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A Fair Share for All: TCP-Inspired Adaptation
Logic for QoE Fairness Among Heterogeneous

HTTP Adaptive Video Streaming Clients
Michael Seufert , Nikolas Wehner , and Pedro Casas

Abstract—This paper presents a novel adaptation logic for
HTTP adaptive streaming (HAS), which achieves not only a
high quality of experience (QoE) but also high QoE fairness
among independent and heterogeneous clients. The algorithm
forces video clients to adapt the requested quality level based
on the current network conditions and their individual bit rate
requirements, such that the overall quality levels selected by all
currently active streaming clients are fairly distributed, i.e., they
do not diverge too much. The design of the algorithm is inspired
by the well-known transmission control protocol (TCP) conges-
tion control, and drives heterogeneous clients to independently
converge on similar quality levels without the need for commu-
nicating with each other and/or with a centralized controller in
the network. By defining quality levels with equal visual quality,
and preparing video representations accordingly, the quality level
fairness is extended to QoE fairness. In this paper, the design of
the TCP-inspired adaptation logic (TCPAL) is described and a
simulative performance evaluation is conducted to compare the
QoE and QoE fairness of the proposed algorithm with other
HAS adaptation logics. TCPAL is evaluated both in scenarios
with stable and fluctuating streaming capacity, and the impact
of its parameters is explored. The results suggest that TCPAL
performs on par with other HAS adaptation logics in terms of
QoE and QoE fairness for low link capacities, but significantly
improves the QoE fairness for increased link capacity. Moreover,
the fairness achieved by TCPAL does not degrade in situations
with fluctuating streaming capacity.

I. INTRODUCTION

V IDEO services on the Internet have evolved from offering
pure downloads of video files to progressive downloads

and streaming, which both describe the concurrent download
and playback of media files. Today, streaming services are the
most popular and most demanding applications of the Internet
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due to the high number of requests, high bit rates of the video
content and strict real-time requirements of the video playback.
Still, the delivered streaming service has to meet the expecta-
tions of the end users. To understand and eventually improve
Internet services like video streaming, application providers
and Internet service providers use the concept of Quality of
Experience (QoE) to quantify the subjective experience and
satisfaction of their customers with the network and the ser-
vice. For video streaming, the most severe QoE degradations
were the waiting time until the start of the playback (initial
delay) and interruptions of the playback (stalling) [1]–[3].

The currently prevailing streaming technology – HTTP
Adaptive Streaming (HAS) – allows to mitigate these QoE
degradations by offering the possibility to adapt the video bit
rate to the network conditions. The goal is to ensure a smooth
streaming when end users face throughput fluctuations, e.g., in
mobile networks. HAS utilizes standard Web protocols (mostly
HTTP over TCP, recently also over QUIC) to promote a simple
service implementation and high availability. It is implemented
in many commercial solutions and was standardized as MPEG
Dynamic Adaptive Streaming over HTTP (DASH) [4].

To enable adaptation of the video streaming to the current
network conditions, the HAS server stores the video content
encoded in different representations, i.e., in different bit rates.
The representations are split into segments (also referred to
as chunks) and corresponding segments of different represen-
tations contain the same frames, such that the bit rate can
be seamlessly switched at each segment boundary. Typically,
all segments contain a fixed amount (i.e., 1 to 15 s) of video
playback time and can either be extracted at runtime from
the single representation file or are stored as separate files on
the server. To change the video bit rate, the transmitted video
has to be altered, e.g., in terms of resolution, frame rate, or
compression, which changes the visual quality of the segment,
thereby, introducing an additional impact on QoE [1], [5]–[7].

The adaptation logic at the client is an algorithm that selects
which segments to download next from the list of available
segments. These decisions usually take into account segment
characteristics (e.g., bit rate), current playout statistics (e.g.,
buffer fill level), and current network conditions (e.g., band-
width measurements or estimations). By adapting the video
bit rate appropriately, the algorithm aims to maximize the
QoE for the given network conditions by minimizing initial
delay, avoiding stalling, and playing out the video in a high
visual quality. Consequently, it is the adaptation logic, which
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Fig. 1. QoE unfairness as a result of fair capacity allocation.

predominantly influences the network demands of the video
streaming and the resulting QoE of the end user.

Network providers want the resulting QoE of the end users
in their networks to be high, and they also want that all users
have a similar experience, which can be quantified in terms of
QoE fairness [8]. When multiple HAS flows are in a network
and share a bottleneck link, the link capacity will be equally
distributed to all flows by the fairness of the TCP protocol, and
thus, also the bit rates of the videos will be similar. However,
as the requirements for each streaming flow might be different,
e.g., in terms of content complexity or device characteristics,
the resulting QoE of the end users might not be fair at all.
Figure 1 presents such a situation. At the bottleneck link, the
streaming capacity C is equally shared by the two streaming
clients, one smart TV and one smartphone. Both streaming
clients are allocated the same streaming capacity, which is
the fair share C

2 . Thus, they are limited to request segments
with the same maximum supported video bit rate r, which
is typically also roughly around C

2 , although they have het-
erogeneous requirements in terms of video resolution. The
smartphone has a small display and is satisfied streaming a
video in low resolution only. Thus, a small bit rate is suffi-
cient to achieve a high visual quality (little compression) and
high QoE. However, streaming the same video on a smart
TV with the same bit rate will result in a low visual quality
(much compression) due to the higher resolution needed for
the large TV display, and consequently, a low QoE will result.
This shows that, while the capacity allocation and the result-
ing video bit rate distribution in the network are fair, the QoE
distribution is not fair at all. Existing HAS adaptation logics
were not able to cope with the problem of QoE fairness for
competing HAS flows, such that collaborative and centralized
solutions in the network were needed [9]–[12].

This paper presents a novel HAS adaptation logic, which
reaches high QoE as well as QoE fairness on shared links with
multiple HAS flows without requiring communication between
the streaming applications and/or a centralized controller. It
is inspired by the well-known Transmission Control Protocol

(TCP) congestion control, and drives heterogeneous clients to
independently converge on similar quality levels, instead of
similar bit rates. When equal quality levels correspond to equal
visual quality, which can be easily realized during the content
preparation by the video provider, the QoE fairness in the
network will be high, i.e., all HAS flows will achieve a similar
QoE by using the proposed adaptation logic.

This paper extends previous work [13] by a more precise
problem formulation and motivation for needing a QoE-fair
HAS adaptation logic. Moreover, the transfer of the concepts
behind TCP fairness to achieve QoE fairness is elaborated in
more detail. For the performance evaluation of the proposed
adaptation logic, additional simulation runs have been gen-
erated to improve the validity of the presented results for
stable streaming capacities. Furthermore, its performance is
compared in four scenarios with fluctuating streaming capac-
ities. Finally, the impact of the parameters of the proposed
algorithm is explored.

The remainder of the paper is structured as follows.
Section II describes related works on adaptation logics for
HAS and QoE fairness. Moreover, it recaps the basic princi-
ples of TCP, especially focusing on its congestion control to
achieve fairness. Section III presents the design considerations
for the novel HAS adaptation logic and shows the implemen-
tation of the algorithm in detail. A performance evaluation
of the proposed algorithm is conducted based on the simula-
tion framework presented in Section IV. Section V presents
the performance of the proposed algorithm, which is com-
pared to existing HAS adaptation logics in terms of QoE and
QoE fairness. Finally, Section VI revisits the parameters of the
proposed algorithm and explores their impact, and Section VII
concludes.

II. RELATED WORK

The Quality of Experience (QoE) of HTTP adaptive stream-
ing (HAS) is a widely investigated research field. The most
important research results were reported in [1], while more
recent publications confirmed the findings that initial delay,
stalling, and quality adaptation are the most dominant QoE
factors. While the initial delay has only a small impact on the
QoE, stalling, i.e., the interruption of the video playback due
to buffer depletion, is considered the worst form of QoE degra-
dation [2], [3]. Moreover, the played out video quality and the
time on each quality layer strongly impact the QoE [5]–[7].
These QoE factors will be considered during the performance
evaluation of the proposed algorithm.

As subjective QoE studies, which are typically used to
assess the QoE, are expensive and time-consuming, QoE mod-
els are needed, which can predict the QoE based on objective
criteria, e.g., the QoE factors. Recently, such an objective QoE
model was standardized as P.1203 [14], whose mode 3 (i.e.,
complete information is available) will also be used in this
paper to obtain QoE scores for HAS sessions. The output of
the P.1203 metric is a predicted mean opinion score (MOS) on
a 5-point absolute category rating (ACR) scale, ranging from
1 (bad) to 5 (excellent) [15]. The predicted score is shaped by
information about the audio and video encoding, as well as by
application-layer parameters like the number of stallings, the

                                                                                                                                              



                                                                                                   477

length of the stalling events, the initial delay, and the number
of quality switches. More details on the implementation of the
standard can be found in [14].

QoE factors are not only directly influenced by the network
conditions, but also by the adaptation logic of the HAS client.
It can be considered as a mechanism for application manage-
ment, which aims to maximize the user’s QoE by requesting
appropriate quality levels in order to minimize initial delay,
avoid stalling, and download the video with a high visual qual-
ity. Network providers do not only want to maximize the QoE
of each end user, but also want to achieve a high QoE fair-
ness in their networks. Therefore, they might apply network
management or collaborative application and network manage-
ment. However, as these solutions are not practical and require
business agreements between service providers and network
providers, the goal of this work is to reach QoE fairness of
independent and heterogeneous HAS clients only by applica-
tion management. Therefore, a new adaptation logic for HAS
clients is proposed, which is inspired by TCP fairness and
aims to both maximize QoE and QoE fairness.

A. HAS Adaptation Logics

Literature proposes several HAS adaptation logics that
focus on different aspects. Some of them are considered in
this paper, and will be shortly described in the following.
BufferBased [16] solely utilizes the buffer level to decide
the next quality level. By dividing the buffer level into
several segments and assigning different actions, e.g., increas-
ing/decreasing the quality level, the adaptation logic maps
the current buffer level to the segments, and performs the
corresponding action. In contrast, ELASTIC [17] applies lin-
ear feedback control theory in order to avoid the ON-OFF
traffic pattern that occurs when clients estimate their band-
width shares falsely due to other temporarily inactive clients.
KLUDCP [18] selects the quality level based on the disparity
between the current buffer level and the desired buffer level,
a bandwidth estimate, and the corresponding bit rates. Finally,
TRDA [19] is designed for stalling prevention and reduction
of the frequency of quality adaptations. Similar to ELASTIC,
it is based on previous bandwidth estimates, but introduces
a fast start phase, which facilitates a trade-off between the
maximization of the video quality and the initial delay.

Reference [20] uses a simulation framework based on the
Wi-Fi model of NS-3 to compare several HAS adaptation
logics, namely, TRDA/Tobasco, Conventional, PANDA [21],
and FESTIVE [22]. They found that TRDA showed the
best results with respect to the stalling ratio, the number
of quality changes, and the average buffer level, but suf-
fered from the lowest mean video quality. The best video
quality was obtained by FESTIVE, which in turn suffered
from frequent quality switches and, for too many clients,
stalling. Reference [23] compares ten different adaptation log-
ics and considers QoE metrics, as well as network utilization,
stability of the adaptation, and the mean bit rates requested
by the algorithms. The results revealed no dominating adap-
tation logic, but even simple adaptation logics performed
reasonably well.

B. QoE Fairness

QoE fairness [8] refers to a fair distribution of the QoE
scores of all end users in a network. This means that the
QoE scores should be very similar and not diverge too
much. Reference [8] found that the prevailing fairness mea-
sure, Jain’s fairness index [24], was not particularly well suited
to quantify QoE fairness. The reason is that Jain’s fairness
index requires ratio scales with a defined zero point, but QoE
is rather measured on interval scales, e.g., the 5-point ACR
scale, which is typically used to obtain MOS values.

Reference [8] defined a new measure for QoE fairness F
with additional scale and metric independence for computing
the fairness of QoE scores. Thereby, the fairness measure F
is computed as a linear transformation of the standard devia-
tion of the QoE scores to the interval [0;1]. This is achieved
by setting the standard deviation σ in relation to the maxi-
mum possible standard deviation σmax , which is the difference
between the highest possible QoE score H and the lowest
possible QoE score L : F = 1− σ

σmax
= 1− 2σ

H−L .
Consequently, F = 1 indicates that σ = 0 and all QoE

scores are the same, i.e., a perfect QoE fairness. In con-
trast, F = 0 represents the most unfair situation, in which
50% of the users have a QoE score of H and 50% have
a QoE score of L. In this paper, F is used to compute the
fairness of the selected quality levels and the resulting QoE
score.

C. QoE Fairness With Additional Network Management

As current HAS adaptation logics of independent and het-
erogeneous clients cannot reach QoE fairness in the network,
the research community tackled this issue with the help
of network management. Thereby, the network conditions
are influenced during the video streaming depending on the
current QoE, e.g., by prioritization or dedicated bandwidth
allocation for video flows [25], [26]. However, this requires
the estimation of video requirements and the monitoring of
QoE in the network, which has become a difficult and cumber-
some task since video traffic is encrypted. Another approach
is combined network and application management based on
the collaboration and communication between the HAS clients
and the network, e.g., by using a centralized controller in the
network. In the following, several works are presented.

Reference [27] uses SDN to dynamically allocate the
network resources for each client based on its expected
QoE. Reference [28] modifies the HAS index files, i.e., the
list of available segments, in the network. Reference [29]
proposes bandwidth reservation for HAS flows and signals
clients which quality levels to request. Reference [9] tries to
achieve QoE fairness for multiple clients by using information
about network conditions. Reference [10] presents a collabora-
tive traffic management system, which considers QoE fairness
in case of encrypted HAS. Recently, SAND standardization
efforts were started to exchange information measured at
servers and network elements to improve the delivery, and
to send quality-related information to clients to improve the
reception [11], [12].
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Fig. 2. TCP congestion control.

D. TCP Fairness

The Transmission Control Protocol (TCP) [30] is one of the
most widely used protocols on the Internet. TCP is connection-
oriented and ensures a guaranteed transmission of undisturbed
data. It provides a principle of fair bandwidth shares among
multiple clients over a shared network link. This is achieved
by utilizing flow control and congestion control. As TCP flow
control is rather focused on avoiding to overload the receiver,
it was irrelevant for the design of the adaptation logic, and
thus, is not discussed here.

The basic TCP congestion control [31] is depicted in
Figure 2. It is composed of an exponential growth of the con-
gestion window, the so called slow start phase, followed by a
linear growth of the congestion window, the congestion avoid-
ance phase. The congestion window indicates the number of
unacknowledged TCP segments, which the sender can send
within one transmission round. The duration of a transmis-
sion round is characterized by the round trip time. During the
slow start phase, the congestion window is increased by one
for each received acknowledgment, resulting in an exponen-
tial growth of the window, as the number of segments doubles
each round.

A threshold specifies the end of the slow start phase and
hence the beginning of the congestion avoidance phase. In
the congestion avoidance phase, the congestion window is
increased by one per transmission round. When a segment
is lost, congestion occurs. As a consequence, standard TCP
Tahoe decreases the congestion window size to 1 and sets
the slow start threshold to half of the previously active con-
gestion window. This is followed by a new slow start phase.
Several variations of standard TCP exist, which modify this
basic procedure. For example, in TCP Reno the congestion
window size is not reduced to 1 on loss, but only to half of
the previous window size and a congestion avoidance phase
directly follows instead of a slow start phase (fast recovery).

As all clients can detect congestion rather simultaneously by
observing their own loss, and react similarly by reducing the
own sending rate, this can be considered an altruistic behavior
of clients. It happens that the bandwidth of the shared link
can be fairly shared among all clients. The proposed HAS

adaptation logic was inspired by the TCP congestion con-
trol, and uses similar design considerations to achieve a fair
quality level for all HAS clients. Note that practical problems
might arise with HAS flows in a shared TCP network due to
the on-/off-phases of the download [1], [32]. However, these
issues are not considered in this work, as it only focuses on
investigating the potential of a TCP-inspired adaptation logic.

III. TCP-INSPIRED ADAPTATION LOGIC

This section introduces the novel HAS adaptation logic,
which reaches QoE fairness on shared links with multiple
independent and heterogeneous HAS clients.

A. Design Considerations

A prerequisite for achieving similar QoE on heterogeneous
HAS clients is that each client can request the same quality
levels, which is not the case when they can only request differ-
ent bit rate levels. Typically, different videos with the same bit
rate have a different visual quality, e.g., due to different con-
tent complexity, resolution, or compression. Therefore, quality
levels are introduced. Without loss of generality, the quality
levels are ordered from 1 (lowest quality) to lmax (highest
quality) and the visual quality contained in different segments
of the same quality level should be the same. In practice, this
means that instead of encoding the different representations
of a HAS video file with certain (target) bit rate levels, the
target for encoding should be a metric for the visual quality
(e.g., SSIM or VQM), such that different segments of the same
quality level have the same visual quality. Video providers also
have to ensure that the quality levels are consistent for different
contents or resolutions.

The main concept for reaching QoE fairness among inde-
pendent and heterogeneous HAS clients is based on the idea
that all clients need to obtain the same information from
observing the network. This information can then be used by
each client together with information about its individual char-
acteristics to maximize its own QoE in a synchronous and
consistent, yet altruistic way. In this case, the term “altruistic”
means that each client is aware that the network is shared and
does not egoistically increase its own quality level in situations
when other clients can not. In the following, the four main
design considerations are described that are used to obtain
“altruistic” behavior.

1) Limitation of Buffer Filling Rate: One problem of com-
peting heterogeneous clients is that clients with small bit rates
can download segments and fill the buffer more quickly than
clients with large bit rates. Consequently, with most adaptation
logics, they can much earlier attempt to increase the quality
level, which can result in an unfair QoE distribution. In order
to keep the clients and their buffer more synchronized, a lim-
itation of the buffer filling rate is introduced. After a desired
buffer level bd is reached, the buffer will be kept at a con-
stant level in terms of buffered segments. Therefore, after a
segment is downloaded, the clients have to go idle for the con-
tained playtime of a segment τ minus the download time of
the segment T, i.e., ti = τ−T . Thus, a HAS client with suffi-
ciently filled buffer will request segments regularly in intervals
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of τ , which results in a buffer filling rate of 1 that is equal to
the playback rate (unit rate constraint). Thereby, the buffer is
effectively kept constant at the desired buffer level bd , which
also avoids excessive amounts of unnecessarily downloaded
data in case of video abortion.

If the buffer is below the desired level bd , the buffer has to
be increased. Therefore, the buffer filling rate can be increased
to 2. This is achieved by allowing HAS clients to go idle only
for ti =

τ
2 −T after a segment download, which causes them

to request segments in intervals of τ
2 . As the buffer filling rate

is double the playout rate, the buffer will increase linearly with
rate 1. If the video is initially loading or stalling, the buffer has
to be increased as fast as possible to minimize the initial delay
or stalling time. Therefore, in this case, the HAS clients do
not need to go idle after a segment download, but can request
segments back to back until the playback can be started.

2) Capacity Estimation and Upper Bounds on Quality
Level: After the timing of segment requests is more synchro-
nized among all clients, the requested quality levels have to
be synchronized next. Therefore, a common information about
the network is needed, which can be observed by each client
individually, and can be used to come to an agreement on
the quality level. Such information is the maximum capac-
ity Ĉmax , which is observed by the client. For each of k
active HAS clients, its observed Ĉmax should be similar and
approximate Cmax = C∗

n , which is the fair bandwidth share
of the link capacity C ∗ as a result of TCP fairness, when
n flows (k video flows and n−k other flows) share the link.
After each segment download, a capacity estimate Ĉ = s

T
can be computed by dividing the size s of the requested seg-
ment by the download time T, and the observed maximum
capacity Ĉmax can be updated. All adaptation decisions will
be based on the observed maximum capacity. Therefore, a
fictitious reference video v′ is considered with a maximum
needed bit rate r ′max equal to the maximum capacity, i.e.,
r ′max = Ĉmax . This reference video would just be able to
maintain its buffer when its throughput is equal to the maxi-
mum capacity, i.e., the download time of a segment is equal
to the playtime contained in a segment. To account for bit rate
variations, the maximum needed bandwidth is computed as the
mean bit rate of all segments of the highest quality level r̄max

plus α-times the corresponding standard deviation σrmax , i.e.,
rmax = r̄max + α · σrmax , α ≥ 0.

If the throughput of a video decreases to a share 0 <
q ≤ 1 of the maximum capacity, i.e., Ĉ = q · Ĉmax , the
reference video would have to decrease its quality level to
q · lmax := lu , and thus, to be fair, also all other videos should
reduce their quality levels to lu . The computation of lu uti-
lizes a parameter β ≤ 1 to relax the normalization with the
individually observed Ĉmax , i.e., lu = � Ĉ

β·Ĉmax
· lmax �. This

means that the maximum quality level can still be requested
when Ĉ ≥ β · Ĉmax . Thus, by obtaining the same (or similar)
Ĉmax and Ĉ , competing clients can individually find the same
(or a similar) upper bound lu for the quality level of requested
segments based on the current network conditions.

3) Slow Start and Congestion Avoidance Phase: Similar to
TCP, the quality level of HAS clients should be increased fast
until the currently supported quality level is reached, while

TABLE I
MAPPING OF TCP VARIABLES AND HAS VARIABLES FOR

TRANSFERRING TCP CONGESTION CONTROL INTO TCPAL SLOW

START AND CONGESTION AVOIDANCE PHASE

at the same time fairness among the HAS clients should be
maintained. Therefore, the proposed algorithm was designed
on the idea of transferring the concepts behind TCP fairness
to achieve QoE fairness. As a first step, parameters of the
TCP congestion control had to be mapped to the adaptation
of quality levels in HAS, which is depicted in Table I.

An exponential growth of the current quality level lc was
implemented similar to the TCP slow start phase. A slow
start phase is entered always after the playback of the video
started, i.e., after initial delay or stalling. It allows to double
the requested quality level after each downloaded segment, i.e.,
the new quality level ln = 2 · lc . After the current segment
has exceeded half of the currently allowed maximum level
lu , and thus, another doubling is not possible, the congestion
avoidance phase follows.

The congestion avoidance phase approaches and aims to
reach the maximum supported quality level. In this phase, the
quality level can be increased by 1 after each γ segments.
Therefore, each client remembers its last quality change tlc ,
and if more time than γ · τ has passed, the new quality level
ln = lc + 1 can be requested. Note that the upper bound lu
overrides increases of the quality levels that would have been
triggered by the slow start or congestion avoidance phase.

4) Congestion Detection and Compensation of Bit Rate
Requirements: A “congestion” with the current quality level
lc occurs when the download time T of a segment is larger
than the contained playtime τ , and thus, the buffer decreases.
In this case, lc should be decreased in order to avoid further
depletion of the buffer, which could eventually cause stalling.
To consistently act among all HAS clients, they will compute
the same new quality level ln = δ · lc , being a fixed share
δ <1 of the current quality level on which the congestion was
detected. Moreover, a hard threshold for the buffer level bl
is introduced, which also triggers a congestion. If the buffer
drops below the low threshold bl , the buffer should increase,
and thus, the quality level has to be decreased.

As videos with larger bit rates are more likely to face
congestion, the segment download times T have to be compen-
sated according to the bit rate requirements. Therefore, again
the fictitious reference video v′ is considered. It is reminded
that to maintain its buffer, it should be allowed to fully use the
download time T ′ = τ to download a segment of the highest
quality level under the maximum network conditions Ĉmax .
To have a comparable and fair congestion threshold, a video
with a smaller maximum needed bit rate rmax should have
to download the video with a proportionally shorter down-
load time. Thus, the bit rate compensation can be done via
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the compensated download time Tc , which can be computed
from the actual download time T as Tc = T · Ĉmax

rmax
and com-

pared to the segment playtime τ to detect congestion. Again
rmax = r̄max +α ·σrmax is the individually needed maximum
bit rate of each HAS client.

As congestion is always an indicator that the requested
quality level cannot be maintained, the assumptions on the
network conditions have to be reevaluated. To account for new
clients, which reduce the fair bandwidth share Cmax = C∗

n ,
the assumed maximum capacity Ĉmax is halved. This is a
conservative reaction, as for each additional client (n increases
by 1), the new Cmax is at least half of the previous Cmax . Still,
Ĉmax can be updated with subsequent capacity estimations.

B. Algorithm Description

The algorithm is called TCP-inspired Adaptation Logic
(TCPAL) and is shown in Algorithm 1. TCPAL has ten
predefined parameters on which all HAS clients have to agree,
namely, the segment playtime τ , maximum quality level lmax ,
the initial delay threshold bi , the stalling threshold bs , the
low buffer threshold bl , the desired buffer level bd , the con-
sidered bit rate variation α, the normalization relaxation β,
the linear growth regulation γ, and the congestion decrease
factor δ. Additionally, each HAS client has to maintain and
accordingly update the maximum needed bit rate rmax , the
current quality level lc , the current buffer level B , the time
since the last quality change tlc , the currently observed maxi-
mum capacity Ĉmax , and the Boolean variables isInitialDelay,
isStalling, and slowStart. These client variables are initialized
as shown in “Client Vars” and they are updated either by the
algorithm when indicated by “:=” (in contrast to “=”, which
represents an allocation to a temporal variable), or externally
(reduction of B during playback, B == 0 (playback is stalling)
⇒ isStalling := True), or never (rmax ).

After a video request, the HAS clients will immediately
download the first segment in the lowest quality level, i.e.,
lc = 1, ti = 0, and subsequently call TCPAL whenever a
segment is completely downloaded. Thereby, the only chang-
ing inputs are the size of the last downloaded segment s and
the download time of the last segment T. TCPAL will out-
put the quality level of the next segment ln and the idle
time ti , i.e., the time until the next segment with quality
level ln can be requested. The presented design considera-
tions can be found in Algorithm 1 as follows: The limitation
of the buffer filling rate is implemented in Lines 2-15. The
capacity estimation and upper bound to the available quality
levels can be seen in Lines 16-18. The congestion detection in
Lines 19-20 is followed by the corresponding consequences
of congestion in Lines 21-23. The slow start phase corre-
sponds to Lines 25-28, and the congestion avoidance phase to
Lines 29-35.

IV. SIMULATION FRAMEWORK

This section describes the simulation framework for the
performance evaluation of the proposed adaptation logic.
While a generic network simulation tool could potentially
also have been used for the performance evaluation, a custom

Algorithm 1: TCPAL
Parameters: τ, lmax , bi , bs , bl , bd , α, β, γ, δ
Client Vars: rmax := r̄max + α · σrmax , lc := 1,B := 0,

Ĉmax := 0, tlc := tNOW , isInitialDelay :=
True, isStalling := True, slowStart := True

Input: s ,T
Output: ln , ti

1 B := B + τ ;
2 if isStalling == True then
3 ti = 0;
4 slowStart := True;
5 if (isInitialDelay == True and B ≥ bi ) or

(isInitialDelay == False and B ≥ bs ) then
6 playVideo();
7 isInitialDelay := False;
8 isStalling := False;
9 else

10 if B ≥ bd then
11 ti = max(τ − T , 0);
12 else
13 ti = max( τ2 − T , 0);
14 end
15 end
16 Ĉ = s

T ;
17 Ĉmax := max(Ĉ , Ĉmax );

18 lu = max(min(� Ĉ
β·Ĉmax

· lmax �, lmax ), 1);

19 Tc = T · Ĉmax
rmax

;
20 if T > τ or Tc > τ or B − ti < bl then
21 ln = max(min(δ · lc , lu ), 1);
22 Ĉmax := Ĉmax

2 ;
23 slowStart := False;
24 else
25 if slowStart then
26 ln = min(2 · lc , lu );
27 if ln > lu

2 then
28 slowStart := False;
29 else
30 if tNOW − tlc > γ · τ then
31 ln = min(lc + 1, lu );
32 else
33 ln = min(lc , lu );
34 end
35 end
36 end
37 if ln != lc then
38 tlc := tNOW ;
39 lc := ln ;
40 return ln , ti

simulation framework was developed to have full control
over all aspects of the simulated system, i.e., the bottleneck
link and the streaming clients together with the adaptation
logic.
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Fig. 3. Target SSIM values for quality metrics and corresponding bit rates
for different resolutions.

In [26], a Java discrete-event simulation for video stream-
ing and Web page downloads over a bottleneck link with
fixed capacity was presented. In this work, the simulation was
extended to provide HAS capabilities, to integrate different
HAS adaptation logics, and to allow fluctuating link capacities.

The simulation allocates the available link capacity as fol-
lows. Each of the active application flows receives an equal
share of the current capacity, i.e., the normal TCP-fair share of
bandwidth. Whenever a client enters or leaves the system, or
the download of a client becomes idle or resumes, the avail-
able capacity is redistributed, such that every downloading
client is allocated the updated fair bandwidth share. The simu-
lation keeps track of the download and playback of all videos,
which can be used to compute several key performance indi-
cators, e.g., the initial delay, stalling, and played out video
qualities. Each simulation run is aborted after 550 s and all
statistics are stored in log files, which are later used for the
evaluations.

For a more realistic simulation, real video chunks were inte-
grated into the simulation. Therefore, the video “Big Buck
Bunny” [33] was split into segments with a playback length
of four seconds and each segment was encoded with constant
bit rate encoding with FFmpeg. In order to obtain quality lev-
els with an equal visual quality, the well-known full-reference
metric SSIM (structural similarity) [34] was utilized. 32 tar-
get SSIM values were selected as quality levels, ranging from
0.900 (lowest quality level) to 0.995 (highest quality level).
Since there are currently no tools that are capable of encoding
videos based on a passed target SSIM, the encoding process
was performed manually using the method of trial and error,
i.e., the encoding bit rate of the segment was varied until the
calculated mean SSIM matched the target SSIM. To account
for different requirements of HAS clients, e.g., in terms of dis-
play characteristics, the video was encoded in three different
resolutions (360p, 720p, 1080p), and each client was assigned
one of the resolutions at the start of a simulation run.

The extracted video representations are depicted in Figure 3,
where the y-axis represents the target SSIM values, the x-axis
describes the required encoding bit rate in order to obtain the
corresponding SSIM value, and each resolution is colored dif-
ferently. The figure shows that the HD video content requires
a much higher bit rate for a similar SSIM compared to the
other video sequences.

V. PERFORMANCE EVALUATION

In the following, the performance of the proposed TCP-
inspired adaptation logic (TCPAL) is investigated in detail.
Therefore, the parameters were set to τ = 4s, lmax = 32,
bi = 12s, bs = 4s, bl = 8s, bd = 16s, α = 1, β = 0.9, γ = 2,
and δ = 0.75. Note that the impact of these initial choices for
the TCPAL parameters α, β, γ, and δ is revisited in Section VI.

A. Results for Stable Streaming Capacity

First, the performance of TCPAL is evaluated in scenar-
ios with a stable streaming capacity, i.e., the bottleneck link
capacity is constant and the link is only used by HAS clients.

Figure 4 studies the behavior of HAS clients using TCPAL
qualitatively in exemplary simulation runs with link capacity
7 Mbps. In Figure 4a, there is only one HAS client on the link,
streaming a resolution of 720p. The x-axis depicts the time
of the simulation run, while the y-axis shows the requested
quality level. In the beginning, the slow start phase can be
seen, in which the quality level increases exponentially. The
congestion avoidance phase follows, in which the quality level
is increased linearly until congestion is detected and the quality
level drops to 75% (δ) of the previous level. It can be seen
that TCPAL repeatedly approaches the maximum supported
quality level, which is 30 given the link capacity of 7 Mbps
(see Figure 3), and then drops due to congestion.

Figure 4b shows a situation, in which six HAS clients start
simultaneously to request the 720p video. It can be seen that
all clients act quite synchronous during both slow start and
congestion avoidance phase. It can be seen that the maxi-
mum supported quality levels are much smaller, because the
link capacity is equally shared among the six HAS clients.
Figure 4c shows the same situation, but now the six clients
request different video resolutions. Two clients request 360p,
two clients 720p, and two clients 1080p. This leads to hetero-
geneous bit rate requirements in the network. It can be seen
that the clients are at different quality levels at the end of the
slow start phase. However, during the congestion avoidance
phase, the clients bring their quality levels to a similar range.

Finally, Figure 4d shows the most challenging scenario,
in which six diverse HAS clients (2 × 360p, 2 × 720p,
2 × 1080p) start to request their videos at a uniformly random
time in the first 100 s. Thus, the HAS clients are out of sync in
this scenario, and the available bandwidth of each client will
change when a new HAS client starts to request his video.
Nevertheless, it can be seen that the quality levels requested
by TCPAL are still quite similar. Later, this scenario will be
further investigated to compare the performance of TCPAL to
other adaptation logics in terms of QoE and QoE fairness.

To understand the shortcomings of other HAS adaptation
logics, Figure 5 shows the behavior of other HAS adapta-
tion logics in exemplary simulation runs of the same scenario
of Figure 4d. BufferBased (Figure 5a) increases the quality
level quite synchronous for all HAS clients but very slowly.
Also TRDA (Figure 5d) shows a linear increase, but as it
increases one quality level per segment, high quality levels can
be reached much faster. In contrast, ELASTIC (Figure 5b) and
KLUDCP (Figure 5c) almost immediately jump to very high
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(a) (b)

(c) (d)

Fig. 4. Performance of TCPAL in different scenarios with link capacity
7 Mbps. (a) Single HAS client with 720p. (b) Six HAS clients with 720p
and simultaneous start. (c) Six HAS (2 × 360p, 2 × 720p, 2 × 1080p)
clients with simultaneous start. (d) Six diverse HAS (2 × 360p, 2 × 720p,
2 × 1080p) clients with randomized start.

quality levels at the start of the video. While the behavior of
each adaptation logic is different (e.g., high oscillations of the
quality level for KLUDCP, but inert adaptation for ELASTIC
or TRDA), all adaptation logics converge to different qual-
ity levels for different resolutions. This means, they cannot
achieve fair adaptation for heterogeneous clients with differ-
ent bit rate requirements. The quality level, and thus, the QoE
of clients with high video bit rates (e.g., 1080p) is much lower
than for clients with low bit rate requirements (e.g., 360p).

In the following, the quantitative performance evaluation are
presented. Therefore, the reference scenario of Figure 4d was
used, i.e., six clients (2 × 360p, 2 × 720p, 2 × 1080p) can
randomly (uniformly distributed) start a video in the first 100 s
of a simulation run. Three different link capacities are used,
namely, the already presented capacity of 7 Mbps, for which
the six clients have to find appropriate intermediate quality
levels, a low link capacity of 2.4 Mbps, and a high link capc-
ity of 70 Mbps. In case the six clients share a link capacity
of 2.4 Mbps, the clients can only support low quality levels
and need to avoid stalling. In case of 70 Mbps, all six clients
should be able to reach very high quality levels. Note that fluc-
tuations of the link capacity are not investigated. However, the
increasing number of HAS clients and their oscillating down-
load and idle phases change the fair bandwidth share of all
active HAS client, which can be considered a kind of fluctu-
ation. 50 simulation runs were conducted for each adaptation
logic and link capacity. Each simulation run is aborted after
550 s, and the performance evaluation (except for initial delay)
considers only the steady state phase from 150-550 s (dashed
lines in Figures 4d and 5).

(a) (b)

(c) (d)

Fig. 5. Performance of other HAS adaptation logics for six HAS (2 × 360p,
2 × 720p, 2 × 1080p) clients with randomized start and link capacity 7 Mbps
(see Figure 4d). (a) BufferBased. (b) ELASTIC. (c) KLUDCP. (d) TRDA.

Figure 6 shows the QoE results for the different link
capacities on the x-axes. Each bar represents a different adap-
tation logic, see the legend for a mapping of colors and
algorithms. The y-axes indicate the mean of the consid-
ered performance metric, i.e., initial delay (Figure 6a), total
stalling time (Figure 6b), time-weighted average quality level
(TWAQL, Figure 6c), and the predicted MOS from P.1203
(Figure 6d), and the corresponding 95% confidence intervals
are shown on top.

Figure 6a shows the results for initial delay, for which a
shorter initial delay is better in terms of QoE. It can be seen
that TCPAL (yellow) reaches low initial delays comparable
to TRDA (orange) for all link capacities. Only BufferBased
(black) starts the playback of the streamed video faster. The
results for stalling are presented in Figure 6b, where again
shorter stalling is to be preferred for achieving a better QoE.
TCPAL cannot completely avoid stalling for the lowest link
capacity, however, the mean total stalling time is short. For
higher link capacities stalling is not an issue for TCPAL.

Figure 6c displays the time-weighted average quality level
(TWAQL), i.e., each quality level was weighted according to
the time for which it was played out. As a higher visual qual-
ity level results in a higher QoE, here, in contrast to initial
delay and stalling, a higher TWAQL corresponds to a better
QoE. It can be seen that the TCPAL adaptation logic requests
on average slightly lower quality levels than other adapta-
tion logics for higher link capacity. This comes by design as
TCPAL shows an altruistic behavior and restricts itself from
requesting too high quality levels. Additionally, the congestion
avoidance phase, in which the maximum supported quality
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(a) (b)

(c) (d)

Fig. 6. Results on QoE factors and QoE score (stable streaming capacity).
(a) Initial delay. (b) Total stalling time. (c) Time-weighted average quality
level (TWAQL). (d) Predicted MOS from P.1203.

level is approached linearly and the quality level is reduced
on congestion, leads to an average quality level slightly below
the maximum supported quality level. This propagates to the
MOS prediction based on P.1203 in Figure 6d. Here, the out-
put is on the actual MOS scale from 1 (bad) to 5 (excellent),
which is the usual metric for describing the QoE, and thus,
a higher MOS directly refers to a better QoE. It can be seen
that ELASTIC (dark brown) and KLUDCP (light brown) can
achieve the highest MOS for all link capacities. Nevertheless,
TCPAL is on a par with P.1203 scores of 2.4 for 2.4 Mbps
and 3.5 for 7 Mbps. Although it performs slightly worse than
ELASTIC, KLUDPC, and TRDA for 70 Mbps, it still achieves
a high score of 4.3 on the MOS scale.

Finally, Figure 7 shows the corresponding fairness of the
QoE metrics. While Jain’s fairness index [24] was used for
initial delay and stalling (unlimited metrics on ratio scale),
the F metric [8] was used for time-weighted average quality
level and the predicted MOS scores. The desirable fairness
score is 1, which means a perfect fairness of the underlying
metric for all six HAS clients. The figure shows the fairness
scores for all QoE metrics of Figure 6 to highlight all aspects
of the trade-offs between QoE and QoE fairness. However,
when it comes to a final evaluation of the algorithms in terms
of QoE and QoE fairness, the final P.1203-based QoE score in
Figure 6d and the corresponding P.1203 column in Figure 7
should be considered, as the computation of P.1203 takes the
other QoE metrics (initial delay, stalling, visual quality level)
into account.

In case of the low link capacity of 2.4 Mbps, clients with
high resolutions struggle with stalling and very low quality lev-
els, while clients with low bit rate requirements can maintain
a smooth streaming on low quality levels. Thus, the resulting
QoE is very different, which can be seen in the low fairness
scores. Also for TCPAL, only the congestion detection via

Fig. 7. Results on QoE fairness (stable streaming capacity).

the actual download time works, and thus, clients with low bit
rate requirements manage to download segments with a higher
quality level as can be seen in Figure 8a. As this is the same
problem that other HAS adaptation logics face, the fairness
scores of TCPAL are on the same level in this scenario.

For 7 Mbps, stalling should be avoided by all adaptation
logics. Still, the fairness of the other adaptation logics is not
very high as the requested quality levels highly diverge for
different bit rate requirements (see Figure 5). In this scenario,
TCPAL manages in all simulation runs to reach a significantly
higher fairness in terms of time-weighted average quality level
(TWAQL) and predicted MOS (P.1203). Together with the
comparably high overall QoE, this shows that the design con-
siderations of TCPAL were useful and allow a good and fair
streaming of heterogeneous and independent HAS clients.

For the high link capacity of 70 Mbps, initial delays are
short, no stalling occurs and a constant high quality level can
be maintained by the other adaptation logics. By design, the
quality level of TCPAL oscillates in the congestion avoidance
phase due to the strict definition of congestion, which can
be seen in Figure 8b. This should not negatively affect the
QoE fairness, however, it can be seen that the requested qual-
ity levels additionally diverge. The reason for this problem
is that the download times of segments are very small, and
thus, the observed maximum link capacity might be differ-
ent for different HAS clients depending on how many other
clients are downloading or idling, see the on-/off-problem of
HAS, e.g., [1], [32]. This leads to self-restrictions of only some
clients based on congestion avoidance. Thus, the requested
quality levels are different, which results in reduced fairness
for time-weighted average quality level (TWAQL), and also
for predicted MOS (P.1203). To improve the performance of
TCPAL in this case, the robustness of the estimation of the
maximum link capacity would have to be improved. However,
for different networks, different approaches might have to be
implemented, see [35], [36]. Moreover, similar to [37], TCPAL
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(a) (b)

Fig. 8. Performance of TCPAL for six HAS (2 × 360p, 2 × 720p,
2 × 1080p) clients with randomized start and smaller or larger link capacity
(see Figure 4d). (a) 2.4 Mbps. (b) 70 Mbps.

parameters could be dynamically adjusted according to the
network conditions to improve its performance, e.g., based on
machine learning.

B. Results for Fluctuating Streaming Capacity

Next, the performance of TCPAL is evaluated in scenarios
with fluctuating streaming capacity. This fluctuation can be
caused by varying channel conditions on the mobile link or
by cross-traffic, i.e., traffic of other applications on the same
bottleneck link.

The same simulation setup is used for the performance eval-
uation, but the framework was adjusted to allow for possible
changes in the link capacity every 1 s. Four fluctuation pat-
terns are investigated, which include independent fluctuations.
The patterns result in a highly volatile streaming capacity and
can be considered as worst-case scenarios. The four fluctuation
patterns are based on the same mean streaming capacities C̄
of 2.4 Mbps, 7 Mbps, and 70 Mbps, and the standard deviation
was controlled to 1

2 C̄ , i.e., half of the mean capacity:
• Alternating (ALT): The ALT pattern switches the link

capacity every second from 1
2 C̄ to 3

2 C̄ , and vice versa.
• Uniform (UNI): The UNI pattern selects every second

a link capacity uniformly, i.e., with probability 1
3 , from

three values, namely, (1−
√
6
4 ) · C̄ , C̄ , and (1+

√
6
4 ) · C̄ .

• Normal (NOR): The NOR pattern draws every second a
normally distributed fluctuation with mean 0 and standard
deviation 1

2 C̄ , and adds this fluctuation to C̄ .
• Exponential (EXP): The EXP pattern draws every second

an exponentially distributed fluctuation with mean 1
2 C̄ ,

and adds this fluctuation to 1
2 C̄ .

Note again, that for all four patterns, the mean link capacity
is C̄ and the standard deviation is 1

2 C̄ .
In the following, the results for the four fluctuation patterns

are compared to the results for the stable streaming capacity,
i.e., the constant link capacity (CON). This time 20 simulation
runs were conducted for each streaming capacity and fluctu-
ation pattern. Figure 9 shows bar plots for the QoE metrics.
Each bar represents a different fluctuation pattern, see the leg-
end for a mapping of colors and fluctuation patterns. Again, the
y-axes indicate the mean of the considered performance met-
ric, i.e., initial delay (Figure 9a), total stalling time (Figure 9b),
time-weighted average quality level (TWAQL, Figure 9c), and

(a) (b)

(c) (d)

Fig. 9. Results on QoE factors and QoE score (fluctuating streaming capac-
ity). (a) Initial delay. (b) Total stalling time. (c) Time-weighted average quality
level (TWAQL). (d) Predicted MOS from P.1203.

Fig. 10. Results on QoE fairness (fluctuating streamingcapacity).

the predicted MOS from P.1203 (Figure 9d), and the corre-
sponding 95% confidence intervals are shown on top. Note
that the yellow bar (CON) is equivalent to the yellow bar
of Figure 6, which represents the performance of TCPAL
under stable streaming conditions, and thus, can be used as
a reference.

For initial delay, it can be seen in Figure 9a that the fluctu-
ation of the streaming capacity does not have a huge impact.
Instead, for all three mean streaming capacities (2.4 Mbps,
7 Mbps, and 70 Mbps), the initial delay is very similar to
the corresponding initial delay for stable streaming capacity
(CON). Even with fluctuating streaming capacity, TCPAL is
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able to avoid stalling in the 7 Mbps and 70 Mbps conditions,
see Figure 9b. Stalling can only be observed for 2.4 Mbps.
Here, the total stalling time is reduced compared to stable
streaming conditions, especially for exponential fluctuation
(EXP), which has a total stalling time close to 0. Note that in
2.4 Mbps condition, the average quality levels (see Figure 9c)
are very similar for all fluctuation patterns. Thus, the reason
for the reduced stalling is that, although the mean streaming
capacity is low, phases with high streaming capacity can occur,
which help to quickly fill the buffer and avoid stalling. This
effect is most exposed for EXP, while the other fluctuation
patterns show more moderate capacity fluctuation.

Figure 9c shows the results for the TWAQL metric, i.e., the
time-weighted average quality level of played out segments. It
can be seen that fluctuations of the streaming capacity cause
TCPAL to reduce the quality level compared to stable stream-
ing capacity. The reason is that phases with low streaming
capacity in the fluctuation patterns will increase the download
times of segments. This causes congestion in TCPAL more
often, which results in a reduction of the requested quality
levels. As described above, the TWAQL is still very simi-
lar to CON for 2.4 Mbps, but it diverges more and more for
higher capacities. In case of 70 Mbps, exponential (EXP), nor-
mal (NOR), and uniform (UNI) fluctuation even reduce the
TWAQL metric to half of CON or less. In contrast, alternating
fluctuation (ALT) results in only a slight reduction of the qual-
ity level, even with the high mean capacity of 70 Mbps. The
reduced quality levels eventually lead to a reduced predicted
MOS score, as expected, which can be seen in Figure 9d. Here,
the worst fluctuation patterns reach a P.1203, which is around
3 for 7 Mbps (down from 3.5 for CON) and for 70 Mbps (down
from 4.3 for CON). For 2.4 Mbps, the quality levels were sim-
ilar to CON and stalling was only slightly reduced from a low
CON baseline. Thus, in this scenario, the P.1203 scores stay
similar to CON for all fluctuation patterns, having a score
around 2.4.

Figure 10 compares the QoE fairness of TCPAL for fluc-
tuating streaming capacity with its QoE fairness for stable
streaming capacity. For all mean streaming capacities, the
fairness score for initial delay is similar to CON for all fluc-
tuation patterns. For stalling with a mean streaming capacity
of 2.4 Mbps, the QoE fairness score increases compared to
CON although also the confidence intervals grow. Still, for
ALT, NOR, and especially for EXP, the QoE fairness is signifi-
cantly higher compared to CON. For the other mean streaming
capacities no stalling occurred, hence, all QoE fairness scores
are equal to 1. When considering TWAQL, an increased QoE
fairness can be observed for EXP, NOR, and UNI for all mean
streaming capacities. Only with ALT, TCPAL has roughly the
same fairness as with CON. Also for P.1203, EXP, NOR, and
UNI result in increased QoE fairness compared to CON for
2.4 Mbps and 70 Mbps, while ALT stayed similar to CON. For
P.1203 under 7 Mbps, all scores are very similar, only EXP
results in a slightly lower QoE fairness.

To sum up, the performance analysis of TCPAL under fluc-
tuating streaming capacity showed that absolute QoE metrics
slightly degrade compared to stable streaming capacity, which
is an expected result. However, the QoE fairness of TCPAL

could stay on the same level, and could even increase for some
fluctuation patterns. This shows that TCPAL is able to fulfill its
design goals of a QoE-fair adaptation even under fluctuating
streaming conditions.

VI. EXPLORING THE IMPACT OF TCPAL PARAMETERS

Finally, the impact of the four parameters of TCPAL
α, β, γ, and δ are investigated in detail. In the design pro-
cess of TCPAL, and the performance evaluation presented
above, the investigated parameters were initialized as α =
1, β = 0.9, γ = 2, and δ = 0.75. In the following, the
parameters are shortly revisited and the design considerations
are explained.

• α: TCPAL considers the maximum needed bandwidth
rmax of each video. This value is derived from the mean
bit rate of all segments of the highest quality level r̄max .
Due to bit rate variations caused by variable bit rate
encoding (VBR), the actual bit rate fluctuates around
the mean. Therefore, the maximum needed bandwidth is
increased by α-times the standard deviation of the bit
rate of the segments at the highest quality level σrmax ,
i.e., rmax = r̄max + α · σrmax , α ≥ 0. The initial value
of α = 1, i.e., an increase of the mean bit rate by one
standard deviation, was chosen to account for a portion
of the VBR fluctuations.

• β: TCPAL is based on Ĉmax , i.e., the individually
observed maximum link capacity, and adjusts the upper
limit of the quality level lu based on the ratio of the
current observed link capacity Ĉ and Ĉmax . As a maxi-
mum observation might be prone to outliers, the observed
Ĉmax value might be too optimistic and can rarely be
reached again by future observations Ĉ . This would
prevent the streaming clients from requesting the max-
imum quality level lmax . Therefore, the parameter β ≤ 1
relaxes this condition, i.e., it virtually reduces Ĉmax , such
that the maximum quality level can still be requested
when Ĉ ≥ β ·Ĉmax . This results in lu = � Ĉ

β·Ĉmax
·lmax �.

The initial value was set to β = 0.9 to only moderately
reduce the individually observed maximum link capacity.

• γ: In the congestion avoidance phase, TCPAL probes
the maximum sustainable quality level. To keep the
clients more synchronized, the quality level can only be
increased by 1 after each γ segments. Thus, the param-
eter γ controls the aggressiveness of the quality level
increases in the congestion avoidance phase, i.e., a higher
γ causes TCPAL to wait longer before the quality level
can increase. The initial value of γ = 2 results in possi-
ble quality level increases every 8 s (τ = 4 s), such that
TCPAL does not increase the quality too aggressively in
the congestion avoidance phase.

• δ: TCPAL reduces the quality level when congestion is
detected or the buffer level is too low. This is controlled
by parameter δ < 1, i.e., the new quality level ln = δ·lc is
a share of the current quality level lc . Due to the probing
in the congestion avoidance phase, the quality level has to
be reduced quite often. Thus, the initial value of δ = 0.75
was chosen to not decrease the quality level too much.
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TABLE II
INVESTIGATED VALUES OF TCPAL PARAMETERS

TABLE III
IMPACT OF TCPAL PARAMETERS ON QOE FACTORS

To investigate the impact of changing these initial param-
eters, the following approach was taken. In addition to the
initial value of each parameter, a value below and a value
above was selected, see Table II. Thus, in total there were
three values for each parameter. Then, a full factorial design
with 81 parameter combinations was evaluated for the most
challenging scenario with six diverse HAS clients (2 × 360p,
2 × 720p, 2 × 1080p). Each parameter combination was
evaluated with ten simulation runs for each of the three differ-
ent stable streaming capacities, namely, 2.4 Mbps, 7 Mbps, and
70 Mbps. The remaining parameters of the streaming remained
as τ = 4s, lmax = 32, bi = 12s, bs = 4s, bl = 8s, bd = 16s.

The QoE factors and QoE fairness scores for each of the
four metrics (initial delay, total stalling time, time-weighted
average quality level, and predicted MOS from P.1203) were
recorded for each run. The impact of each parameter on the
eight metrics was analyzed with four-factor analyses of vari-
ance (ANOVAs). Significant differences between the groups
were further investigated with a post-hoc analysis based on
Tukey’s honestly significant difference (HSD) test to obtain
the trend of the parameter impact.

The results for the QoE factors are presented in Table III. In
the table, an arrow indicates that, according to Tukey’s HSD
test, there is a significant difference between the means of
the QoE factor for the lower and the higher parameter value.
Note that these differences could always be observed for all
three link capacities. The direction of the arrow shows the
trend for an increasing parameter value. Additionally, the let-
ters L and H indicate that with the lower or higher parameter
value, the QoE factor is significantly different from the ini-
tial parameter value. For the parameters α, β, and γ, no trend
can be observed for any QoE factor. However, the parameter δ
has an impact. Increasing δ leads to higher initial delay, higher
total stalling time, and higher average quality level (TWAQL).
Here, the higher δ value of δ = 0.9 results in significantly
higher total stalling time compared to the initial parameter
value δ = 0.75 with an average increase in total stalling time
by around 24 s, which is a worse performance. However, the
opposing trends of initial delay/total stalling time (higher is
worse) and TWAQL (higher is better) cancel out in terms of
resulting QoE. This can be seen from the P.1203 score, which

TABLE IV
IMPACT OF TCPAL PARAMETERS ON QOE FAIRNESS

is not affected when δ is changed. To sum up, in terms of
the QoE factors, the initial parameter selection could not be
significantly improved by lower or higher parameter values.

Table IV shows the corresponding results for the QoE fair-
ness scores. Again, the arrows indicate the trend for significant
differences between the low and high parameter value based
on Tukey’s HSD test, and the letters L and H indicate signifi-
cant differences from the initial parameter value for the lower
or higher parameter value, respectively. Again, all presented
results were observed for all three link capacities. It can be
seen that increasing α will reduce the fairness of the TWAQL
and P.1203 metrics. Thereby, a lower α = 0 has a sig-
nificantly higher fairness compared to the initial parameter
value α = 1. Nevertheless, the mean difference between the
lower parameter value and the initial parameter value is 0.03
for TWAQL fairness and 0.02 for P.1203 fairness, and thus,
can be neglected. For β, no differences can be observed,
but for γ, there is the trend that increasing γ can increase
the TWAQL fairness. However, no significant difference from
the initial parameter value was found. Increasing δ results in
trends towards reduced fairness scores for total stalling time,
TWAQL, and P.1203. Here, the lower value δ = 0.5 results in
significantly higher fairness for total stalling time (mean dif-
ference 0.30) and TWAQL (mean difference 0.04) compared
to δ = 0.75, and the higher value δ = 0.9 results in signifi-
cantly lower fairness for TWAQL (mean difference 0.02) and
P.1203 (mean difference 0.03).

Thus, it can be summarized from the parameter study
that the initial parameter values already resulted in a decent
performance of TCPAL with respect to the QoE factors and
the corresponding QoE fairness of the QoE factors. Still, the
fairness in terms of total stalling time could be improved by
a large margin (mean difference 0.30) compared to the results
presented above by selecting a lower δ. This would effec-
tively also reduce initial delay and total stalling, but also the
requested quality levels, while keeping the same overall QoE
score in terms of P.1203. Moreover, selecting lower values for
α would have a beneficial effect on the fairness in terms of
the requested quality level and the P.1203 score with no nega-
tive side effects, however, the improvements are only marginal
(mean difference 0.02).

VII. CONCLUSION

This paper presented a TCP-inspired adaptation logic
(TCPAL) for QoE fairness among independent and heteroge-
neous clients of HTTP adaptive video streaming. It is based
on the idea of transferring the concepts behind TCP fairness
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to achieve QoE fairness. Therefore, four design considera-
tions were incorporated to drive heterogeneous HAS clients to
converge on similar quality levels instead of similar bit rates.

In particular, TCPAL limits the buffer filling rate in order to
keep the clients and their buffer more synchronized. It relies on
an estimation of the streaming capacity, which each client can
observe individually, and which they can use to agree on the
quality level. Moreover, it directly reuses the TCP slow start
and congestion avoidance algorithm, which is originally used
for adjusting the congestion window, for selecting the next
quality level. Finally, it handles a decreasing buffer similar to
congestion in TCP, while compensating bit rate requirements
of heterogeneous HAS clients to keep them in sync.

The performance evaluation in scenarios with stable stream-
ing capacity showed that TCPAL performed on par with other
HAS adaptation logics in terms of QoE for low and medium
streaming capacity. Only for high streaming capacity it per-
forms slightly lower than competing HAS adaptation logics,
although it still achieves a high QoE score of 4.3 on the
MOS scale. This reduced QoE score can be considered the
cost of QoE fairness. However, the QoE fairness itself is also
lower for high streaming capacity due to the on-/off-problem
of HAS, which causes different HAS clients to observe dif-
ferent streaming capacities, and thus, TCPAL selects different
quality levels. In this scenario, TCPAL has to be improved by
incorporating a more robust capacity estimation. In the other
cases, TCPAL works as intended. For low streaming capac-
ity, the achieved QoE fairness is again on a par with other
HAS adaptation logics for low streaming capacity. The reason
is that in this scenario, all streaming clients struggle to avoid
stalling, and thus, there is not much margin left for improving
both the QoE and the QoE fairness. However, with medium
streaming capacity, the benefits of TCPAL are clearly visible.
Here, TCPAL could significantly improve the QoE fairness
compared to other HAS adaptation logics. Even with fluctuat-
ing streaming capacity, the QoE fairness achieved by TCPAL
did not degrade compared to scenarios with stable streaming
capacity.

Finally, a parameter study was conducted to explore the
impact of TCPAL parameters on its performance. For this, the
initially chosen parameter values of TCPAL were compared in
a full factorial design to lower and higher values, respectively.
It could be observed that the QoE could not be significantly
improved with lower or higher parameter values. However,
the fairness in terms of total stalling time could be improved
by a large margin, and the fairness in terms of the requested
quality level and the P.1203 score could be slightly improved
with changing the initially chosen parameters. Still, the current
performance of TCPAL is already very promising.
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