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Next to You: Monitoring Quality of Experience
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Abstract—A quarter of the world population will be using
smartphones to access the Internet in the near future. In this
context, understanding the quality of experience (QoE) of popu-
lar apps in such devices becomes paramount to cellular network
operators, who need to offer high-quality levels to reduce the
risks of customers churning for quality dissatisfaction. In this
paper, we address the problem of QoE provisioning in smart-
phones from a double perspective, combining the results obtained
from subjective laboratory tests with end-device passive measure-
ments and QoE crowd-sourced feedback obtained in operational
cellular networks. The study addresses the impact of both access
bandwidth and latency on the QoE of five different services and
mobile apps: YouTube, Facebook, Web browsing through Chrome,
Google Maps, and WhatsApp. We evaluate the influence of both
constant and dynamically changing network access conditions,
tackling in particular the case of fluctuating downlink bandwidth,
which is typical in cellular networks. As a main contribution, we
show that the results obtained in the laboratory are highly appli-
cable in the live scenario, as mappings track the QoE provided by
users in real networks. We additionally provide hints and band-
width thresholds for good QoE levels on such apps, as well as
discussion on end-device passive measurements and analysis. The
results presented in this paper provide a sound basis to better
understand the QoE requirements of popular mobile apps, as well
as for monitoring the underlying provisioning network. To the best
of our knowledge, this is the first paper providing such a com-
prehensive analysis of QoE in mobile devices, combining network
measurements with users QoE feedback in laboratory tests, and
operational networks.
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I. INTRODUCTION

S MARTPHONES are becoming the most typical mobile
device to access Internet today. Recent projections [1]

show that by 2016, a quarter of the world population will be
using smartphones to access the most popular services such
as YouTube, Facebook, WhatsApp, etc. According to Cisco’s
global mobile data traffic forecast [2], smartphones will be
responsible for more than three-quarters of the mobile data
traffic generated by 2019. In the light of these trends, cellu-
lar network operators are becoming more and more interested
in understanding how to dimension their access networks and
how to manage their customers’ traffic to capture as many new
customers as possible. In this scenario, the concept of Quality of
Experience (QoE) has the potential to become one of the main
guiding paradigms for managing quality in cellular networks.
Closely linked to the subjective perception of the end-user, QoE
enables a broader, more holistic understanding of the factors
that influence the performance of systems, complementing tra-
ditional technology-centric concepts such as Quality of Service
(QoS).

The standard approach to assess the performance of networks
and services from a QoE end-user perspective is to conduct
controlled lab experiments [3]–[5]. The key benefits of such
an approach rely on the full control the experimenter has on
the overall evaluation process. Indeed, content and context are
fully known and controlled, and users are directly briefed and
observed on the spot, providing as such tangible and solid
results. However, lab experiments miss out many important
QoE influence factors such as usage context, content prefer-
ences by individual users, or device usability among others,
potentially introducing differences w.r.t. evaluations conducted
in the field [6]. Field trial experiments place the end-user and
the evaluated components (i.e. network, apps, etc.) as clos-
est as possible to their daily usage scenarios and running
environments, providing more representative evaluations. This
augmented degree of realism w.r.t. lab experiments yields in
principle more reliable results in terms of end-user experience,
to the cost of higher complexity in acquiring and processing
the results (e.g., traffic monitoring, QoE feedback, app-level
measurements, etc.).

In this paper we study the QoE of popular apps in smart-
phones (YouTube, Facebook, Gmaps, Web Browsing and
WhatsApp) from two different yet complementary perspec-
tives: subjective tests performed in a controlled lab, and passive
end-device measurements with QoE user feedback in opera-
tional networks, through a field trial. Our study considers firstly



182                                                                   

the impact of the most relevant QoS-based characteristics of
the access network: the downlink bandwidth. In addition, we
take two relevant network-related metrics into the study, evalu-
ating the network access latency, and the stability of the cellular
network. Given the natural mobility context in which users
operate smartphones in cellular networks, we evaluate both
constant and dynamically changing network bandwidth con-
ditions, tackling in particular the case of fluctuating downlink
bandwidth. This is highly important and a major contribution,
as the bandwidth of a cellular connection naturally fluctuates
due to interference, handover, etc. We have developed different
tools to conduct the field trial, including a passive monitor-
ing tool to measure the traffic of the field trial participants at
their end devices, a QoE-feedback app to gather user experience
data (e.g., quality ratings), and a YouTube passive monitoring
tool to measure initial playback delays, playback stallings, and
video quality switches (induced by the adaptive video streaming
protocols used by YouTube).

Besides providing a solid ground-truth (based on the experi-
ence of real users) regarding the QoE-requirements of popular
apps such as YouTube and Facebook (e.g., a downlink band-
width of 4 Mbps/1 Mbps respectively is high enough to reach
near optimal results in terms of overall quality and accept-
ability), our results suggest that lab study results are highly
applicable in the live setting, as the mappings obtained between
network QoS and user QoE are highly similar in both scenar-
ios. This a major contribution, as it permits to gain high insight
about QoE in mobile devices, even by running experiments in
the lab. In addition, our study shows the benefits of monitor-
ing the QoE directly from the end-users’ devices, as it becomes
also possible to include contextual information (e.g., location,
mobility, etc.) into the QoE analysis.

The remainder of the paper is organized as follows: Sec. II
presents an overview of the related work on QoE, focusing on
the specific case of mobile devices. Sec. III describes the sub-
jective tests’ setup and presents the obtained results. Sec. IV
describes the tools developed to measure QoE-related met-
rics directly at the end-devices. Sec. V describes the approach
followed in the field trial and discusses the obtained results,
particularly in terms of similarity to those obtained in the lab.
Sec. VI discusses the obtained results and our main findings.
Sec. VII overviews several implications, limitations and topics
related to the passive monitoring of QoE at end-user devices,
including privacy, network neutrality, and incentives among
others. Finally, Sec. VIII concludes this work.

This work is an extended and more complete version of a
recently published paper [7], and it elaborates on our recent
studies on QoE for cellular networks [8], [9]. In particular,
we extend the subjective lab studies by adding new services
as well as evaluating the impact of other QoS-related metrics
such as latency at the access and network stability in terms
of bandwidth fluctuations. The paper additionally extends the
field trial results by adding an analysis on the impact of user
location/mobility on QoE for some of the evaluated services.
We also include details on the development of a novel end-
device application which passively monitors Key Performance
Indicators (KPIs) of YouTube such as stallings and quality
switches, and present application results in both the lab studies

and the field trial. Last but not least, we extend the discussion
and interpretation of results to provide more useful conclusions
to the reader.

II. RELATED WORK

The study of the QoE requirements for cloud-based applica-
tions as the ones we target in this paper has a long list of fresh
and recent references. A good survey of the QoE-based per-
formance of cellular networks when accessing different cloud
services is presented in [10]. The specific case of QoE in
YouTube deserves particular attention, due to the overwhelm-
ing popularity and omnipresence of the service. Studies have
both considered the “standard” HTTP video streaming flavour
of YouTube, as well as the more recent Dynamic Adaptive
Streaming (DASH) version. Previous papers [11], [12] have
shown that stalling (i.e., stops of the video playback) and ini-
tial delays on the video playback are the most relevant Key
Performance Indicators (KPIs) for QoE in standard HTTP
video streaming. In the case of adaptive streaming, a new KPI
becomes relevant in terms of QoE: quality switches. In par-
ticular, authors in [13] have shown that quality switches have
an important impact on QoE, as they increase or decrease the
video quality during the playback. A comprehensive survey of
the QoE of adaptive streaming can be found in [14].

There has been a recent surge in the development of tools
and software libraries for measuring network performance on
mobile devices: some examples are Mobiperf [15], Mobilyzer
[16], and the Android version of Netalyzr [17]. When it comes
to our specific analysis of QoE in cellular networks and mobile
devices, most references are very new, showing that there is
still an important gap to fill. In [18], authors study the QoE
of YouTube in mobile devices through a field trial, exclusively
considering the non-adaptive version of the YouTube player.
Authors in [19] recently introduced Prometheus, an approach
to estimate QoE of mobile apps, using both passive in-network
measurements and in-device measurements, applying machine
learning techniques to obtain mappings between QoS and QoE.
In [20], authors introduce QoE Doctor, a tool to measure and
analyze mobile app QoE, based on active measurements at the
network and the application layers. Additional papers in a sim-
ilar direction tackle the problem of modeling QoE for Web [21]
in cellular networks, and video [22].

The main limitation of these approaches is the lack of real
user experience ground truth in their analyses. Most of the
papers study QoE-related metrics such as page-load times,
interface latency, or video stallings but without any reference
to real user experience, reflected for example in terms of Mean
Opinion Scores. Other limitation of some of the proposed
approaches is that they rely on active measurements only (e.g.,
[20]), which is less attractive when thinking on large scale user
traffic monitoring and analysis. Our approach considers both
real users QoE feedback and passive monitoring at end devices,
improving and extending the state of the art.

Finally, the problem of analyzing the impact of network
bandwidth fluctuations on QoE has received little attention in
the past, but we are giving strong steps in this direction, to
make researchers and practitioners aware of the relevance of

                                                                                                                                              



                                                                    183

Fig. 1. Layered QoE evaluation methodology for networking services.

this issue. In particular, we have presented in [23] a study on
the impact of network bandwidth fluctuations and network out-
ages on the QoE of web-based services, using subjective lab
studies and measurements in fixed-line networks.

III. MOBILE QOE IN THE LAB

Let us begin by reporting the results of the conducted sub-
jective lab tests. Lab tests are realized through the layered
evaluation methodology depicted in Fig. 1. The experience of
a user with any application is conditioned by multiple fea-
tures, including dimensions such as technical characteristics of
the application, user personality and expectations, user demo-
graphics, device usability, and usage context among others.
Particularly when evaluating networking-based applications,
the influence of the network itself as well as its interplay with
the particular application have to be linked to the user’s opin-
ions, additionally identifying those perceivable performance
parameters that are most relevant to the user experience. This
mapping is realized by analyzing and correlating the three
layers depicted in Fig. 1: the network layer accounts for the
influence of the network QoS parameters (e.g., network band-
width, RTT, etc.); the application layer considers both the
technical characteristics (e.g., screen resolution, video bit-rate,
web-page complexity) and the perceivable performance param-
eters of the application (e.g., page-load times, response time,
video stalling, etc.); finally, the user layer spans the user sub-
jective opinions on the evaluated application (e.g., MOS values,
acceptability, etc.). The experimental evaluations reported in
this section are designed in such a way that all the three afore-
mentioned layers could be properly measured. In particular,
there is a strong emphasis on monitoring part of these layers
directly at the end-user device, enriching as such the contextual-
information gathering and the visibility on the QoE monitoring
problem, as we come as close as possible to the user and
applications running on his device.

The subjective study consists of 52 participants interacting
with the aforementioned services while experiencing different
downlink bandwidth and access delay profiles in the back-
ground data connection. Fig. 2 depicts a high-level diagram
of the experimental testbed employed in the subjective tests.
Android smartphone devices are used in the study (Samsung

Fig. 2. Experimental setup used in the study. Devices are connected to the
Internet through independent, controlled WiFi connections.

Galaxy S4, OS Android 4.4 KitKat). Devices are connected to
the Internet through separate WiFi access networks. The down-
link traffic between the different evaluated services and the
devices is routed through a modified version of the very well
known NetEm network emulator [24] so as to control the dif-
ferent access network profiles under evaluation. Next we report
firstly the results obtained in terms of constant downlink band-
width (section III-A), and then focus on the impact of access
latency (section III-B) and dynamically changing downlink
bandwidth, additionally including outages (section III-C).

A. QoE for Constant Downlink Bandwidth

Different constant bandwidth profiles are instantiated at
the network emulators, changing downlink bandwidth loga-
rithmically, from 0.5 Mbps to 16 Mbps. These profiles are
selected from operational experience, particularly following
typical operational values reported in [10] for different access
network technologies (LTE, 3G/2G, etc.). Note that while we
do not emulate the particular characteristics of a cellular access
network, results obtained in the field (c.f. Sec. V) suggest that
our lab results are accurate in real cellular access networks.

Participants were instructed to perform independent tasks for
each of the three considered applications. For YouTube, they
were requested to watch two-minutes HD YouTube videos, con-
sidering both the usage of the standard (i.e., non-DASH) and
the DASH versions of the YouTube player. Videos correspond
to 4K ultra-HD videos (i.e., 2160p), which are down-scaled to
HD resolution (i.e., 720p) due to the device’s display capabili-
ties (i.e., screen size and resolution). The average video bit rate
(vbr) of the corresponding HD videos is in all cases around
1.6 Mbps. In the case of Facebook, participants were instructed
to access the application with a specific user account, browse
the timeline of this user, and browse through specific photo
albums created for this user. Finally, Gmaps tasks consisted of
exploring different city maps using the Gmaps application, in
satellite view, which consumes more bandwidth.

Tests were performed in a dedicated lab for subjective stud-
ies, compliant with the QoE subjective studies standards [3]–
[5]. Regarding participants’ demographics, 29 participants were
female and 23 male, the average age was 32 years old, with 40
participants being less than 30 years old. Around half of the
participants were students and almost 43% were employees,
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Fig. 3. Overall quality and acceptability in YouTube standard (i.e., non-DASH)
and DASH. DASH is capable of handling lower DBW connections with high
QoE, trading image quality by lower download throughput.

and 70% of the participants have completed university or
baccalaureate studies.

Regarding QoE feedback, participants were instructed to rate
their overall experience according to a continuous ACR Mean
Opinion Score (MOS) scale [3], ranging from “bad” (i.e., MOS
= 1) to “excellent” (i.e., MOS = 5). MOS ratings were issued by
participants through a custom questionnaire application running
on separate laptops, which pops up immediately after a con-
dition has been tested. Participants also provided feedback on
the acceptability of the application, stating whether they would
continue using the application under the corresponding condi-
tions or not. For the specific case of YouTube, three additional
questions were asked to participants: (i) stalling annoyance (did
you perceive stalling as disturbing?); (ii) video image qual-
ity (rate the image quality of the video); (iii) initial playback
delay annoyance (did you perceive the initial loading time of
the video as disturbing?). The reader shall note that the maxi-
mum MOS ratings declared by the participants are never 5 but
somewhere between 4.2 and 4.6. This is a well known phe-
nomenon in QoE studies called rating scale saturation, where
users hardly employ the limit values of the scale for their
ratings [10].

1) QoE in YouTube Mobile: The Downlink BandWidth
(DBW) takes values 1 Mbps, 2 Mbps, and 4 Mbps in YouTube
tests. Fig. 3 reports the overall quality and acceptability results
obtained for the YouTube tests. Recall that in the YouTube sce-
nario, we compare the standard, non-adaptive version of the
YouTube player (videos are selected to play in HD quality)
against the DASH-capable one. In the DASH case, videos are
also requested in HD quality, but the server adapts the subse-
quent video quality resolutions to the bandwidth estimated by
the player.

Fig. 3(a) compares the overall QoE experienced by the par-
ticipants using both player versions. It is quite impressive to
appreciate how the DASH approach results in a nearly optimal
QoE for all the tested conditions (from 1 Mbps to 4 Mbps),
whereas the fixed HD quality approach results in poor QoE for
downlink bandwidth below 4 Mbps. As expected for the stan-
dard player, heavy stalling occurs for the 1 Mbps condition,
taking into account that the average vbr is 1.6 Mbps. Indeed,
as we have shown in [25], the DBW should be in the order of
30% higher than the average video bitrate to avoid stalling when
non-adaptive streaming is used. This dimensioning rule also
explains the results obtained for the 2 Mbps condition, as some

Fig. 4. QoE for YouTube Mobile, considering playback stallings and video
image quality. Video image quality is perceived as almost excellent for the
lowest DBW condition, even if video resolution is lower.

stalling still occurs. No stalling seems to occur for the DASH
version. The main difference is that DASH changes the video
quality without incurring in playback stalling, whereas the fixed
quality configuration definitely results in video stalling.

Fig. 3(b) reports the results in terms of acceptability of the
participants. This is one of the key features that an operator has
to consider, because low acceptance rate may sooner or later
turn into churn. As observed, acceptance rate is as low as 23%
for the standard streaming at 1 Mbps, whereas it’s close to 99%
in the case of DASH.

To complement the picture for YouTube QoE in mobile
devices, Fig. 4 depicts the results obtained in terms of
(a) annoyance caused by stalling (stop of the video playback),
and (b) video image quality. In Fig. 4(a), a MOS = 5 means
not disturbing at all, whereas a MOS = 1 means unbearable
(very annoying). Stalling has a very strong impact on the user’s
level of annoyance, confirming what has been already seen in
previous studies for desktop and laptop like devices.

The most interesting result is presented in Fig. 4(b), which
reports the perceived image quality of the video. According
to previous studies [13], quality switches induced by DASH
have an important impact on QoE. However, in the case of
smartphones, where displays are smaller than laptops or desk-
top devices, quality switches do not seem to have an important
impact on the perception of the user. While these results
are directly linked to the specific quality-switching patterns
induced by the tested DBW conditions, they represent a main
contribution to assess QoE for YouTube in smartphones when
using DASH. As a summary, using DASH highly reduces the
chances of playback stalling, at no apparent perceived image
quality cost.

2) QoE in Gmaps and Facebook Mobile: Gmaps is tested
with a fully logarithmic scale: 1 Mbps, 2 Mbps, 4 Mbps,
8 Mbps, and 16 Mbps. Fig. 5 reports the overall quality and
acceptability results obtained for the Gmaps tests. Fig. 5(a)
shows that a DBW of 4 Mbps results in near optimal QoE
(MOS ≈ 4.5), and from this value on, QoE saturation already
occurs. This means that no major QoE improvements are then
obtained for additional bandwidth provisioning. A DBW of
2 Mbps provides good quality results and almost full accep-
tance, but a DBW of 1 Mbps rapidly brings Gmaps into bad
user experience.

Similarly, Facebook is tested with DBW = 0.5 Mbps, 1 Mbps,
2 Mbps, 4 Mbps and 8 Mbps. Fig. 6 reports the results obtained
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Fig. 5. QoE in Gmaps. Overall quality and acceptability for different DBW.
A DBW of 2 Mbps is high enough to achieve good QoE and almost full
acceptability.

Fig. 6. QoE in Facebook. Overall quality and acceptability for different DBW.
A DBW of 1 Mbps is high enough to achieve good QoE and almost full
acceptability.

in the Facebook tests for different DBW configurations, con-
sidering both (a) the overall quality and (b) the acceptance rate.
A DBW of 500 kbps is not high enough to reach full user
satisfaction in Facebook mobile for Android devices, as partici-
pants declared a fair quality with an acceptance rate of about
80%. Still, a DBW of 1 Mbps results in good overall qual-
ity, with almost full acceptance of the participants. Excellent
QoE results are attained for 8 Mbps, which shows that even if
a 2 Mbps DBW allocation is high enough to reach full accep-
tance (cf. Fig. 6), the overall experience of the user can still
marginally improve.

In both cases, the relation between QoE and DBW is clearly
logarithmic when not considering the most restrictive DBW
configuration in both apps (1 Mbps and 0.5 Mbps respectively).
Next we show that such logarithmic mappings are also observed
in the field trial.

3) QoE in Mobile Web Browsing and WhatsApp: Web
browsing is tested with DBW = 0.5 Mbps, 1 Mbps, 2 Mbps,
and 16 Mbps. Fig. 7 reports the overall quality and acceptabil-
ity results obtained for the News website browsing tests. Note
first how the quality increases in a logarithmic fashion with
increasing values of the DBW. Good experience (MOS ≈ 4)
is obtained for a DBW of 2 Mbps, and only slight QoE dif-
ferences are obtained when increasing the bandwidth to up to
16 Mbps, going to MOS ≈ 4.15. Going in the DBW decreas-
ing direction, the slowest tested condition still results in fair
quality (MOS ≈ 3.5) and high acceptance rate, close to 90%.

For WhatsApp, we add an additional test at DBW = 4 Mbps,
given the file sizes used and the occurrence of saturation. Fig. 8
shows the QoE results for different DBW values. Users tolerate

Fig. 7. QoE in Web browsing (news website). Overall quality and acceptability
for different downlink bandwidth configurations.

Fig. 8. QoE in WhatsApp. Overall quality and acceptability for different
downlink bandwidth configurations.

WhatsApp downloads with a good overall experience and high
acceptability as long as the DBW is above 2 Mbps, but user
experience heavily degrades for slower connections, resulting
in very bad quality for a DBW of 500 kbps. In this case, a DBW
threshold of 2 Mbps permits to approximately discriminate
between good and bad experience. Given the file size used in
the tests (5 MB), there is a clear saturation effect after 4 Mbps,
as QoE does not increase for higher DBW values. Finally, even
if the obtained results are partially biased by both the specific
file size used in the tests and the participants task briefing,
obtained results are similar to those we obtained in [26] for the
specific case of Dropbox file sharing, suggesting that the main
take aways are potentially more generic than expected when
considering file downloads, either in mobile devices or in fixed
ones.

B. QoE for Access RTT

Constant access RTT profiles are tested for two out of the
five studied services: Web browsing and Facebook. Our deci-
sion to only focus on these two services is based on the findings
of previous work [27] stating that network delay is one of the
most impacting network features on such type of interactive ser-
vices. In addition, we were bounded to the maximum number
of tests that could be run with participants without causing a
degradation on the quality of the results due to fatigue. In both
cases, access RTT is increased from an optimal condition (RTT
= 10 ms) to a very slow access network scenario, considering
a maximum access RTT of 300 ms. RTT profiles are selected
from operational experience. In particular, RTT in operational
LTE and HSPA networks is close to 50 ms [28], whereas 500 ms
are common values observed on EDGE scenarios.
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Fig. 9. QoE in Facebook. Overall quality and acceptability for different access
RTT configurations.

Fig. 10. QoE in Web browsing (news website). Overall quality and acceptabil-
ity for different access RTT configurations.

1) QoE in Facebook Mobile: Fig. 9 shows that the QoE
degrades when the access RTT increases far beyond 150 ms,
but the impact is not as significant as one might expect a-priori
for a browsing-like application, and acceptance seems not to
be impacted at all. Indeed, overall quality remains almost opti-
mal for an access RTT of 150 ms, suggesting that the new
evaluations of ultra-low latency cellular networks are not really
necessary for applications such as Facebook Mobile. The main
reason for such a result is that the degree of interactivity of
the Facebook application is not as high as for other applica-
tions such as video-conferencing or gaming, suggesting that
all in all, the operator should focus the dimensioning on the
downlink bandwidth rather than the access RTT for this type of
application. Still, Facebook is not the most network resources
demanding application, so the dimensioning should probable
not be done based on its specific latency requirements, as we
see next.

2) QoE in Mobile Web Browsing: As reported in Fig. 10,
the impact of access RTT is more marked in the case of Web
browsing. QoE rapidly degrades when the access RTT increases
above optimal values, and a MOS close to 3.6 (fair quality) is
obtained for an access RTT = 100 ms. Still, acceptance rate is
only slightly affected by the increasing RTT, suggesting that
even if users can rapidly notice a non-responsive access net-
work when browsing standard web pages in a smartphone, they
still agree on using the application. A very interesting obser-
vation is that bigger access RTTs do not necessarily result in
a highly increased QoE degradation, which is probably linked
to the local caching and rendering techniques used by web
browsers in mobile devices.

C. QoE under Bandwidth Fluctuations

As we have recently shown in [23] and as we see next,
the experience of a user for certain applications is very sen-
sitive to bandwidth fluctuations. Throughput fluctuations due
to bandwidth variation are very common in cellular networks,
but unfortunately, its QoE-effect is not captured in today’s net-
work measurements, as only average throughput values are
typically considered. To better understand the QoE of mobile
services under bandwidth fluctuations, we tested two types of
bandwidth fluctuation patterns: periodic increase/decrease of
downlink bandwidth, and downlink bandwidth outages, where
bandwidth suddenly drops to zero, mimicking a disconnection
scenario.

In particular, we tested the following downlink bandwidth
profiles in YouTube, Web browsing, and Gmaps: periodical
increase from 1 Mbps to 3 Mbps in YouTube (we refer to
this profile as “1/3”), 3 times per minute for 5 second periods
(Average Downlink Bandwidth, ADW = 1.5 Mbps); periodical
drops from 4 Mbps to 0 Mbps (we refer to this profile as “4/0”),
twice per minute for 10 second periods in YouTube DASH only
(ADW = 2.7 Mbps), and twice per minute for 15 second peri-
ods in Web browsing (ADW = 2 Mbps); finally, a 7/1 profile
(ADW = 4 Mbps), a 16/0 profile (ADW = 8 Mbps) and a 4/0
profile (ADW = 2 Mbps) in Gmaps, shifting bandwidth twice
per minute for 15 second periods.

1) QoE in YouTube Mobile: Fig. 11 presents the results
obtained in terms of (a) overall quality, (b) acceptance, and
annoyance caused by (c) initial delays and (d) stalling. The
4/0 profile is only tested with the DASH flavor of YouTube,
as the non-adaptive version provides too low quality results in
the case of 10 second outages. The short-duration bandwidth
increases do not have any significant impact on the QoE of both
YouTube versions. Indeed, such a spiky bandwidth increase
does not compensate for the low average downlink bandwidth,
which causes the expected stalling impact for the non-adaptive
application. The DASH version keeps offering optimal results,
but interestingly enough, the acceptance rate slightly drops as
compared to the 1 Mbps condition (cf. Fig. 3), which is prob-
ably caused by the additional quality changes triggered by
fluctuations. When it comes to bandwidth outages (10 seconds-
long), the reader can appreciate that even YouTube DASH
can suffer from important QoE degradations when throughput
drops to zero for short periods. The YouTube DASH version
is not predictive, and quality switches respond to current band-
width estimations. Given the image quality results reported in
Fig. 4(b), a good way to avoid QoE degradations in the case of
outages would be to preemptively caching as many low-quality
video chunks as possible when the bandwidth is above certain
predefined threshold.

2) QoE in Gmaps Mobile and Web Browsing: Fig. 12
reports the overall quality and acceptance results obtained for
the Web browsing and Gmaps tests. Figs. 12(a) and 12(b) show
the impact of a 4/0 profile on Web browsing QoE. The interest-
ing part comes when comparing the constant 2 Mbps bandwidth
condition (cf. Fig. 7) with the outage bandwidth profile. While
both conditions correspond to an average downlink bandwidth
of 2 Mbps, the fluctuation profile 4/0 results in a much degraded
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Fig. 11. QoE in YouTube under bandwidth fluctuations. Overall quality, acceptability, and annoyance caused by initial delays and stalling for 1/3 (average
downlink bandwidth = 1.5 Mbps) and 4/0 (average downlink bandwidth = 2.7 Mbps) downlink bandwidth profiles.

Fig. 12. QoE in Gmaps and Web browsing under bandwidth fluctuations. Overall quality and acceptability for different downlink bandwidth fluctuation profiles.
Bandwidth outages have a very marked impact on the QoE of these services, and higher downlink bandwidth values do not compensate for such drops.

experience, with a MOS score dropping to 3, and an acceptance
rate dropping to 88%.

Figs. 12(c) and 12(d) report the Gmaps results. Note first how
both the 16/0 and the 4/0 outage profiles cause a very strong
QoE degradation, with quality dropping to MOS ≈ 2.6 and
acceptance rate to about 65%. When comparing to the constant
bandwidth scenario, Gmaps QoE is actually near optimality and
full acceptance for a downlink bandwidth higher than 2 Mbps
(cf. Fig. 5), evidencing the important impact of the outages.
Interestingly, results for both outage profiles are almost iden-
tical, even if the peak bandwidth values are very different, i.e.,
16 Mbps and 4 Mbps respectively. This suggests that higher
peak downlink bandwidth values do not compensate for the
impact of outages.

The impact of outages on Gmaps is much stronger than in the
case of the Web browsing, which is directly tied to the degree of
interactivity of the application, which is much higher in Gmaps.
Finally, the impact of the 7/1 profile is much less important
as compared to the outages, but quality degradation is also
very noticeable. An important take away from this evaluation
is that the average downlink bandwidth is not as informative as
one might expect when considering QoE in mobile devices, as
results can greatly change, depending on the specific bandwidth
profile.

IV. END-DEVICE MONITORING TOOLS

To monitor the traffic of the field-trial participants and
to log their QoE feedbacks, we developed three specific
Android-based applications. The first one is YoMoApp [9],

an application which passively monitors QoE-relevant KPIs of
YouTube adaptive video streaming on end-user smartphones.
The second tool consists of a passive, flow-level traffic mon-
itor, capable of sniffing all the incoming and outgoing traffic,
additionally labeling the corresponding flows according to the
application generating the traffic. The final tool consists of a
web-based app which permits users to provide feedback on their
experienced quality. We describe these tools next.

A. The YoMoApp Tool

The goal of the tool is to monitor application layer KPIs of
YouTube that have a high correlation with the actual QoE of
mobile app users. As we said before, the main influence param-
eters of the YouTube QoE are stallings and video quality. To
obtain these parameters, we monitor the buffer filling levels and
the resolution of the YouTube videos.

YoMoApp works as follows. The original YouTube app is
fully replicated in functionality and design, see Fig. 13. To this
end, existing libraries from YouTube are used that are available
for YouTube developers. An Android web view browser ele-
ment is embedded for the YouTube video playback, such that
HTML5 video playback is possible, including adaptive stream-
ing according to the MPEG DASH approach of YouTube.
Additional functions are added, which ultimately perform the
monitoring of the application parameters in the newly created
app. The monitoring is done at runtime via JavaScript, which
queries the embedded HTML5 〈video〉 object. In Fig. 13, the
utilized parameters are listed. Note that the obtained param-
eters can be displayed in YoMoApp for validation, but are
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Fig. 13. Screenshot of the app and selected parameters from the HTML5
〈video〉 object, Media Source Extensions, and device, which can be tracked
by the app.

Fig. 14. Monitoring of stallings and their impact on QoE with YoMoApp.

usually hidden. We are preparing a publicly available version
of YoMoApp, which shall be soon available to download from
the Android Google Play apps store.

To show the applicability of YoMoApp in the practice, we
employed YoMoApp in the previously presented subjective lab
study, tracking the performance of YouTube in the DASH ver-
sion. Fig. 14(a) shows the distribution of the total stalling time
for each of the bandwidth-related tested conditions. Almost no
stalling occurs for the constant bandwidth conditions. Stalling
occurs in about 14% of the variable DBW = 1/3 conditions,
ranging up to a total stalling time of 34 s. The outage scenario
(DBW = 4/0) is the one more impacted by stalling, as more
than 75% of the tests result in video stalling. The average total
stalling time in this condition is 25 s, with a maximum of up
to 41 s. Fig. 14(b) shows the corresponding MOS values in
terms of stalling annoyance (same results presented in previous
Sec., but condensed in one single Fig. for better interpretation),
which are very in-line with the stalling distribution as tracked
by YoMoApp.

Fig. 15(a) shows the percentage of time on each quality level
per condition, i.e., the percentage of time which each video res-
olution was played out during the streaming. The three constant
bandwidth conditions at 1 Mbps, 2 Mbps and 4 Mbps result
in a straightforward mapping to video resolution, resulting

Fig. 15. Monitoring of video quality switches and the resulting image QoE
with YoMoApp.

TABLE I
METRICS RECORDED FOR EACH DATA FLOW, USING THE

ANDROID-BASED PASSIVE MONITORING TOOL. ALL METRICS ARE

EXTRACTED FROM THE ANDROID DEVELOPERS’ API

in a major share of 360p, 480p and 720p resolution respec-
tively. The outage condition has similar quality shares to the
4 Mbps one, which is not surprising considering that it is a
4/0 Mbps on/off pattern. The variable 1/3 condition contains
a large percentage of the lowest resolution, which indicates that
the YouTube adaptation is very conservative when the network
conditions fluctuate considerably. Finally, Fig. 15(b) shows the
resulting image quality MOS values as rated by participants,
confirming once again that resolution adaptation does not have
a relevant impact on the subjectively perceived image quality in
smartphones, given the small screen size.

B. Passive Traffic Monitoring and QoE Feedback

The passive traffic monitoring tool consists of a simple
Android-based passive monitoring tool which captures several
metrics for all the traffic flows generated by the device. We
decided to develop our own tool and not to use those avail-
able in the literature (e.g., [15]–[17]), as these either rely on
active measurements only or are too specific for their original
purpose.

Table I reports the different metrics passively monitored for
each traffic flow by our tool. Flows in this context correspond
to the standard 5-tuple flow definition, and are associated to
the specific app generating them, using the Android develop-
ers’ APIs. The first metric is a simple device identifier known as
IMEI (International Mobile Station Equipment Identity), which
is a unique number identifying a 3GPP device. Metrics with ID
from 2 to 6 correspond to traffic flow measurements, including
the flow start time, the flow direction (uplink or downlink), the
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TABLE II
POPULAR APP NAMES, ACCORDING TO THE ANDROID API NAMING

SCHEME

flow duration, the size of the flow, and most importantly, the
average flow transfer throughput, which is simply computed as
the ratio between the flow size and the flow duration. Metric
ID 7 indicates the app which generated the corresponding flow,
using as naming scheme the Android API notation. For exam-
ple, YouTube video flows are associated to the app name sys-
tem.android.media (com.google.android.youtube is asso-
ciated to the rest of the YouTube player content, such as thumb-
nails of videos), Google maps flows are associated to the app
name com.google.android.apps.maps, Google Chrome web
browsing flows are associated to name com.android.chrome
and so on. Table II provides a list of Android API apps’ names
for popular mobile apps. Metric ID 8 provides the strength of
the signal at the smartphone when the corresponding traffic flow
starts. Metrics with ID from 9 to 11 correspond to the operator
providing the Internet access and the cell to which the smart-
phone is attached to at the time of the flow start, particularly
including the geographical location of the cell (i.e., longitude
and latitude). Finally, metric ID 12 indicate the Radio Access
Technology (RAT) used by the smartphone (e.g., LTE, 3G, 2G,
EDGE, etc.) when the flow starts.

All these metrics are logged locally at the smartphone, and
are periodically sent to a centralized server for post-processing
and analysis.

QoE feedbacks are provided by the participants through a
web-based app, which is manually run by the user immedi-
ately after completing a specific task, such as watching a short
YouTube video, exploring a city map using Gmaps, or using
Facebook to browse photo albums. This app keeps a local
database to store QoE feedbacks even when the device has
lost connectivity. For the sake of the analysis presented in this
paper, a QoE feedback entry consists of the following 4 fields:
{timestamp; app; location; MOS}. Given that the QoE
feedback tool and the traffic monitoring tool use both the same
time reference (i.e., from the local smartphone), a MOS score
given by the participant to certain application would always
have a timestamp bigger than the timestamps indicating the start
of the flows associated to the rated app.

In order to correlate the traffic measurements and the MOS
scores provided by the field trial participants, we group flows
into sessions. A session corresponds to a group of flows gen-
erated by the same app which are continuous in time, based
on a pre-defined maximum inter-flows timeout. Evidently, the

inter-flows time for a specific session is partially determined
by the type of application being accessed by the user, as well
as by its usage behavior; for example, the inter-flows time for
a web browsing session is generally larger than the inter-flows
time for a google maps session. To become independent of such
issues, we follow a simple and pragmatic approach to identify
relevant sessions. By relevant we refer to sessions which have
an associated QoE feedback/MOS rating. The procedure is as
follows: given a MOS rating at time tMOS for app appMOS, we
define a session as all the flows associated to app appMOS and
started within the time window [tMOS − T hsession; tMOS]. The
threshold T hsession defines the maximum session duration, and
it is set to 4 minutes, which is the average time requested to
participants to take to perform a specific task.

The final step is to define a proper session-based KPI which
could be used to correlate sessions and MOS scores. Recall that
the results presented for the lab study considered the downlink
bandwidth as the independent network feature being tested in
terms of QoE. Hence, we would define a KPI that tries to cap-
ture this downlink bandwidth for the rated session. The best
approximation one could get for the downlink bandwidth when
using passive throughput measurements is the Maximum Flow
Throughput (MFT) achieved within the session. The through-
put of a flow is limited by multiple components, including the
application itself, the server providing the flows, the TCP con-
gestion and flow control, and the available bandwidth of the
connection. Throughput limitations by the application itself or
by the server are less relevant to us, because they are not linked
to performance of the cellular network. The impact of the TCP
protocol, and specially the slow start phase, can be limited
by filtering out small flows from the analysis (we shall come
back to this issue later on). Therefore, when targeting the per-
formance of the cellular connection, the MFT achieved for a
specific session would be the closest indication to the downlink
bandwidth. In the analysis of the field-trial measurements, we
analyze the results obtained by correlating the MOS scores and
the corresponding session MFT values for three of the tested
apps (YouTube, Facebook and Gmaps).

V. FROM THE LAB TO THE FIELD

In this section we overview the details of the conducted field
trial and analyze the obtained results, particularly comparing
them with the observations and conclusions drawn from the
subjective lab study. The main question we try to answer is to
which extent, subjective lab studies conducted under WiFi net-
works are applicable to operational cellular networks. For the
sake of brevity, we focus on only three out of the five applica-
tions tested in the lab, as drawn conclusions remain unchanged.
Also, given the complexity of the problem, the study considers
only the impact of the downlink bandwidth for the field trial
scenario. We plan to extend the analysis to the monitoring of
bandwidth fluctuations and access latency in the future.

A. Field Trial Overview

The field trial consisted of 30 participants using their
own smartphones and cellular ISPs to access the same apps
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Fig. 16. Distribution of QoE feedbacks in the field. The biggest share of ratings were done for YouTube. The preferred location was home, followed by the
underground, evidencing the usability scenarios mostly preferred by mobile users. MOS distributions are rather similar wrt tested apps and selected locations,
suggesting that network performance was rather stable during the span of the study.

Fig. 17. QoE for YouTube, Gmaps and Facebook in the field. Squares and circles correspond to individual sessions reported/rated by participants. Red/black
lines correspond to log fitting curves. Filtering out small flows improves the correlations between flow throughput measurements and QoE, specially by avoiding
protocol impact on the achieved downlink speed.

tested in the lab as part of their normal daily Internet activity.
Participants were requested to perform the same kind of tasks
to those performed by the lab study participants, to improve
comparison of results. QoE feedback was provided for each
session through a customized QoE crowd-sourcing app (details
next), for a total span of 2 weeks. In this paper we only focus
on the overall experience declared by participants, but the QoE
feedback provided actually includes the same questions as
those evaluated in the lab study. In addition, all the traffic flows
generated by the participants were passively monitored with the
tools described in previous section, including the monitoring
of YouTube performance at the application layer. Besides QoE
feedback, participants indicated their location at the moment
of performing the corresponding task (e.g., at home, in the
underground - metro, walking, etc.). Field trial participants
were compensated with vouchers for their participation, which
proved to be sufficient for achieving correct involvement in the
study.

Fig. 16 depicts the distribution of ratings issued by par-
ticipants in terms of (a) number of ratings per app, (b) per
location, and (c-d) MOS values distributions for both apps and
locations. In total, almost 700 ratings were issued by the partic-
ipants during the span of the field trial for YouTube, Facebook
and Gmaps. As a-priori expected, the biggest share of ratings
were done for YouTube, which is currently the most popular
app in the Internet. The preferred location was home, which
is coherent with the results that we have obtained in previous
similar field trials [6]. Interestingly, the second most preferred
location to access the requested apps was the underground,

evidencing that mobile traffic and smartphone usage in such
mobility scenario is highly frequent, at least within the users’
community represented by the field trial participants.

Fig. 16(c) and Fig. 16(d) report the MOS scores distribu-
tions. Surprisingly, the MOS distributions are rather similar,
both when considering the tested apps (cf. Fig. 16(c)) and the
selected locations (cf. Fig. 16(d)). This suggests that network
performance was rather stable during the span of the study, and
uniform for both fixed mobility profiles (e.g., home) and highly
dynamic mobility profiles (i.e., metro). Indeed, tests were per-
formed in the city of Vienna, where all ISPs have very good
network coverage, even in the underground, justifying as such
the observed results.

B. QoE in the Field

Fig. 17 depicts the results obtained from the field trial mea-
surements, reporting the MOS scores as a function of the MFT
per session for (a) YouTube, (b) Gmaps, and (c) Facebook. To
improve visualization of results, MOS scores are plotted with a
very small random perturbation (basically to avoid overlapping
as much as possible).

Fig. 17(a) presents the results obtained in the case of
YouTube. Squares correspond to individual sessions rated by
participants. Red lines correspond to log fitting curves, with the
only purpose of showing such a logarithmic relation between
MOS and MFT, in a purely visual basis. High MFT values
result in good QoE; indeed, MOS > 4 for almost all sessions
with MFT > 5 Mbps, which is highly similar to the results
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Fig. 18. Using YoMoApp to monitor YouTube in smartphones. Results correspond to the monitoring of one single participant. Quality is good (i.e., MOS ≥ 4
4) for about 70% of the video sessions, with an initial playback delay below 2 seconds, a total stalling fraction below 4%, and with almost no quality switches for
these sessions.

observed in the lab study (cf. Fig. 3), where QoE is optimal for a
DBW > 4 Mbps. In addition, most of the sessions having very
poor QoE (i.e., MOS = 1) have a very low MFT. However, as
expected, the picture becomes very fuzzy in the most relevant
MFT gap, between 1 Mbps and 4 Mbps, having MOS scores
between 2 and 5, i.e., from sessions with poor QoE to excellent
QoE. This is coherent with the fact that the QoE of YouTube
is strictly linked to the stallings observed in the video play-
back, and this can happen for both high video bitrate and low
video bitrate videos. In addition, as we have shown in Fig. 3,
using fixed video image quality or adaptive quality completely
changes the obtained results, this adding more noise to the over-
all mapping. As a consequence, even if we can estimate good
and bad QoE video sessions for very high and very low MFT
values, we need application-layer measurements (i.e., stallings,
video bitrate, etc.) to estimate the QoE of YouTube, specially
for 1 Mbps < MFT < 4 Mbps.

Fig. 17(b) presents the results obtained in the case of Gmaps.
In the case of Gmaps, sessions are composed of both big and
small flows, linked to the different components of the app. As
we said before, to improve the correlation to network perfor-
mance, we filter out small flows from the computation of the
MFT values. In particular, squares in Fig. 17(b) correspond
to individual sessions rated by participants, with flows smaller
than 500 KB kept aside for the computation of the correspond-
ing MFT. The threshold of 500 KB comes directly from the
practice, as we noticed that this represents a good tradeoff
between accuracy and coverage of the complete set of Gmaps
flows. As before, red curves show the visual log fitting of the
MOS vs MFT curve, but in this case, we also add the log fit-
ting curve obtained from the lab study results (cf. Fig. 5(a)).
Besides some small number of outliers which received MOS
scores of 3 (i.e., fair quality), results clearly show that good
QoE can be expected for a MFT > 2 Mbps, exactly as suggested
by the lab study results in Fig. 5(a). In addition, also similarly to
the lab indications, QoE rapidly degrades for MFT ≤ 1 Mbps.
Therefore, we can say that for the case of Gmaps, the map-
pings between MOS and MFT observed in the field trial are
pretty much aligned to the MOS vs DBW curves obtained in the
lab study, suggesting that conclusions drawn from such studies
have a direct and accurate applicability in the practice.

Fig. 17(c) presents the results obtained in the case of
Facebook. Facebook flows are rather smaller than in the case of
Gmaps, therefore we also consider a similar filtering approach,
but considering a less restrictive threshold. In Fig. 17(c),
squares correspond to sessions with flows smaller than 100 KB
filtered out of the computation of the MFT values, whereas cir-
cles consider a threshold of 500 KB. As in the case of Gmaps,
we include both the visual log fitting curves and the log curve
obtained from the lab study results. Mappings follow the lab
study results when considering flows > 500 KB, resulting in
good QoE for MFT ≥ 1 Mbps. A MFT ≤ 0.5 Mbps results in
poor QoE (i.e., MOS = 1 or 2), similar to the observations in the
lab, cf. 6. Thus, similar to what we observed in the Gmaps app,
mappings between MOS and MFT in the field trial are aligned
to the MOS vs DBW curves obtained in the lab study.

As a summary, the MFT observed in a session seems to
be a good QoE indicator in the field, specially when consid-
ering apps generating big traffic flows. Apps such as Gmaps
and Facebook can be reliably monitored in the field using pas-
sive flow measurements as the ones conducted by our tool,
but considering only big flow instances (flow size > 500 KB).
The case of YouTube is a challenging one: high and low MFT
values relate well to good and bad QoE, but mappings are
very poor for more commonly observed throughputs. Thus, it’s
necessary to additionally perform measurements at the applica-
tion layer (e.g., stallings, page-load-times, etc.) to capture QoE
indications, using YoMoApp.

Fig. 18 shows the results obtained by using YoMoApp for
one selected participant. A complete analysis of the field test
results with YoMoApp is still ongoing, but nevertheless, we
present example results to better motivate the usefulness of
YoMoApp. The Fig. shows the distribution of the total stalling
time as a fraction of the video length, the distribution of the ini-
tial delay, the distribution of the tracked quality switches, and
the distribution of overall quality MOS values. Quality is good
(i.e., MOS ≥ 4) for about 70% of the video sessions, with a
total stalling time fraction below 4%, an initial playback delay
below 2 seconds, and with almost no quality switches for these
sessions. For the remaining 30% of the sessions rate as average
or worse, there is a marked increase in the total stalling time
fraction and initial delay, with about 10% of the sessions with
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Fig. 19. Potential impact of mobility on overall QoE. Mobility patterns are constructed based on location as declared by participants when performing the
evaluation tasks. Static refers to locations “home” and “office”, slow-motion refers to location “street”, whereas high-motion refers to locations “car”, “metro” and
“train”.

4 or more seconds of initial delay and a stalling time fraction
above 30%.

C. Impact of Context on QoE - the Case of Mobility

To conclude with the analysis of the field trial results, we
present an evaluation on the impact of context on QoE, consid-
ering the specific case of mobility. The overall results presented
in Fig. 16(d) do not reveal a major impact of the location (and
potentially the associated degree of mobility) on the reported
QoE for the considered applications. However, by taking a
closer look into the results of each application, and by doing
some raw hypothesis on the relation between location and
degree of mobility, we can obtain some interesting results. Our
hypothesis is as follow: we assume that participants at in-door
locations are in a static situation when conducting the tests,
walking while conducting the tests at the street, and moving
while taking the tests at a train, underground or even car. We
verified the accuracy of such an hypothesis by directly asking
to some of the participants of the field trial, but we are not 100%
sure that it applies to all performed tests, and additional filter-
ing based on passively tracked location would be required to
get better results. In any case, the initial results provided next
are in line with our expectations and provide a first look into the
problem.

Fig. 19 depicts the distribution of overall QoE values
reported by participants for the three analyzed applications,
grouped by degree of mobility. We consider three differ-
ent mobility patterns: static refers to locations “home” and
“office”, slow-motion refers to location “street”, whereas high-
motion refers to locations “car”, “metro” and “train”. As before
(cf. Fig. 16(d)), there is no apparent impact of mobility on the
QoE results for (a) YouTube and (b) Facebook; this is most
probably linked to the potentially good networking QoS offered
by cellular networks in Vienna, but also to the degree of inter-
activity of these two applications. For example, recalling the
impact of bandwidth fluctuations on YouTube QoE reported in
Fig. 11, even short network outages might remain unnoticed
when watching YouTube videos, thanks to the pre-buffering
done by the app. However, results are much more interest-
ing when considering a highly interactive application such as
Gmaps in Fig. 19(c). In this case, there is a clear difference

on the QoE distributions when considering static and a high-
motion mobility patterns, with a much worse quality when
moving faster. Indeed, note that the ratio of fair and bad QoE
values goes from 0% for a static context to more than 50% when
moving on a car, train or underground. These results are further
confirmed by the results obtained in the lab when considering
bandwidth fluctuations (cf. Fig. 12), which show how sensi-
tive might be Gmaps when network conditions do not remain
stable. A further and deeper analysis on the impacts of contex-
tual information, particularly including mobility, are part of our
ongoing work.

VI. FINDINGS AND DISCUSSION

In this section we provide some additional discussion on
the obtained results. Firstly, considering both the lab and the
field results, we can claim that conclusions drawn from both
approaches are highly similar and coherent between them,
suggesting that subjective lab studies results are applicable
to operational cellular networks. In our particular scenario,
the usage of WiFi technology in the lab study setup did not
have an appreciable impact on the quality of the results when
considering real cellular networks.

More in general, obtained results suggest that a downlink
bandwidth of 4 Mbps is high enough to reach near optimal
results in terms of overall quality and acceptability for YouTube
when accessed in smartphones. This threshold drops to 2 Mbps
and 1 Mbps for Gmaps and Facebook apps respectively. As
a consequence, cellular network operators should target such
downlink bandwidth thresholds as their short term goal for
dimensioning their access networks. Given these relatively low
requirements, resources could be re-allocated or scheduled to
manage the network more easily and with a more efficient cost-
benefit trade-off, avoiding over-provisioning while keeping
high QoE. The implications for the end-user are straightfor-
ward: you do not need a super high speed cellular contract with
your operator if your target is on the studied applications. So in
particular, an expensive LTE contract is not necessary to have a
near optimal experience today.

Our results show that dynamic applications such as YouTube
DASH are much better suited to smartphone scenarios, provid-
ing the same level of experience as the non-adaptive version
of the YouTube application in terms of image quality, but with
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Fig. 20. MOS vs signal strength in YouTube. The signal strength metric cor-
responds to the average single strength when considering all the flows of a
single session. There is no apparent correlation between the MOS declared by
participants and the measured average signal strength.

much lower QoS-based requirements in terms of downlink
bandwidth. This is a major finding, as DASH has been shown to
degrade the video image quality and the associated user expe-
rience when considering standard, laptop or PC devices. The
main difference with smartphones is their inherent small size
displays, which to some extent filter out the impact of qual-
ity switches. A direct implication of this finding is that cellular
network operators willing to monitor the QoE of its YouTube
customers must know which type of technology is used by the
YouTube app in the smartphone to understand its QoE. Even
more, as also reflected by the results obtained in the field, the
only reliable way to monitor QoE in the case of YouTube is to
measure application layer features such as stallings and quality
levels. We believe that the YoMoApp tool will play a key role
in the short-term future to address this issue.

A particular question that arises in this study is whether other
KPIs related to the end-device measurements could also be used
to estimate the QoE of a session. The signal strength is a-priori
a relevant metric related to the health of the connection, thus
it could in principle a good KPI to our purpose. However, we
could not find any relevant correlation between the strength of
the signal and the MOS scores provided by the participants. As
an example, Fig. 20 reports the results obtained for the case of
YouTube. The signal strength metric corresponds to the average
single strength among all the flows of a single session. There is
no apparent correlation between MOS scores and the measured
average signal strength.

Let us now focus on some additional relevant aspects worth
to comment on. In particular, we further elaborate on four spe-
cific topics of the study: (i) access network latency; (ii) down-
link bandwidth fluctuations; (iii) downlink bandwidth outages
and (iv) contextual information tracking.

A. Do we Need Super Responsive Networks Today?

Finding: even if we have only tested the impact of the access
latency on Facebook and Web browsing, we have seen that the
access RTT should be kept below 100 ms to achieve good user-
perceived quality and high acceptability.

Implications: this means that super low latency access
networks such as LTE are not needed today for the tested
mobile applications. Still, we expect that more interactive appli-
cations such as Gmaps would require lower access RTTs,
and thus believe that highly responsive networks would soon
become highly relevant in terms of QoE-provisioning for
mobile devices.

B. Fast and Responsive, or Stable?

Finding: we have shown that downlink bandwidth fluctua-
tions can have an important impact on the experience of the end
user, particularly when using mobile devices.

Implications: this finding has two major implications for
the cellular network operator: (i) firstly, it evidences that faster
and more responsive cellular networks should not be the only
guidelines to follow when designing and dimensioning their
networks, but that stability in terms of bandwidth, an even if we
did not evaluate it, also in terms of latency, should be a major
concern; (ii) secondly, when it comes to monitor and measure
throughput in todays’ cellular networks, operators should real-
ize that traditional KPIs (Key Performance Indicators) based on
average throughput are not as informative as have been assumed
so far, and should evolve their monitoring systems to capture
such fluctuations.

C. Keep Connected

Finding: we have found that even short-duration bandwidth
outages (i.e., drops to 0 Mbps for some milliseconds) have a
major negative impact on the experience of the end user.

Implications: these results suggest that besides targeting
more stable cellular networks, a major effort would have to be
carried in the near future in terms of multi network technol-
ogy convergence. Indeed, the usage of multiple types of access
technologies either in parallel or to perform fast handovers
would become an integral part of the future 5G network, and
our results suggest that such transitions should be done with-
out impacting the connectivity of the device, not even for a few
seconds.

D. Context Matters

Finding: last but not least, even if only preliminary, we have
found that mobility plays a key role in the quality experienced
by users, at least in the tested cellular networks, and for highly
interactive applications such as Gmaps.

Implications: it is generally agreed among the QoE research
community that context is critical when assessing the quality of
an applications from the eyes of the end user, and our prelimi-
nary findings suggest to cellular ISPs that they have to consider
means to catch as much contextual information as possible to
take better conclusions, and therefore more informed decisions,
about the QoE of their customers.
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VII. IMPLICATIONS AND PERSPECTIVES

The last part of the paper is devoted to present and discuss
different implications and topics related to the usage of pas-
sive monitoring and QoE-feedback tools at the end-device as
the ones we have used in this study. In particular, we address
four main topics: crowdsourcing for QoE analysis, incentives to
achieve large participation of end-users, privacy issues related
to measurements at end-devices, and additional perspectives
from end-device measurements.

A. QoE Crowdsourcing Approach

In the conducted field trial, participants rated the quality of
their sessions through our tools as part of their participation to
the study. However, a quite novel and interesting perspective
for QoE-based network performance analysis at the large scale
is to employ similar QoE-feedback tools to obtain the feedback
of those customers who are willing to do so. Services such as
Skype are already taking advantage of its large population of
users for doing such an outsourcing of its QoE-based perfor-
mance monitoring, resulting in a very rich and powerful input to
enhance its service and improve the engagement of the users. In
a nutshell, every time a user completes a Skype call, the appli-
cation automatically presents a short questionnaire asking for
the experienced quality. We envision a similar approach for the
benefit of cellular ISP, where its customers could potentially
receive an automatic pop-up like questionnaire after completion
of randomly selected sessions.

B. Incentives

Previous discussion brings to the light a highly relevant topic
linked to the large scale usage of end-device monitoring sys-
tem: the incentives a customer receives to install such tools
on his phone. End-device measurement tools only become rel-
evant to an operator when these are used at the large-scale,
so as to provide meaningful and representative information.
Free tools available at the Google Play store such as Onavo1

and RadioOpt2 are smartly designed such that the customer is
attracted to install and maintain the app running on its phone,
based on side applications provided by the tools, such as wid-
gets measuring the data consumption, or proxies offering data
compression to reduce the usage of the contracted data volume.
Google is for sure the leader in terms of incentives, as all of its
apps are highly valuable to the end user (gmail, gmaps, gdocs,
etc.), and as a side effect, the company has a full visibility of its
worldwide overlay.

C. Privacy Issues

Conducting measurements at end devices can have a detri-
mental and undesirable effect on the privacy of the monitored
customers, as metrics available through the Android API are
good enough to sniff on the customers habits. Unfortunately,
most of the apps we install today in our smartphones have

1http://www.onavo.com/
2https://www.radioopt.com/

Fig. 21. End-device location monitoring and privacy issues. End-user activity
and private location can be guessed by simply measuring the location of the cell
where smartphone are attached to. In this example scenario, participants’ home
is located at region A, working office is located at region B, and high activity
occurs at region C, linked to daily train traveling.

Fig. 22. Network neutrality and identification of traffic differentiation. End-
device throughput measurements can be used to identify potential traffic
differentiation policies done by an ISP, based on types of traffic.

access to lots of information related to our private life. As an
example, Fig. 21 shows a simple map in which all the session
QoE ratings provided by one of the participants of the field trial
are geo-located using metric ID 11 (cf. Table I). Three regions
concentrate the majority of the ratings of this participant, and
these correspond to (A) his home, (B) his working office and
(C) his daily train traveling activity. So even if the participant
does not provide for example his home address, this can be
easily retrieved from such simple measurements.

D. Network Neutrality

The last topic we address is the case of network neutrality and
the identification of traffic differentiation through end-device
measurements. End-device throughput measurements can be
used to identify potential traffic differentiation policies done by
an ISP, based on types of traffic. This is highly relevant, as many
cellular operators are today tempted to mistreat some classes
of traffic to discourage its usage or for other internal interests
such as traffic engineering. As an example of identification of
such a potential traffic differentiation, Fig. 22 depicts the distri-
bution of the downlink average flow throughput (metric ID 6,
cf. Table I) for two participants of the field trial having a con-
tract with two different ISPs. ISP 1 seems to treat differently the
traffic corresponding to YouTube videos, as the flow through-
put in the download is abruptly shaped down to 4 Mbps (see
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the slope in the CDF) whereas no shaping is observed for other
traffic apps such as Gmaps. While we are not sure about the
root causes of such a differentiation, a similar approach could
be applied to understand and to assess the application of such
policies by cellular operators.

VIII. CONCLUDING REMARKS

Smartphones are becoming the Internet-access devices by
default, and we claim that network operators must understand
how to manage and dimension their networks to correctly
provision popular services accessed in smartphones, avoiding
wasting additional unnecessary resources while keeping end
users happy, and most importantly, reducing the chances of
churning due to quality dissatisfaction. We believe that QoE
has the potential to become the next guiding paradigm for man-
aging quality provisioning and applications’ design in cellular
networks and mobile devices, and conducted an study shedding
light in this direction.

We have presented an overview on the QoE of different
services and applications with different network-level QoS
requirements for the specific case of smartphone devices,
including both lab study results as well as measurements in
the field. By considering both constant and dynamically chang-
ing network QoS conditions in our study, we have shown
that downlink bandwidth fluctuations play a key role in deter-
mining the QoE of the evaluated services, specially for those
highly interactive. We have also shown that dynamic appli-
cations such as YouTube DASH are much better suited to
smartphone scenarios, providing the same level of experience
to the non-adaptive version of the YouTube application, but
with much lower QoS-based requirements in terms of downlink
bandwidth. We additionally claim that the involvement of end
users in the assessment process of the QoE in mobile devices is
essential to obtain reliable QoE ground truths.

We have shown that the results obtained in the lab are highly
applicable in the live scenario, as mappings track the QoE pro-
vided by users in real networks. Our results are highly relevant
to future 5G design and LTE evolution in better understanding
the mapping between network performance and customer expe-
rience. In addition, they provide hints and many insights about
how and to which extent, end device measurements and QoE-
based monitoring at end devices can be applied in the practice,
complementing lab studies.

We are aware that our results only tackle one side of the
problem: the experience of the customers. We agree with other
researchers in that a more holistic perspective incorporating
QoE, energy-consumption, data (re)transmission, and radio
resource impact (among others) should be considered. This
paper provides some initial components of such a holistic anal-
ysis. Finally, we are currently working on a deeper analysis
regarding the impact of user location and mobility on field
results. We also plan to better study the correlation between lab
and field results.
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