
2007

ViCrypt to the Rescue: Real-Time,
Machine-Learning-Driven Video-QoE

Monitoring for Encrypted Streaming Traffic
Sarah Wassermann, Michael Seufert , Member, IEEE, Pedro Casas , Member, IEEE, Li Gang, and Kuang Li

Abstract—Video streaming is the killer application of the
Internet today. In this article, we address the problem of real-
time, passive Quality-of-Experience (QoE) monitoring of HTTP
Adaptive Video Streaming (HAS), from the Internet-Service-
Provider (ISP) perspective – i.e., relying exclusively on in-network
traffic measurements. Given the wide adoption of end-to-end
encryption, we resort to machine-learning (ML) models to esti-
mate multiple key video-QoE indicators (KQIs) from the analysis
of the encrypted traffic. We present ViCrypt, an ML-driven
monitoring solution able to infer the most important KQIs for
HTTP Adaptive Streaming (HAS), namely stalling, initial delay,
video resolution, and average video bitrate. ViCrypt performs
estimations in real-time, during the playback of an ongoing video-
streaming session, with a fine-grained temporal resolution of
just one second. For this, it relies on lightweight, stream-like
features continuously extracted from the encrypted stream of
packets. Empirical evaluations on a large and heterogeneous cor-
pus of YouTube measurements show that ViCrypt can infer the
targeted KQIs with high accuracy, enabling large-scale passive
video-QoE monitoring and proactive QoE-aware traffic manage-
ment. Different from the state of the art, and besides real-time
operation, ViCrypt is not bound to coarse-grained KQI-classes,
providing better and sharper insights than other solutions.
Finally, ViCrypt does not require chunk-detection approaches
for feature extraction, significantly reducing the complexity of
the monitoring approach, and potentially improving on general-
ization to different HAS protocols used by other video-streaming
services such as Netflix and Amazon.

Index Terms—Network monitoring, QoE, HTTP adaptive video
streaming, machine learning, encrypted traffic.

I. INTRODUCTION

V IDEO streaming is one of the key applications of the
Internet. To satisfy end users and avoid customer churn,

Internet Service Providers (ISPs) strive to deliver a high
video-streaming Quality of Experience (QoE). The intensify-
ing competition among operators is forcing ISPs to integrate

Sarah Wassermann and Pedro Casas are with the Center for Digital Safety
and Security, AIT Austrian Institute of Technology, 1210 Vienna, Austria
(e-mail: sarah@wassermann.lu; pedro.casas@ait.ac.at).

Michael Seufert is with the Institute of Computer Science, University
of Würzburg, 97070 Würzburg, Germany (e-mail: michael.seufert@uni-
wuerzburg.de).

Li Gang and Kuang Li are with the Huawei Technologies Company Ltd.,
Shenzhen 518129, China.

Digital Object Identifier 10.1109/TNSM.2020.3036497

QoE into the core of their network-management systems,
from network monitoring and reporting to traffic engineering.
The goal of network operators is not only to operate their
networks efficiently, but also to avoid severe degradations of
the subjective experience.

Network-traffic monitoring has traditionally relied on the
usage of Deep-Packet-Inspection (DPI) techniques to under-
stand the performance of the services and applications
used by their customers. In particular for video-streaming
services, analyzing the payload of the packets containing video
information could be used to understand the status of the
video-player buffer [1], [2], shedding light on the video-
playback performance. ISPs have no longer access to such
information in the nowadays widespread scenario of TLS
encryption, turning the monitoring of video-streaming QoE
into a daunting and challenging task.

In this article, we present ViCrypt, an ML-driven moni-
toring solution able to estimate and continuously track the
most relevant Key QoE Indicators (KQIs) for HTTP Adaptive
Streaming (HAS), in real time, and using as input features
derived from raw network-traffic measurements – basically,
packet size and arrival time. The targeted KQIs include re-
buffering events or stallings, initial playback delay, video
resolution, and average video bitrate. To do so, ViCrypt ana-
lyzes ongoing streaming sessions using fine-grained time slots
of one-second length, computing multiple lightweight, statis-
tical features from the video traffic in a stream-based fashion.
Besides per-time-slot features, ViCrypt additionally computes
features for different temporal aggregations of past slots,
including a short-term memory capturing the last t slots, as
well as a long-term memory, aggregating all time slots since
the start of the video session. At the end of each one-second
time slot, all these features are fed into ML models, which
estimate the video resolution, average bitrate, and stalling
of this slot. To the best of our knowledge, this is by now
the finest time granularity for real-time estimation of Key
QoE Indicators (KQIs) from encrypted traffic. ViCrypt pro-
vides fine-grained estimations, either by building classification
models with many quality classes – e.g., for video resolution
analysis – or by building regression models – e.g., for video-
bitrate analysis. Such a combined fine-grained temporal scope
and estimation resolution allows ViCrypt to provide better and
sharper insights into video HAS QoE than other solutions.

Indeed, while there have been already multiple proposals
presented in the past to deal with this inference problem, the

https://orcid.org/0000-0002-5036-5206
https://orcid.org/0000-0002-0951-2331

2008

contributions brought by ViCrypt exceed the state of the art
as follows:

1 – Fine-Grained, Real-Time Operation: ViCrypt estimates
the most important KQIs, i.e., initial delay, stalling, and visual
quality, as well as the video bitrate in real time during the
streaming of a video session with a fine-grained temporal
resolution of just one second. This is the smallest gran-
ularity proposed so far, enabling quick anomaly detection
and troubleshooting approaches, as well as proactive traffic
management.

2 – Stream-Based Feature Computation in Constant Memory
Without Requiring Chunk Detection: Different from all
previously presented proposals, ViCrypt continuously extracts
features from the encrypted stream of packets in a stream-like
manner, using a bounded and lightweight memory footprint.
This enables the execution of ViCrypt on top of memory-
constrained hardware, such as set-top boxes or home routers,
which are nowadays the preferred devices for conducting
end-customer monitoring by major vendors. Indeed, ViCrypt
targets the monitoring of video-streaming QoE from devices
installed near the end-user, which do not necessarily belong to
the ISP – but to the vendor – and where traffic load enables
real-time monitoring with limited hardware. ViCrypt features
are based on packet-level statistics and their computation does
not require chunk-detection mechanisms, removing the extra
overheads and errors introduced by such a detection step.

3 – Fine-Grained Estimation: ViCrypt tackles substantially
more precise estimation tasks than previous work [3], [4]. In
fact, ViCrypt estimates the six most common different video-
resolution classes – 144p, 240p, 360p, 480p, 720p, and 1080p
– instead of discriminating between low and high resolution.
In addition, it provides a continuous estimation of the average
video bitrate by relying on regression techniques.

4 – Extensive Machine-Learning-Model Benchmarking:
Also unlike previous work, we devote a significant part of
this study to benchmark different ML algorithms and evalu-
ate their performance using different sets of inputs, carefully
engineered by automatic feature-selection approaches to limit
the number of required input data for proper execution.

5 – Empirical Validation Over a Heterogeneous YouTube
Dataset: Last but not least, we show that ViCrypt performs
accurately under a very heterogeneous set of scenarios. For
this, we empirically tested the system over a large dataset
of more than 15,000 streaming sessions of different YouTube
videos. The dataset covers different access technologies (WiFi
and LTE), transport protocols (QUIC and TCP), bandwidth
configurations, players, and devices (browser player in laptops
and native YouTube application in smartphones), and measure-
ments were collected at four different ISPs in four different
EU countries. This is an additional advantage over the state of
the art, where proposals are generally validated using fewer
or less representative scenarios.

This article is based on our preliminary work on ViCrypt
[5]–[7]. Here, however, we provide not only a top-level view
on the ViCrypt approach, but also present in detail differ-
ent procedures for the extraction of features using constant
memory. In contrast to our previous work, which focused
mainly on a single ML model and a single KQI, this article

presents an extensive benchmark of different ML models, tar-
geting the estimation of all relevant KQIs for video streaming,
including stalling, initial delay, video resolution, and bitrate.
Moreover, we investigate the impact of different feature sets
on the estimation of the targeted KQIs, and present results
on the practical applicability of ViCrypt for real-time feature
extraction and video-QoE prediction.

The remainder of the paper is organized as follows. In
Section II, we describe related work on QoE of adaptive video
streaming and QoE-based network monitoring approaches.
In Section III, we present ViCrypt and introduce its basic
concepts, detail the features and the extraction process, and
describe the collected datasets used for performance evalua-
tion. We benchmark the prediction performance of ViCrypt for
all the proposed targets in Section IV. In Section V, we analyze
the importance of different input feature sets, as well as their
impact on inference results, and Section VI discusses practical
considerations for real-time operation. Section VI additionally
presents a reference performance comparison of the results
achieved by ViCrypt to the results realized by two relevant
competitors in the state of the art, as reported in their corre-
sponding papers. While only useful for referencing purposes,
such as comparison allows to position ViCrypt in the space of
real-time video-QoE monitoring for encrypted network traffic.
Finally, Section VII concludes this article.

II. RELATED WORK

A. Video-Streaming QoE Context

In the past, video streaming mostly suffered from waiting
times, namely stalling, caused by re-buffering events [8]–[10],
and also from initial delay, i.e., the time until the start of the
playback [11]. In the last years, these degradations have been
partially mitigated by adapting the video bitrate to the network
conditions, using HAS or Adaptive Bitrate (ABR) stream-
ing technology. To operate HAS video streaming, the video
content must be available in multiple bitrates, i.e., quality
levels, and split into small segments or chunks, each con-
taining a few seconds of playtime. The client-side adaptation
logic requests the next chunk of the video in an appropri-
ate bitrate, such that the initial delay is minimized, stalling
is avoided, and the quality level is maximized to best utilize
the available bandwidth. The decisions of the adaptation logic
are typically based on the current bandwidth and/or buffer
status [12], [13], but might take into account other aspects,
such as client characteristics or fairness among competing
clients [14]. The HAS streaming technology is adopted by a
wide range of applications and video content providers, such
as YouTube, Netflix, Amazon, and has been standardized as
MPEG Dynamic Adaptive Streaming over HTTP (DASH) in
ISO/IEC 23009-1 [15].

Changing the video bitrate also means modifying the visual
quality of the streamed video, e.g., in terms of resolution,
frame rate, or compression, which introduces an additional
impact on QoE. An interesting finding on the impact of HAS
on QoE [8], [16]–[19] is that, rather than quality changes,
the most relevant effect to monitor is the fraction of total
played time during which the video is played-out at a high

2009

visual quality; the higher this time, the better the QoE. As
a consequence, ISPs are highly interested in solutions able
to estimate video resolution levels, which can serve to detect
events when the played out quality level drops as soon as
they happen, to take appropriate countermeasures. For exam-
ple, thinking towards a more proactive network-management
paradigm, ISPs would like to additionally estimate and predict
the video bitrate to adjust the network configuration in time.
This could include appropriately shaping the allocated band-
width or selecting suitable routes for the streaming traffic,
which would avoid further QoE degradation.

The trend towards end-to-end encryption (e.g., HTTPS) has
significantly reduced the visibility of network operators on
the traffic of their customers, making the monitoring process
more challenging and cumbersome. It is no longer possible
to rely on Deep Packet Inspection (DPI) to analyze the video
data contained in each packet and reconstruct the streaming
process and the video buffer [1], or to intercept and ana-
lyze segment requests. The encrypted stream of packets offers
only very basic information about the streaming process, such
as packet sizes and inter-arrival times, which has brought
machine-learning (ML) based approaches to the center of the
academic and industrial attention.

B. State of the Art

Previous studies on QoE for HTTP Adaptive Streaming
(HAS) [8] confirm that stalling, initial delay, and quality adap-
tation are the most dominant QoE factors in HAS. Although
adaptation is less severe than stalling [20], its impact on QoE
should not be neglected. Indeed, each adaptation dimension
(e.g., resolution, frame rate, quantization) has a specific impact
on the perceived quality [8].

It has been shown that a quality switch implies a QoE
degradation, and that the QoE changes according to the adap-
tation direction, even though switching down the video quality
will have a stronger negative impact on video QoE [21]. The
adaptation amplitude is the most dominant factor and a high
amplitude leads to a low QoE, while low amplitudes might
not be detectable [22]. Although a high frequency of quality
adaptations will be annoying for end users [22], the actual
quality changes have little impact on QoE. Only the result-
ing reduction of the time on high quality causes the QoE
degradation [16], [17].

Due to the trend towards end-to-end encryption, DPI-based
approaches are no longer effective. This has motivated a
recent trend in QoE-based network monitoring using low-level
network measurements rather than relying on application-
layer metrics. While some approaches explicitly tackle the
QoE of mobile applications [23]–[25], there are also general
approaches for QoE analysis based on network-layer mon-
itoring of encrypted video-streaming traffic. Authors in [3]
evaluate ML-based architectures that estimate YouTube QoE
using features derived from packet sizes, inter-arrival times,
and throughput measurements. A similar approach is presented
in [26], where authors rely on measurements in cellular
networks to estimate typical QoE indicators for streaming
services (e.g., played resolutions, stalling events), based on

features such as round-trip times, packet loss, and chunk sizes.
In that study, authors also use ML as a promising technique
for large-scale quality monitoring and analysis. The authors
of [27] estimate video-quality metrics (initial delay, stalling
ratio, number of stallings, total stalling time) and user engage-
ment for YouTube videos watched on smartphones, relying on
ML and network-layer features. Reference [28] focuses on the
reconstruction of buffered playtime at the video player side,
as previously done in [2], but for encrypted traffic. This is
leveraged to estimate video-QoE metrics in [29].

The two most similar approaches to ViCrypt are
Requet [30], and the system presented in [4]. ViCrypt improves
on both in multiple aspects: (i) while both approaches claim
to be real-time, there is no evaluation of the computational
costs required during the feature-extraction procedures, ques-
tioning their claims; in addition, for some of the targets,
Requet has a temporal resolution based on chunk lengths
(typically several seconds of a video), and [4] operates at
a 10-second time scale, both significantly higher than for
ViCrypt. This impacts their usability in practice for critical
real-time monitoring applications, such as troubleshooting; (ii)
while Requet also provides the same fine-grained classes for
estimation of video resolution as ViCrypt, estimations in [4]
are coarser-grained, with just few classes. Moreover, video
bitrate, which is especially relevant for ISPs, is not inferred
by their systems; (iii) while ViCrypt operates directly on the
stream of packets at the network and transport layers, Requet
requires chunk-detection mechanisms to extract chunk-based
features, which is error-prone and introduces additional delays
and complexities.

Other relevant differences between our study and the
previous studies presented in [30] and [4] are reported in
Table I; the table offers a comprehensive overview on the prop-
erties of the proposed solutions in terms of type and detail of
the predicted KQIs, input features, monitoring capabilities, and
datasets used for training and testing purposes.

III. VICRYPT FUNDAMENTALS

This section presents the fundamental concepts behind
ViCrypt. As it has been shown in previous work
[3]–[7], [26], [30], it is possible to extract features from the
(encrypted) stream of packets which have strong correla-
tion to different QoE-relevant metrics, such as re-buffering
or video resolution, and to build ML models bridging the
gap between network features and QoE metrics. This is also
the approach followed by ViCrypt. Our system subdivides a
video-streaming session into a sequence of time slots hav-
ing a constant length. Throughout this work, we use a slot
length of 1 s, which constitutes a good trade-off between
estimation delay and accuracy. Nevertheless, the slot length
is a system parameter, so the design principles of ViCrypt
could also be applied to other temporal resolutions. At the
design phase of ViCrypt, we tested similar temporal resolu-
tions – up to 5 s – without resulting in significant changes
in performance, yet loosing monitoring resolution. Being ML-
driven, ViCrypt needs datasets containing both the collected
traffic traces – the input – and the targeted KQI metrics – the

2010

TABLE I
VICRYPT VS. REQUET AND INFOCOM’18 [4]. OVERVIEW ON THE PROPERTIES OF THE PROPOSED SOLUTIONS IN TERMS OF TYPE AND DETAIL OF

THE PREDICTED KQIS, INPUT FEATURES, MONITORING CAPABILITIES, AND DATASETS USED FOR TRAINING AND TESTING PURPOSES

ground truth. In the following, we explain how the datasets
used in the study were generated and present a brief statis-
tical analysis of the collected measurements. We then detail
the lightweight feature-extraction procedures and describe the
ML models used for benchmarking purposes.

A. YouTube Dataset Acquisition

Over a period of several months from June 2018 to February
2019, we streamed and recorded more than 15,000 YouTube
video sessions, resulting in a total of more than 4,600,000
1-second time slots. For reference, Requet [30] collected mea-
surements for only 580 video sessions, resulting in a dataset
almost 26 times smaller. As we describe next, our dataset is
not only large in terms of number of video sessions, but also
very diverse.

For the video-streaming and data-collection tasks, we used
a monitoring tool similar to [31]. It relies on the Selenium
browser-automation library to automatically start a Chrome
browser and randomly select a YouTube video to stream.
Chrome was configured such that all HTTP requests were
logged and QUIC traffic was enabled. A JavaScript monitoring
script [32], [33] was injected into the Web page to record the
current timestamp every 250 ms, as well as the current video
playtime, buffered playtime, video resolution, and player state.

We streamed the video sessions with very diverse network
setups to reach a highly generalizable model. Video sessions
were collected at home (∼30% of the samples) and over cor-
porate WiFi networks (∼50%), as well as over LTE mobile
networks (∼20%). For some of the sessions, a firewall was
enabled, which blocked all QUIC traffic, such that the videos
were streamed via TCP (∼60%). The maximum bandwidth
was roughly 20 Mbps. Additionally, some streaming sessions
faced bandwidth limitations, which were applied to limit both
up- and downlink traffic. The bandwidth limitations were
either constant on a level of 300 kbps, 1 Mbps, 3 Mbps,
or 5 Mbps, or they fluctuated between these levels every
1-5 minutes. The number of video sessions per bandwidth

configuration is mostly balanced among the different cate-
gories, with a slightly higher number of sessions streamed
without bandwidth limitations. We collected video sessions
from four different geographic locations – France, Austria,
Germany, and Italy – and from four different ISPs.

Network traffic was collected for each video-streaming ses-
sion, logging basic per-packet information (timestamp, source
IP address, source port, destination IP address, destination
port, size), as well as DNS-lookup responses to obtain a
mapping between IP addresses and domain names. In each
network-traffic trace, we identified YouTube video flows based
on domain names (googlevideo.com), and extracted features
only for these video flows, ignoring all non-YouTube traffic.
Finally, we also included in our measurements the recently
published YouTube open dataset [34], which includes measure-
ments from the native, mobile Android YouTube application.
While the share of app measurements is limited as com-
pared to desktop devices (less than 10%), it contributes to
the heterogeneity of the learning data.

Finally, we do not consider the challenging issue of video-
traffic identification and filtering in this article, besides the
aforementioned DNS-based identification approach. This is
indeed a complex issue, especially when considering multiple
users sharing the same IP address – e.g., NAT. The spe-
cific video-traffic identification and disentangling of concur-
rent video-streaming sessions is out of the scope of this
article.

B. Dataset Analysis

Next, we provide some insight into the collected dataset.
Figure 1 shows the characteristics of the dataset as cumu-
lative distribution functions (CDF), with respect to duration
of the video sessions, video resolution, average bitrate, ini-
tial delay, and stalling. Figure 1(a) shows that the recorded
video sessions have durations between a couple of seconds
and 11 minutes. The average length of a video session is
approximately 5 minutes.

2011

Fig. 1. Characterization of the YouTube dataset, composed of more than 15,000 video-streaming sessions. There is a strong imbalance for some of the KQIs,
such as occurrence of stalling events, or video resolution. Stalling is a rare event in the wild, generally traded by lower video resolutions in HAS, and this is
reflected in the collected data. More than 50% of the video chunks were streamed on 480p resolution, and 1080p resolutions were rarely used.

In YouTube, the video resolution is typically indicated by
the number of vertical pixels, for which standard quality
classes exist. The video-resolution classes contained in the
dataset can be easily observed in Figure 1(b), namely 144p,
240p, 360p, 480p, 720p, and 1080p. In some videos, the video
resolution did not match exactly one of these classes, and
therefore, was rounded to the nearest class. The distribution
shows that the adaptation logic of YouTube decided to stream
videos mostly in 480p resolution, but also very low resolu-
tions occur (9% 144p, 6% 240p, 10% 360p). At the other
end, HD resolution is rare (18% 720p, 1% 1080p). We did
not observe any resolutions above 1080p during the measure-
ments; therefore, although supported by YouTube, we kept
resolution classes to the 6 observed in the dataset – the same
6 resolution levels were considered by Requet [30].

Figure 1(c) depicts the distribution of the average bitrate.
Here, the average bitrate was obtained via the YouTube API,
and represents the average bitrate of the full video when
streamed with a given quality level (itag). Thus, this estima-
tion target is not the momentary bitrate of the current slot, but
rather the average bitrate of the quality level that was down-
loaded in the current slot. The average video bitrate spreads
from approximately 20 kbps to about 4600 kbps. Nearly all of
the slots have an average bitrate less than 3000 kbps. The CDF
increases steeply, almost uniformly, until roughly 900 kbps,
which corresponds to 78% of the slots. Then, it increases
slower only showing a steep increase around 1280 kbps, which
is the average bitrate for ∼4% of the slots, and thus, seems to
be a certain target bitrate for encoding.

Figure 1(d) shows the distribution of the initial delays.
Nearly 50% of the sessions have an initial delay of at most
2 seconds, and 75% of the sessions have a delay below

Fig. 2. ViCrypt overview. Features are continuously extracted/updated from
the monitored video traffic, using different temporal aggregations of past time
slots. At each new time slot, different ML models are applied to the input
features, each one inferring the corresponding KQI.

5 seconds. Figures 1(e) and (f) depict the distribution of two
stalling metrics, namely the number of stallings per video ses-
sion and the stalling ratio, i.e., the fraction of time spent in
stalling mode with respect to the full session duration. Stalling
events are rare: more than 90% of the videos do not stall at
all, and when they do, the large majority stalls only once.
The stalling ratio suggests that most of the stalling events are
short with respect to the session duration: more than half of
the observed stalling ratios are at most 3%.

C. ViCrypt Feature Extraction

Figure 2 presents a general overview on the functioning of
ViCrypt. ViCrypt operates in a time-slotted, sequential man-
ner, producing estimations for the selected KQIs at the end of
each elapsed time slot. Features are extracted and continuously
updated for each new packet on the stream of encrypted video
traffic; at the end of each new time slot, different ML models
infer the corresponding KQI from the extracted features.

ViCrypt embeds temporal notions in the construction of fea-
tures, using information not only from the current time slot,

2012

TABLE II
VICRYPT FEATURES. ALL FEATURES ARE DERIVED FROM THREE BASIC,
PACKET-LEVEL METRICS, NAMELY PACKET COUNT, PACKET SIZE, AND

INTER-ARRIVAL TIME (IAT), AGGREGATED AT TIME-SLOT-BASED AND

WINDOW-BASED RESOLUTIONS

but also from past slots. For memory and computational effi-
ciency, the past streaming information must be compressed and
structured. This is why ViCrypt keeps track of two additional
macro windows, referred to as trend or short-term memory
window, and session or long-term memory window. The trend
window comprises the last t time slots in a sliding-window
fashion, i.e., it contains all traffic of the current time slot and
the t − 1 most recent slots. For this article, ViCrypt uses a
trend size of t = 3, and thus, the features of the trend window
of each time slot are computed from the traffic of the cur-
rent slot and the previous two time slots. The value of t is set
empirically on the evaluated datasets, but different from the
time-slot length, the trend window length has a non-negligible
impact on the model performance. The proposed value pro-
vides the best results in terms of inference performance for
the analyzed data.

The second macro window is the session window, which
includes all traffic of the session so far observed, and its fea-
tures are therefore extracted from the traffic in all previous
slots including the current time slot. All features of each cur-
rent slot, trend window, and session window are computed
in an online, stream fashion, without the need to store the
previous traffic or detailed information about traffic packets
observed in the past. This significantly reduces the memory
consumption of the feature extraction process – from linear
to constant, enabling a lightweight monitoring solution. Next,
we dig deeper into the feature-extraction process, elaborating
on the different computation steps.

Table II briefly summarizes the features computed per time
slot. All features are derived from three basic, packet-level
metrics, namely packet count, packet size, and inter-arrival
time (IAT). Different aggregations are done on these met-
rics, based on individual time slots and aggregation windows
– trend and session ones. Features are computed for uplink,
downlink, and total traffic. The rationale behind the computed
features is rather straightforward: adaptive video-streaming
protocols employ closed-loop algorithms to achieve synchro-
nization and adaptability between server and video player, thus
traffic patterns on both uplink and downlink direction might
reveal different behaviors at the player side.

Firstly, we compute simple count-based features from the
traffic observed in the time slot. These consist of the num-
ber of total, uplink, and downlink packets, and the number of
transferred bytes (total, uplink, downlink). We also count the
number and byte volume of TCP and UDP packets, and com-
pute the upload ratio, download ratio, TCP ratio, and UDP
ratio from these counters, for both number of packets and
number of bytes. Next, we extract time-based features. These

Procedure 1 Online Regression Computation
1: procedure COMPUTEREGRESSION(s, t)
2: n← n+ 1

3: cumsize ← cumsize + s

4: diffslot ← t− slotstart

5: dt ← diffslot − meanT

6: ds ← cumsize − meanS

7: varT ← varT +
n−1
n

·d2t−varT
n

8: covTS ← covTS +
n−1
n

·dt ·ds−covTS
n

9: meanT ← meanT +
dt
n

10: meanS ← meanS +
ds
n

11: slope← covTS
varT

12: intercept← meanS − slope · meanT

include the time from the start of the slot until the first packet,
the time after the last packet until the slot ends, and the burst
duration, i.e., the time between the first packet and the last
packet of the time slot. All features are again computed for
the total traffic, as well as for uplink and downlink traffic. The
average throughput of the slot (traffic volume divided by slot
length) and the burst throughput (traffic volume divided by
burst duration) can be subsequently derived for total, uplink,
and downlink traffic. A covariance-based procedure is used to
obtain a linear regression for the cumulative traffic over time,
in an online fashion [35]. The Procedure 1 stores the origin
of the regression (start time of the time slot slotstart), and
keeps updates of the number of packets numP and the cumu-
lative packet size cumsize, to compute the regression for the
cumulative traffic. In addition, it stores and updates the current
means of the abscissa (time, meanT) and ordinate (cumulative
packet size, meanS), the number of packets n, as well as the
temporal variance varT and covariance covTS. These are the
only permanently stored variables, updated whenever a new
packet of size s arrives at time t.

The updates to these statistics only use three additional
temporal variables: diffslot, dt, and ds. At the end of
the slot, we compute the final slope (slope) and intercept
(intercept) values from the regression curve. We perform
two regressions for uplink and downlink traffic, and the slope
and intercept of these regression curves are added as features.

Finally, we extract multiple features derived from the empir-
ical distribution of the traffic. We use an algorithm based
on [36], which can compute the first four moments of any
distribution in an online fashion, i.e., the mean, the variance,
the skewness, and the kurtosis. We extend this algorithm to
additionally output the standard deviation, the coefficient of
variation, as well as the minimal and the maximal values.

Here again, only few statistics are stored in memory and
updated, namely the number of packets n, the mean value
mean, the second, third, and fourth power of the sum of dif-
ferences from the mean value (sdm2, sdm3, sdm4), as well as
the minimal (min) and the maximal (max) values. The update
of these statistics occurs whenever a new value x is observed
for the corresponding statistic. The approach is explained in
Procedure 2.

2013

Procedure 2 Online Update of Distribution Metrics, Used
for Computation of Distribution Features. The Procedure is
Executed When New Values for the Corresponding Statistics
are Observed

1: procedure UPDATEDISTRIBUTIONS(x)
2: n← n+ 1

3: dx ← x− mean

4: dn ← dx
n

5: mean← mean+ dn

6: sdm4 ← sdm4 +
[
dx dn (n− 1) d2n

(
n2 − 3n+ 3

)]
+(

6 d2n sdm2
)− (4 dn sdm3)

7: sdm3 ← sdm3 + [dx dn (n− 1) dn (n− 2)]−
(3 dn sdm2)

8: sdm2 ← sdm2 + [dx dn (n− 1)]

9: if x < min then
10: min← x

11: if x > max then
12: max← x

The computed updates allow to directly obtain the
mean (mean), minimal (min), and maximal (max) values.
Moreover, the variance (var), standard deviation (std), coef-
ficient of variation (cvar), skewness (skew), and kurtosis
(kurt) of the distributions can be computed as stated in
Procedure 3. These distribution-based features are computed
for the packet size and the IAT, for both uplink and downlink
traffic.

This results in a total of 69 basic features for the traffic
in a time slot, plus the same 69 basic features for each of
the two additionally considered macro windows, namely the
trend and the session windows. Together with the sequence
number of the current time slot, which is also included as
a feature, this sums up to a total of 208 features, charac-
terizing each slot of 1 s length. To keep track of the trend
windows of size t, not only the current trend window, but addi-
tionally t − 1 future trend windows have to be maintained
and updated. These future trend windows are the windows
which will become trend windows in 1, . . . , t − 1 windows,
but already have to consider and aggregate the traffic of the
current time slot. In contrast, only a single session window is
needed, as it only needs to accumulate the full traffic of the
complete session. Thus, in total, t + 2 windows with 69 fea-
tures each have to be maintained and updated at all times, i.e.,
current time slot, trend window, session window, and t − 1
future trend windows.

D. ML Models Benchmarking

Solutions so far proposed in the state of the art such as
[3]–[7], [26], [30] rely mostly on random-forest models as
the underlying ML approach. In this article, we provide fur-
ther insights on the performance of different types of models,
benchmarking 11 different ML models within ViCrypt. Nine
out of these 11 models are fit for both classification and
regression tasks, while the other two are designed for anomaly
detection, hence our selection.

Procedure 3 Computation of Distribution Features
1: procedure COMPUTEDISTRIBUTIONFEATURES

2: var← sdm2
n−1

3: std← √var
4: cvar← std

mean

5: skew←
√

n
sdm32

· sdm3
6: kurt← n · sdm4

sdm22
− 3

Most of the selected models also rely on decision trees, not
only because of their proven high accuracy and low compu-
tational cost, but also due to a series of embedded properties,
such as model visibility, robustness to input noise, and embed-
ded feature selection. We consider both bagging and boosting
ensembles based on trees, which brings robustness, increased
accuracy, and improved generalization of the training. To
increase training speed, reduce model complexity, and there-
fore reduce the chances of over-fitting, we favor small-sized
ensembles, using 10 to 50 models.

Model parameters are calibrated through standard grid-
search optimization. Finally, all evaluations throughout the
paper are done through 5-fold cross-validation. For the
classification tasks, we apply stratified cross-validation, i.e.,
we ensure that the five folds preserve the percentage of
samples for each class. The list of benchmarked models
includes Decision trees (DT), Random Forest with 10 trees
(RF10), AdaBoost using 50 trees (ADA), ensembles with 10
extremely randomized trees [37] (ERT10), bagging with 10
trees (BAGGING), naïve Bayes (BAYES), k-nearest neigh-
bors with k = 5 (KNN), Neural Networks (NN) (three hidden
layers, the first one containing 200 neurons, the second one
100 neurons, and the last one 50 neurons, using sigmoid
activation and softmax at the output), and support vector
machines (SVM) - a regression version also exists, which
is called support vector regression (SVR). As stalling can be
considered as an anomaly of the streaming process, we addi-
tionally evaluate two anomaly-detection algorithms for stalling
detection:

Isolation Forests With 10 Trees [38] (ISO10): An unsuper-
vised model which behaves similarly to ERT10, but at each
node, both the feature and the cut point are chosen randomly.
The number of nodes a sample needs to traverse to reach a
leaf is the normality measure, such that the fewer nodes a
sample has to visit, the more abnormal it is. This is intuitive,
as outliers have unusual characteristics, and thus, are rapidly
distinguishable from the normal samples.

Local Outlier Factor [39] (LOF): An algorithm relying on
the concept of local density. The local density of a sample
is estimated from the distance to its k nearest neighbors (in
our case, we set k to 20). The algorithm compares the local
densities of the given sample and its k nearest neighbors. If
a sample has a much lower density than its neighbors, it is
considered as an outlier.

When considering DT, RF10, and ERT10 models, and to
counterbalance the impact of imbalanced classes, we assign
weights to each sample i of classi based on the occurrence

2014

frequency of its class:

Wi =
samples

classes× (# samples in classi)

This implies that the estimation errors for samples of rare
or under-represented classes are significantly penalized, which
improves the estimation accuracy for these classes. We further
exploit the fact that RF10, ERT10, BAGGING, and KNN mod-
els can be parallelized for speed improvement, and run them
in a parallelized fashion. For NN, we use TensorFlow on GPU,
while we use the scikit-learn library for the remaining mod-
els. The benchmark of the models is executed on a high-end
desktop computer, equipped with two Intel Xeon Silver 4116
processors including 12 physical cores each (a total of 48 vir-
tual cores thanks to Intel HyperThreading), 128 GB of RAM,
and a NVIDIA GeForce RTX 2080 Ti graphics card (with 11
GB of VRAM).

IV. VICRYPT IN ACTION—PERFORMANCE EVALUATION

We now present the performance evaluation results of
ViCrypt for all the described KQIs. We take the full set
of 208 features as input, i.e., we do not explicitly consider
feature-selection approaches. We devote Section V to feature
selection. For each of the tested ML algorithms, we report
both performance metrics, as well as the total running time
for training and inference, i.e., the time needed to compute
the 5-fold cross-validation on the whole dataset. This helps
to better understand the practical trade-offs when it comes to
real-time analysis.

A. Stalling Estimation

As stalling is the most severe QoE degradation, our first
goal is to estimate whether the video is stalling or not. More
precisely, for each 1-second time slot, ViCrypt infers whether
the video is being played or stalling; this is therefore a binary
classification problem. We consider only time slots which
contain network traffic, and end up with almost 1,283,000
samples.

The binary stalling-estimation results obtained for each of
the time slots can be further combined to obtain stalling met-
rics at a video-session level, such as the initial playback delay,
the number of stalling events, and the stalling ratio – ratio of
total stalling time to total playback time. The initial delay is
given by the number of slots predicted as stalling at the start of
the session. After the initial delay, a stalling event is counted
only if two or more consecutive time slots are predicted as
stalling, making the aggregated stalling metrics more robust
against isolated false predictions. In this case, the number of
consecutive slots with stalling is added to the total stalling
time in seconds. Thus, by simple count of slot predictions, this
aggregation method allows to obtain the initial delay, the num-
ber of stalling events, the total stalling time, and the stalling
ratio of the whole streaming session. The granularity of the
initial delay and stalling time estimation is limited by the
time-slot length, one second. Nevertheless, such a fine-grained
resolution is sufficient for most monitoring use cases.

We therefore present evaluation results for stalling at two
different temporal granularities: per-slot, binary stalling clas-
sification (stalling/no stalling), and per-session, continuous
estimation of initial delay, number of stalling events, and
stalling ratio.

Table III summarizes the overall accuracy, recall, and
precision for the stalling class per model, as well as the over-
all cross-validation times. Results show that stalling detection
is a challenging task, especially due to the high imbalance of
the data (see Figure 1(e)). Indeed, let us take the NN model as
example: the trained model was not able to identify a single
stalling slot, still achieving a high accuracy of 94.3%, due to
the imbalance. This recalls that the overall accuracy can be
misleading with highly imbalanced data, and that it is particu-
larly important to look in detail at recall and precision results.
Here, we observe that the tree-based models achieve a high
precision of around 90%, but only a recall of around 60%.
BAGGING is an exception, with a recall of 65%.

To dig deeper into these results, Figure 3 presents the
confusion matrices for the different models. We left out the
confusion matrix of the neural network as discussed above,
and the ones for RF10 and LOF, as the matrices were nearly
identical to those of ERT10 and ISO10, respectively. The con-
fusion matrices underline that stalling detection is a rather
difficult task. Surprisingly, BAYES is the algorithm yielding
the highest stalling-class accuracy (i.e., recall), achieving 86%.
However, its very poor precision turns the approach inappli-
cable. The outlier-detection algorithms (ISO10 and LOF) also
perform poorly for this estimation task, which might indicate
that the features do not deviate much between the stalling and
no-stalling classes.

ERT10 seems to be a good model choice for stalling
detection: it runs very quickly and realizes a decent recall-
precision combination. Only BAGGING achieves an overall
better performance, especially a higher recall, but at the cost
of a much higher cross-validation processing time of roughly
one hour versus one minute for ERT10. Of course, as train-
ing is usually done offline, this would in principle not be
a limitation for BAGGING. However, if one would consider
adaptive learning approaches, or applying the model in sce-
narios with strong video traffic variations, low training times
become paramount.

We now explore the inference performance of ViCrypt for
stalling metrics at the session level. More precisely, we esti-
mate the initial playback delay of the videos, the number of
stalling events, and the stalling ratio. Figure 4 shows the dis-
tribution of estimation errors for the three considered targets.
Regarding initial delay, ViCrypt perfectly infers the real play-
back delay for about 40% of the video sessions, and achieves
an error of at most 2 seconds for 70% of the sessions. The
number of stallings is perfectly estimated for about 50% of the
sessions, and an error of at most 2 stallings is realized for about
75% of the sessions. The stalling ratio is perfectly estimated
for about 60% of the sessions, and the error is below 3% for
more than 85% of the sessions. Errors related to stalling esti-
mation usually correspond to overestimations, which is always
preferred, for the sake of safety margins and over-provisioning.
Also, stalling ratio has been the preferred metric in the state of

2015

TABLE III
BENCHMARKING OF ML MODELS FOR THE STALLING DETECTION—OVERALL ACCURACY, RECALL/PRECISION

ONLY INDICATED FOR THE STALLING CLASS

Fig. 3. Normalized confusion matrices obtained by the benchmarked ML models for the estimation of stalling.

Fig. 4. Prediction performance for session-based stalling metrics, using ERT10 as the underlying model. Initial delay, number of stalling events, and stalling
ratio are perfectly estimated for about 40%, 50%, and 60% of the video sessions, respectively.

the art when it comes to session-based stalling estimation [3],
[26], and achieved results are in line with or even better than
the state of the art [3], [26], even when dealing with such a
strong imbalance in the data.

Finally, for visualization purposes, Figure 5 shows the real-
time stalling estimation produced by ViCrypt for an exemplary
YouTube video-streaming session, using the ERT10 as under-
lying model. ViCrypt can track in real time the overall stalling

pattern of the video session, from the initial playback delay
to the occurrence of stalling events.

B. Video-Resolution Estimation

The video resolution is highly linked to the visual qual-
ity of the streamed video, and is therefore a crucial QoE
metric. The estimation of the resolution is treated as a

2016

Fig. 5. Example of ViCrypt real-time stalling detection.

TABLE IV
BENCHMARKING OF DIFFERENT ML MODELS FOR THE

RESOLUTION ESTIMATION

multi-class classification problem. The considered classes cor-
respond to the typical YouTube video resolutions: 144p,
240p, 360p, 480p, 720p, and 1080p. Thus, the classifica-
tion problem is based on six classes, which is substantially
more precise than other approaches, e.g., [3], [4], [26]. After
considering only time slots with a valid resolution and con-
taining traffic, we end up with a dataset including almost
1,160,000 time slots.

We report the accuracy achieved by the different models and
the corresponding total processing times for cross-validation
in Table IV. Except for AdaBoost, all the tree-based methods
provide very high overall accuracy, above 90%. KNN also
achieves encouraging results, with an accuracy of 73%. The
accuracy of BAYES is by far the worst, which is most proba-
bly due to its underlying hypothesis that the different features
are independent from each other, which does not seem to be
satisfied for the video resolution. NN and SVM also yield
disappointing results, especially when considering that they
needed significantly more time than the other models. Here, we
can also verify the benefit of parallelization: besides BAYES,
the fastest algorithms are the parallelizable ones, which is a
non-negligible advantage for these models. For instance, RF10
and ERT10 were done in at most two minutes, while ADA,
NN, and SVM took several hours.

As the video-resolution classes are also strongly imbal-
anced (see Figure 1(b)), we take a closer look at the per-class
accuracy (i.e., recall) and precision. Results are depicted in
Figures 6 and 7. The recall indicates the percentage of time
slots of a given quality for which ViCrypt correctly inferred
the resolution. In contrast, the precision for a given quality
expresses the proportion of the class estimations which are
correct. We left BAYES out of this analysis because of its
poor performance.

Figure 6 reveals that the 480p class is accurately detected
by all of the eight models, with SVM being the worst with
an accuracy below 70%. DT, RF10, ERT10, and BAGGING
achieve a near perfect score for this video resolution. This
comes as no real surprise, as more than 50% of the time slots
have a resolution of 480p. However, it is interesting to note that
most models accurately estimate the 144p class, even though
it is a significantly underrepresented class with only 9% of
the slots having that resolution. For all the models, these two
classes are the ones that are the most accurately detected. For
instance, NN obtained an accuracy of more than 60% for 144p
and more than 80% for 480p, while for the other classes its
accuracy is below 30%. For a couple of models, and especially
for ADA and NN, it was challenging to accurately classify the
240p and 360p resolutions; for NN, the accuracy for 360p is
even close to 0%. In case of ADA and NN, the two classes
were very frequently detected as either 144p or 480p.

Figure 7 shows that the precision of the benchmarked mod-
els is similar to the recall: it is highest for DT, RF10, ERT10,
and BAGGING (always higher than 80%), while it is rela-
tively low for ADA, NN, and SVM. Contrary to the recall,
the precision is not systematically high for the 144p and 480p
classes. Overall, the per-class analysis gives us interesting
insights into the performance of the models and indicates that
only DT, RF10, ERT10, and BAGGING provide consistently
excellent estimation throughout all the six video-resolution
classes. For example, even though the total accuracy of KNN
is decent, it is mostly due to its performance for the 144p and
480p classes.

Results suggest that RF10 is the most appropriate model
for the video resolution estimation task: this model is
extremely lightweight, executes fast, and presents an excel-
lent performance, with a recall and precision close to or above
80% for each resolution class. Similar to the stalling-inference
results, BAGGING is the best model in the benchmark, with
recall and precision close to or above 90% for all resolution
classes, but using a more complex underlying structure, as
reflected by the cross-validation execution times.

Again, for visualization purposes, Figure 8 shows the real-
time estimation and tracking of the video resolution produced
by ViCrypt for an exemplary YouTube video-streaming session
using multiple resolution levels (720p, 360p, 480p, and 144p),
using the RF10 as underlying model.

C. Average-Bitrate Estimation

The last estimation target is the average video (encod-
ing) bitrate, which is highly relevant for proactive network
management. ViCrypt infers the average video bitrate of the
video contents monitored at each 1-second time slot. As the
bitrate is per-se continuous, the estimation of the average
bitrate is tackled as a regression task. Again, we consider only
those time slots with actual traffic and a valid average bitrate
label, obtained from the YouTube API. The resulting dataset
consists of more than 933,000 samples.

We benchmark the same models as before, using 5-fold
cross-validation. The only exception is the Naïve Bayes model,
which can only handle classification tasks; we thus replace it

2017

Fig. 6. Accuracy per class (i.e., recall) obtained by the benchmarked ML models for the resolution estimation.

Fig. 7. Precision per class obtained by the benchmarked ML models for the resolution estimation.

by the Bayesian ridge regression (BAYES). For each model,
we report the mean absolute error (MAE) = mean(|X̂ −X |),
the root mean squared error (RMSE), the mean relative error
MRE = mean(|X̂ −X |/X), and the Pearson linear correlation
coefficient (PLCC), where X and X̂ are the real and inferred
values, respectively. As before, we also report the total pro-
cessing times for the 5-fold cross validation. While the MAE
metric penalizes all the errors equally, the RMSE puts a rela-
tively high weight on larger errors. A PLCC value close to
1 indicates that the real and estimated values are strongly
positively correlated, a negative value shows a negative corre-
lation, and a PLCC close to 0 indicates that there is no linear
correlation.

Results are summarized in Table V. We note that the models
that worked well for the video-resolution estimation, namely
DT, RF10, BAGGING, and ERT10, perform also very well
for the inference of the average bitrate. Indeed, these four
tree-based models yield the lowest errors, achieving a MAE
of below 100 kbps, and very high PLCCs close to 1. RMSE
and MRE values are relatively low for these algorithms, sug-
gesting that they only rarely make large errors. However, it is
interesting to see that RF10 needs significantly more time to
process the whole dataset than for the video-resolution esti-
mation. As for the video-resolution inference, BAYES and

especially SVM provide disappointing results. With BAYES,
ViCrypt obtained a negative PLCC as well as very high error
metrics, which underlines the bad performance of the model.
With SVM, the system output errors of an unacceptable order
of magnitude.

Figure 9 depicts the distributions of the inference errors for
the different regression models. SVM errors are not reported,
as they are simply too large. Overall, the CDFs confirm our
observations from Table V. The most promising tree-based
methods present errors very close to 0 for a non-negligible
fraction of the dataset; this is especially true for DT, which
realizes an almost perfect estimation for 60% of the samples.
However, DT presents a large RMSE compared to its tree-
based competitors, indicating that it yields larger errors than
the other tree algorithms. ADA is the only tree-based method
where estimation errors are most often quite high, higher than
500 kbps for about 45% of the time slots. Absolute errors are
below 100 kbps for approximately 80% of the time slots when
using DT, RF10, BAGGING, or ERT10 as underlying models.

Based on these results, and again considering the out-
performance in terms of computational times, ERT10 seems to
be the best algorithm for the estimation of the average bitrate
with ViCrypt. Even though error metrics are slightly worse
for ERT10 than those for RF10 or BAGGING, differences

2018

TABLE V
BENCHMARKING OF DIFFERENT ML MODELS FOR THE ESTIMATION OF AVERAGE BITRATE

Fig. 8. Example of ViCrypt real-time video-resolution estimation.

Fig. 9. Errors (estimated value—true value) obtained by the benchmarked
ML models for the average video-bitrate inference.

are not significant enough and lightweight models should be
preferred.

Finally, Figure 10 shows ViCrypt’s estimation of the aver-
age bitrate for an exemplary video with several bitrate
changes. Again, ViCrypt estimates the average bitrate with
high precision throughout the whole video. Rather than esti-
mating a too low bitrate, ViCrypt coupled with ERT10 over-
estimates the ground truth in more than half of the time slots
(54%). This overestimation of ERT10 together with the gen-
erally low estimation error is advantageous from the point
of view of the ISP, as overestimating the video bitrate helps
them to avoid allocating insufficient bandwidth in the con-
text of traffic shaping. This could cause the video to stall,
which is a major QoE degradation. This behavior could be
even forced by adding a safety margin to the estimations of
ViCrypt.

Fig. 10. Example of ViCrypt real-time average video-bitrate estimation.

V. FEATURE-IMPORTANCE ANALYSIS

Results presented so far correspond to ViCrypt models using
the full set of 208 features as input for the estimations. In this
section, we analyze the importance of different feature sets and
their impact on inference performance. Using an extensive list
of input features is not always the best strategy, as it may neg-
atively impact estimation performance. Using more features
increases the dimensionality of the feature space, introducing
sparsity issues. In addition, using irrelevant or redundant fea-
tures may lower model performance in practice. Last but not
least, working in higher-dimensional spaces usually results in
higher computational times.

We resort to standard automatic feature-selection techniques
to identify the most relevant input features for our three
estimation targets. Moreover, we consider additional feature
subsets which might have a significant impact, considering for
example the difference between snapshot features – i.e., those
computed for the same slot where the estimation takes place
– and trend- or session-based features. Based on these guide-
lines, we divide the full input-feature set into the following
six feature subsets:

(1) FC subset: the features representing the current time
slot, i.e., the time slot for which we want to infer the video
resolution (69 features).

(2) FT subset: the features collected for the trend window
(69 features).

(3) FS subset: the features summarizing the characteris-
tics of the session since the beginning of the streaming (69
features).

(4) FDOWN subset: the features related to the download
traffic (81 features).

(5) FUP subset: the features representing the upload traffic
(81 features).

2019

TABLE VI
TOP-5 MOST IMPORTANT FEATURES FOR THE THREE ESTIMATION TARGETS TACKLED BY VICRYPT, WITH THEIR CORRESPONDING WINDOW

(CURRENT, TREND, OR SESSION) AND GINI IMPORTANCE SCORES

(6) FTOP20 subset: the 20 most important features,
determined using automatic feature-selection techniques (20
features).

To select the 20 most relevant features (FTOP20), we
take the best-performing ML algorithm, which is always a
tree-based method, and apply an embedded feature-selection
technique, i.e., an approach ranking the features based on their
importance for the algorithm: for each run of the 5-fold strat-
ified cross-validation, we fit the model on the training folds
and detect the 20 most discriminative features with the Gini
importance measure [40]. In a tree, this measure is defined as
the weighted sum of the impurity reduction at each node of
the tree testing feature f. For a forest, the resulting importance
of f is the average over all trees. Then, we re-train the model
only on those 20 features and test its performance on the test
fold. We determine the overall top 20 features based on their
importance score averaged over the five folds, as well as the
average accuracy of the algorithm over the folds with only the
selected features.

Before going into the specific performance results achieved
with these subsets, let us take a look at the five most rele-
vant features according to the aforementioned feature-selection
approach. Table VI reports the five most important features
for the three investigated KQIs. For each of the selected
features, we additionally report the corresponding temporal
window (current, trend, or session) and the importance score.
For stalling detection, the most important features come from
different subsets. The most important feature for stalling infer-
ence comes from the FT subset (trend window). Nevertheless,
almost all of the most important features actually come from
the set of session-based features. FS can be generally consid-
ered as the most relevant feature set for stalling estimation,
which is in line with our previous results in [6], using a
different feature importance metric, namely, the information
gain. For video resolution, the top 5 features are all session-
related and include statistics about throughput patterns and
information related to the inter-arrival times between packets.
The results for the average bitrate confirm that session-based
features are often relevant ones, followed by the features of
the trend window and the current time slot.

As we show next in the specific comparison results, session-
related features – the FS subset – are the most important
ones, and have the most discriminative performance, followed
by trend features – FT . This is coherent with the overall
nature of adaptive-video-streaming algorithms, where stronger

TABLE VII
VICRYPT PERFORMANCE FOR STALLING ESTIMATION WITH ERT10,
USING DIFFERENT FEATURE SUBSETS (OVERALL ACCURACY AND

RECALL/PRECISION ONLY INDICATED FOR THE STALLING CLASS)

variations tend to occur at the beginning of the video ses-
sion, and conditions tend to remain constant over the course
of the streaming – as long as the connection remains stable.
Features computed for the current time slot generally achieve
the lowest importance scores. This suggests that snapshot-
like approaches as the one proposed in [4] are less powerful
and more prone to over-fitting, and probably have poorer
generalization capabilities.

A. Stalling

Table VII reports the estimation performance for stalling
in terms of recall and precision for the stalling class, using
ERT10 as the underlying model, which is the one we selected
in Section IV-A for this task. As before, results corre-
spond to 5-fold stratified cross-validation. Stalling-detection
results when using only FC and FT subsets are poor for
both recall and precision. However, performance dramati-
cally improves when considering FS features only; indeed,
the recall for ERT10 increases from 54% (using all fea-
tures, see Table III) to 72%, and even the precision increases
from 88% to 91%, taking the overall accuracy to 99%. This
confirms the paramount importance of session-progression
features, which is in line with our above findings and
discussion.

When relying exclusively on the 20 most important features,
ViCrypt obtains a recall score of 56% and a precision score of
86%, almost on a par with using all features. This tells us the
following: (i) the overall statistics describing the entire history
of the session are very insightful metrics for detecting stalling;
(ii) ViCrypt produces highly accurate estimations even with a
reduced set of features: instead of using 208 attributes, 69 or
even 20 would be sufficient. This shows that a substantial num-
ber of features can be removed with only a minor performance

2020

TABLE VIII
VICRYPT PERFORMANCE FOR INFERRING THE VIDEO RESOLUTION WITH

RF10, USING DIFFERENT FEATURE SUBSETS

degradation, which even increases the practical applicability of
ViCrypt.

B. Video Resolution

For the case of video-resolution inference, we study the
performance of RF10, the model that produces the most
promising outcome, based on the different feature groups. The
results in Table VIII also reveal that the features of FC and
FT yield the poorest results in terms of accuracy, indicating
that they are insufficient to infer the video resolution with high
precision. Indeed, their accuracy is more than 15 percentage
points below the accuracy obtained by ViCrypt based on the
entire feature set. However, ViCrypt performs very well when
used with either FS , FDOWN , or FUP , with FS performing
even better than the entire feature set. The average accuracy of
ViCrypt when using only the top 20 features is highly encour-
aging: it is equal to 95%, confirming the above finding that a
substantial number of features can be removed.

C. Average Bitrate

Table IX reports the results obtained for the estimation of
the average bitrate, using ERT10 as underlying model. The
differences in terms of performance between the considered
subsets and the whole set of features are much more signif-
icant than in the video-resolution case. As a matter of fact,
with FC and FT , the value of the MAE is nearly three times
higher than when relying on the whole feature set; the other
error metrics underline the poor performance. In case ViCrypt
bases itself on the download- or upload-traffic information,
the obtained errors are only slightly higher than when infer-
ring from all the features. However, as for the stalling detection
and video-resolution inference, ViCrypt yields excellent results
when coupled with FS features only, showing once again that
information about the session history is the most valuable
one. Again, using only the top 20 selected features for the
ERT10 model yields slightly more precise estimations than
when using the whole feature set. Indeed, the MAE and the
RMSE decrease to 81 kbps and 175 kbps, respectively.

VI. PRACTICAL CONSIDERATIONS FOR REAL-TIME

OPERATION & DISCUSSION

Finally, we elaborate on the presented results and discuss
the applicability of ViCrypt in practice. To ensure that ViCrypt
is scalable and can be deployed in the wild, we analyze
several key aspects in terms of computation time, and exe-
cute multiple tests on two machines with completely different

Fig. 11. Time Needed to Update the ViCrypt Features Each Time a New
Packet Arrives (Log Scale).

technical specifications: on server, the high-end computer
presented in Section III, and laptop, which includes a Intel
Core i5-4200U CPU with two physical cores and a total of
four virtual ones, eight gigabytes of RAM, and an integrated
GPU Intel HD Graphics 4400. We show that ViCrypt runs
extremely fast, with minimal memory footprint. The evaluation
is not done at scale, but considering the end-to-end process-
ing of single video sessions. Still, the main target of ViCrypt
is video-streaming-QoE monitoring at devices installed near
the end-user (e.g., home routers), where traffic load enables
real-time monitoring with limited hardware capabilities.

Feature Extraction: To demonstrate the real-time proper-
ties of ViCrypt for the feature-extraction process, we record
at each packet arrival the time needed to update the feature
set for a session lasting four minutes. The results are reported
in Figure 11. Feature updates are performed extremely fast on
both machines: they take only a couple of microseconds. On
server, the peak value is about 12 ms, while the average dura-
tion is of only 13 µs. More than 90% of the updates took less
than 25 µs. Even on laptop, the average processing duration is
37 µs, with a maximum value of 129 ms, which is still almost
an order of magnitude smaller than the time-slot length of 1 s.

Stalling Detection: We measure the time needed by the most
suitable model (ERT10) to detect the stalling of a time slot on
both laptop and server. To do so, we train the model on 80% of
the data, i.e., on four folds, and record, for one video session in
the remaining fold, the time required to detect the occurrence
of stalling per time slot. We use the same video as before, and,
to make computations harder, we disable the parallelization of
the algorithm for the estimation phase. The estimation times
for this task are depicted in Figure 12(a). The model runs very
fast, with an average of 740 µs and a maximum of 2 ms on
server, and an average of 2.5 ms on laptop, which confirms
that ViCrypt can also infer stalling in real time.

Video-Resolution Estimation: We measure the time needed
by the best performing RF10 model for a single estima-
tion of the video resolution, following the same procedure.
Figure 12(b) shows the processing times for video-resolution
estimation for the consecutive time slots of the exemplary

2021

TABLE IX
VICRYPT PERFORMANCE FOR ESTIMATING THE AVERAGE BITRATE WITH ERT10 USING DIFFERENT FEATURE SUBSETS

Fig. 12. Time needed to estimate video-QoE metrics from features for an exemplary YouTube video session. ViCrypt can perform all KQI estimations in
real time, with an end-to-end delay significantly smaller than the time-slot length of 1 second.

TABLE X
REFERENCING PERFORMANCE COMPARISON BETWEEN VICRYPT, REQUET, AND INFOCOM’18 [4]. RESULTS CORRESPOND TO NUMBERS REPORTED

IN [30] AND [4], FOR DIFFERENT DATASETS, SEE TABLE I

video. On server, almost all of the durations are around 1 ms,
with an average of 700 µs and a maximum of around 1.4 ms;
on laptop, the average duration is 2.5 ms and all estimations
are available in less than 20 ms. Again, results confirm that
ViCrypt performs video-resolution inference very fast, and
significantly faster than the time slot length of 1 s.

Average-Bitrate Estimation: Finally, we analyze the time
needed by the best model (here ERT10) to infer the average
bitrate of a time slot. The observed estimation times are almost
identical to the ones observed for the video resolution on both
machines, as we can see in Figure 12(c), with an average value
of 700 µs and a maximum of 3 ms on server, showing that
ViCrypt can also infer average video bitrate in real time.

A. ViCrypt vs. State of the Art

To conclude our study, we provide some indicative results
comparing the estimation performance of ViCrypt against the
two most similar systems in the literature, namely Requet [30]
and INFOCOM’18 [4]. While a re-implementation of both
systems for benchmarking purposes is out of the scope of
our study, we present in Table X the performance results
reported by the authors of both approaches in the correspond-
ing papers [4], [30]. Naturally, this is not intended as a valid
or fair comparison among approaches, as the used datasets are
not the same. Still, we decided to include the table to better

position ViCrypt within the state of the art, and to serve as
reference or baseline for the results presented in this study.

We consider the estimation of two of the KQIs,
namely stalling and video resolution, as neither Requet nor
INFOCOM’18 are designed to estimate the average video
bitrate. In addition, while both ViCrypt and Requet tackle
the video-resolution inference problem as a multi-class clas-
sification task, using exactly the same resolution levels,
INFOCOM’18 considers only a binary classification task,
defining low video resolution as all resolutions below 480p,
and high video resolution for levels above 480p.

As already mentioned in Section II, the size and heterogene-
ity of the considered datasets is significantly different for the
three systems. A particularly challenging issue for ViCrypt
is that our dataset is highly imbalanced, especially when it
comes to the occurrence of stalling, with only a small fraction
of videos and time slots experiencing stalling. On the con-
trary, the dataset used in INFOCOM’18 is almost perfectly
balanced in terms of stalling, with about 106,000 time slots
corresponding to no-buffering and 94,000 slots reported as
stalling.

Nevertheless, Table X shows that ViCrypt achieves simi-
lar or even better results than INFOCOM’18 in the binary
detection of stalling events, and that both systems signifi-
cantly outperform Requet, which presents quite poor results
for stalling detection. Here, ViCrypt uses the ERT10 model

2022

with only FS features (see Table VII), which is still not
the best of all models reported in the study – BAGGING
performance using only FS features is even higher. Regarding
video resolution, ViCrypt provides highly accurate results
in terms of precision and recall, while both Requet and
INFOCOM’18 report lower performance on the classification
task. INFOCOM’18 achieves relatively poor performance for
video-resolution estimation, even if the KQI is addressed as a
plain binary-classification task.

All in all, we can conclude that ViCrypt is not only able to
estimate video quality metrics with high accuracy – compara-
ble or even potentially outperforming the state of the art – but
also to do it in real time, with minimal temporal computation
requirements.

VII. CONCLUDING REMARKS

In this article, we presented ViCrypt, a machine-learning-
driven system for real-time estimation of QoE-relevant metrics
of video streaming, using a fine temporal granularity of only
one second. This is, to the best of our knowledge, the finest
granularity so far used for quality inference in the context of
encrypted traffic. ViCrypt monitors the encrypted video traffic
in a stream-like manner considering three windows (current
slot, trend window, session window), from which statistical
features are computed and updated with constant memory
consumption.

We focused on the estimation of the most important Key
QoE Indicators (KQIs), i.e., initial delay, stalling, visual qual-
ity, as well as the video bitrate, which are highly relevant for
ISPs to monitor the end-user QoE and to enable proactive
QoE-aware traffic management. We built a dataset containing
more than 15,000 randomly chosen YouTube videos streamed
under diverse network conditions, devices, ISPs, and transport
protocols. We benchmarked multiple ML models and found
that tree-based techniques are the most appropriate algorithms
for ViCrypt.

Indeed, ERT10 (binary classification of stalling, which
includes initial delay, with 99% accuracy; and continuous-
valued estimation, i.e., a regression problem, of average bitrate
with a mean absolute error of 68 kbps) and RF10 (classifica-
tion of video resolution into six classes with 96% accuracy)
provided highly promising results for all the considered QoE-
relevant metrics and can be (re-)trained very fast. BAGGING
performed even slightly better than RF10 and ERT10 for all
three KQIs when using all features, but comes at the cost of
significantly higher training times. We also analyzed the fea-
ture importance and showed that ViCrypt performed best with
only a reduced feature set. Here, the features summarizing
the characteristics of the session since the beginning of the
streaming were the most relevant ones.

Overall, we demonstrated that ViCrypt is a very pow-
erful tool to infer KQIs of YouTube from encrypted traf-
fic in real time. As future work, we propose to further
study to which extent the performance of ViCrypt could be
improved by carefully crafting better feature subsets, or by
following recurrent approaches considering also predictions

from previous time slots. Furthermore, the performance
of ViCrypt has to be revisited when applied to estimate
KQIs for other streaming services, such as Amazon or
Netflix.

REFERENCES

[1] P. Casas, M. Seufert, and R. Schatz, “YOUQMON: A system for on-
line monitoring of YouTube QoE in operational 3G networks,” ACM
SIGMETRICS PER, vol. 41, no. 2, pp. 44–46, 2013.

[2] R. Schatz, T. Hoßfeld, and P. Casas, “Passive YouTube QoE monitor-
ing for ISPs,” in Proc. 6th Int. Conf. Innovat. Mobile Internet Services
Ubiquitous Comput., Palermo, Italy, 2012, pp. 358–364.

[3] I. Orsolic, D. Pevec, M. Suznjevic, and L. Skorin-Kapov, “YouTube
QoE estimation based on the analysis of encrypted network traffic using
machine learning,” in Proc. GLOBECOM Workshops, Washington, DC,
USA, 2016, pp. 1–6.

[4] M. H. Mazhar and Z. Shafiq, “Real-time video quality of experience
monitoring for HTTPS and QUIC,” in Proc. IEEE INFOCOM, Honolulu,
HI, USA, 2018, pp. 1331–1339.

[5] M. Seufert, P. Casas, N. Wehner, L. Gang, and K. Li, “Stream-
based machine learning for real-time QoE analysis of encrypted video
streaming traffic,” in Proc. ICIN, 2019, pp. 76–81.

[6] M. Seufert, P. Casas, N. Wehner, L. Gang, and K. Li, “Features that mat-
ter: Feature selection for on-line stalling prediction in encrypted video
streaming,” in Proc. IEEE Conf. Comput. Commun. Workshops, 2019,
pp. 688–695.

[7] S. Wassermann, M. Seufert, P. Casas, L. Gang, and K. Li, “I see what
you see: Real time prediction of video quality from encrypted streaming
traffic,” in Proc. 4th Workshop QoE-based Anal. Manag. Data Commun.
Netw. (Internet-QoE), 2019, pp. 1–6.

[8] M. Seufert, S. Egger, M. Slanina, T. Zinner, T. Hoßfeld, and P. Tran-Gia,
“A survey on quality of experience of HTTP adaptive streaming,” IEEE
Commun. Surveys Tuts., vol. 17, no. 1, pp. 469–492, 1st Quart., 2015.

[9] D. Ghadiyaram, J. Pan, and A. C. Bovik, “A time-varying subjective
quality model for mobile streaming videos with stalling events,” in Proc.
SPIE Appl. Digital Image Process. XXXVIII, San Diego, CA, USA, 2015,
Art. no. 959911.

[10] K. Zeng, H. Yeganeh, and Z. Wang, “Quality-of-experience of streaming
video: Interactions between presentation quality and playback stalling,”
in Proc. IEEE Int. Conf. Image Process. (ICIP), Phoenix, AZ, USA,
2016, pp. 2405–2409.

[11] S. Egger, T. Hoßfeld, R. Schatz, and M. Fiedler, “Waiting times in
quality of experience for Web based services,” in Proc. 4th Int. Workshop
Qual. Multimedia Experience (QoMEX), Yarra Valley, VIC, Australia,
2012, pp. 86–96.

[12] C. Timmerer, M. Maiero, and B. Rainer, “Which adaptation logic? An
objective and subjective performance evaluation of HTTP-based adaptive
media streaming systems,” 2016. [Online]. Available: arXiv:1606.00341.

[13] H. Ott, K. Miller, and A. Wolisz, “Simulation framework for HTTP-
based adaptive streaming applications,” in Proc. Workshop Ns-3, 2017,
pp. 95–102.

[14] M. Seufert, N. Wehner, and P. Casas, “A fair share for all: TCP-inspired
adaptation logic for QoE fairness among heterogeneous HTTP adaptive
video streaming clients,” IEEE Trans. Netw. Service Manag., vol. 16,
no. 2, pp. 475–488, Jun. 2019.

[15] Information Technology—Dynamic Adaptive Streaming Over HTTP
(DASH)—Part 1: Media Presentation Description and Segment Formats,
(ISO/IEC) Standard 23009-1:2012, 2012.

[16] T. Hoßfeld, M. Seufert, C. Sieber, and T. Zinner, “Assessing effect sizes
of influence factors towards a QoE model for HTTP adaptive stream-
ing,” in Proc. 6th Int. Workshop Qual. Multimedia Experience (QoMEX),
Singapore, 2014, pp. 111–116.

[17] M. Seufert, T. Hoßfeld, and C. Sieber, “Impact of intermediate layer
on quality of experience of HTTP adaptive streaming,” in Proc. 11th
Int. Conf. Netw. Service Manag. (CNSM), Barcelona, Spain, 2015,
pp. 256–260.

[18] H. T. T. Tran, T. Vu, N. P. Ngoc, and T. C. Thang, “A novel quality model
for HTTP adaptive streaming,” in Proc. 6th IEEE Int. Conf. Commun.
Electron. (ICCE), Ha Long, Vietnam, 2016, pp. 423–428.

2023

[19] F. Wang, Z. Fei, J. Wang, Y. Liu, and Z. Wu, “HAS QoE prediction
based on dynamic video features with data mining in LTE network,”
Sci. China Inf. Sci., vol. 60, no. 4, 2017, Art. no. 042404.

[20] O. Oyman and S. Singh, “Quality of experience for HTTP adaptive
streaming services,” IEEE Commun. Mag., vol. 50, no. 4, pp. 20–27,
Apr. 2012.

[21] B. Lewcio, B. Belmudez, A. Mehmood, M. Wältermann, and S. Möller,
“Video quality in next generation mobile networks—Perception of time-
varying transmission,” in Proc. IEEE Int. Workshop Tech. Committee
Commun. Qual. Rel. (CQR), Naples, FL, USA, 2011, pp. 1–6.

[22] P. Ni, R. Eg, A. Eichhorn, C. Griwodz, and P. Halvorsen, “Flicker effects
in adaptive video streaming to handheld devices,” in Proc. 19th ACM
Int. Conf. Multimedia (MM), Scottsdale, AZ, USA, 2011, pp. 463–472.

[23] V. Aggarwal, E. Halepovic, J. Pang, S. Venkataraman, and H. Yan,
“Prometheus: Toward quality-of-experience estimation for mobile apps
from passive network measurements,” in Proc. 15th Workshop Mobile
Comput. Syst. Appl. (HotMobile), Santa Barbara, CA, USA, 2014,
pp. 1–6.

[24] P. Casas, M. Seufert, F. Wamser, B. Gardlo, A. Sackl, and R. Schatz,
“Next to you: Monitoring quality of experience in cellular networks from
the end-devices,” IEEE Trans. Netw. Service Manag., vol. 13, no. 2,
pp. 181–196, Jun. 2016.

[25] P. Casas et al., “Predicting QoE in cellular networks using machine
learning and in-smartphone measurements,” in Proc. 9th Int. Conf. Qual.
Multimedia Experience (QoMEX), Erfurt, Germany, 2017, pp. 1–6.

[26] G. Dimopoulos, I. Leontiadis, P. Barlet-Ros, and K. Papagiannaki,
“Measuring video QoE from encrypted traffic,” in Proc. ACM Internet
Meas. Conf. (IMC), Santa Monica, CA, USA, 2016, pp. 513–526.

[27] S. Wassermann, N. Wehner, and P. Casas, “Machine learning models
for YouTube QoE and user engagement prediction in smartphones,”
SIGMETRICS PER, vol. 46, no. 3, pp. 155–158, 2019.

[28] V. Krishnamoorthi, N. Carlsson, E. Halepovic, and E. Petajan,
“BUFFEST: Predicting buffer conditions and real-time requirements of
HTTP(S) adaptive streaming clients,” in Proc. 8th ACM Multimedia Syst.
Conf. (MMSys), Taipei, Taiwan, 2017, pp. 76–87.

[29] T. Mangla, E. Halepovic, M. Ammar, and E. Zegura, “eMIMIC:
Estimating HTTP-based video QoE metrics from encrypted network traf-
fic,” in Proc. Netw. Traffic Meas. Anal. Conf. (TMA), Vienna, Austria,
2018, pp. 1–8.

[30] C. Gutterman et al., “Requet: Real-time QoE metric detection for
encrypted YouTube traffic,” in Proc. ACM Multimedia Syst. Conf.
(MMSys), 2019, p. 71.

[31] A. Schwind, M. Seufert, Ö. Alay, P. Casas, P. Tran-Gia, and F. Wamser,
“Concept and implementation of video QoE measurements in a mobile
broadband testbed,” in Proc. IEEE/IFIP Netw. Traffic Meas. Anal. Conf.,
Dublin, Ireland, 2017, pp. 1–6.

[32] F. Wamser, M. Seufert, P. Casas, R. Irmer, P. Tran-Gia, and R. Schatz,
“YoMoApp: A tool for analyzing QoE of YouTube HTTP adaptive
streaming in mobile networks,” in Proc. Eur. Conf. Netw. Commun.
(EuCNC), Paris, France, 2015, pp. 239–243.

[33] M. T. Seufert, “Quality of experience and access network traffic
management of HTTP adaptive video streaming,” Ph.D. dissertation,
Fakultät für Mathematik und Informatik, Univ. Würzburg, Würzburg,
Germany, 2017. [Online]. Available: https://opus.bibliothek.uni-
wuerzburg.de/files/15413/Seufert_Michael_Thomas_HTTP.pdf

[34] T. Karagkioules et al., “A public dataset for YouTube’s mobile streaming
client,” in Proc. Netw. Traffic Meas. Anal. Conf., Vienna, Austria, 2018,
pp. 1–6.

[35] A. L. Strehl and M. L. Littman, “Online linear regression and its appli-
cation to model-based reinforcement learning,” in Proc. 20th Int. Conf.
Neural Inf. Process. Syst., 2007, pp. 1417–1424.

[36] P. Pébay, “Formulas for robust, one-pass parallel computation of covari-
ances and arbitrary-order statistical moments,” Sandia Natl. Lab., U.S.
Dept. Energy, Livermore, CA, USA, Rep. SAND2008-6212, 2008.

[37] P. Geurts, D. Ernst, and L. Wehenkel, “Extremely randomized trees,”
Mach. Learn., vol. 63, no. 1, pp. 3–42, Apr. 2006.

[38] F. T. Liu, K. M. Ting, and Z. Zhou, “Isolation forest,” in Proc. 8th IEEE
Int. Conf. Data Mining, 2008, pp. 413–422.

[39] M. M. Breunig, H.-P. Kriegel, R. T. Ng, and J. Sander, “LOF: Identifying
density-based local outliers,” in Proc. ACM SIGMOD Int. Conf. Manag.
Data, 2000, pp. 93–104.

[40] P. Geurts, A. Irrthum, and L. Wehenkel, “Supervised learning with deci-
sion tree-based methods in computational and systems biology,” Mol.
BioSyst., vol. 5, no. 12, pp. 1593–1605, 2009.

Sarah Wassermann received the bachelor’s and
master’s degrees from the University of Liège,
Belgium, in 2015 and 2017, respectively. She is
currently pursing the Ph.D. degree with TU Wien,
doing research in network measurements, in partic-
ular in the field of QoE and machine learning. Her
goal is to conceive intelligent systems which make
the Internet smarter and able to face demanding
users and an ever-growing volume of heterogeneous
network traffic.

Michael Seufert (Member, IEEE) received the
bachelor’s degree in economathematics and the
Diploma and Ph.D. degrees in computer science
from the University of Würzburg, Germany. He
is currently pursuing the Habilitation degree from
the University of Würzburg, while leading the
chair’s research activities towards user-centric com-
munication networks. From 2012 to 2013, he was
with the FTW Telecommunication Research Center,
Vienna, Austria. From 2013 to 2017, he was
a Researcher with the Chair of Communication

Networks, University of Würzburg. From 2018 to 2019, he was a Postdoctoral
Fellow and a Scientist with the AIT Austrian Institute of Technology, Vienna.
Since 2019, he has been a Postdoctoral Fellow and a Scientist with the Chair
of Communication Networks, University of Würzburg. His research focuses
on QoE of Internet applications, artificial intelligence and machine learn-
ing for networks, monitoring and analytics of (encrypted) network traffic and
orchestration of edge cloud services, proactive QoE- and socially-aware traffic
management solutions, and performance modeling of communication systems.

Pedro Casas (Member, IEEE) received the
Electrical Engineering degree from the Universidad
de la República, Uruguay, in 2005, and the
Ph.D. degree in computer science from Télécom
Bretagne in 2010. He is Senior Scientist in AI/ML
for Networking with the AIT Austrian Institute
of Technology in Vienna. He was Postdoctoral
Research with the LAAS-CNRS in Toulouse from
2010 to 2011, and Senior Researcher with the
Telecommunications Research Center Vienna from
2011 to 2015. He has published more than 180

Networking research papers in major international conferences and journals.
His work focuses on machine-learning-based approaches for Networking, big
data analytics and platforms, Internet network measurements, network secu-
rity, and anomaly detection, as well as Internet QoE monitoring. He received
14 awards for his work, including seven best paper awards. He is General
Chair for different actions in Network measurement and analysis, including
the IEEE ComSoc ITC Special Interest Group on Network Measurements and
Analytics.

Li Gang works as a Technical Pre-Research
Engineer with Huawei Technologies. He joined
Huawei, and has been working in multiple projects
linked to network traffic monitoring and analy-
sis, including in particular video streaming (QoE)
analysis, more than ten years ago.

Kuang Li received the Ph.D. degree on com-
puter science from Wuhan University in China. He
has worked several years on researching intelligent
operation and the management of communication
networks in Huawei Technologies.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

