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ABSTRACT Consistent segmentation of CT scans in COVID-19 patients across multiple time points is
important to accurately evaluate disease progression and therapeutic response. In medical domains, previous
interactive segmentation studies have been mainly conducted on data from a single time point. However,
the valuable segmentation information from previous time points is often underutilized in assisting the
segmentation of a patient’s follow-up scans. Moreover, fully automatic segmentation techniques frequently
produce results that would need further refinement for clinical applicability. In this study, we propose a novel
single-network model for interactive segmentation that fully leverages all available past information to refine
the segmentation of follow-up scans. In the first segmentation round, our model takes concatenated slices
of 3D volumes from two-time points (target and reference), employing the segmentation results from the
reference time point as a guide for segmenting the target scan. Subsequent refinement rounds incorporate
user feedback in the form of scribbles that rectify the segmentation, in addition to incorporating the previous
segmentation results of the target scan. This iterative process ensures the preservation of segmentation
information from prior refinement rounds. Experimental results obtained from our in-house multiclass
longitudinal COVID-19 dataset demonstrate the effectiveness of the proposed method compared to its static
counterpart, thus providing valuable assistance in localizing COVID-19 infections in patients’ follow-up
scans.

INDEX TERMS Interactive segmentation, longitudinal segmentation, COVID-19 quantification.

I. INTRODUCTION
In December 2019, the first cases of a new coronavirus dis-
ease, COVID-19, a severe acute respiratory illness, emerged
in Wuhan, China [1]. This highly infectious respiratory
virus rapidly spread worldwide and threw the world into a
global pandemic. As per the data provided by the COVID-19
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monitoring site at Johns Hopkins University,1 as of March
10th, 2023, the number of confirmed infections has exceeded
676 million, with a staggering 6.88 million fatalities resulting
from complications arising from the virus.

During the initial outbreak of COVID-19, there was an
urgent need for expeditious annotation of medical scans
to gain deeper insights into the disease. Many researchers

1https://coronavirus.jhu.edu/map.html
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addressed this demand by employing deep learning-based
methodologies [2], [3], [4]. Computed tomography (CT)
scans provide crucial diagnostic information in the assess-
ment and treatment of COVID-19 patients [5], [6]. However,
medical reports indicate that the imaging characteristics of
COVID-19 exhibit heterogeneity among patients, and the
evolution of radiological patterns throughout the disease
progression is inconsistent [1], [7], [8]. The subtle anatomical
boundaries, as well as the variations in imaging devices
and protocols, pose a challenge for automatic segmentation
techniques.

Human interactions coupled with deep learning models
can offer a way to overcome the challenges faced by
automatic segmentation models and improve segmentation
results as shown by [9], [10], and [11]. However, previous
studies on interactive segmentation have primarily focused
on utilizing single time point data for segmentation purpose.
The potential benefit of incorporating readily available
segmentation information from previous time points to
facilitate the segmentation of follow-up scans for individual
patients remains unexplored.

To address the limitations of static automatic segmentation
models, we propose an interactive segmentation method
that segments COVID-19 infection on longitudinal CT
scans. The proposed method aims to harness longitudinal
information and user feedback to improve the quality of
segmentation results. The main contributions of this paper
can be summarized as follows:

• We propose a new segmentation approach that utilizes
information from previous time point, past segmentation
refinement rounds, and user feedback to improve the
quality of segmentation, which can be used for infection
quantification. To the best of our knowledge, this
work represents the pioneering effort in developing an
interactive segmentation technique specifically tailored
for longitudinal CT scans. Our method is also the first
interactive segmentation of COVID-19 infection using
longitudinal CT scans.

• Our method offers a way to extend existing static models
for longitudinal interactive segmentation, requiring min-
imal additional effort. By incorporating our approach
into the existing framework, the capabilities of static
models can be enhanced, which effectively adapts them
for longitudinal interactive segmentation tasks.

• To demonstrate the enhanced performance of our lon-
gitudinal interactive segmentation model in comparison
to a static interactive segmentation model, we conducted
a comprehensive study on our in-house longitudinal
COVID-19 dataset. Experimental results show the
effectiveness of the proposed method.

II. RELATED WORKS
A. COVID-19 INFECTION CT SEGMENTATION
After the outbreak of COVID-19, several studies have been
conducted to comprehend the disease and provide support
to radiologists. Wang et al. [2] introduced a noise-robust

training method for the task of learning from noisy labels
to segment COVID-19 pneumonia lesions from lung CT
scans. Shan et al. [3] proposed VB-Net, a modified 3D
convolutional neural network that combines V-Net [12],
a fully convolutional neural network for volumetric medical
image segmentation with a bottleneck deep residual learn-
ing framework for quantitative assessment of COVID-19
infection. Fan et al. [4] presented a semi-supervised learn-
ing approach for segmenting diverse radiological patterns,
including ground-glass opacity and consolidation, from lung
CT scans. However, due to factors such as subtle anatomical
boundaries, pleural-based location, and high variations in
infection characteristics and imaging methods, the automated
identification and quantification of CT image findings related
to COVID-19 remain challenging [1], [7].

B. INTERACTIVE SEGMENTATION
In interactive segmentation, user feedback plays a crucial
role in enhancing the predictions of machine learning
models. This human-in-the-loop method shows potential
for improving segmentation results [9]. However, for inter-
active segmentation to be valuable in a clinical setting,
it must exhibit both accuracy and efficiency. Xu et al. [13]
introduced a deep interactive object selection method that
transforms user-provided clicks into Euclidean distance
maps. While this approach lacks the exploitation of image
context information, it serves as a foundation for further
advancements. Criminisi et al. [14] introduced the geodesic
distance transform, which encodes spatial regularization
and contrast-sensitivity information, but its sensitivity to
noise poses a challenge. Wang et al. [10] presented a
deep learning-based interactive segmentation framework that
incorporates user-provided bounding boxes and scribbles.
By integrating this user feedback, they demonstrated an
improvement in segmentation performance. Zhou al. [11]
showed that with a small number of user interactions,
segmentation accuracy can be substantially improved.
Kitrungrotsakul et al. [15] proposed a segmentation refine-
ment module that can be appended to automatic segmentation
networks and utilized a skip connection attention module
to improve important features for both segmentation and
refinement tasks. However, it should be noted that the afore-
mentioned methods are primarily designed for single-time
point data and may not address the specific challenges of lon-
gitudinal interactive segmentation nor exploit its advantages.

C. LONGITUDINAL IMAGE SEGMENTATION
To comprehensively study the progression of a disease,
consistent segmentation of affected regions using scans
from multiple time points can provide valuable insights.
Birenbaum and Greenspan [16] propose the use of multiple
longitudinal networks to process longitudinal patches from
different views, where the model concatenates the encoder
outputs to perform Multiple Sclerosis (MS) lesion segmenta-
tion. Their method demonstrates the benefits of incorporating
information from multiple time points into the segmentation
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process. To address the segmentation challenges posed by
minute structural differences in MS lesions across different
time points, [17] proposes a longitudinal network with an
early fusion of two-time points scans to implicitly encode
the structural differences. However, achieving high accuracy
remains a challenge for the network due to the subtle
variations. Kim et al. [18] present a framework that leverages
spatio-temporal cues between longitudinal scans to improve
quantitative assessment of the progression of COVID-19
infection in chest CT scans. Despite these advancements,
the mentioned implementations do not utilize the available
segmentation mask from previous time point scans to
segment a patient’s follow-up scans.

III. PROPOSED METHOD
A. INTERACTIVE SEGMENTATION NETWORK
The proposed method builds upon the baseline longitudinal
network initially introduced by Denner et al. [17] to effec-
tively leverage longitudinal information and user feedback for
interactive segmentation. The baseline longitudinal model,
also referred to as a 2.5D model, incorporates the global
context of the CT volume by combining per-slice predictions
(2D) from three anatomical planes (coronal, sagittal, and
axial views) to generate segmentations for individual voxels.
Each slice is processed using FC-DenseNet56 [19], a fully
convolutional dense network for 2D segmentation. Previous
studies [20], [21], [22], [23] have demonstrated that 2.5D
approaches can achieve state-of-the-art results in various
medical image segmentation tasks. This is mainly because
fully 3D approaches tend to entail high computational costs
and are data greedy, while patch-based 3D approaches
sacrifice global structural information within the individual
slices. Thus, our baseline model adopts the 2.5D framework,
utilizing two-time points that consist of stacked 2D slices
from three anatomical views. This approach effectively pre-
serves global information along two axes while incorporating
local information from the third axis [18], [21].
Let Vt+1 ∈ Rh×w×s and Vt ∈ Rh×w×s denote the

follow-up target CT volume and the reference previous
volume, respectively. h and w are the height and width of
the input, and s is the number of slices in the volume.
Xt+1 and Xt indicate the individual slices of the volumes.
In this study, we assume that the segmentation masks for
the reference previous slice St ∈ {0, 1}C×h×w is available.
C represents the number of foreground classes, and it is set
to 2 in this study since we are targeting the segmentation
of two foreground classes (i.e., ground-glass opacity and
consolidation). In addition, let Et+1 ∈ {−1, 1}C×h×w denote
the editing masks on the target segmentation during the user
feedback. Note that the segmentation masks for the reference
previous volume and the editing masks are concatenated to
the input.

1) TRAINING
To facilitate the adaptation of the model to various combi-
nations of input information during inference, we employ a

FIGURE 1. Training flow of the proposed interactive longitudinal
segmentation model. Training alternates between two training inputs that
represent different scenarios: Input 1 for initial segmentation round.
Input 2 for interactive segmentation rounds. Note that St and Et+1 two
channels in our case as C = 2. Accordingly if Et+1 is not available as it in
the scenario of Input 1, Et+1 is a pair of empty masks.

training strategy that involves randomly training the model
with two different inputs. This approach allows the model
to learn and adjust its parameters to handle different input
configurations effectively. The process is visually illustrated
in Figure 1.
In our framework, input 1 corresponds to the initial stage

of interactive segmentation, where the user provides the
data to the model to generate the first segmentation for
the target slice whereas input 2 represents the input data
in the subsequent editing rounds. In both cases, the scans
from the two-time points are concatenated along the channel
dimension so that structural changes that are evident between
them are utilized by the model to improve its segmentation
performance. Empty masks are used in place of information
that is not available in the first segmentation round, such as
user feedback and target prediction.

Let I[T ]t+1 ∈ {0, 1}h×w×8 denote the input tensor for
the segmentation round T . The input I[T ]t+1 consists of the
reference previous CT slice Xt , the segmentation masks on
the reference previous CT slice St , the target CT slice Xt+1,
the highest class probability per pixel on the target slice
from the previous segmentation round Y[T−1]

t+1 ∈ {0, 1}h×w,
the predicted class on the target slice from the previous
segmentation round Ŷ[T−1]

t+1 ∈ {0, 1, 2}h×w (0 for background,
1 for ground-glass opacity, and 2 for consolidation), the
editing masks Et+1 as shown in Figure 1. For Input 2, the
empty mask is used forY[T−1]

t+1 , Ŷ[T−1]
t+1 ,Et+1. The interactive

segmentation refinement network (ISR), fISR outputs the
per-slice segmentation of the target image as follows:

Y[T ]
t+1 = fISR(I

[T ]
t+1) ∈ {0, 1}h×w (1)

To produce the simulated edits for training using input 2,
the model is first set to evaluation mode, preventing any
updates to its weights. An initial segmentation of the target
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Algorithm 1 Training of Proposed Interactive Longitudinal
Segmentation Model, fISR
1: for 1 ≤ e ≤ epochs do
2: for i = 1 to N do
3: Get 1st predictions for input batch i
4: Generate random number, Z ∈ [0, 1]
5: if Z > 0.5 then
6: Generate simulated edits for the predictions
7: Append simulated edits & outputs from
8: 1st prediction round to inputs
9: Get 2nd predictions

10: Calculate loss using 2nd predictions
11: else
12: Calculate loss using 1st predictions
13: end if
14: Backpropagate & update model weights
15: end for
16: end for

slice is generated. This is then used to produce the simulated
edits. The edit simulation process will be further introduced
in Section III-B.

During the training phase, the segmentation of individual
slices is treated as a 2D segmentation problem. During the
inference phase with user feedback, the predictions obtained
from slices in the three anatomical orientations are combined
to generate the final segmentation output for each voxel. The
pseudocode outlining the training process of the proposed
longitudinal interactive segmentation model is presented in
Algorithm 1. Algorithm 1 provides a step-by-step description
of the procedures and operations involved in training the
model.

B. EDIT SIMULATION DURING TRAINING
During the training process, simulated user edits are automat-
ically generated for regions that are incorrectly segmented,
which can include areas that are under-segmented or over-
segmented. Incorrectly segmented regions are areas that are
under- or over-segmented. The segmentation output from
the model is compared with the ground truth to choose
the slice region for simulating the user edits. Lines are
automatically drawn on the selected regions as simulated
feedback. As mentioned before, the edit information is
concatenated to the CT scans as additional channels, one
for each class, with foreground interaction having a value
of 1 and background interaction−1. Because the model input
is 2.5D instead of 3D, edits are simulated in the axial, coronal,
and sagittal slices as opposed to only the axial slices as in [11].
Zhou et al. [11] simulate edits only for the most extensive
2D incorrectly segmented slice region. However, due to the
scattered nature of the COVID-19 infections in our case,
the top-5 largest wrongly segmented regions in each slice is
used for edit simulation. The total number of generated edits,
independent of the different classes are limited to prevent

FIGURE 2. Overview of the interactive segmentation flow with the GUI.
Input to the segmentation model prior to the first user interaction
resembles Input 1 that is used during training. Accordingly, the input of
subsequent editing rounds resembles Input 2 as in Figure 1 which
improves segmentation accuracy by incorporating user feedback via the
GUI.

the model from overfitting and also to avoid considerable
slow-down in the training process caused by the long edit
simulation time needed when large numbers of incorrectly
segmented regions are detected.

C. INFERENCE WITH GUI FOR USER FEEDBACK
Figure 2 illustrates the interactive segmentation refinement
stage, where an editing graphical user interface (GUI) is
employed. The GUI is implemented using Qt Designer2 as
shown in Figure 3. During start-up, the GUI automatically
loads the trained segmentation refinement model, which has
been trained to improve segmentation results. The user can
then load the CT volume that requires segmentation. After
the initial segmentation round, the predicted segmentation is
overlaid on the CT scans for visual inspection. This allows the
user to assess the accuracy and quality of the segmentation.
The user can utilize the brush tool provided in the GUI to edit
incorrectly segmented areas, making necessary adjustments
and refinements. The data can then be processed through
the model again to generate an updated segmentation.
This iterative process of editing and re-segmenting can be
repeated as many times as necessary to achieve the desired
segmentation outcome.

During each segmentation refinement round, the user
feedback pertaining to incorrectly segmented regions from
both the current round and previous rounds is aggregated
into an edit mask for each slice. This edit mask captures
the cumulative feedback from multiple editing iterations.
To prioritize the current round’s user feedback, it is multiplied
by two before being added to the previous user edits. This
amplification ensures that the most recent feedback has a
greater impact on the refinement process.

2https://doc.qt.io/qt-5/qtdesigner-manual.html
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FIGURE 3. Our GUI for COVID-19 lung infection interactive segmentation.
The spin box in the sidebar shows the class for the current brush input,
here 1, i.e., the brush for ground-glass opacity (GGO).

To preserve the previous edit information and avoid its loss,
the values in the edit mask are clipped to the range of [−1, 1].
This clipping operation ensures that the edit mask retains both
positive and negative feedback signals. Subsequently, the edit
mask is concatenated with its corresponding slice image,
creating an augmented input that includes both the image
data and the edit mask. This augmented input is then fed
into the segmentation refinement model, which leverages this
combined information to improve the segmentation results
during each refinement round.

IV. EXPERIMENTS
A. IMPLEMENTATION
In this study, we utilized a modified version of the baseline
longitudinal segmentation model proposed by [17]. The
model is implemented as an end-to-end 2.5D segmentation
network based on FC-DenseNet56 [19] and implemented
using PyTorch 1.4 [24]. For training, we employed the
mean squared error (MSE) loss function and utilized the
Adam optimizer with AMSGrad [25]. The learning rate used
during training was set to 0.0001. The inference time for
processing a COVID-19 patient’s 2.5D data with a size
of 3×(150 × 150×150) takes 15 seconds on an NVIDIA
GeForce RTX 2080 Ti with 11GB GPU.

B. COVID-19 SEGMENTATION DATASET AND
PREPROCESSING
For this study, we utilized an in-house clinical dataset
collected from the Radiology Department of the Technical
University of Munich during the first wave of the COVID-19
pandemic (March-June 2020). The dataset consists of
30 longitudinal low-dose native CT scans obtained from
patients aged between 46 and 82 years old. All patients had

FIGURE 4. Deformable registration example of reference scan to target
scan. (a) Reference scan, (b) target scan.

a confirmed positive polymerase chain reaction (PCR) test
for COVID-19. The time gap between the follow-up scans
and the previous scans is 17±10 days. These scans were
performed during the patients’ admission and hospitalization,
with an average duration of 33±21 days (ranging from 0 to
71 days).

Two different CT imaging devices were used for data
acquisition: the IQon Spectral CT and iCT 256, both from
Philips Healthcare, located in Best, the Netherlands. The
imaging parameters were consistent across both devices,
including an X-ray current of 140-210 mA, voltage of 120 kV
peak, and slice thickness of 0.9 mm. The scans covered the
entire lung region. The collection and usage of this dataset
were carried out in compliance with ethical considerations
and guidelines. The study received approval from the
institutional review board of the Technical University of
Munich (ethics approval 111/20 S-KH).

The annotation process for the dataset involved an
expert rater, a radiologist with four years of experience.
The annotations were performed at the voxel level using
ImFusion Labels software, developed by ImFusion GmbH in
Munich, Germany.(3) The dataset includes lungmasks, which
distinguish lung parenchyma from other tissues, as well as
pathology masks for four classes: healthy lung (HL), ground-
glass opacity (GGO), consolidation (CONS), and pleural
effusion (PLEFF). These masks were generated by the expert
rater.

To ensure optimal training and evaluation, preprocessing
steps were applied to the raw CT volumes due to variations
in intensity range, size, and alignment. The volumeswere first
cropped to focus on the lung regions based on the manually
annotated lung masks. Next, intensity values outside the
range of (-1024, 600) were clipped. Amin-max normalization
technique was then applied to the volumes. To achieve
a consistent input size for the segmentation model, the
volumes were resized to dimensions of 150 × 150×150
pixels. Additionally, slices that exhibited a voxel-value
variation smaller than 0.001% between their minimum and
maximum values were considered almost empty slices and
subsequently removed from the dataset to ensure data
integrity and avoid introducing noise into the training
process.

3https://www.imfusion.com/
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FIGURE 5. Examples of GGO and CONS on axial slices of lung CT scans
from COVID-19 patients. Arrows point to the areas affected by the
infection. (a) GGO, (b) CONS.

In line with the approach taken by [18], we utilized the
deformable registration algorithm introduced by [26]. This
algorithm employs a B-Spline Transform with a sparse set
of grid points that overlay the fixed domain of the image.
By deforming the image through this transformation, the
algorithm achieves registration of the reference scan to the
follow-up scan. This process helps to resolve misalignment
errors between scans. To ensure accurate registration, we per-
formed the registration process specifically on the lungmasks
rather than the entire image. This approach minimizes the
risk of registration errors arising from pathological changes
in the lung parenchyma. An example of the aligned CT
scans from different time points is presented in Figure 4,
showing the effectiveness of the registration process in
aligning the images and compensating for any misalignments
that may have occurred during acquisition or due to patient
motion.

According to [27], GGO is the most common finding in CT
scans of COVID-19 patients, followed by CONS. Figure 5
shows examples of GGO and CONS from our dataset,
illustrating the visual characteristics of these findings. For our
experiments, we only segment GGO and CONS, due to the
low occurrences of PLEFF in the patient cohort of the dataset.
After the registration, the average structural similarity index
(SSIM) [28] between the scans from different time points was
calculated to be 29.71%. This indicates that the CT scans
taken at different time points exhibit significant perceptual
differences, suggesting variations in disease progression and
lung conditions over time. Besides that, the average change
in the percentage of GGO and CONS in the patients’
lung CTs from different time points is 13.68% and 6.59%,
respectively. This indicates the noticeable difference in the
disease progression over time in the dataset. Table 1 shows
the percentage of GGO and CONS in the lungs of the patients
at each timestep.

The training set consists of data from 16 patients, which
corresponds to a total of 37 volumes of CT scans, with
12 patients (28 volumes) used for training and the remaining
4 patients (9 volumes) allocated for validation purposes.
To assess the performance of our model, we conducted testing
on an independent test set comprising data from 14 patients,
resulting in a total of 28 volumes of CT scans. This test set
was separate from the training and validation sets, ensuring

TABLE 1. Percentage of GGO and CONS in the lungs of patients. T refers
to the timestep of the scans. n is the number of patient volumes at each
timestep.

TABLE 2. Input for different models tested in ablation study.

the evaluation of the model’s generalization ability and its
performance on unseen data.

C. EXPERIMENTAL SETTINGS
1) EVALUATION METRICS
The segmentation performance of the models is evaluated
using the following metrics. Dice Similarity Coefficient
(DSC) is a statistical measure of the similarity between two
segmentations.

DSC =
2TP

2TP + FP + FN
(2)

Positive Predictive Value (PPV) shows the fraction of
correctly segmented regions over predicted segmentations.

PPV =
TP

TP + FP
(3)

True Positive Rate (TPR) shows the proportion of correct
segmentation outputs with respect to the ground truth.

TPR =
TP

TP + FN
(4)

Volume Difference (VD) is calculated as the absolute
difference in the predicted lesion segmentation volume and
ground truth lesion segmentation volume over the ground
truth lesion segmentation volume.

VD = 100 ×

∣∣Lesion_volumepred - Lesion_volumegt
∣∣

Lesion_volumegt
(5)

D. EXPERIMENTAL RESULTS
1) ABLATION STUDY
In our ablation study, we aimed to investigate the impact
of incorporating additional information into the segmenta-
tion model’s inputs on its performance. For this purpose,
we utilized our longitudinal COVID-19 dataset and compared
different model configurations. The baseline model referred
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TABLE 3. Evaluation results on the test set before user interactions. Values displayed are the mean and standard errors. Bold values represent the best
results for each metric. Empty masks are used in place of the edit mask and target image previous segmentation mask for static_edit, long_edit+ref_seg
and the proposed model.

TABLE 4. Evaluation results of the interactive methods on the test set with one round user interaction. Values displayed are the mean and standard
errors. Bold values represent the best results for each metric.

to as ‘‘Baseline longitudinal network’’ [17], served as the
starting point for our study. This model was designed to
handle longitudinal data and produce initial segmentations.
We also implemented a static version of the model as a base-
line for comparison. To evaluate the effect of incorporating
additional information, we extended the baseline longitudinal
model with an interactive segmentation approach. This
extended model, denoted as ‘‘long_edit+ref_seg,’’ included
past prediction outputs of the target as supplementary
information to guide subsequent segmentations. Additionally,
we implemented a static version of the proposed model
without reference information, labeled as ‘‘static_edit’’.
Table 2 provides an overview of the tested models and their
corresponding inputs. The reference manual segmentation
refers to the ground truth masks of the reference images,
while the edit masks contain user feedback on the target
segmentation.

As shown in Table 3, the baseline models performed better
than the interactive segmentation models in the first segmen-
tation round where there is no edit. The baseline longitudinal
model achieves higher Dice scores compared to the baseline
static model. Among the longitudinal baseline models,
concatenating reference segmentation to the input CT scans
can improve its GGO Dice by 1.44% and CONS Dice
by 0.76%. Comparing the interactive segmentation models,
we found that the longitudinal interactive segmentation
models achieved better initial segmentations compared to the
static model. Specifically, the proposed model demonstrated

an 8.45% increase in GGO Dice compared to the static
model, while the long_edit+ref_seg model exhibited a 15.7%
improvement in CONS Dice over the static model.

The evaluation results in Table 3 further revealed that
the CONS true positive rate (TPR) for the static models is
considerably lower than the longitudinal models, with the
noninteractivemethods having a difference of 8.58%between
the baseline static network and baseline longitudinal network.
This suggests that the longitudinal models are better suited for
segmenting the more complex CONS. In the case of inter-
active segmentation models, the static_edit model exhibits
a CONS TPR that is 10.34% lower than the longitudinal
interactive model with a lower TPR. These results further
emphasize the advantage of longitudinal models in improving
the segmentation performance, particularly for challenging
classes such as CONS.

2) QUANTITATIVE RESULTS
The evaluations are conducted using the GUI to simulate
user feedback on the segmentation output. The interactive
segmentation model aims to assist and reduce the user’s
workload during the segmentation process by refining the
initial segmentation based on user interactions. Therefore,
its desired function is to take in rough user interactions
and improve the segmentation output. In order to evaluate
the effectiveness of the segmentation refinement model,
a comparison is made between the manually corrected initial
segmentation and the segmentation output refined by the
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FIGURE 6. Average change in Dice vs Number of Refinement Rounds for
14 test patients. (a) Results on GGO, (b) results on CONS.

FIGURE 7. Example of how the refined segmentation differs when
different types of user edits (top and lower rows) are drawn to refine the
segmentation. (Red: GGO ground truth, Green: CONS ground truth, Pink:
predicted GGO, Dark green: predicted CONS, Magneta: foreground edit
for GGO, Neon green: foreground edit for CONS).

model. The results are shown in Table 4. As shown in
the table, the interactive segmentation refinement model
effectively utilizes both the previous segmentation results
and user feedback to improve the segmentation of the target
scans. Among the three models compared, the proposed
model achieves the highest Dice scores for GGO and CONS
after one round of segmentation refinement. However, when
considering the change in Dice between the edited initial
segmentation by the user and the refined segmentation by
the model, it is found that the static interactive segmentation
model shows the most substantial improvement in segmenta-
tion output. It demonstrates a 12.73% increase in GGO Dice
and a 31.15% increase in CONS Dice, while the proposed
model shows a 10.64% increase in GGO Dice and a 22.48%
increase in CONS Dice.

The proposed model and static_edit model are further
evaluated by conducting an additional round of segmentation
refinement. Figure 6 shows the changes in DICE score for
14 patients after each round of segmentation refinement,
incorporating user edits. The baseline model, baseline
long.+ref_seg, is included for comparison. Experimental
results show that the proposed model achieves a significant
improvement in Dice scores after just two rounds of
segmentation refinement with user feedback. The average
increase in Dice scores for GGO and CONS after two rounds
of refinement is 20.44% and 40.33%, respectively. There

is an average increase of 4.99% for GGO and 5.46% for
CONS between the first and second rounds of segmentation
refinement. In comparison, the static_edit model shows
lower Dice scores for GGO and CONS after two rounds of
segmentation refinement. Specifically, the GGO and CONS
Dice scores are 9.03% and 12.98% lower, respectively,
compared to the proposed model. These results demonstrate
the effectiveness of the proposed model in improving
segmentation accuracy through iterative refinement based on
user edits. The model’s ability to adapt to user feedback
and incorporate it into the segmentation process leads to
significant improvements in the segmentation performance.
From the plots in Figure 6, it is shown that the proposed
model outperforms the static interactive segmentation model
in terms of segmentation refinement performance. The
static_edit model fails to correctly refine the segmentation at
the second refinement step, as observed by the decrease in
CONS segmentation Dice. Upon closer examination of the
segmentation output, it is observed that the static_edit model
is more prone to misclassifying regions, leading to a decrease
in Dice. On the other hand, the proposed model benefits
from the inclusion of reference scan information, resulting
in improved segmentation.

The number of rough user edit strokes required to modify
the initial segmentation varies from 1 to 10 per edited
slice for the proposed model, depending on the severity of
infection in the test patients. In most cases, the increase in
Dice is larger for CONS after refinement. Qualitative results
of the initial segmentation reveal that CONS is frequently
under-segmented due to its high similarity to the background
class. The presence of similar Hounsfield unit histograms in
blood vessels and airway walls makes it challenging for the
model to accurately segment the CONS region without user
guidance.

3) QUALITATIVE RESULTS
In this section, we present qualitative results obtained from
the proposed model. Figure 7 shows the segmentation
refinement output for various types of user edits. In the lower
segmentation output, it is observed that simply drawing the
outer outline of the infected regions is sufficient to separate
them from the background. The model is able to further
segment the unedited areas, although it may make some
incorrect classifications. As shown in Figure 8, this incorrect
segmentation can be corrected in subsequent refinement
rounds.

The feature similarity between GGO and CONS in CT
scans can indeed pose a challenge for accurate segmentation.
One of the key distinguishing factors between GGO and
CONS is their location within the lung CT. CONS is typically
found at the bottom of the axial lung CT, but in severe
cases, it can extend to higher regions, where its borders
may overlap with GGO regions. This overlapping region can
make it difficult for the model to accurately differentiate
between the two classes. As shown in the second row of
Figure 8, the CONS region sometimes extends higher up in
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FIGURE 8. Examples of two rounds of segmentation refinement, resulting in increasingly better results. (a) Target images, (b) ground truth masks,
(c) predicted masks, (d) user edits in the first round, (e) refined results from first round interaction, (f) user edits in the second round, (g) refined results
from first round interaction.

FIGURE 9. Example of how edits on one slice are automatically propagated to other slices. (a) Image before the target image (slice index i-2),
(b) image before the target image (slice index i-1), (c) target image (slice index i), (d) image after the target image (slice index i+1), (e) image after
the target image (slice index i+2). The first row represents the images before refinement (initial prediction) and the second row represents the
images after the refinement. After the initial prediction, edits are drawn on one slice. Red arrows point to false edit locations. Interestingly, the
model learns that false edits should not be propagated further than one slice by the model.

the lung and its borders coincide with GGO regions. In such
cases, the model may initially misclassify these regions, but
with the iterative refinement process, it can learn from user
edits and correct the segmentation to accurately differentiate
between GGO and CONS. This highlights the importance of
user guidance and refinement iterations in cases where there
is feature similarity or ambiguity between different classes.
By incorporating user feedback and iterative refinement, the
proposed model can adapt and improve its segmentation
output, leading to more accurate and precise results, even in
challenging scenarios like the overlapping GGO and CONS
regions.

4) ROBUSTNESS TESTING
A robustness test is carried out to assess the ability of
the 2.5D model, which utilizes stacked slices from three
anatomical views as input, to propagate edits made on
one slice to other slices. In Figure 9, it can be observed
that the automatic propagation of edits from one slice to
adjacent slices is limited but still present. The model is able
to correctly segment the regions that were edited in the
initial slice, but as the slices move further away from the
edited slice, there is a gradual increase in misclassifications
and under-segmentation of certain regions. However, it is
noteworthy that the model does not propagate false edits
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FIGURE 10. Example of how the target’s initial prediction is influenced by
the reference image in a case where there is a misalignment between the
reference and target image. The red arrows point to regions where the CT
scans differ the most. The white arrows point to the interested regions.

further than one slice away. This indicates that the model has
learned to distinguish between correct edits and erroneous
edits based on the features present in the CT scans.
It demonstrates the model’s ability to detect and limit
the propagation of incorrect edits, preventing them from
influencing the segmentation results of neighboring slices.

5) INFLUENCE OF REFERENCE DATA ON TARGET
SEGMENTATION
In some cases, where the alignment of the patient’s reference
scan with the follow-up scan is not accurate, the initial
segmentation of the follow-up scan for challenging regions
can be negatively affected by the reference CT. This issue
is illustrated in Figure 10, where abnormalities are observed
in the initial predicted segmentation of the target image.
The infected lower part of the target CT, which is harder to
distinguish from the background class, is segmented based
on the reference image. As observed in the initial predicted
segmentation of the target, the left outline closely resembles
that of the reference image. On the other hand, when the
reference image is correctly aligned with the target image,
as in Figure 11, the reference image can serve as a guide
for the model to segment regions that are challenging for
the model, such as areas that resemble the background class.
In this example, the model produces a more accurate initial
segmentation of the target scan.

E. LIMITATIONS AND FUTURE WORK
There are several limitations that could be addressed in
future work. Firstly, the availability of a larger longitudinal
COVID-19 dataset would be beneficial to further evaluate
and generalize the proposed method. With a larger dataset,
the model’s performance and generalizability can be better
assessed. Secondly, label noise is a potential issue in the
dataset, particularly in severe cases where even expert

FIGURE 11. Example of a case where the reference image and target
image are correctly aligned. The model segmented the difficult areas
better compared to Figure 10. The red arrows point to regions where the
CT scans differ the most. The white arrows point to the interested regions.

radiologists may struggle to accurately separate CONS from
the background class and PLEFF. Addressing the presence
of label noise and exploring strategies to mitigate its impact
could lead to improved segmentation results.

In future research, the proposed method can be extended
to other longitudinal medical image datasets and applied
in different clinical contexts. Investigating the effectiveness
of the method in improving segmentation results in various
medical imaging scenarios would provide valuable insights
and potential applications. The issue of wrongly classified
segmentations in multiclass segmentation can be further
explored by utilizing an ensemble of binary interactive seg-
mentation models for each foreground class. This approach
could potentially improve the accuracy and reliability of
segmentations, especially for challenging classes.

Additionally, testing the proposed method with other
state-of-the-art model architectures would be worthwhile.
Comparing the performance of the proposed method with
different model architectures could provide insights into its
effectiveness and applicability across different models. The
study also highlights a limitation of the 2.5D model in
propagating edits from one slice to other slices that are further
away. Future work could explore the implementation of a 3D
interactive segmentation method, which may overcome this
limitation at the cost of requiring larger training datasets and
increased computational resources.

V. CONCLUSION
In this paper, we proposed an interactive segmentation
method using a 2.5D longitudinal network. The method
leveraged the information from previous time points, includ-
ing the reference segmentation mask, segmentation outputs
from past rounds, and user interactions, to enhance the
segmentation results. The proposed method was evaluated
on a longitudinal COVID-19 dataset, and the experimental
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results demonstrate a significant improvement in the Dice
scores for both classes after one round of interactive segmen-
tation refinement. The study highlights the advantages of the
proposed longitudinal interactive segmentation refinement
model compared to a static version of the interactive model.
The longitudinal model achieves superior segmentation
performance, indicating the effectiveness of utilizing longitu-
dinal information for segmentation refinement. The findings
of this study suggest that existing segmentationmodels can be
easily adapted and trained end-to-end for interactive segmen-
tation refinement using longitudinal data. By incorporating
past information and user interactions, the proposed method
improves the segmentation results, making it a valuable tool
for interactive medical image segmentation tasks.
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