

A discrete-time model for optimizing the processing time of

virtualized network functions

Thomas Zinner ∗, Stefan Geissler , Stanislav Lange , Steffen Gebert , Michael Seufert ,
Phuoc Tran-Gia

Julius-Maximilians-Universität Würzburg, Chair of Communication Networks

a

p

s

w

i

h

c

a

t

p

p

u

t

t

a

l
1. Introduction

The trend towards softwarization of networks, especially us-

ing Software Defined Networking (SDN) [1] and Network Functions

Virtualization (NFV) [2] , promises more flexibility and innovation

for networks. Network functions running on commercial off-the-

shelf (COTS) hardware have many appealing advantages such as

easy scale up or scale down of computing resources as well as

scale out or scale in of virtual machines among the available phys-

ical hardware. Further, faster release cycles compared to hardware

devices are possible.

This high flexibility, however, comes at the expense of perfor-

mance [3,4] , i.e., lower packet throughput and longer processing

delays of softwarized solutions compared to hardware-based im-

plementations. The usage of particular network functions, for in-

stance within network function chains, however, has stringent per-

formance requirements. Firstly, enough function instances have to

be available to handle the corresponding traffic. Secondly, the over-
∗ Corresponding author.

E-mail address: zinner@informatik.uni-wuerzburg.de (T. Zinner).

i

q

l

ll processing delay of a network function should be minimized,

articularly in case of large forwarding graphs where such delays

um up.

The contribution of this article is twofold. On the one hand,

e extend the evaluation of the discrete-time model for Virtual-

zed Network Functions (VNFs) running in software on commodity

ardware that was developed in [5] . On the other hand, we signifi-

antly improve the computational efficiency of its numerical evalu-

tions by utilizing a property regarding its limit behavior. In addi-

ion to proving this property, we also show that for realistic input

arameters, convergence is reached and thus, the performance im-

rovement does not affect the accuracy of the model.

The model takes into account interrupt moderation, a technique

sed by current operating systems and server hardware to reduce

he overall number of interrupts. Based on the presented model,

he impact of different interarrival times, interarrival distributions,

nd aggregation interval durations on processing times and packet

oss ratios is presented. The proposed model also allows comput-

ng distributions, i.e., mean values, standard deviations, as well as

uantiles of the delay distributions. In [5] , we have already il-

ustrated the applicability of the model by comparing it to mea-

mailto:zinner@informatik.uni-wuerzburg.de

 5

s

t

p

c

t

u

n

i

d

v

t

i

s

i

A

a

S

w

2

m

t

n

2

p

n

s

t

t

d

a

T

V

s

c

c

s

e

i

F

w

u

m

o

c

t

f

i

p

i

r

t

c

o

s

i

p

l

a

c

2

c

c

i

I

p

r

w

N

c

t

e

p

p

s

s

m

c

c

b

t

b

i

r

3

a

f

w

i

R

f

i

T

t

a

c

S

p

t

r

P

t

S

s

4

s

i
urements for a fixed aggregation interval and varying interarrival

imes using a mobile network Serving Gateway (SGW) as an exem-

lary network function.

Since the parameters of the interrupt moderation mechanism

an severely affect the overall network performance, administra-

ors can apply the model in order to find optimal values for their

se cases. Additionally, the network conditions might change dy-

amically over time. Hence, a fast recalculation of optimal settings

s required in order to adapt in a timely manner. This aspect is ad-

ressed by leveraging the abovementioned behavior regarding con-

ergence, resulting in computations that are up to 22 times faster

han in the context of the original model.

The remainder of this work is structured as follows: Background

nformation as well as related work is introduced in Section 2 . The

teps involved in processing packets in a x86 system are described

n Section 3 , before an abstract model is introduced in Section 4 .

fterwards, exemplary evaluations of the packet processing time

nd packet loss behavior under different settings are presented in

ection 5 . Finally, Section 6 draws conclusions and outlines future

ork.

. Background & related work

This section discusses related work with respect to the perfor-

ance of softwarized network functions and corresponding op-

imization mechanisms. Afterwards, interrupt moderation tech-

iques are discussed.

.1. Performance of packet processing in software

Applications processing network traffic send and receive data

ackets through functions provided by the operating system ker-

el. Accordingly, packets traverse a complex chain of forwarding

teps between the Network Interface Card (NIC), the kernel, and

he software application resulting in a specific delay overhead.

One major contributor to these delays are copy operations be-

ween the memory of the kernel space and the user space. To re-

uce this overhead, multiple techniques and frameworks that en-

ble faster processing of packets in software have been introduced.

hese approaches, e.g., Netmap [6] , ClickOS [7] , Intel DPDK [8] , or

PP [9] bypass the kernel completely during packet reception, use

hared memory buffers to avoid additional copy operations, pro-

ess packets in batches, or replace the entire network stack. Ac-

ordingly, these mechanisms usually speed up specific parts of the

tack. An extensive measurement study on the performance of sev-

ral of the aforementioned mechanisms in case of packet forward-

ng is conducted in [10] .

However, the above mentioned studies have several drawbacks.

irst, the focus on simple network functions like pure packet for-

arding obscures the influence of the processing time spent in the

ser space on the total processing time. This component, however,

ight account for the majority of the total processing time. Sec-

nd, measurements are conducted for very specific use cases and

annot be generalized in order to obtain a holistic evaluation of

he proposed mechanisms. Finally, it is impossible to determine the

easibility of an approach without identifying its key performance

ndicators. Therefore, a model for analyzing the packet processing

erformance on COTS hardware is required. In addition to provid-

ng the capability to derive key performance indicators, model pa-

ameters can be tuned in order to represent different acceleration

echniques and quantify their effects in the context of different use

ases.

Based on such evaluations, it could be decided, which technique

ffers a good trade-off between complexity of implementation and

peedup for a specific network function. As seen in [11] , operat-

ng modes of network functions exist, in which the overhead of
acket handling, and therefore the speedup gained by techniques

ike DPDK, is negligible.

The model presented in this work is a first step towards en-

bling analytical evaluation of packet processing performance in

ommodity hardware running general purpose operating systems.

.2. Interrupt moderation

One of the key features of the previously listed frameworks

onsists of avoiding livelocks [12] that result from the Central Pro-

essing Unit (CPU) being effectively busy with interrupt handling

nstead of executing the program that processes incoming data.

n order to avoid such livelocks and to reduce the overhead of

acket processing in a server, several approaches that apply inter-

upt moderation have been introduced on operating system side as

ell as in networking hardware.

The networking stack in the Linux kernel (New API , short

API [12]) disables interrupt handling for interrupts related to re-

eiving packets, once the first packet is processed. Followed by

hat, the NIC queue is polled in assumption that multiple pack-

ts arrived in a burst. After a certain number of packets has been

rocessed, or a timeout occurs, interrupts are re-enabled and the

rocess restarts with the next packet arrival.

Hardware-based implementations of interrupt moderation are

upported by many server network adapters. The actual feature

et varies between different chipsets. For receive as well as trans-

it directions, the NIC can hold back interrupts until either a pre-

onfigured number of packets is received or sent, or until a pre-

onfigured time since the first packet starting the batch passed

y. Further options allow to define a threshold to differentiate be-

ween a low and a high traffic load and to specify options for

oth of these conditions. Finally, some NICs offer adaptive modes,

n which they change their behavior based on the current receive

ate.

. System description

In order to understand the process of packet processing within

 Linux x86 system, an abstracted description is provided in the

ollowing. This process, which starts with receiving a packet on the

ire and ends with the processed packet being sent over the wire,

s also depicted in Fig. 1 .

eceive incoming packet. The network interface card reads data

rom the transmission media, transforms it into packets and stores

t into a receive queue.

rigger copy to kernel via interrupt. The NIC triggers an interrupt

o notify the CPU about the arrival of a packet. The interrupt starts

n expensive copy process that moves the data from the network

ard into the address space of the kernel.

tore packet in RAM. The data is stored in a buffer until the ap-

lication requests it for processing. The size of this buffer is limited

o a fixed number of bytes. If the application cannot catch up with

eading, the kernel drops packets.

rocess packet in application. While the application processes

he packet, it blocks the CPU.

end outgoing packet. After processing, the packet traverses the

ame way backwards until it is finally sent to media.

. Model

The queuing model used for the performance analysis of the

ystem outlined in Section 3 is depicted in Fig. 2 . It is a general-

zation of the clocked approach introduced by Manfield et al. [13] .

6

NIC
Hardware

Kernel

Application

NIC

RAM
Kernel

User

CPU

RAM
Kernel

User
CPU

CPU

Incoming Packet Outgoing Packet

Interrupt Interrupt
CPU

Fig. 1. Packet processing in an x86 server running Linux.

Peripheral
queue

A
GI

Central
queue

GI, B

T0

Fig. 2. Queueing model.

interrupt

Φ

interrupt

Fig. 3. Exemplary development of the peripheral queue and involved random vari-

ables.

d

X

F

v

a

e

i

f

The generation of packets follows an arbitrary distribution A . For

the model presented in this work, we assume independent packet

interarrivals. The packets are stored in a peripheral queue which is

assumed to have infinite size. This queue corresponds to the NIC

queue displayed in Fig. 1 . Incoming packets are transferred in a

batch to the central queue (cf. RAM in Fig. 1) after a time inter-

val τ initiated by the first packet after a batch transfer. The inner

queue is then modeled as a GI [X] /GI/ 1 − L system and evaluated

by means of discrete-time analysis. Distributions of the batch sizes

and burst interarrival times are derived in the following. The next

sections introduce the model of the peripheral as well as central

queue and finally arrive at a combined model for the whole sys-

tem.

4.1. Model of the peripheral queue (NIC)

In the peripheral queue, which represents the network interface

card, packets are aggregated. The resulting batch is then forwarded

to the central queue, which represents the CPU/software.

For the remainder of this work, we use the following notation

to distinguish between random variables (RVs), their distributions,

and their distribution functions. A random variable is represented

by an uppercase letter, e.g., X . The distribution of X is denoted by

x (k) and is defined as

x (k) = P (X = k) , −∞ < k < ∞ .

Although the random variables considered in this work only take

on positive values, distributions are defined over the range from

−∞ to ∞ in order to enable operations like computing the distri-

bution of the difference of two random variables. Furthermore, the
istribution function of X is written as X (k) and is defined as

 (k) =

k ∑
i = −∞

x (i) , −∞ < k < ∞ .

inally, E[X] denotes the mean of X and

∗ refers to the discrete con-

olution operation, i.e.,

 3 (k) = a 1 (k) ∗ a 2 (k) =

∞ ∑
j= −∞

a 1 (k − j) · a 2 (j) .

The following distributions are used for modeling the periph-

ral queue. Additionally, an exemplary development of the queue

s shown in Fig. 3 , which highlights the relationships between dif-

erent RVs.

• a (k): distribution of the packet interarrival time.

• r a (k): distribution of the packet recurrence time. The recurrence

time is defined as the duration between a randomly chosen

time and the arrival of the next packet.

• τ (k): distribution of the duration of the aggregation interval.

For the remainder of this work, we use a constant aggregation

interval of length τ . That is, τ (k) = δ(τ) where δ(τ) denotes

the Dirac impulse at τ .

• f (j) (k): distribution of the time between the start of an aggre-

gation interval and the arrival of the j th packet. Since the ag-

gregation interval starts with the arrival of a packet, this time

equals the sum of j interarrival times. The corresponding ran-

dom variable is referred to as F (j) .

 7

a

t

o

b

x

a

n

t

f

t

r

s

δ

x

c

i

t

t

s

F

d

φ

t

s

s

i

i

r

w

w

p

w

o

d

g

t

T

m

o

c

i

τ

i

a

p

A

c

t

e

4

t

p

r

a

a

F

o

t

i

q

r

c

u
1
• x (k): distribution of the batch size.

• φ(k, τ): distribution of the time between the end of an aggre-

gation interval of length τ and the arrival of the packet that

initiates the next aggregation interval.

• s (k): distribution of the interarrival time between batches.

• o (k): distribution of the interrupt processing delay.

• w i (k): distribution of the waiting time of the i th packet in the

peripheral queue.

• u n (k): distribution of unfinished work in the system before the

arrival of the n th batch.

The first packet arriving after a burst transferal initiates a new

ggregation interval. All packets arriving in this time frame are

ransferred to the inner queue at the end of this interval. Based

n the work in [14] and [15] , the batch size distribution x (k) can

e computed as follows.

 (k) = τ (0) δ0 (k)

+

∞ ∑
m =1

τ (m)

m −1∑

i =0

(
f (k) (i) − f (k +1) (i)

)
, k = 0 , 1 ,

(1)

The equation allows calculating the number of arrival events in

n arbitrarily distributed time interval. The special case, in which

o arrivals are observed in an interval of length 0, is covered by

he first term. The function δ0 serves as indicator and is defined

ormally in Eq. 2 . The law of total probability is used in the second

erm in order to calculate the conditional probability x (k | m) for the

emaining interval lengths. It can be derived from the relationship

hown in Eq. 3 .

0 (k) =

{
1 k = 0

0 otherwise
(2)

 (k | m) = P

(
F (k) < m ≤ F (k +1)

)
= P

(
F (k) < m

)
− P

(
F (k +1) < m

)
=

m −1∑

i =0

(
f (k) (i) − f (k +1) (i)

)
, m > 0

(3)

According to the above description of the distribution φ(k, τ), it

an be computed using Eq. 4 . In particular, the equation states that

n order to observe � = k, two conditions need to be met. First,

he sum of n interarrival times needs to be equal to τ + k . Second,

he last interarrival time needs to be larger than k in order to en-

ure that only the last arrival is outside the aggregation interval.

inally, the sum over all possible numbers of events n yields the

esired probability.

(k, τ) = P (A > k)
∞ ∑

n =1

f (n) (τ + k) (4)

Since the first packet after a transfer initiates the next aggrega-

ion interval, the batch interarrival time s can be calculated as the

um of � and the duration of the aggregation interval τ :

 (k) = φ(k, τ) ∗ τ (k) . (5)

Furthermore, the waiting time of consecutive packets, after the

nterval is started, is reduced. In particular, the waiting time of the

 th packet of a batch in the peripheral queue depends on the ar-

ivals of the i − 1 packets before it. Hence, the distribution of its

aiting time can be computed as follows:

 i (k) = π0

⎡

⎣ τ (k) ∗ a (−k) ∗ · · · ∗ a (−k) ︸ ︷︷ ︸
(i - 1) times

⎤

⎦ (6)
In [5] , we assumed that � follows the same distribution as the

acket recurrence time R a . We now show that this is only true

hen considering limits. In particular, we prove the following the-

rem in the appendix. Note that this theorem does not apply to

eterministic packet interarrivals with an average interarrival time

reater than 1. This stems from the fact that the corresponding dis-

ribution is arithmetic and has a span greater than 1.

heorem 1. For non-arithmetic packet interarrival times and arith-

etic packet interarrival times with a span equal to 1, the distribution

f the time between consecutive batches, φ(k, τ), converges to the re-

urrence time of the interarrival time, r a (k), as τ approaches infinity,

.e.,

lim →∞

φ(k, τ) = r a (k) .

However, evaluations presented in Section 5.3 demonstrate that

n the context of realistic input parameters, convergence is reached

nd the assumption of equality does not impact the accuracy of

erformance indicators like packet loss or overall processing time.

dditionally, in contrast to calculating the distribution φ(k, τ), the

alculation of the recurrence time does not require any convolu-

ion operations and thus allows for significantly faster numerical

valuations of the model.

.2. Model of the central queue (CPU/software)

We model the inner queue as a GI [X] /GI/ 1 − L queue, i.e., a sys-

em with batch arrivals and bounded delay. The waiting time of

ackets is limited by a maximum value of L , i.e., packets that ar-

ive and would have to wait longer than L − 1 are rejected. Our

nalysis extends the work presented in [16] by introducing batch

rrivals. A similar notation, as presented in the following, is used:

• u n,b i
(k) : distribution of unfinished work in the system before

the arrival of the i th packet of the n th batch.

• B n, i : RV for the service time of the i th packet of the n th batch.

• p b : average blocking probability per packet.

• π0 (·): sweep operator which sums the probability mass of neg-

ative unfinished work in the system and appends it to the state

for an empty system.

π0 (x (k)) =

⎧ ⎪ ⎨
⎪ ⎩

x (k) k > 0

0 ∑
i = −∞

x (i) k = 0

0 k < 0

• σ m (·): operator which truncates the upper part of a probability

distribution function.

σ m (x (k)) =

{
x (k) k ≤ m

0 k > m

• σ m

(·): operator which truncates the lower part of a probability

distribution function.

σm

(x (k)) =

{
0 k < m

x (k) k ≥ m

The development of the batch arrival process is illustrated in

ig. 4 . Observing the packets of the n th batch arrival, the i th packet

f the burst is accepted if the current unfinished work in the sys-

em is less than L − 1 . In case the packet is accepted, the unfin-

shed work is increased by the amount of work B n, i that is re-

uired to process the packet. Otherwise, the packet as well as the

emaining packets of the current batch are rejected.

The following recursive relationship can be used in order to

ompute the amount of unfinished work in the system:

 n,b (k) = u n (k) (7)

8

Un+1

blocking of
2nd packet

U(t)

L
B

S

t
Un

n-1 n n+1

n

n,3

batch arrivals

X = 2n-1
X = 3n

X = 1n+1

Bn,1

Bn,2

X = 2n+3

Bi,1

X = 3

n+2 n+3

n+2

Fig. 4. Exemplary system development for GI [X] /GI/ 1 − L with bounded delay.

4

p

I

w

t

t

b

d

d

d

a

d

s

5

i

o

T

i

s

e

s

l

i

t

t

i

a

o

t

p

c

u n,b i +1
(k) = σ L −1

[
u n,b i

(k)
]

∗ b n,i (k) + σL

[
u n,b i

(k)
]

(8)

Hence, the remaining unfinished work in the system at the ar-

rival of the next batch can be computed as:

u n +1 (k) = π0

[(
∞ ∑

i =1

x (i) · u n,b i
(k)

)

∗ s n (−k) ∗ o(k)

]

. (9)

In this calculation, the interrupt overhead o is added to the

batch interarrival time s due to the fact that for each batch, the

CPU has to devote time to handle this interrupt instead of process-

ing packets.

Using the above equations, an algorithm for calculating the

workload prior to the i th arrival can be derived. The algorithm

can be used for both stationary and non-stationary traffic condi-

tions. Under stationary conditions, the index n and (n + 1) in these

equations can be suppressed, cf. Eq. 10 . Furthermore, we assume

that the packet service time is independent of a packet’s position

within the batch. Hence, the RV B n refers to the service time for

packets in the n th batch. Similarly to Eq. 10 , the index n can also

be suppressed under stationary conditions, resulting in RV B .

u (k) = lim

n →∞

u n (k)

u b i
(k) = lim

n →∞

u n,b i
(k) (10)

It is also possible to quantify the load ρ of the central queue.

This is achieved by calculating the ratio between the amount of

work that arrives within a given time interval and the amount of

work processed in this interval. In particular, we observe that the

amount of work arriving within a batch interarrival time depends

on the batch size and the packet service time (cf. Eq. 11). Note that

both the batch size and the batch interarrival time are affected by

the packet interarrival time (cf. Eqs. 1 and 5).

ρ =

E [X] E [B]

E [S]
(11)

Finally, the packet loss probability in statistical equilibrium can

be computed as follows:

p b =

∞ ∑
i =1

(

1

i
x (i) ·

∞ ∑
j= L

u b i
(j)

)

(12)

Depending on the batch size and the amount of unfinished

work added by each packet within the batch, the blocking prob-

ability for the latter packets within the batch increases.
.3. Combined model

Using the two models described in Sections 4.1 and 4.2 , it is

ossible to determine the distribution of the total processing time.

t is comprised of the waiting time in the peripheral queue, the

aiting time in the central queue, and the service time in the lat-

er. The waiting time in the central queue can be calculated from

he unfinished work in the system and a packet’s position in its

atch. Hence, the following equation can be used to calculate the

istribution of the total processing time of the i th packet in a batch

 i :

 i (k) = w i (k) ∗ u (k) ∗ b(k) ∗ · · · ∗ b(k) ︸ ︷︷ ︸
i times

(13)

Consequently, the distribution of the total processing time for

ll packets can be determined via conditional probabilities:

(k) =

∞ ∑
i =1

P (X = i) · d i (k) =

∞ ∑
i =1

x (i) · d i (k) (14)

The applicability of the proposed model has already been

hown in [5] .

. Evaluation

In this section, we investigate the behavior of a packet process-

ng server based on the introduced model. In this context, we focus

n the total processing time D and the packet loss probability p b .

he influence of the length of the aggregation interval τ is studied

n the context of different amounts of load that is offered to the

ystem. Since the load of the entire system can not be calculated

asily in advance, we vary the normalized arrival rate α =

E [B]
E [A]

in-

tead. This quantity contains the main contributors to the system

oad ρ and thus, provides a good estimate.

At first, coarse-grained analyses of the resulting mean process-

ng times and packet loss ratios for different parameter combina-

ions are presented. Afterwards, we evaluate the impact of using

he assumption that the time between the end of an aggregation

nterval and the beginning of the next interval �, is distributed

ccording to the recurrence time of packet interarrivals, R a . On the

ne hand, we quantify the difference between the two distribu-

ions directly. On the other hand, we investigate the resulting im-

act on the total processing time and the packet loss, which are

alculated based on these distributions.

 9

Fig. 5. Effects of different aggregation interval lengths τ and normalized arrival rates α on the mean processing time E[D].

5

i

P

W

b

n

5

s

n

t

a

E

t

s

i

A

i

t

s

i

t

c

a

t

τ

a

t

f

t

c

o

e

d

I

v

c

r

d

b

v

t

r

i

t

p

a

b

l

e

p

I

t

m

f

t

t

o

5

n

i

p

w

o

t

t

D

f

r

o

t

e

t

c

i

a

t

i

d

c

v

e

t
.1. Impact of the aggregation interval

The sensitivity of the modeled system to different aggregation

ntervals τ is studied based on four different distributions, namely

oisson (pois), geometric (geo), and negative binomial (nbin).

hile for pois and geo, the distributions are characterized solely

y E[A], the parameters p and r of nbin are adjusted in such a man-

er that coefficients of variation c A = 0 . 5 and c A = 2 are achieved.

.1.1. Impact on mean processing times

Fig. 5 presents the mean packet processing time D that re-

ults from different combinations of the aggregation interval τ ,

ormalized arrival rate α as well as different interarrival distribu-

ions. In the calculations, the processing time at the CPU follows

 Poisson distribution and we use a fixed value for its mean, i.e.,

 [B] = 10 μs . Then, the different values for α are achieved by set-

ing the mean interarrival time E[A] to values in {5, 10.75, 30}, re-

pectively. While the x-axis displays the length of the aggregation

nterval, the y-axis indicates the average packet processing time.

dditionally, line colors represent different values of the normal-

zed arrival rate α and line styles correspond to the four distribu-

ion types.

In the context of a low normalized arrival rate, an almost

trictly linear relationship between the length of the aggregation

nterval and the total processing time can be observed for all dis-

ributions. In these cases, the CPU operates at a low load and thus,

an finish work faster than it arrives. Therefore, the waiting time

t the peripheral queue constitutes the main influence factor on

he total processing time. This waiting time is directly affected by

, hence the observed relationship.

When exposed to a high value of α = 2 , the processing time is

lso almost independent of the underlying distribution. However,

he resulting processing times are significantly higher and the ef-

ect of τ is not linear. Due to the fact that the CPU is overloaded in

his scenario, the total processing time is also affected by the in-

reased waiting time in the central queue. For low values of τ , the

verhead associated with frequent interrupts results in the high-

st total processing time. When τ is increased, the overhead is re-

uced and multiple packets are handled with a single interrupt.

n the presented case, the lowest processing time is achieved with

alues of τ at around 80 μs . When τ is increased further, the pro-

essing time increases due to the growing waiting time at the pe-

ipheral queue.

Finally, the processing time for α = 0 . 93 depends on the un-

erlying distribution of packet interarrival times and attains values

etween those for α = 0 . 33 and α = 2 . As in the previous case, low

alues of τ result in a high overhead and a high total processing
ime while high values of τ increase the waiting time in the pe-

ipheral queue. Between these extremes, the shape of the curves

s mainly determined by the variability of the packet arrival dis-

ribution. For distributions with a low coefficient of variation, i.e.,

ois and geo, bends can be identified when τ attains values that

re integer multiples of E[A]. At these points, the expected num-

er of events in an aggregation interval increases by one. Thus, the

ast packet of each batch has a low waiting time in the periph-

ral queue while there are no significant changes for the remaining

ackets. Therefore, the average total processing time is decreased.

n contrast, distributions with a higher coefficient of variation lead

o smoother curves and attain values that lie between the afore-

entioned bends. For each distribution, there is an optimum value

or τ which minimizes the resulting mean processing time. Hence,

he model can be used by network operators in order to optimize

he processing times of their VNFs based on traffic characteristics

bserved in their particular network.

.1.2. Impact on packet loss

As described previously, the processing time increases with the

umber of packets per second, because packets experience a wait-

ng time at the central queue. As the central queue is limited,

acket loss occurs once this limit is exceeded. In the following,

e evaluate the average packet loss probability for different sizes

f the aggregation interval τ and distributions of the interarrival

ime.

In Fig. 6 , the x-axis represents the length of the aggregation in-

erval τ and the y-axis displays the average packet loss probability.

ifferent packet arrival processes are highlighted by means of dif-

erent line shapes and different values for the normalized arrival

ate α are denoted by their color. The presented results are based

n the same parameter combinations as in Fig. 5 .

Similar to the observations regarding the average processing

ime, the case of α = 0 . 33 does not stress the system to a large

nough extent, so that packet loss does not occur. When the sys-

em is in a situation of overload with α = 2 , packet loss always oc-

urs, but decreases for larger values of τ . As stated before, choos-

ng short aggregation intervals results in a higher interrupt rate

nd thus, in more overhead. Hence, the CPU has even less time

o actually process packets, which leads to more congestion at the

nner queue and finally, a larger packet loss rate.

Furthermore, the packet loss probability depends on the arrival

istribution. In particular, the distribution with the lowest coeffi-

ient of variation leads to the highest packet loss probability and

ice versa. This is also true for α = 0 . 93 . This phenomenon can be

xplained with the effect of the arrival distribution on the service

ime and the resulting overhead per packet. In case of high vari-

10

Fig. 6. Effects of different aggregation interval lengths τ and normalized arrival rates α on the packet loss probability p b .

Fig. 7. Processing time distributions for different aggregation interval lengths and different interarrival distributions.

c

t

m

h

0

p

i

τ

e

v

p

w

t

a

o

l

a

d

5

e

v

t

f

φ

e

r

ance, the arrival process is burstier, resulting in more packets per

batch. However, the heavy tail of the corresponding distributions

also leads to longer service times due to a higher probability of

very long interarrival times between batches. This, in turn, results

in longer times between consecutive batches �. Consequently, only

a single interrupt is triggered for such a batch. If, on the other

hand, the variance of the packet interarrival time is low, batches

contain fewer packets and service times are shorter. Thus, more

interrupts are triggered during the same time, resulting in more

overhead per processed packet.

5.2. Processing time distributions for varying aggregation intervals

In addition to studying the influence of the length of the aggre-

gation interval τ on the mean processing time, we also investigate

its effect on the distribution of the processing time. Fig. 7 shows

the distribution of the processing time D for different τ and nor-

malized arrival rates α.

Regarding low expected system load, Fig. 7 (a) shows the pro-

cessing time distribution for three different aggregation intervals,

i.e, τ = 10 , 10 0 , 20 0 μs, and four different arrival distributions. In

this case it can be seen that the processing time distribution is

clustered by the selected aggregation interval length. This indicates

that, due to spare computational resources, the system can handle

the variation of the number of incoming packets up to a certain

point. This is supported by the fact that the two distributions with

low coefficients of variation, i.e. pois and nbin(c = 0 . 5), result in

similar processing time distributions with a small variance in val-

ues. The two distributions with a higher coefficient of variation,

geo and nbin(c = 2), on the other hand result in processing time

distributions with a larger range of values. In particular, the sig-

nificantly higher variance observed for nbin(c = 2) can lead to in-
reased processing times. This can be explained by the high varia-

ion of the batch size.

Finally, the figure confirms the continuous increment of the

ean processing time with growing τ in low load scenarios.

Observing the processing time distribution in a scenario with

igh expected system load, i.e., a normalized arrival rate of α =
 . 93 yields entirely different results, as shown in Fig. 7 (b). First, the

reviously observed clusters are, although still present, less signif-

cant. Furthermore, it can be seen that an aggregation interval of

= 10 now results in the highest processing times. This can be

xplained by the overhead resulting from short aggregation inter-

als that, especially in the high load scenario, leads to prolonged

rocessing times. As the CPU is already busy handling the actual

orkload, the overhead hits harder in this scenario and thereby

he processing times are significantly increased. Moreover, it can

gain be observed that the distributions featuring low coefficients

f variation also result in a processing time distribution showing

ower variance. The same holds true for the two distributions with

 high coefficient of variation, as these result in processing time

istributions with a high range of values.

.3. Impact of the recurrence time assumption

In the proof of Theorem 1 , we show that the time between the

nd of an aggregation interval and the next packet arrival con-

erges to the recurrence time of the packet interarrival time as

he length of the aggregation interval τ approaches infinity. Hence,

or large enough τ , the expected error that is caused by assuming

(k, τ) = r a (k) converges to zero. In this section, we quantify the

rrors that are caused by using this assumption in the context of

ealistic parameter combinations.

 11

Fig. 8. Kolmogorov–Smirnov distance between the distributions of the recurrence time of packet interarrivals, R a , and the actual distribution of the time between the end of

an aggregation and the next packet arrival, �.

a

a

t

r

y

a

e

{

r

b

b

t

o

t

d

t

q

p

l

v

t

t

t

o

s

a

i

e

t

b

g

r

a

t

t

f

t

o

u

a

f

t

v

b

e

r

p

o

c

Fig. 8 displays the difference between the distributions φ(k, τ)

nd r a (k) for different combinations of τ , E[A], and packet inter-

rrival distributions. In this case, the difference is expressed in

erms of the Kolmogorov-Smirnov distance (KSD) between the cor-

esponding cumulative distribution functions and is shown on the

-axis. On the x-axis, the ratio between τ and E[A] represents the

verage number of events during an aggregation interval. For these

valuations, the mean interarrival time was chosen so that E[A] ∈
10, 20, 30, 40, 50} and the length of the aggregation interval τ
anged from 2 to 200.

Due to the property of memorylessness of the geometric distri-

ution, the equality φ(k, τ) = r a (k) is always true for this distri-

ution, resulting in a constant KSD of zero. For the remaining dis-

ributions, the KSD equals zero as soon as more than an average

f seven arrivals fit into an aggregation interval. Since the nega-

ive binomial distribution has a higher variance than the Poisson

istribution, the former converges faster as the end of an aggrega-

ion interval becomes equivalent to an independent observer more

uickly. On the other hand, it can be seen that the negative ex-

onential distribution with a coefficient of variance of c = 2 takes

onger to converge as the same distribution with a coefficient of

ariance of c = 0 . 5 . This indicates that the shape of the distribu-

ion also influences the convergence process. The different alloca-

ion of probability mass among the possible values of the distribu-

ion also influences the speed of convergence. Hence, the variance

f a distribution in general is not sufficient to make an absolute

tatement about the speed of the convergence, but can be used

s a reliable indicator towards the behavior of the process. Finally,
Fig. 9. Impact of the recurrence tim
nterarrival times that follow a Poisson distribution cause the slow-

st convergence due to their low variance and narrow range of at-

ained values. Additionally, an alternating behavior of the KSD can

e observed in case of the Poisson distribution when τ is an inte-

er multiple of E[A]. This causes φ(k, τ) to be more similar to a (k)

ather than r a (k).

Fig. 8 shows the difference between the distributions φ(k, τ)

nd r a (k). However, we are more interested in the impact on

he accuracy of the model’s prediction of performance indicators

hat is caused by using the above mentioned assumption. There-

ore, we show the effects regarding the mean processing time and

he packet loss probability in Fig. 9 . In particular, it displays an

verview of the difference between the actual values and the val-

es when using the assumption that the time between the end of

n aggregation interval and the recurrence time of packet arrivals

ollow the same distribution. In case of the mean total processing

ime, the difference is normalized by dividing it by the actual mean

alue, whereas the difference between the two packet loss proba-

ilities is guaranteed to range between zero and one. Again, differ-

nt parameter combinations regarding τ , E[A], and packet interar-

ival distributions are used. Additionally, we vary the mean packet

rocessing time at the CPU, E[B], in order to achieve different levels

f system load ρ (cf. Eq. 11). In particular, the following parameter

ombinations are used.

• The length of the aggregation interval τ is set to values in

{ 100 , 150 , . . . , 500 } .
e assumption on E[D] and p b .

12

T

e

t

c

P

w

n

t

g

A

E

i

a

t

s

A

L

t

e

m

m

P

c

t

i

A

W

∀
C

a

N

E

i

N

I

N

a

E

L

1

E

S

c

• The mean interarrival time E[A] is chosen so that the ratio τ
E [A]

ranges from 1 to 10. Like in all presented evaluations, four in-

terarrival distributions are used, i.e., pois, geo, nbin(c = 0 . 5),

and nbin(c = 2).

• The processing time at the CPU follows a Poisson distribution

whose mean value E[B] is varied so that the normalized arrival

rate E [B]
E [A]

attains values in { 0 . 03 , 0 . 06 , . . . , 1 . 02 } .
Both, Fig. 9 (a) and (b) present the corresponding maximum er-

ror as a function of the system load ρ , which is represented by the

x-axis, and the ratio between τ and E[A] on the y-axis. The color

of each cell denotes the error, with dark blue cells indicating an

error of zero and light yellow colored cells indicating the largest

observed error. Qualitatively, both figures show a similar behavior.

That is, the observed error is zero in most cases except for those

where ρ is high, i.e., 70% and larger, and the expected number of

arrivals during an aggregation interval is low, i.e., below four. In

the case of the mean total processing time, the largest relative er-

ror is around 9% , while the largest deviation in terms of the packet

loss probability is around 5% .

Since the goal of interrupt mitigation mechanisms is to avoid

frequent interrupts, the ratio between τ and E[A] is usually high.

Furthermore, network operators tend to dimension their infrastruc-

ture for average load levels far below 90% [17] . Hence, the results

shown in Fig. 9 (a) and (b) confirm that in the context of realistic

parameter combinations, using the significantly more efficient cal-

culation of r a (k) instead of φ(k, τ) does not impact the accuracy of

the model’s predictions. At the same time, the computation time

can be reduced by a factor of up to 22 in the context of the inves-

tigated cases.

6. Conclusion

NFV has many appealing advantages such as easy scale-up or

scale-down of compute resources as well as scale-out or scale-in

of virtual machines among the available physical hardware. This

high flexibility, however, comes at the expense of performance,

i.e., lower packet throughput and longer processing delays. To un-

derstand the impact of performance-relevant parameters on these

metrics, and in order to allow an adequate dimensioning and a

proper performance prediction, appropriate performance models

are required.

The primary contribution of this article is an analytical model

for virtualized network functions running in software on commodity

hardware. Given the characteristics of the network traffic and the

utilized VNFs, this model allows network administrators to iden-

tify optimal parameters for the interrupt moderation mechanisms

that are used by modern operating systems and network interface

cards. A central benefit is that the model supports arbitrary distri-

butions for the packet interarrival and packet service times. Hence,

administrators only need to determine empirical distributions and

do not need to fit observed values to a predefined set of known

distributions.

Furthermore, we show that approximating the time between

consecutive batches with the recurrence time of the interarrival

process only introduces a negligible error while providing a sig-

nificant speedup when performing numerical evaluations of the

model. This provides network administrators with the ability to

quickly optimize their system parameters in a dynamic fashion

when network conditions change over time.

We perform an in-depth evaluation of the model by investigat-

ing the impact of different load levels, aggregation interval dura-

tions, and interarrival distributions on processing times and packet

loss ratios. The proposed model also allows the computation of

distributions of these performance indicators, i.e., it is possible to

determine mean values, standard deviations, as well as quantiles.
herefore, the presented model can be used by administrators to

nsure an appropriate operation of network functions based on

heir needs. The model itself may be generalized to take into ac-

ount acceleration techniques like Intel’s DPDK or Cisco’s Vector

acket Processing (VPP). This allows comparing heterogeneous net-

ork function implementations and selecting the appropriate tech-

ique for a specific use case. Furthermore, economic trade-offs be-

ween operational metrics and corresponding costs can be investi-

ated.

cknowledgment

This work has been performed in the framework of the CELTIC

UREKA project SENDATE-PLANETS (Project ID C2015/3-1), and it

s partly funded by the German BMBF (Project ID 16KIS0474). The

uthors alone are responsible for the content of the paper. Addi-

ionally, the authors would like to thank Michael Schönlein for as-

isting with the validation of the presented proofs.

ppendix A. Proofs

emma 1. Let A be independent and identically distributed (i.i.d.) in-

erarrival times with E[A] > 0 . Then, the expected number of renewal

vents during a finite interval t < ∞ , defined by the renewal function

 (t), is also finite, i.e.,

 (t) < ∞ .

roof. Let A be the RV that describes the interarrival time between

onsecutive events with E[A] > 0. The corresponding interarrival

imes are denoted as A i for i ∈ N . Let now A

′ generate the following

nterarrival times.

′
i =

{
0 if A i = 0

1 otherwise
.

e then get

 i A

′
i ≤ A i .

onsequently, we can define the number of events during t with

rrivals according to A

′ as

′ (t) = max { n : A

′
1 + A

′
2 + . . . + A

′
n ≤ t} .

qually, the same can be defined for the original distribution of

nterarrival times that are based on A .

(t) = max { n : A 1 + A 2 + . . . + A n ≤ t} .
t follows that

(t) ≤ N

′ (t)

nd consequently

 [N(t)] ≤ E [N

′ (t)] . (A.1)

et now X = N

′ (1) be the number of events in an interval of length

. We get

 [X] =

∞ ∑
k =1

k P

(
A

′ < 1

)k −1
P

(
A

′ ≥ 1

)
= P

(
A

′ ≥ 1

) ∞ ∑
k =1

k P

(
A

′ < 1

)k −1

=

P

(
A

′ ≥ 1

)
P (A

′ < 1)

∞ ∑
k =0

k P

(
A

′ < 1

)k
.

ince P(A

′ < 1) is a probability, P(A

′ < 1) ≤ 1 holds and thus, we

an apply the formula for the geometric progression, arriving at

P (A

′ ≥ 1)

P (A

′ < 1)

P (A

′ < 1)

(1 − P (A

′ < 1)) 2
=

P (A

′ ≥ 1)

P (A

′ ≥ 1) 2
=

1

P (A

′ ≥ 1)
.

http://dx.doi.org/10.13039/501100002347

 13

S

t

E

W

a

m

L

d

i

h

m

P

a

m

f

∑

S

h

H

∑

w

τ∑

P

τ

L

f

d

w

P .

R

[

[

[

[

[

[

ince P(A

′ ≥ 1) > 0, it follows that E[X] < ∞ . We can now extend

he interval to an arbitrary length t < ∞ and get

 [N

′ (t)] = t E [X] .

e can thus conclude that E[N

′ (t)] < ∞ . Using A.1 we finally arrive

t

 (t) = E [N(t)] ≤ E [N

′ (t)] < ∞

�

emma 2. We consider the renewal function m (t) which is used to

etermine the average number of renewals during time t. If the mean

nterarrival time, E[A], is greater than 0, the following relationship

olds for the renewal function m (t) :

 (τ + k) =

∞ ∑
n =1

f (n) (τ + k) + m (τ + k − 1) .

roof. For positive arrivals that are i.i.d., the renewal function m (t)

t t = τ + k is defined as

 (τ + k) :=

∞ ∑
n =1

F (n) (τ + k) .

Using the relationship between the cumulative distribution

unction F and the probability density function f , we get

∞

n =1

F (n) (τ + k) =

∞ ∑
n =1

τ+ k ∑
i =0

f (n) (i) .

From the proof of Lemma 1 , we conclude that m (τ + k) < ∞ .

ince F (n) (t) is a cumulative distribution function, F (n) (τ + k) ≥ 0

olds as well. Therefore, the convergence of m (τ + k) is absolute.

ence, the order of the summation can be switched, i.e.,

∞

n =1

τ+ k ∑
i =0

f (n) (i) =

τ+ k ∑
i =0

∞ ∑
n =1

f (n) (i) .

Finally, the first element of the outer sum can be separated

hile the remaining elements form m (τ + k − 1) :

+ k

i =0

∞ ∑
n =1

f (n) (i) =

∞ ∑
n =1

f (n) (τ + k) +

τ+ k −1 ∑

i =0

∞ ∑
n =1

f (n) (i)

=

∞ ∑
n =1

f (n) (τ + k) + m (τ + k − 1) . �

roof. Using the definition of φ(k, τ), we obtain

lim →∞

φ(k, τ) = lim

τ→∞

(

P (A > k)
∞ ∑

n =1

f (n) (τ + k)

)

.

Furthermore, the relationship shown in the proof of

emma 2 allows representing the sum in terms of the renewal

unction m (t).
lim

τ→∞

(

P (A > k)
∞ ∑

n =1

f (n) (τ + k)

)

= P (A > k) lim

τ→∞

(m (τ + k)

−m (τ + k − 1)) .

Finally, using Blackwell’s renewal theorem, we can show the

esired equality for non-arithmetic inter-renewal distributions as

ell as arithmetic distributions with a span equal to 1:

 (A > k) lim

τ→∞

(m (τ + k) − m (τ + k − 1)) = P (A > k)
1

E [A]
= r a (k)

�
eferences

[1] M. Jarschel , T. Zinner , T. Hoßfeld , P. Tran-Gia , W. Kellerer , Interfaces, attributes,

and use cases: acompass for SDN, IEEE Commun. Mag. (2014) .
[2] M. Chiosi, et al., Network functions virtualisation - introductory white paper,

2012, (http://portal.etsi.org/NFV/NFV _ White _ Paper.pdf).
[3] B. Han, V. Gopalakrishnan, L. Ji, S. Lee, Network function virtualization: chal-

lenges and opportunities for innovations, IEEE Commun. Mag. 53 (2) (2015)
90–97, doi: 10.1109/MCOM.2015.7045396 .

[4] S. Sezer, S. Scott-Hayward, P. Chouhan, et al., Are we ready for SDN? imple-
mentation challenges for software-defined networks, IEEE Commun. Mag. 51

(7) (2013) 36–43, doi: 10.1109/MCOM.2013.6553676 .

[5] S. Gebert, T. Zinner, S. Lange, C. Schwartz, P. Tran-Gia, Performance modeling
of softwarized network functions using discrete-time analysis, in: 28th Inter-

national Teletraffic Congress (ITC), Würzburg, Germany, 2016.
[6] L. Rizzo, Netmap: a novel framework for fast packet I/O, in: 21st USENIX

Security Symposium (USENIX Security 12), USENIX Association, Bellevue,
WA, 2012, pp. 101–112 . https://www.usenix.org/conference/usenixsecurity12/

technical-sessions/presentation/rizzo.

[7] J. Martins, M. Ahmed, C. Raiciu, et al., ClickOS and the art of network
function virtualization, in: 11th USENIX Symposium on Networked Systems

Design and Implementation (NSDI 14), USENIX Association, Seattle, WA, 2014,
pp. 459–473 . https://www.usenix.org/conference/nsdi14/technical-sessions/

presentation/martins.
[8] Intel, Intel data plane development kit (DPDK), (http://dpdk.org).

[9] Cisco Systems and Intel Corporation, NFV partnership, joint whitepa-

per, 2015, (http://www.intel.com/content/dam/www/public/us/en/documents/
white- papers/cisco- nfv- partnership- paper.pdf).

10] T. Barbette, C. Soldani, L. Mathy, Fast userspace packet processing, in: 11th
ACM/IEEE Symposium on Architectures for Networking and Communications

Systems, in: ANCS ’15, IEEE Computer Society, Washington, DC, USA, 2015,
pp. 5–16 . http://dl.acm.org/citation.cfm?id=2772722.2772727.

[11] S. Lange , A. Nguyen-Ngoc , S. Gebert , T. Zinner , M. Jarschel , A. Köpsel , M. Sune ,

D. Raumer , S. Gallenmüller , G. Carle , et al. , Performance benchmarking of a
software-based LTE SGW, in: Network and Service Management (CNSM), 2015

11th International Conference on, IEEE, 2015, pp. 378–383 .
12] R. Love , Linux Kernel Development, 3rd, Addison-Wesley Professional, 2010 .

13] D. Manfield , P. Tran-Gia , H. Jans , Modelling and performance of inter-processor
messaging in distributed systems, Perform. Eval. 7 (1987) .

14] P. Tran-Gia, Zeitdiskrete Analyse verkehrstheoretischer Modelle in Rechner-

und Kommunikationssystemen - 46. Bericht über verkehrstheoretische Ar-
beiten, 1988.

15] S. Gebert, T. Zinner, S. Lange, C. Schwartz, P. Tran-Gia, Discrete-time analy-
sis: deriving the distribution of the number of events in an arbitrarily dis-

tributed interval, Technical Report 498, 2016 . Available online: https://www3.
informatik.uni-wuerzburg.de/TR/tr498.pdf.

16] P. Tran-Gia, Discrete-time analysis technique and application to usage param-

eter control modelling in ATM systems, in: 8th Australian Teletraffic Research
Seminar, Melbourne, Australia, 1993.

[17] S. Jain , A. Kumar , S. Mandal , J. Ong , L. Poutievski , A. Singh , S. Venkata , J. Wan-
derer , J. Zhou , M. Zhu , et al. , B4: experience with a globally-deployed software

defined WAN, ACM SIGCOMM Comput. Commun. Rev. 43 (4) (2013) 3–14 .

http://refhub.elsevier.com/S1389-1286(17)30180-9/sbref0001
http://refhub.elsevier.com/S1389-1286(17)30180-9/sbref0001
http://refhub.elsevier.com/S1389-1286(17)30180-9/sbref0001
http://refhub.elsevier.com/S1389-1286(17)30180-9/sbref0001
http://refhub.elsevier.com/S1389-1286(17)30180-9/sbref0001
http://refhub.elsevier.com/S1389-1286(17)30180-9/sbref0001
http://portal.etsi.org/NFV/NFV_White_Paper.pdf
http://dx.doi.org/10.1109/MCOM.2015.7045396
http://dx.doi.org/10.1109/MCOM.2013.6553676
https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/rizzo
https://www.usenix.org/conference/nsdi14/technical-sessions/presentation/martins
http://dpdk.org
http://www.intel.com/content/dam/www/public/us/en/documents/white-papers/cisco-nfv-partnership-paper.pdf
http://dl.acm.org/citation.cfm?id=2772722.2772727
http://refhub.elsevier.com/S1389-1286(17)30180-9/sbref0007
http://refhub.elsevier.com/S1389-1286(17)30180-9/sbref0007
http://refhub.elsevier.com/S1389-1286(17)30180-9/sbref0007
http://refhub.elsevier.com/S1389-1286(17)30180-9/sbref0007
http://refhub.elsevier.com/S1389-1286(17)30180-9/sbref0007
http://refhub.elsevier.com/S1389-1286(17)30180-9/sbref0007
http://refhub.elsevier.com/S1389-1286(17)30180-9/sbref0007
http://refhub.elsevier.com/S1389-1286(17)30180-9/sbref0007
http://refhub.elsevier.com/S1389-1286(17)30180-9/sbref0007
http://refhub.elsevier.com/S1389-1286(17)30180-9/sbref0007
http://refhub.elsevier.com/S1389-1286(17)30180-9/sbref0007
http://refhub.elsevier.com/S1389-1286(17)30180-9/sbref0007
http://refhub.elsevier.com/S1389-1286(17)30180-9/sbref0008
http://refhub.elsevier.com/S1389-1286(17)30180-9/sbref0008
http://refhub.elsevier.com/S1389-1286(17)30180-9/sbref0009
http://refhub.elsevier.com/S1389-1286(17)30180-9/sbref0009
http://refhub.elsevier.com/S1389-1286(17)30180-9/sbref0009
http://refhub.elsevier.com/S1389-1286(17)30180-9/sbref0009
https://www3.informatik.uni-wuerzburg.de/TR/tr498.pdf
http://refhub.elsevier.com/S1389-1286(17)30180-9/sbref0011
http://refhub.elsevier.com/S1389-1286(17)30180-9/sbref0011
http://refhub.elsevier.com/S1389-1286(17)30180-9/sbref0011
http://refhub.elsevier.com/S1389-1286(17)30180-9/sbref0011
http://refhub.elsevier.com/S1389-1286(17)30180-9/sbref0011
http://refhub.elsevier.com/S1389-1286(17)30180-9/sbref0011
http://refhub.elsevier.com/S1389-1286(17)30180-9/sbref0011
http://refhub.elsevier.com/S1389-1286(17)30180-9/sbref0011
http://refhub.elsevier.com/S1389-1286(17)30180-9/sbref0011
http://refhub.elsevier.com/S1389-1286(17)30180-9/sbref0011
http://refhub.elsevier.com/S1389-1286(17)30180-9/sbref0011
http://refhub.elsevier.com/S1389-1286(17)30180-9/sbref0011

14

ty of Würzburg, Germany. He finished his Ph.D on performance modeling of QoE-aware

12. He is heading now the “Next Generation Networks” research group at the Chair of
h interests cover video streaming techniques, implementation of QoE-awareness within

k virtualization, network function virtualization and the benefits of cloudification, as well

 architetures.

rsity of Würzburg, Germany, where he also completed his Master’s degree in 2016. His

network function virtualization with focus on performance evaluation.

ty of Würzburg, Germany, where he received his M.Sc. degree in 2014. Currently, he is a

oup at the Chair of Communication Networks in Würzburg and is pursuing his PhD. His
rmance analysis, system modeling, as well as multiobjective optimization.

ersity of Würzburg Germany, where he also received his Diploma degree in 2011. His
network operations.

and education at the University of Würzburg, Germany. In 2011, he received his Diploma
 first state examinations for teaching mathematics and computer science in secondary

ication Research Center, Vienna, Austria, working in the area of user-centered interac-
searcher at the Chair of Communication Networks, University of Würzburg. His research

agement solutions, monitoring and orchestration of edge cloud services, and performance

Communication Networks, University of Würzburg, Germany. He is also Member of the

etwork management products and services. Prof. Tran-Gia is also cofounder and board

in Crowdsourcing technologies. Previously he was at academia in Stuttgart, Siegen (Ger-
rich Research Laboratory. He is active in several EU framework projects and COST actions.

b Project ‘National Platform for Future Internet Studies’ aiming to foster experimentally
s research activities focus on performance analysis of the following major topics: Future

ource Management; Software Defined Networking & Cloud Networks; Network Dynamics
00 research papers in major conferences and journals and received the Fred W. Ellersick
Thomas Zinner studied computer science at the Universi

multipath video transmission in the future Internet in 20
Communication Networks in Würzburg. His main researc

networks, Software-Defined Networking (SDN) and networ

as the performance assessment of these technologies and

Stefan Geissler is working towards his Ph.D at the Unive

research topics include software defined networking and

Stanislav Lange studied computer science at the Universi

researcher in the “Next Generation Networks” research gr
research is focused on software defined networking, perfo

Steffen Gebert is working towards his Ph.D at the Univ
research interests include softwarized networks and agile

Michael Seufert studied computer science, mathematics,
degree in computer science, and additionally passed the

schools. From 2012–2013, he was with FTW Telecommun
tion and communication economics. He is currently a Re

mainly focuses on QoE of Internet applications, traffic man
analysis and modeling of communication systems.

Phuoc Tran-Gia is professor and director of the Chair of

Advisory Board of Infosim (Germany) specialized in IP n

member of Weblabcenter Inc. (Dallas, Texas), specialized
many) as well as at industries at Alcatel (SEL) and IBM Zu

Prof. Tran-Gia was coordinator of the German-wide G-La
driven research to exploit future Internet technologies. Hi

Internet & Smartphone Applications; QoE Modeling & Res
& Control; Crowdsourcing. He has published more than 1

Prize 2013 (IEEE Communications Society).

	A discrete-time model for optimizing the processing time of virtualized network functions
	1 Introduction
	2 Background & related work
	2.1 Performance of packet processing in software
	2.2 Interrupt moderation

	3 System description
	4 Model
	4.1 Model of the peripheral queue (NIC)
	4.2 Model of the central queue (CPU/software)
	4.3 Combined model

	5 Evaluation
	5.1 Impact of the aggregation interval
	5.1.1 Impact on mean processing times
	5.1.2 Impact on packet loss

	5.2 Processing time distributions for varying aggregation intervals
	5.3 Impact of the recurrence time assumption

	6 Conclusion
	 Acknowledgment
	Appendix A Proofs
	 References

