then revealed that the first interval has the highest
weight, and so the largest contribution to the overall quality.

In the latest stage of ITU-T P.1203 standardization for quality assessment of streaming media, a
model (called P.1203) is recommended for predicting the overall quality, where session durations
are from 1 to 5 minutes [41]. The P.1203 model also takes into account the impacts of quality
variations, primacy, and recency. Then, to model the impact of quality variations, the authors used
the average of the segment quality values in each temporal interval and various statistics calculated
over a whole session, such as the total number of quality direction changes and the difference
between the maximum and minimum segment quality. To take into account the impact of the
primacy and recency, the authors used a weighted sum of all segment quality values in the session.

2.3 Cumulative Quality

To the best of our knowledge, the only previous study on the cumulative quality of a streaming
session is in Reference [45], where the authors presented some qualitative observations regarding
the impact of quality variations. However, the authors employed simple simulated sessions of very
short durations (5–15 s) with only one to three segments. It is found that, when there is a quality
variation with a small switching amplitude, the cumulative quality is quite stable. Meanwhile, a
large switching amplitude results in a significant change of the cumulative quality. From these ob-
servations, the authors proposed a cumulative quality model, in which a piecewise linear function
of switching amplitudes was used to quantify the impact of the quality variations.

The preliminary work of our cumulative quality research was presented in Reference [59]. In this
article, the previous work is extended significantly in several aspects. First, we carried out more
subjective tests with new videos and so the dataset is now doubled. Second, factors in the model are
extensively studied with one-way analysis of variance (ANOVA). Third, different window sizes are
analyzed and used for different window quality statistics. Fourth, two additional pooling modes
of window quality values are investigated to validate the efficiency of the proposed model. Fifth,
the model performance is explored in detail and the best setting is recommended. Finally, the
evaluation is extended with seven more related models, two more test sets, and in-depth analysis
of models’ performances with respect to the length of sequences as well as models’ computation
complexity.

The contributions of our work have two general categories. First, we build a dataset that is spe-
cific to the cumulative quality. Our dataset helps to investigate how existing overall quality models
perform cumulative quality prediction. Second, we propose a new cumulative quality model that
can well predict the cumulative quality of streaming sessions. In particular, the distinguished fea-
tures of our study are as follows.

• First, a subjective test was specifically designed for measuring the cumulative quality
of HAS sessions. In our test, there are in total 72 test sequences generated from six 6-
minute-long videos. The total time required for rating these sequences was approximately
160 hours.
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Table 1. Features of Source Videos

Video Content Type Video parameters

Video#1 Slow movements of characters Animated video, Movie 720p, y4m, 24 fps

Video#2 A story about Sintel and her friend, a dragon. Animated video, Movie 720p, y4m, 24 fps

Video#3 Conversations of characters Natural video, Movie 4K, y4m, 24 fps

Video#4 A talk show host analyzing news Natural video, News 720p, mp4, 24 fps

Video#5 A documentary about the science experiment Natural video, Documentary 720p, mp4, 24 fps

Video#6 A soccer match Natural video, Sport 720p, mp4, 24 fps

Fig. 1. Screenshots of source videos.

• Second, through statistical analysis, insights into the impacts of three factors of quality
variations, primacy, and recency are provided. In particular, it is found that the impacts of
the quality variations and recency are significant. However, no significant impact of the
primacy is observed.

• Third, we proposed a new cumulative quality model that takes into account the impacts of
the quality variations and recency. Experiment results show that the proposed model is able
to predict well the cumulative quality of streaming sessions.

• Fourth, a comparison of the proposed model with ten existing models was conducted. This
is the first time a large number of quality models have been investigated for cumulative
quality prediction. Experiment results show that the proposed model outperforms the ex-
isting models.

• Fifth, a performance evaluation of the models for overall quality prediction was also con-
ducted using two open test sets. The results show that the proposed model achieves the
highest prediction performance for both the test sets.

• Sixth, it was found that the proposed model is applicable to real-time quality monitoring
thanks to its low computation complexity. This feature is especially important for cost-
effective evaluation of streaming technologies.

3 SUBJECTIVE TEST FOR CUMULATIVE QUALITY

In this study, to measure the cumulative quality over time, each streaming session was converted
into test sequences of different lengths. In the test, each subject viewed a random sequence and
then rated the quality of the whole sequence. This approach is similar to that used in Reference [45],
where each 15-s-long session was divided into three sequences of 5, 10, and 15 (seconds).

There are in total six 6-minute-long videos used in this study, denoted by Video#1, Video#2,
Video#3, Video#4, Video#5, and Video#6, with features presented in Table 1. Their screenshots
are illustrated in Figure 1. These videos were downloaded from Xiph.org Test Media and YouTube.
Similarly to References [51, 66], audio tracks were removed from the source videos to eliminate the
influence of acoustic information. The videos were then encoded using H.264/AVC (libx264) with
a frame rate of 24 fps. In practice, service providers can use different adaptation sets on their video
streaming platforms. Even, in the future, the setting of adaptation sets is expected to be adaptable to
content characteristics of individual streamed videos [1]. However, most existing studies use only
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Table 2. Average Bitrates of Versions

Version
Average bitrate (kbps)

Video#1 Video#2 Video#3 Video#4 Video#5 Video#6

1 146 187 187 179 455 570
2 196 239 244 310 794 1,034
3 310 333 353 382 1,010 1,304
4 455 482 528 548 1,397 1,823
5 717 717 813 675 1,764 2,295
6 1,118 1,097 1,263 791 2,017 2,647
7 1,751 1,743 2,005 977 2,549 3,330
8 2,802 2,910 3,362 1,303 3,209 4,382
9 4,538 4,993 6,089 1,613 3,930 5,500

Fig. 2. Quality values of versions.

one adaptation set in their experiments [3, 11, 13]. In this study, we used two adaptation sets, each
consisted of 9 versions with different QP values and/or resolutions. In particular, the nine versions
in the first adaptation set have the same resolution of 1280×720 and nine different QP values of 52,
48, 44, 40, 36, 32, 28, 24, and 20. This adaptation set was used to generate the streaming sessions of
Video#1, Video#2, and Video#3. The nine versions in the second adaptation set are different in both
resolution and QP. Specifically, the nine versions correspond to nine combinations of QP values
and resolutions of {24, 256×144}, {26, 426×240}, {24, 426×240}, {26, 640×360}, {24, 640×360}, {26,
854×480}, {24, 854×480}, {26, 1280×720}, {24, 1280×720}. This adaptation set was used to generate
the streaming sessions of Video#4, Video#5, and Video#6. The average bitrates of the versions are
shown in Table 2.

Figure 2 shows the quality values of the versions in MOS, which were calculated using an ana-
lytical function of encoding parameters proposed in Reference [34]. It can be seen that, because of
different content characteristics, the quality of the same version is different across the videos. In
addition, given a source video, the quality values of the versions are (roughly) evenly distributed
over the rating scale from 1 to 5 MOS. It should be noted that, although version 1, which has very
low quality, may be extremely annoying to users, it is still included in our experiment. The reason
is that such low quality versions are currently used on popular video streaming platforms such
as YouTube and Facebook (i.e., 144p or 240p quality versions). The aim is to avoid interruptions
and so ensure smooth streaming, which is the primary objective of HAS [53]. In this study, every
version was divided into short segments with the duration of 1 s.
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Fig. 3. An example of version variations in a streaming session.

For each video, two full-length sessions of 6 minutes were generated by using the adaptation
method of Refernce [58] and two bandwidth traces from a mobile network [32]. The duration of
6 minutes was selected such that it is longer than the average video duration watched on YouTube,
which is 5:01 minutes [33]. The used bandwidth traces have average throughputs varying from
1484.87 to 3432.33 kbps, and standard deviations from 867.01 to 1252.75 kbps. An example of ver-
sion variations in a 6-minute session corresponding to a bandwidth trace is provided in Figure 3. In
general, the selected versions tend to decrease following the bandwidth drops, and vice versa. Es-
pecially, besides smooth version switches (e.g., at the first 60 seconds), the used adaptation method
also results in abrupt switches (e.g., at the 88th second) when the bandwidth falls dramatically. This
enables our dataset to cover both smooth and abrupt switches in practice.

From each full-length session, six test sequences were extracted, from the timestamp 0 to the
1st, 2nd, 3rd, 4th, 5th, and 6th minutes. So, from the six original videos, there were in total 72 test
sequences, with durations from 1 minute to 6 minutes. The total duration of all the test sequences
is 252 minutes. Because a rating time that is longer than 1.5 hours may cause fatigue and bore-
dom [44], the subjective test was divided into four parts that were conducted in different days. The
duration of each part was approximately 1.5 hours, of which about 1 hour was spent for rating the
test sequences. In the rating process, every 20 minutes, there was a break of 10 minutes. In order
to avoid boredom, each subject took part in at most two test parts.

The subjective test was conducted using the absolute category rating method. Test conditions
were designed following Recommendation ITU-T P.913 [44]. In the subject-training stage, the sub-
jects got used to the procedure and the range of quality impairments. In the test, the sequences
were randomly displayed on a black background using a LED screen with the size of 14 inches and
the resolution of 1,366×768. An experimental interface was designed to play the individual test
sequences and record the corresponding ratings. In particular, given a sequence displayed, a 1-s
blank screen with 50% grey was presented at the end of the sequence. After that, each subject gave
a score with the value ranging from 1 (worst) to 5 (best), which reflects his/her option of quality of
the whole sequence. Following a 1-s blank screen with 50% grey, the rating process was repeated
for the next sequence.

There were in total 71 subjects with 43 male and 28 female taking part in the test. They range
in age from 20 to 30. The total time of the test was approximately 160 hours. Screening analysis
of the test results was performed following Recommendation ITU-T P.913 [44], and two subjects
were rejected. After discarding these subjects’ scores, each test sequence was rated by 23 valid
subjects. The MOS of each sequence was computed as the average of the valid subjects’ scores.

The MOSs of the test sequences are shown in Figure 4, where the error bars repre-
sent the 95% confidence intervals. Here each test sequence is denoted by a structure of
{VideoID}_{SessionID}_{Duration}. In particular, VideoID allows to determine the source video used
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Fig. 4. MOSs of test sequences and their 95% confidence intervals.

to generate that sequence (i.e., from Video#1 to Video#6). SessionID is to distinguish the two ses-
sions of the same source video (i.e., S1 or S2). Duration denotes the length of the sequence (i.e., from
1m for 1 minute to 6m for 6 minutes). For example, Video#3_S2_3m denotes the sequence extracted
from the timestamp 0 to the 3rd minute of the second streaming session of Video#3. From Figure 4,
we can see that the cumulative quality varies drastically during a session. In addition, the MOSs
are in the range from 1.3 to 4.7. Also, the 95% confidence intervals are in the range from 0.09 to 0.35.

4 CUMULATIVE QUALITY MODEL

4.1 Overview

To build a cumulative quality model taking into account the impacts of multiple factors, the basic
ideas of our solution are as follows.

• Quality variations over a long session are divided into long-term and short-term changes.
Specifically, short-term changes refer to quality variations of neighboring segments, while
long-term changes refer to quality variations between temporal intervals.

• To represent the impact of long-term changes, the concept of “sliding window” is used.
Specifically, a window of K segments is moved along the session, segment by segment as
illustrated in Figure 5. After each time, a window quality value is computed.

• To represent the impact of short-term changes within a window, an existing overall quality
model is used. For this purpose, such a model is called window quality model. It should be
noted that, besides short-term changes, a window quality model should additionally take
into account the impacts of initial delay and interruptions appearing in the window, since
they are also key factors affecting the human quality perception [4, 23].
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Fig. 5. An illustration of “sliding window” with size K = 3.

• The cumulative quality value at any time point is computed based on window quality values,
taking into account the impacts of factors such as long-term changes and recency. Note that,
at the first time points, when the watched video duration is (very) short (i.e., less than K
segments), the corresponding cumulative quality values are directly computed from the
window quality model.

In the next subsection, a window quality model that is our previous overall-quality model in
Reference [62] (called Tran’s) will be presented. This model was found to be very effective in rep-
resenting the impact of short-term changes, initial delay, and interruptions. In particular, its Pear-
son Correlation Coefficients (PCC) with MOSs is always higher than or equal to 0.90 as reported
in References [61, 62].

4.2 Window Quality Model

A detailed description of Tran’s model for a window (or a short video) was presented and validated
in Reference [62]. In this part, we just highlight the key points of that model. Given a window, it is
assumed that each segment is represented by a quality value, which can be obtained by a subjective
test or by an analytical function of the corresponding encoding parameters [60]. Although a sub-
jective test could provide more reliable results, it is very costly, time-consuming, labour-intensive,
and so difficult to be applied to real-time quality monitoring in practice. To overcome this issue,
some previous studies have proposed analytical functions inputted by encoding parameters to
predict segment quality. It is much simpler and easier to integrate such functions into real service
platforms [34, 39, 56].

In this study, given a window, we first employed the analytical function proposed in Refer-
ence [34] to calculate segment quality values, since its performance was found to be very high in
our previous study [60]. Then, the histogram of segment quality values, the histogram of quality
switches, and the histogram of interruptions were calculated. Finally, a weighted sum was applied
to these histograms to calculate the window quality value. Here the histograms of segment quality
values and quality switches are to represent the short-term quality changes in the window.
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In particular, the qualityWQK
i of window {i |i > 1} is given by

WQK
i = max
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where αn , βi, j , β
um , and γl are model parameters, N is the number of segment quality bins, F

Q
n is

the frequency of segment quality bin B
Q
n , N ×M + 1 is the number of quality switching bins, FV

i, j

is the frequency of down-switching bin BV
i, j , F

um is the total frequency of up-switches and quality

maintaining, and F I
l

is the frequency of interruption bin BI
l
.

Since the initial delay appears only once at the beginning of a session, its impact is just consid-
ered in the first window. Specifically, the first window qualityWQK

1 is computed by

WQK
1 = max
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�
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αnF
Q
n −

N∑
i=1

−1∑
j=−M

βi, jF
V
i, j − βumFum −

L∑
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γlF
I
l − σ log(ID + μ ), 1��

�
, (2)

where ID denotes the duration of the initial delay, σ and μ are model parameters.
As the model parameters αn , βi, j , β

um ,γl ,σ , and μ in Equations (1) and (2) have been already
obtained and validated in References [61, 62], they were reused in this study. In general, a higher
segment quality value has a bigger weight and so a more substantial contribution to the window
quality. For quality switches, a larger switching amplitude has a higher weight and consequently a
more adverse impact. Also, an interruption with the longer duration results in a more severe effect.
It should be noted that the implementation of this model is also included in our public source code.

In the next subsection, effect analysis of the quality variations, primacy, and recency will first
be presented. Then, based on the obtained results, a cumulative quality model will be proposed.

4.3 Proposed Quality Model

As mentioned, to identify the key components of a cumulative quality model, we carried out a
statistic analysis of some window quality values. In particular, the first window quality valueWQK

f

and the last window quality valueWQK
l

were employed to represent the impacts of the primacy
and recency, respectively. For the factor of long-term changes, three window quality statistics are
considered, which are the average window qualityWQK

av , the maximum window qualityWQK
ma ,

and the minimum window qualityWQK
mi of all windows until a given time point.

Suppose that the window is just moved to the N th segment with N ≥ K . By using the window
quality model, the window quality value WQK

N−K+1 is calculated. After that, the window quality

statistics ofWQK
f

,WQK
l

,WQK
av ,WQK

ma , andWQK
mi are updated by the following equations:

WQK
f =WQK

1 , (3)

WQK
l =WQK

N−K+1, (4)

WQK
av =

⎧⎪⎨⎪⎩
WQK

1 , if N = K
W Q K

av×(N−K )+W Q K

N−K+1

N−K+1 , otherwise,
(5)

WQK
mi =

{
WQK

1 , if N = K
min{WQK

mi ,WQK
N−K+1}, otherwise,

(6)

WQK
ma =

{
WQK

1 , if N = K
max{WQK

ma ,WQK
N−K+1}, otherwise

(7)

Table 3 shows the obtained results from one-way ANOVA. To assess the effect size, partial Eta-
squared values (η2

p ) are also reported. In some previous experiments related to the human ability to
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Table 3. Results of Effect Analysis of Window Quality Statistics

Window quality Window size K (seconds)

statistics 10 20 30 40 50 60

WQK
f

F 4.868 1.594 8.589 2.088 7.321 1.478
p 0.027 0.207 0.003 0.149 0.007 0.224
η2

p
0.003 0.001 0.005 0.001 0.004 0.001

WQK
l

F 2.111 0.149 6.959 6.687 18.977 16.063
p 0.146 0.699 0.008 0.010 <0.001 <0.001
η2

p
0.001 0.000 0.004 0.004 0.010 0.008

WQK
av

F 4.103 9.359 0.207 1.404 11.613 44.283
p 0.043 0.002 0.649 0.236 <0.001 <0.001
η2

p
0.002 0.005 0.000 0.001 0.006 0.023

WQK
mi

F 3.826 2.202 3.338 16.730 38.648 6.397
p 0.051 0.138 0.068 <0.001 <0.001 0.012
η2

p
0.002 0.001 0.002 0.009 0.020 0.003

WQK
ma

F 12.075 0.896 1.971 16.366 19.644 6.958
p <0.001 0.344 0.161 <0.001 <0.001 0.008
η2

p
0.006 0.000 0.001 0.009 0.010 0.004

memorize items such as numbers, words, and syllables, the duration of human short-term memory
was found be in range from 15 to 30 s [35, 46]. Therefore, here, the window size K is set from 10 to
60 s with the step size S of 10 s. Obviously, the choice of a step size S has a tradeoff between accuracy
and computation complexity. To determine a suitable step size, we investigated 20 different step
sizes S from 1 to 20. According to the criterion of just noticeable difference, the impact of step
size S on the quality difference between window sizes K is trivial when S < 10, but noticeable for
S ≥ 10. Therefore, the step size S was set to 10 in this article, since it is the smallest value that could
provide significant quality differences between the investigated window sizes. Here, the window
quality model is Tran’s model that is presented in Section 4.2.

Thep values in Table 3 indicate that, for all the considered window sizes, no significant effect was
observed forWQK

f
(i.e., p > 0.001). In contrast, significant results with small effects were obtained

forWQK
l

(i.e., p < 0.001 and η2
p < 0.06) when the window size K is 50 or 60 s. Especially, the larger

effect size was found for the window size of 50 s (i.e., η2
p = 0.010 vs. η2

p = 0.008). This implies that
the impact of the primacy on the cumulative quality can be neglected, while the impact of the
recency has to be considered.

With regard to long-term changes, some significant effects with small sizes were also observed
for WQK

av , WQK
mi , and WQK

ma (i.e., p < 0.001 and η2
p < 0.06). Particularly, the window size cor-

responding to the strongest effect size is 60 s for WQK
av (i.e., η2

p = 0.023), 50 s for WQK
mi (i.e.,

η2
p = 0.020), and 50 s forWQK

ma (i.e., η2
p = 0.010). This implies that the three window quality sta-

tistics of the average, minimum, and maximum quality should be considered.
To sum up, the results suggest thatWQK

l
,WQK

av ,WQK
mi , andWQK

ma should be key components
of a cumulative quality model. Based on these observations, we propose a cumulative quality model
with three different pooling modes of window quality values as follows. It should be noted that,
while the first mode (called Selected) and the second mode (called Broad) include different window
sizes, window quality statistics in the so-called Fixed mode have the same window size.
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4.3.1 Selected Mode. In the Selected mode, we use a weighted sum of four window quality
statistics, namelyWQ50

l
,WQ60

av ,WQ50
mi , andWQ50

ma , that have the strongest effect sizes as analyzed
above. Specifically, the cumulative quality value CQM is calculated by

CQM = w1 ·WQ50
l +w2 ·WQ60

av +w3 ·WQ50
mi +w4 ·WQ50

ma , (8)

wherew1,w2,w3, andw4 are the corresponding weights ofWQ50
l

,WQ60
av ,WQ50

mi , andWQ50
ma com-

ponents, respectively.

4.3.2 Broad Mode. The so-call Broad mode consists of all the window quality statistics whose
effects are significant (i.e., p > 0.001). In particular, the cumulative quality valueCQM is computed
by the following equation:

CQM = a1 ·WQ50
l + a2 ·WQ60

l + a3 ·WQ50
av + a4 ·WQ60

av + a5 ·WQ40
mi + a6 ·WQ50

mi

+a7 ·WQ10
ma + a8 ·WQ40

ma + a9 ·WQ50
ma , (9)

where a1,a2,a3,a4,a5,a6,a7,a8, and a9 are the corresponding weights of WQ50
l
,WQ60

l
,

WQ50
av ,WQ60

av ,WQ40
mi ,WQ50

mi ,WQ10
ma ,WQ40

ma , andWQ50
ma components, respectively.

4.3.3 Fixed Mode. The Fixed mode that contains all the five window quality statistics with the
same window size is given by

CQM = b1 ·WQK
f + b2 ·WQK

l + b3 ·WQK
av + b4 ·WQK

mi + b5 ·WQK
ma , (10)

whereb1,b2,b3,b4, andb5 are the corresponding weights ofWQK
f
,WQK

l
,WQK

av ,WQK
mi , andWQK

ma

components, respectively.
In the next section, we will investigate the performance of the proposed model using the three

pooling modes and different window quality models, in comparison with some existing models.

5 MODEL EVALUATION AND ANALYSIS

5.1 Evaluation Methodology

This section is divided in four evaluations, each aiming at an important question. In the first eval-
uation, we will investigate what is the best window quality model for the proposed model. The
second evaluation aims to determine which pooling mode is most effective for cumulative quality
prediction. The third one is carried out to see if existing overall quality models can predict the cu-
mulative quality, especially in long sessions. The last focuses on the performance of the proposed
model in overall quality prediction, compared to existing models.

There are in total 10 existing models employed in this study, which are denoted by Tran’s [61],
Guo’s [19], Vriendt’s [63], Yin’s [69], P.1203 [29, 37, 41, 48], SQI [13], KSQI [9, 10], Eswara’s [14, 15],
Rehman’s [45], and preCQM [59]. Note that the preCQM model is one proposed in our preliminary
work [59]. In the preCQM model, WQK

ma , which is one of the key components in the proposed
model, is not included. In addition, all the components (or the window quality statistics) have the
same window size. Meanwhile, different window sizes are selected for different components in the
proposed model.

Among these models, only the Rehman’s and preCQM models were proposed for cumulative
quality prediction. Eswara’s model was devoted to continuous quality prediction and the other
models were originally built for overall quality prediction. Similarly to References [12, 13],
to evaluate the performance of existing models, except the P.1203, SQI, KSQI, and Eswara’s
models, we re-implemented the models using the parameter settings stated in the corresponding
publications. The reason is that the implementations of these models are not publicly available.
For the remaining models, we used the corresponding implementations publicized by the original
authors [10, 14, 29, 37, 48].
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In general, given a streaming session, each reference model first calculates segment quality
values using a quality metric. Particularly, the SQI, KSQI, and Eswara’s models use Video Multi-
Method Assessment Fusion (VMAF), which is a metric developed by Netflix [27, 28]. Meanwhile,
the others employ MOS that can be calculated using some analytical functions of encoding pa-
rameters [34, 39, 40]. Next, some statistics such as the average and minimum of segment quality
values are derived. Finally, analytical functions or machine learning algorithms are applied to com-
pute the predicted scores. Note that, in Eswara’s model, we used the mean pooling of continuous
quality values to obtain the predicted cumulative and overall quality scores, which was also used
in the original publication [15]. In addition, following Recommendation ITU-T P.1401 [42], a first
order linear regression between the predicted scores and MOSs was performed for each model to
compensate for possible variances between subjective tests. The obtained coefficients of slope and
intercept will be stated in the following subsections.

For the performance evaluations in cumulative quality prediction, we randomly selected three
videos among the six source videos used in our dataset. The set of all the 36 sequences generated
from these three videos was used as a training set. The 36 remaining sequences constituted a test

set. The selection was repeated
(

6
3

)
= 20 times, resulting in 20 unique pairs of training and test

sets. The training set was used to obtain the model parameters by curve fitting. The test set was
to evaluate the performance of the models. Note that, to obtain MOSs of segments, we used the
analytical function proposed in Reference [34] as described in Section 4.2. In addition, because
there has been no open cumulative quality dataset so far, the evaluation was conducted using only
our dataset. The obtained results will be analyzed in Sections 5.2 and 5.3.

Although many overall quality datasets are publicly available [3, 6, 9, 16, 18, 48], most of them
contain only very short sessions (i.e., less than 1 minute) [9, 11–13] or short sessions (i.e., less
than 3 minutes) [3, 16, 18]. Meanwhile, the average video duration watched on YouTube is up to
5:01 minutes [33] as mentioned in Section 3. In addition, a large number of datasets include only
either quality variations or interruptions [6, 11, 13, 18]. To the best of our knowledge, only P.1203
dataset in [48] includes both short and long sessions with appearances of not only quality varia-
tions but also initial delay and interruptions, which are key factors affecting the human perceived
quality [4]. In particular, this dataset includes two test sets, denoted VL04 and VL13. The VL04

set consists of sixty 1-minute-long sessions, and the VL13 set contains fifteen 4-minute-long ses-
sions. Note that, in these sets, MOSs of segments have been already provided (denoted O.34 in the
original publication [48]), which were calculated by the P.1203 model at input mode 3. A detailed
discussion on the obtained results will be presented in Section 5.4.

In order to measure the performance of the models, we used two metrics of PCC and Root-Mean-
Squared Error (RMSE). For cumulative quality prediction, the PCC and RMSE values reported be-
low were calculated over the 20 test sets of our dataset. Meanwhile, for overall quality prediction,
the PCC and RMSE values were derived over the two test sets of VL04 and VL13 in the P.1203
dataset. Since the capability of real-time processing is an especially important feature for cumu-
lative quality models, we also measured the computation complexity of the models. In this study,
the computation complexity was measured as the average time required to obtain a cumulative
quality value per 1-s-long segment. The measurement was conducted on a computer with Intel
Core i3-2120 processor at 3.30 GHz and 8 GB RAM.

5.2 Performance Analysis of CQM Model in Cumulative Quality Prediction

In this subsection, we first investigate the performance of the proposed model using different
window quality models. Our goal is to find the best window quality model for the proposed model.
Then, to determine the best pooling mode, a performance comparison between the three pooling
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Fig. 6. Average performance of the proposed model using different window quality models over 20 test sets.

Table 4. Average and Median Performances of CQM Model Using Different Window Quality Models

with the Selected Mode

Window quality

model

Average performance Median performance

Training sets Test sets Training sets Test sets

PCC RMSE PCC RMSE PCC RMSE PCC RMSE
Tran’s [61] 0.94 0.26 0.94 0.28 0.94 0.26 0.94 0.29
Guo’s [19] 0.91 0.30 0.91 0.31 0.91 0.31 0.91 0.32

Vriendt’s [63] 0.93 0.27 0.93 0.28 0.94 0.28 0.94 0.29
Yin’s [69] 0.92 0.29 0.92 0.29 0.93 0.30 0.93 0.30

P.1203 [41] 0.92 0.30 0.92 0.30 0.92 0.30 0.92 0.30
SQI [13] 0.80 0.47 0.80 0.47 0.79 0.47 0.79 0.47
KSQI [9] 0.80 0.47 0.80 0.47 0.79 0.47 0.79 0.47

modes is carried out. Finally, for quantitative analysis on the contributions of the components in
the proposed model, the model parameters are determined and discussed.

5.2.1 Window Quality Model. In this part, a performance evaluation of the CQM model using
different window quality models will be presented. In particular, the seven overall quality models
of Tran’s, Guo’s, Vriendt’s, Yin’s, P.1203, SQI, and KSQI are employed to obtain window quality
values. Note that these models all take into account the impact of short-term changes. Further, note
that Eswara’s is a continuous quality model and Rehman’s and preCQM are cumulative quality
models, which were not used here, but are only used later for comparison purpose.

Figure 6 depicts the average performance of the proposed model with the three pooling modes
using the different window quality models over the 20 test sets. Note that, similar to Section 4, the
window size in the Fixed model is also set from 10 to 60 s with the step size of 10 s. It can be seen
that, regardless of the pooling modes, the performance of the CQM model is generally good with
all the window quality models (i.e., PCC ≥ 0.84), except SQI and KSQI.

Especially, for all the pooling modes, the use of Tran’s model as a window quality model always
provides the best prediction performance. Specifically, the average PCC values are in range from
0.91 to 0.94 and the average RMSE values are from 0.28 to 0.36. Table 4 shows the average and me-
dian performances of the CQM model with the Selected mode using the different window quality
models. It can be seen that, when using the window quality model of Tran’s, the proposed model
achieves very high performance in both average and median. In particular, the average PCC and

                                                                                       



                                                 22:15

Fig. 7. Average performance of the CQM model using different pooling modes with the window quality

model of Tran’s.

RMSE values are 0.94 and 0.26 for the training sets, and 0.94 and 0.28 for the test sets. In addition,
the median PCC and RMSE values are 0.94 and 0.26 for the training sets, and 0.94 and 0.29 for the
test sets. The main reason is that, for modeling the impact of short-term changes, Tran’s model uti-
lizes the histograms of segment quality values and quality switches (as mentioned in Section 4.2),
which are shown to be more effective than the statistics used in the remaining models [60]. From
the results, it is suggested that Tran’s model should be used to calculate window quality values in
the proposed model.

For the window quality models of SQI and KSQI, their performances are significantly lower
than those of the other models as presented in Figure 6. Particularly, their average PCC values are
lower than or equal to 0.82. Note that similar PCC values of these two models were also reported in
Reference [9] (i.e., PCC = 0.76 for the SQI model and PCC = 0.79 for the KSQI model). One possible
reason is that these models were originally built based on very short sessions (i.e., 8- and 10-s-long
sessions). Therefore, when calculating window quality values with the large sizes K of 50 and 60,
they do not perform very well. Also, compared to small window sizes (i.e.,K ≤ 30), the Fixed mode
using the two models with large window sizes (i.e., K ≥ 40) has consequently lower performance
as shown in Figure 6. However, all the cases result in quite low performances, suggesting the SQI
and KSQI models are not very effective to calculate window quality values in the proposed model.

Since the Tran’s model provides the best performance, it is used as the window quality model
in the rest of this article.

5.2.2 Pooling Mode. In this part, we investigate the performance of the proposed model using
the different pooling modes. The obtained results are shown in Figure 7. It can be seen that the
average performances of all the modes are quite high (i.e., PCC ≥ 0.91 and RMSE ≤ 0.36 for the test
sets). Obviously, the Broad mode has the highest PCC and the lowest RMSE for the training sets as
it includes much more parameters than the others. However, for the test sets, the best performance
is derived by the Selected mode (i.e., PCC= 0.94 and RMSE= 0.28). One possible reason of the lower
performance of the Broad mode could be an over-fitting phenomenon because of its large number
of parameters [8]. Regarding the Fixed mode, its performance with any window size K is always
lower than that of the Selected mode for the test sets. This implies that, in comparison to using
the same window size, the use of different window sizes for different window quality statistics is
more effective in cumulative quality prediction.

Regarding the computation complexity of each pooling mode, it mainly depends on (1) the
number of different window sizes (denoted Nws ) and (2) the number of window quality statistics
(denoted Nwqs ) employed in that mode. A higher value of either Nws or Nwqs results in a
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Table 5. Computation Complexity of the Proposed Model Using Different Pooling

Modes of Window Quality Values

Pooling mode Nwqs Nws

Computation

complexity (ms)
In serial In parallel

Selected 4 2 0.31 0.16
Broad 9 4 0.60 0.16

Fixed

K = 60

5 1

0.16
K = 50 0.16
K = 40 0.15
K = 30 0.17
K = 20 0.15
K = 10 0.15

larger computation complexity. Note that, although the impact of Nws is more severe, it can be
eliminated by parallel processing of different window sizes.

Table 5 shows the computation complexity of the three modes in serial and parallel processing
when using the same window quality model of Tran’s. It can be seen that, while the computation
complexity of all the modes is similar for parallel processing (i.e., about 0.16 ms), there are signif-
icantly differences reported for serial processing. Particularly, the Broad mode has approximately
two times as much computation complexity as the Selected mode has (i.e., 0.60 vs. 0.31). The main
reason is that Nws of the Broad mode is about two times higher than that of the Selected mode.
In a similar way, the computation complexity of the Selected mode is also more than half of the
Fixed mode. However, it can be seen that the complexity of all the modes is lower than 1 ms for
both serial and parallel processing. Therefore, the predicted cumulative quality can be updated
after every segment as the window slides forward. In other words, all the modes are applicable to
real-time quality monitoring.

From the above discussions, we can conclude that the Selected mode, which includes the four
window quality statistics with the different window sizes, is really efficient and effective for cu-
mulative quality prediction, especially in parallel processing. Therefore, it will be used in the rest
of this article.

5.2.3 Analysis of Model Parameters. In this subsection, we first determine the model parameters
by averaging the individual parameters obtained using the 20 training sets. Next, based on these
parameters, quantitative analysis on the contributions of the components are provided.

In particular, the cumulative quality model is given by

CQM = w1 ·WQ50
l +w2 ·WQ60

av +w3 ·WQ50
mi +w4 ·WQ50

ma , (11)

= 0.31 ·WQ50
l + 0.37 ·WQ60

av + 0.31 ·WQ50
mi + 0.01 ·WQ50

ma . (12)

The positive numerical values of the weightsw1,w2,w3, andw4 reconfirm the observations in Sec-
tion 4 thatWQK

l
,WQK

av ,WQK
mi , andWQK

ma are key components of the cumulative quality model.
Also, the impacts of the quality variations and recency are significant on the cumulative quality
of a session. In addition, it can be seen that w2 is highest while w4 is lowest. So the impact of the
average window quality is strongest, and the impact of the maximum window quality is weakest.

It is interesting to note that these results are in agreement with the peak-end rule [24]. The
peak-end rule says that users judge an experience largely at its lowest peak and at its end. Here the
peaks (lowest and highest) of a session are the minimum window qualityWQ50

mi and the maximum
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Fig. 8. Average performance of models with different sequence lengths.

window qualityWQ50
ma . Also, the end of a session is the last window qualityWQ50

l
. It can be seen

that the sum ofw1 andw3 is 0.62 while the sum of the others is 0.38. Therefore, the human cumula-
tive quality perception also mainly depends on the lowest peak (or the minimum window quality)
and the end (or the last window quality). In comparison between the (lowest and highest) peaks,
the lowest one has more substantial impact asw3 is much higher thanw4. The possible explanation
is that users tend to pay more attention to the worst discomfort [24]. In the case of speech quality,
a large impact of the minimum quality on QoE was also shown [25]. Also, Reference [54] showed
that a good temporal pooling method is taking the average over the whole session, implying that
WQ60

av is a key influence factor. Thus all the key factors of the proposed model are inline with the
findings in previous studies. Yet, the CQM model is the first one that integrates these factors into
a single model for predicting the cumulative quality of HAS sessions.

5.3 Model Comparison in Cumulative Quality Prediction

In this subsection, we compare the CQM model and the ten existing models in terms of the per-
formance and the computation complexity in cumulative quality prediction. Figure 8 shows the
average performances of the models with different sequence lengths. We can see that, when the
sequence length is 1 minute, the PCC values of Tran’s, Guo’s, Vriendt’s, Yin’s, P.1203, SQI, and
KSQI models are high (i.e., PCC ≥ 0.92). This suggests that these models can predict well the over-
all quality of a short session, and thus most of them can be used as window quality models with
good performance as discussed in Section 5.2.1.

However, when the sequence length increases, the PCC values of the models tend to decrease.
Among the models, the PCC of the CQM model is highest for all the sequence lengths, implying
that CQM is the best model for cumulative quality prediction of streaming sessions. Meanwhile, the
performances of Eswara’s and Rehman’s models are lowest. A possible explanation is that Eswara’s
model was actually developed for continuous quality prediction, but not cumulative quality pre-
diction. The mean pooling strategy of continuous quality values used in this model may be not
an effective way to predict the cumulative quality values. For Rehman’s model, it was originally
designed for cumulative quality prediction of only very short sessions with a duration of 5–15 s.
Thus it is not really suitable for longer sessions (i.e., 1–6 minutes). In addition, there is no simul-
taneous consideration for long-term changes and recency in Tran’s, Guo’s, Vriendt’s, Yin’s, SQI,
KSQI, Eswara’s, and Rehman’s models, so their performances are all lower than that of the CQM
model. It turns out that the simple preCQM model’s performance is only a little worse than that
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Table 6. Average Performances and Computation Complexity of the Models in

Cumulative Quality Prediction

Model
Coefficients Performance (Test set) Computation

Slope Intercept PCC RMSE complexity (ms)

Tran’s [61] 1.24 −1.27 0.91 0.31 0.23
Guo’s [19] 1.01 −0.25 0.76 0.48 0.01
Vriendt’s [63] 1.02 −0.41 0.89 0.35 0.02
Yin’s [69] 1.07 −0.79 0.85 0.41 0.07
P.1203 [41] 1.04 −0.93 0.91 0.32 1817.25
SQI [13] 2.48 −8.17 0.84 0.40 2.57
KSQI [9] 2.47 −8.12 0.84 0.39 4.31
Eswara’s [15] 0.69 0.72 0.72 0.70 0.36

Rehman’s [45]
25.11 −26.68 0.63 0.56 0.06

preCQM [59] — — 0.93 0.33 0.16
CQM — — 0.94 0.28 0.16

Fig. 9. An example of the cumulative quality values of a streaming session.

of the CQM model. It is mainly because the impact of maximum window quality is actually small
in the obtained CQM model.

Table 6 summarizes the average performances and the computation complexity of the models.
Here, the PCC and RMSE are averaged over the 20 test sets containing sequences of different
lengths. We can see that the results of performances are similar to those in Figure 8. In particular,
the performance of the CQM model is highest and the performances of Eswara’s and Rehman’s
model are lowest.

Regarding the computation complexity, it can be seen that the CQM model takes less than 1ms
to obtain a cumulative quality value, and so it is applicable to real-time quality monitoring as
presented in Section 5.2.2. It should be noted that here the computation complexity of the CQM
model is in case where different window sizes are computed in parallel.

For the P.1203 model, its computation complexity is considerably higher than the others. In
particular, the P.1203 model takes an average of 1.81 s to calculate a cumulative quality value.
Meanwhile, the remaining models have an average processing time less than 5 ms per cumulative
quality value.
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Table 7. Performance of the Models in Overall Quality Prediction for VL04 and VL13 Sets

Test set VL04 (1-minute) VL13 (4-minute)

Model
Coefficients Performance Coefficients Performance

Slope Intercept PCC RMSE Slope Intercept PCC RMSE

Tran’s [61] 0.79 0.82 0.90 0.39 1.17 −0.60 0.90 0.46
Guo’s [19] 0.75 0.67 0.72 0.62 0.94 0.22 0.75 0.68
Vriendt’s [63] 0.80 0.50 0.71 0.63 1.10 −0.44 0.80 0.62
Yin’s [69] 0.55 1.61 0.80 0.54 0.65 1.35 0.86 0.53
P.1203 [41] 1.04 0.08 0.88 0.42 1.18 −0.51 0.92 0.40
SQI [13] N/A N/A N/A N/A N/A N/A N/A N/A
KSQI [9] N/A N/A N/A N/A N/A N/A N/A N/A
Eswara’s [15] N/A N/A N/A N/A N/A N/A N/A N/A
Rehman’s [45] 4.00 −1.94 0.36 0.87 4.00 −1.59 0.29 1.03
preCQM [59] 0.94 1.06 0.90 0.40 1.23 0.16 0.90 0.44
CQM 0.79 0.83 0.90 0.39 1.22 −0.66 0.92 0.40

To better understand the cumulative quality, Figure 9 shows the MOSs and the predicted scores
by the CQM model corresponding to the adaptation result in Figure 3. We can see that the predicted
scores closely follow to the MOSs. In addition, the cumulative quality fluctuates strongly during
the session. This means that evaluating the overall quality at the end of a streaming session is
obviously not enough to fully understand the quality of the video streaming service. So, cumulative
quality over time is of crucial importance in adaptive streaming.

5.4 Model Comparison in Overall Quality Prediction

In this subsection, the focus is on the performance of the models for overall quality prediction.
The obtained results are shown in Table 7. Note that the SQI, KSQI, and Eswara’s models are not
evaluated in this section because of the lack of input data (i.e., VMAF values of segments). We can
see that the behaviors of the models are similar to those obtained in cumulative quality prediction
(as presented in Table 6). In particular, for both of the VL04 and VL13 sets, the performance of the
Rehman’s model is lowest (i.e., PCC ≤ 0.36 and RMSE ≥ 0.87) while the performance of the CQM
model is highest (i.e., PCC ≥ 0.90 and RMSE ≤ 0.40).

Interestingly, although the CQM model does not directly include the impacts of initial delay
and interruptions, it still performs very well for both the test sets containing these two factors.
This is because their impacts are actually counted in the window quality model. Therefore, thanks
to taking into account the impacts of various factors, namely quality variations (i.e., both long-
term and short-term changes), recency, initial delay, and interruption, the proposed model could
perform well and outperform the reference models for overall quality prediction.

In particular, with the VL04 set including short sessions, Tran’s and CQM models achieve the
highest performance that is slightly higher than those of the preCQM and P.1203 models. Specifi-
cally, the PCC and RMSE values are respectively 0.90 and 0.39 for Tran’s and CQM models, 0.90 and
0.40 for the preCQM model, and 0.88 and 0.42 for the P.1203 model. Meanwhile, the performances
of the other models are quite low (i.e., PCC ≤ 0.80 and RMSE ≥ 0.87).

For the VL13 set with long sessions, the similar conclusions can also be drawn. Particularly, the
performances of Tran’s, P.1203, preCQM, and CQM models are markedly higher compared with
the others (i.e., PCC ≥ 0.90 and RMSE ≤ 0.46). Among these four models, Tran’s model has the
lowest performance (i.e., PCC = 0.90 and RMSE = 0.46) while the P.1203 and CQM models achieve
the highest performance (i.e., PCC = 0.92 and RMSE = 0.40). The reason may be that Tran’s model
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was originally designed for short sessions of 1 minute. Meanwhile, the others were built for various
lengths (i.e., 1–5 minutes for the P.1203 model and 1–6 minutes for the preCQM and CQM models).

5.5 Remarks

Based on the above results and discussions, some remarks on cumulative quality prediction can
be summarized as follows.

• Regarding the impacts of factors, the recency and quality variations (i.e., long-term changes)
were found to have significant effects on the cumulative quality of streaming sessions.
Meanwhile, the influence of the primacy can be neglected.

• To reflect the impacts of the recency and quality variations, the four window quality statis-
tics, namely the last, average, maximum, and minimum window quality, were found to be
essential in a cumulative quality model. Especially, it was found that the human cumulative
quality perception mainly depends on the minimum and last window quality, which is in
agreement with the peak-end rule. In comparison with the maximum window quality, the
minimum window quality has more substantial impact. This result suggests that, compared
to the best comfort, users tend to pay more attention to the worst discomfort.

• With respect to the window quality model, most of the investigated models performed
very well. The highest performance was achieved when using the window quality model of
Tran’s.

• In comparison to using the same window size, it is more effective to employ different win-
dow sizes for different window quality statistics. Also, it was suggested to use the window
sizes of 50 and 60 in cumulative quality models.

• As for the three pooling modes proposed in this article, they all derived quite high prediction
performances. Especially, the Selected mode, which achieved the highest performance, was
found to be both effective and efficient in cumulative quality prediction.

• In regard to the computation complexity of the proposed model, it mainly depends on the
number of different used window sizes. But this can be effectively supported by parallel
processing. For both serial and parallel processing, all the pooling modes in the proposed
model take less than 1 ms to update the cumulative quality after every segment. Therefore
the proposed model (with any mode) is applicable to real-time quality monitoring.

• Based on the experiment results, the CQM model was found to be very effective and out-
perform the 10 reference models for both cumulative and overall quality predictions.

6 CONCLUSIONS AND FUTURE WORK

In this article, we have presented a model for predicting the cumulative quality of adaptive video
streaming. The proposed model was developed based on the concept of a “sliding window” over a
streaming session, where each window is characterized by a quality value.

First, a subjective test was specifically designed and conducted for measuring the cumulative
quality. Second, through statistical analysis, it was found that the impacts of the quality varia-
tions and recency are significant. We integrated the significant key components, namely, the last
window quality, the average window quality, the minimum window quality, and the maximum
window quality, into a new cumulative quality model CQM, which is able to accurately predict
the cumulative quality of streaming sessions. The advantage of the proposed CQM model is its
simplicity, while being inline with other well known effects from literature, namely, the applica-
bility of simple temporal pooling plus the peak-end rule.

The CQM model was compared with ten existing models, where it could outperform the other
models in predicting both the cumulative and overall quality. Moreover, the proposed model is
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applicable to real-time quality monitoring thanks to its low computation complexity. This feature
is especially important for cost-effective evaluation of streaming technologies, e.g., for real-time
quality monitoring of video streams. In the future, the model will be used to assess the quality of
different adaptive streaming techniques. Also, we will develop novel quality adaptation strategies,
which are based on the CQM model.
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