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1. Introduction

With steadily increasing size and popularity, online social net-
works (OSNs) such as Facebook, Twitter, and Google+ have drawn
the interest of the scientific community. Analyzing the structure
and properties of these networks allows research in various fields.
By studying social behavior and finding patterns in the networks’
structure, it is possible to acquire knowledge about requirements and
parameters for future networks and applications. Additionally, OSNs
have a high impact on today’s users’ choice and consumption of on-
line media. Coupled with widespread availability of mobile Internet,
these phenomena give rise to the scientific field of socially aware
traffic management [29]. The main idea in this discipline is to utilize
social information about Internet users in order to enhance existing
traffic management strategies. For example, information from OSNs
about users’ interests allows for improved caching solutions. How-
ever, complete social networks are seldom available due to privacy
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restrictions and the OSN providers’ reluctance to publish the core
of their business data. Furthermore, running complex algorithms on
social network graphs in the order of magnitude of hundreds of
millions of nodes is usually infeasible due to time and resource
constraints.

Graph sampling techniques address the latter issue by examining
only a representative subset of a given graph. Formally, the task of
deriving a node sample from a given graph G = (V, E) with node set
V of size n and edge set E can be defined as finding a subset of nodes
VsV whose topological information can be used in order to reliably
estimate various properties of G. There are two main quality require-
ments for sampling strategies. First, the generated sample has to be
unbiased. That is, the expected value of the sampled data and the
actual value of the estimated parameter are equal. Second, the mini-
mum amount of samples required for reliable results should be low.

Unfortunately, state-of-the-art graph sampling techniques are
limited to the topological analysis of huge graphs whereas socially
aware traffic management requires additional information on user
attributes like interests, geographic location, and age. Retrofitting
these algorithms with attribute sampling capabilities implicitly as-
sumes the independence of attributes and topology and can provide
inferior results. Therefore, this work transfers ideas from graph sam-
pling to graphs with node attributes by proposing a joint sampling of
structure and attributes, which takes possible dependencies between
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topology and attributes into account. The resulting sampling mech-
anism provides unbiased and reliable estimates of joint topological
and attribute based properties of social network graphs in a resource
efficient fashion. As an application of this sampling approach, a graph
generation method [8] is augmented to use a collected sample for
generating synthetic social network graphs, which show joint struc-
ture and attribute properties similar to the original graph. In order to
quantify this similarity, measures were developed, which assess sim-
ilarity not only with respect to topology, but also take attributes into
account.
Thus, the contribution of this work is threefold:

o Existing sampling algorithms are extended to node attributes

o A novel sampling algorithm is proposed which allows for joint
capturing of structure and attribute characteristics

o A graph generation method is presented that reproduces topol-
ogy and attribute related properties of the original graph based
on sampling

Therefore, this work is structured as follows. Section 2 covers rel-
evant related work on attribute sampling and graph generation, and
describes the used social network data sets. Section 3 introduces the
sampling mechanism and presents results. Topological graph simi-
larity measures are extended to additionally assess attribute related
similarity in Section 4. A method to generate synthetic social network
graphs from a node sample with attributes is proposed in Section 5.
The performance of the algorithm is evaluated for different social net-
work graphs and attributes. The results are discussed and an outlook
on future work is given in Section 6.

2. Related work
2.1. Graph sampling

Numerous approaches have emerged since graph sampling be-
came a relevant scientific topic. We revisit state-of-the-art graph
sampling algorithms that are classified into three categories, namely,
Uniform Node Sampling (UNI), Breadth First Search (BFS), and ran-
dom walks (RW). Though primarily focused on sampling topological
graph properties, these algorithms provide a solid foundation for the
design of novel sampling algorithms. Due to extensive research and
several performance benchmarks [17-19], they have proven proper-
ties and behavior and are also well-established in practice.

In the context of UNI, a given amount of ng nodes is drawn at ran-
dom from the original graph’s set of nodes V. While this procedure
guarantees an unbiased sample, it is not practical in most situations
due to several possible restrictions. These include sparse ID spaces
where multiple queries may be required in order to obtain a single
sample, or even completely unknown ID spaces where no informa-
tion about the domain of user IDs is available. Thus, UNI is consid-
ered as reference for the theoretical best case. Although BFS and re-
lated methods like depth first search [17] and snowball sampling [12]
were used for various sampling tasks in the past [24,25], current re-
search suggests avoiding these methods due to a bias towards nodes
with high degree [17,18]. Additionally, this bias is graph specific and
no mechanism for correcting this bias has been developed yet. Re-
cent graph sampling mechanisms rely on random walks [11,20,27], a
family of algorithms that require only the basic operation of query-
ing a node for its set of neighbors. With the possibility to exactly
quantify the node degree bias encountered in random walks, tech-
niques for correcting this bias have been developed and allow collect-
ing samples that are unbiased with respect to topology. Most com-
monly used representatives include the Metropolis Hastings Random
Walk (MHRW) and the Re-Weighted Random Walk (RWRW). Based
on the Metropolis Hastings algorithm [23], MHRW is a rejection sam-
pling technique that corrects the bias on the fly. Its applications range
from the analysis of P2P networks [26,31] to that of directed [34] and
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undirected [7] OSNs. In contrast, RWRW first performs a biased RW
and then applies the Hansen-Hurwitz estimator [10] to the degree
distribution observed in the sample. By dampening the occurrence
probabilities of high degree nodes, this yields an unbiased distribu-
tion. The main advantage of RWRW over MHRW is that RWRW avoids
spending a large portion of its sampling budget on rejections. In the
case of MHRW, around 55% of iterations are rejections [7]. Therefore,
on average, MHRW's resulting set of sampled nodes not only con-
sists of fewer unique nodes, but also stems from a shorter walk. A
generalization of the RWRW algorithm is presented in Section 3 and
is the basis of the developed sampling algorithm. It allows for esti-
mation of the two-dimensional distribution of node degrees and at-
tribute values. While the literature also offers techniques for sam-
pling from dynamic, time dependent graph streams [ 1], our proposed
method works with static graphs. The main reason for this behavior
is that typical methods involving dynamic graphs require operations
like drawing a graph’s edges uniformly at random which is not possi-
ble in real world OSN graphs. Furthermore, algorithms for estimating
a graph'’s size have been proposed [13]. However, we assume that the
graph'’s size is part of the input.

2.2. Graph generation

Modeling real networks is an important branch of science with
many applications, including the analysis of biological and social sys-
tems. When a model is able to use a real graph to consistently gener-
ate synthetic graphs that capture the majority of the original graph’s
properties, its resulting graphs can be used as input for algorithm
benchmarks and simulations, or as a means of anonymizing crawled
data before publication. This section outlines three state-of-the-art
models that can be used to generate synthetic graphs given either
the full input graph or even just a sample of its node set.

Exponential Random Graph Models (ERGMs) [16,30,35] constitute
a family of statistical models whose goal is to reveal dependencies in
the process of edge creation in networks. This is achieved by quantify-
ing the importance of various graph statistics that summarize struc-
tural patterns in the graph. ERGMs are often used for characterizing
social networks [4,6,28]. Additionally, these models allow generating
synthetic graphs once model parameters have been estimated. How-
ever, ERGMs require complete information on the input graph and
current implementations’ time complexity prohibits the analysis of
graphs whose size exceeds a few thousand nodes [36], thus exclud-
ing most real world OSNs.

In [14], the Multiplicative Attribute Graph Model (MAG), a gener-
ative model for graphs with categorical node attributes, is proposed.
The basic idea is that the probability of two nodes being involved in
an edge depends on the nodes’ pairwise combinations of attribute
values. By quantifying the probability of edge formation for each pos-
sible combination of attribute values, various relationships like ho-
mophily, heterophily, or the tendency to seek connections to a spe-
cific attribute value can be expressed. Given the original graph, model
parameters representing the aforementioned probabilities can be es-
timated. Based on these parameters, the model is capable of gener-
ating synthetic graphs with realistic topological and attribute related
properties [15]. Unfortunately, MAGs also require the full input graph
G for parameter estimation. As in the case of ERGMs, this is the factor
that makes the approach unsuitable for this work’s goals of analyzing
real world OSNs and generating similar networks based on samples.

The authors of [8] present a method for generating a topology sim-
ilar to the one of a real world graph without requiring full knowledge
of that graph. The input consists of a node sample collected during a
random walk on the graph of interest. Main aspects to reproduce are
the joint degree distribution (JDD), basically an edge count for each
type of degree-degree combination, as well as the average cluster-
ing coefficient per node degree. For this purpose, values of the afore-
mentioned measures are derived from the collected sample and are
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forwarded to an algorithm that generates graphs whose measures ap-
proximate the targeted values.

The notion of 2.5K-Graphs stems from the work on dK-series [22]
that describes graph models that contain increasing degrees of infor-
mation on the graphs’ structure and have increasing complexity:

OK captures the average node degree.

1K captures the node degree distribution.

2K captures the joint degree distribution.

3K captures two distributions: counts of wedges (node chains of
length three) and counts of triangles among triples of node de-
grees kq, ko, ks.

For a graph G = (V, E) with node set Vand edge set E, the 2K model
specifies the JDD as defined in Eq. (1). For each pair of node degrees k
and [, it returns the number of edges between nodes of those degrees.
The sets V;, and V; denote the subsets of V that consist exclusively of
nodes of degree k and [, respectively.

JOD (k. 1) = > > 1yapjery (1)

acVy beV,

Unfortunately, the J]DD does not contain information on any sort of
clustering or centrality, thus making the 2K not expressive enough to
model real networks. 3K, on the other hand, does contain such infor-
mation, but there is currently no efficient algorithm for the 3K model.
Therefore, 3K is not suitable for the analysis of real networks either.
The 2.5K model tries to bridge this gap by adding the average cluster-
ing coefficient per node degree ¢(k) to the 2K approach, thus main-
taining the efficiency of 2K but also providing a centrality measure in
order to achieve more realistic results.

The first step in the 2.5K framework consists of performing a ran-
dom walk on the graph to replicate. The random walk does not only
record each visited node’s ID and degree but also its adjacency list.
Later, it is possible to induce edges in the traversed graph by check-
ing different nodes’ sets of neighbors for intersections. By applying
the Hansen-Hurwitz estimator to the sampled set of nodes, the node
degree bias of the random walk is corrected and estimates for the
JDD and ¢(k) are derived. After a postprocessing step that includes
smoothing of the JDD and ensures that the resulting JDD is actually
realizable by a real graph, the generation phase of the algorithm is
initiated.

In this phase, the algorithm first creates a set of nodes that follows
the degree distribution encoded in the JDD. Each of these nodes has
a target degree and is therefore considered to have “stubs” that can
be connected to edges. In the second step, these stubs are connected.
Two important constraints are enforced during this procedure. First,
an edge may only be added if the resulting graph does not exceed the
edge count defined in the JDD. Second, edges are added in a greedy
fashion that strives for a high clustering coefficient. The latter part is
important for runtime purposes. In the final steps, double edge swaps
are performed in a Markov Chain Monte Carlo (MCMC) fashion. These
swaps guarantee that the JDD is preserved while c(k) approaches the
targeted distribution.

The results presented in the paper compare the 2.5K graphs with
real and generated graphs from the 2K model and show far better
performance while being fast enough for practical use on large real
world graphs. Graph statistics in this comparison include the distri-
butions of node degree and average neighbor degree per node degree,
the average clustering coefficient per node degree, and the joint de-
gree distribution.

Considering the goals of this work, the main issue with the 2.5K
approach is that its only interest lies in reproducing the input graph’s
topology while ignoring node attributes. Another concern may be
that the output graphs need to have roughly the same size as the
input graph as the JDD matrix contains absolute integer values that
lead to varying edge densities depending on the size of the output

graph. The approach presented in Section 3.2 tries to generalize the
JDD estimation in order to support node attributes.

In [9], two graph generation algorithms capable of reproducing
different characteristics of a given input graph are presented. Both al-
gorithms guarantee achieving the same joint degree distribution as
the input graph. Additionally, the first algorithm aims at achieving an
average clustering coefficient that is close to that of the input graph
while the second is directed towards the joint distribution of node
degrees and attribute values. Similarly to the approach presented in
this work, the algorithm uses an extension of the JDD that captures
attribute related properties, referred to as JDAM (joint degree and
occurrence of attributes matrix), which is a concept already used in
earlier work [5,21]. In contrast to [9], our proposed graph generation
mechanism strives towards both goals simultaneously, i.e., joint de-
gree and attribute distribution as well as average clustering coeffi-
cient. Furthermore, our algorithm deals with the challenge of having
an incomplete view of the input graph as its input consists of a ran-
dom walk node sample rather than the entire graph.

2.3. Data set description

In order to conduct performance evaluation of various graph al-
gorithms presented in this work, realistic input data are required. As
the envisaged application of the algorithms is in the field of social
networks and socially aware traffic management, we focus on pub-
licly available graphs of OSNs. The use of real world input graphs en-
sures representative results. For the experiments performed in this
work, two data sets containing topological and attribute related in-
formation were used. The Pokec data set? published in [32] contains
the whole network of Pokec?, a popular Slovakian OSN with over 1.6
million users. User profiles feature information on age, interests, gen-
der, and several other attributes. With over 1.6 million nodes, it is the
biggest network studied in this work. Additionally, a collection of 100
Facebook subgraphs* published in [33] is analyzed. These subgraphs
cover different American colleges and universities whose sizes range
from 760 to 41,000 nodes. They include information on students’ gen-
der, class year, major, high school, and dormitory. Details regarding
the graphs’ topological and attribute related properties can be found
in the corresponding publications. Various characteristics of the sub-
set of graphs that is used for evaluating the proposed sampling and
graph generation algorithms are listed in Table 3.

3. Proposed sampling approach
3.1. Extending existing sampling algorithms to attributes

When designing sampling algorithms that take into account both
the graph’s topology and its attribute values, a first approach could
be extending existing graph sampling algorithms to collect attribute
values when visiting a node. While UNI, BFS, and MHRW can be in-
tuitively extended to estimate the two-dimensional degree attribute
distributions, the re-weighting process of RWRW needs some mod-
ification. The resulting estimator for the two-dimensional attribute-
degree distribution is presented in Eq. (2), which indicates the cor-
rected probability for a node v with degree deg, = d and attribute
value att, = a. As the random walk bias does not depend on the node
attribute, the Hansen-Hurwitz estimator of the one-dimensional
RWRW can be adopted.

1 {deg,,=d,att,,=a}
Zwevs

d

1
ZWEVS deg,,

P(deg, =d, att, = a) =

2 https://snap.stanford.edu/data/soc-pokec.html
3 http://pokec.azet.sk/
4 https://archive.org/details/oxford-2005-facebook-matrix
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Fig. 1. Comparison between the original two-dimensional degree age distribution in the Pokec graph and those observed by the extended sampling algorithms.

Fig. 1a presents the two-dimensional joint distribution of age and
node degree for the Pokec graph. Nodes’ age and node degree value
combinations are aggregated in bins in order to achieve a smooth
plot. Each bin represents the combination of an individual age value
with a range of degree values. In the figure, each rectangular cell cor-
responds to a bin with age values on the x-axis and degree margins
on the y-axis. Analogous to logarithmically scaling the y-axis, the bin
width with respect to node degree increases logarithmically in order
to fit the whole range of possible degree values. The color of each
cell indicates the probability of occurrence for the respective range of
combinations. Fig. 1b, ¢, e, and f illustrate results of UNI, BFS, MHRW,
and RWRW for a sample size of 100,000 on the Pokec graph. Addi-
tionally, the performance of these algorithms with respect to estimat-
ing the input graph’s two dimensional degree attribute distribution
is evaluated by calculating the Kolmogorov-Smirnov D statistic be-
tween the two dimensional degree attribute distribution observed in
the input graph and the distributions estimated by the sampling algo-
rithms. This statistic indicates the supremum of the distance between
the respective empirical cumulative distribution functions, which is
sensitive to both their locations and shapes and is thus an appropri-
ate metric for the similarity of the distributions. While UNI yields a
distribution that is barely distinguishable from that of the original
graph (D = 0.0052), it does not come as a surprise that BFS does not
perform well in the joint sampling scenario (D = 0.3658) as it has al-
ready been shown to be no viable approach even in the context of
topological graph sampling. Also MHRW (D = 0.0341) clearly strug-
gles with accuracy, especially in the lower half of the figure where
probabilities of combinations involving low degree values are plot-
ted. This phenomenon can be explained with the discrepancy intro-
duced by the rejection procedure of MHRW. RWRW (D = 0.0141), on
the other hand, shows the best performance of the three sampling
algorithms that are feasible in practice.

Although the two-dimensional distribution can be reproduced
quite accurately by RWRW, no structural dependencies can be cap-
tured by the existing sampling methods. Therefore, we propose a
novel sampling approach based on RWRW, which adds an estimate
for the joint two-dimensional degree attribute distribution. This es-
timate lays the foundation for a new graph generation algorithm,
which allows for the reproduction of topological and attribute related
properties of the original graph.

3.2. Sampling method

The sampling algorithm developed during this work is based on
the 2.5K approach of Gjoka et al. [8] that is outlined in Section 2 and
works as follows. First, a random walk is performed on the original,
unknown graph. This random walk not only collects node degrees
and associated attribute values, but also saves each visited node’s ID
and a list of the IDs of its neighbors. Due to the multitude of possible
attribute-degree combinations and therefore often very low number
of node occurrences per type, binning is applied with respect to the
node degree. Afterwards, the random walk’s node degree bias is com-
pensated by applying the Hansen-Hurwitz estimator to the created
bins. These re-weighted bins can be used to estimate the probability
distribution of attribute-degree combinations in the original graph.
Additionally, the adjacency lists of sampled nodes can be used to in-
duce edges beyond those traversed by the random walk. Therefore,
an estimate of the joint degree attribute distribution (JDAD), ]EA\D,
can be derived. Intuitively, the JDAD can be thought of as a distribu-
tion of edges in the graph. For each edge type defined by the degrees
and attribute values of involved nodes, the JDAD returns the number
of edges of this type in the graph. A formal definition of the JDAD is
provided in Eq. (3), where Vj; denotes the subset of nodes that have
node degree i and attribute value j. The JDAD is conceptually similar
to the JDAM proposed in [9], which provides the number of edges for
a tuple of degree and attribute pairs. In contrast, the JDAD maps a
set of pairs, which is more appropriate in the context of undirected
graphs.

JDAD({G ). (k. DY = 3 3 Tipwper)

veV; weVy

3)

Analysis of ]EA\D allows estimating the assortativity of attributes
of interest as well as edge densities for observed edge types. Details
of the binning, re-weighting and edge induction steps are presented
in the following.

The binning mechanism works as follows. After setting a constant
bin width wy, the observed degree range of each attribute is divided
into bins with width wj,. Each node v is assigned to a bin bin(v) de-
pending on its node degree and attribute value. Recommended values
for the bin width are 4-6. This results in sufficiently filled bins while
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retaining enough accuracy with respect to observed node degrees. Af-
ter binning, an aggregated JDAD, JDADy,;,,, can be defined according to
Eq. (4). Given two bin identifiers i and j, JDADp;,({i, j}) denotes the
number of edges in G that are present between nodes inside these
bins.

JDADy (i, i) = > D Vwwer (4)
veV weV
bin(v)=i bin(w)=j

In OSNs, not all users make all their information publicly avail-
able or may choose to provide incomplete profile data. Thus, in prac-
tice, sampling algorithms come across users with unknown attribute
values. In order to cope with such cases, the proposed sampling al-
gorithm maps unset attribute values to a unique reserved attribute
value (e.g., —1, N/A). On the one hand, this allows statements about
the percentage of users with unavailable attribute information. On
the other hand, the sampling budget spent on fetching the user’s data
is not wasted as topological properties still contribute to the overall
estimates, regardless of attribute values.

While the node sequence Vs = (s1, ..., S,) returned by a random
walk of length n yields at most n — 1 edges, namely those traversed
by the random walk, a multitude of edges can be induced when ad-
jacency lists of visited nodes are also taken into account. Edge in-
duction exploits the fact that the original graph G contains an edge
{u, v}iffuis part of v’s set of neighbors A/ (v). However, if v is sampled,
not all elements of A/(v) are necessarily visited by the random walk.
Thus, degree and attribute information is only available for pairs
{u, v} where both u and v are in the sample and only edges between
such nodes can be added to the JDAD. Because of the random walk’s
bias towards high degree nodes, the distribution of induced edges
also has an inherent bias. In order to reduce effects caused by this
bias, the idea of using a safety margin M as proposed in [8] is em-
ployed. Ignoring induced edges that result from checking the adja-
cency lists of nodes that are closer than M positions in the node se-
quence returned by the random walk decreases introduced bias. It is
recommended to use values in the range 10 < M < 100 [8].

As in the case of the two-dimensional degree attribute distribu-
tion, the number of possible edge types defined by the degree and
attribute values of involved nodes is very large while individual num-
bers of occurrence are low. For this reason, the same binning proce-
dure is applied to the list of induced edges, resulting in edge types
being defined by pairs of bin IDs instead of pairs of degree-attribute
combinations. After this conversion, the lists of traversed and in-
duced edges are aggregated into an estimate of a joint bin distribution
jﬁﬂ)bm. For each observed edge type {i, j}, the value ]mbm({i, ib
represents the ratio between the number of edges of this type and
the maximum possible number of such edges, given the sequence of
sampled nodes Vs. Eq. (5) defines this value formally.

> Hiseser)

Sk, S1€Vs,
s.t. bin(sy)=i,bin(s;)=j,
|k=I|=1v|k—I|>M
> 1
Sk.S1€Vs,

s.t. bin(sy)=i,bin(s;)=j],
[k=I|=1v|k-I|>M

JDADy;, (i, j}) = (5)

As entries in ]@bm represent density measures for each edge
type, they can be used to calculate an estimate of the original graph’s
assortativity. Additionally, scaling of this distribution with respect to
the output graph size is used in the context of graph generation in
order to determine goal values for the number of edges per type in
the output graph.

3.3. Results

As explained in Section 3.1, existing graph sampling algorithms
can easily be extended with attribute sampling capabilities. Fig. 2
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Fig. 2. Performance comparison of different sampling strategies with respect to the
two dimensional degree attribute distribution. Algorithm parameters: attribute dor-
mitory and Bucknell University Facebook subgraph as input graph.

quantifies the performance of these algorithms with respect to esti-
mating two dimensional degree attribute distribution of the Bucknell
University Facebook subgraph in terms of the Kolmogorov-Smirnov
D statistic. Additionally, the performance of UNI and the proposed
sampling algorithm is presented. The x-axis indicates the sampling
budget in terms of the original graphs’ sizes, while the calculated
Kolmogorov-Smirnov D statistic is provided on the y-axis. In addi-
tion to the mean D value across 50 repetitions indicated by the bars’
heights, whiskers denote 90% confidence intervals. For various values
of the bin width parameter, the proposed graph sampling algorithm
was applied to different social network graphs. The results indicate
that minimum D values are achieved with bin widths of 4 to 6. As
discussed in Section 2, BFS and RW suffer from a bias towards high
degree nodes which results in a skewed degree distribution among
the collected nodes. Thus, it is not surprising that these algorithms
perform significantly worse than the presented alternatives. With in-
creasing sampling budget, BFS’s performance improves slightly. This
can be explained by the fact that the BFS algorithm visits each node at
most once and thus is guaranteed to visit lower degree nodes when
a higher sampling budget is available. UNI is the theoretical best case
as it draws random sample pairs from the original distribution. This is
reflected by UNI having the lowest D score among all sampling strate-
gies. For every sampling budget, the proposed algorithm outperforms
MHRW, which is statistically shown by a two-sample t-test with p-
values of 0.0028, 0.0002, 0.0038, 0.0026 for the different fraction val-
ues 0.1, 0.2, 0.3, 0.5, respectively.

The above presented results for a rather small social network
graph with only 3824 nodes showed that the algorithms require sam-
ple sizes beyond 20% of the original graph’s number of nodes in or-
der to achieve a good performance with respect to the Kolmogorov-
Smirnov distance. However, results obtained from sampling huge
graphs like the Pokec graph show that a sampling budget in the or-
der of magnitude of 2% to 5% of the original graph'’s size is sufficient
in order to produce a reliable estimate. This behavior is presented in
Fig. 3 where the Kolmogorov-Smirnov distance between the original
JDADy;, and its sample based estimate, which is the foundation for
the proposed graph generation mechanism, is displayed for various
graphs and sample sizes. While the x-axis shows the sampling bud-
get, the y-axis indicates the aforementioned Kolmogorov-Smirnov
distance with respect to the JDAD,;,. For the four Facebook subgraphs
Haverford, Rice, Stanford, and Rutgers, the dormitory attribute was
sampled. In the case of Pokec, age was chosen. Three levels of perfor-
mance corresponding to the graphs’ size can be identified in the plot.
First, the small graphs Haverford and Rice with 1446 and 4083 nodes
which result in the highest Kolmogorov-Smirnov distances. Second,
medium sized graphs Stanford and Rutgers containing 11586 and
24568 nodes have significantly better performance values. Finally, for
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the Pokec graph consisting of more than 1.5 million nodes, a sampling
budget of 2% is sufficient for achieving D values below 0.01. These ob-
servations suggest that in the context of huge real world graphs, the
resource efficiency achieved via sampling increases significantly.
Additional investigations show a graph and attribute independent
relationship between the absolute sampling budget and the resulting
Kolmogorov-Smirnov distance. Fig. 4 presents an aggregated view on
samples of dormitory, major, and year attributes from the four Face-
book subgraphs Haverford, Rice, Stanford, and Rutgers, and the age
attributes from the Pokec graph. It displays a scatter plot of abso-
lute sampling budgets on the x-axis alongside the corresponding D
values on the y-axis. Furthermore, locally weighted polynomial re-
gression yields the smoothed curve with a shaded area indicating the
95% confidence intervals. When both axes are logarithmically scaled,
the fitted curve resembles a straight line which in turn corresponds
to a power law distribution. Thus, for the investigated social network
graphs, rather than relative sampling budget, the absolute sampling
budget seems to be a key performance indicator of the proposed al-
gorithm. Hence, following figures present absolute values.
Depending on the intended use case, different user attributes
may be of interest when performing attribute sampling and later
graph generation tasks. Fig. 4 already showed that a large sampling
budget provides accurate samples almost independent of graph size
and attribute type. However, for small OSN graphs with low num-
bers of sampled nodes some challenges may arise. Fig. 5 provides an
overview of the attribute sampling algorithm’s performance when
applied to the same topology but different attributes. In 20 exper-
iment repetitions per configuration, the graph sampling algorithm
was applied to the small Haverford graph (1446 nodes) using the
attributes dormitory, major, and school year. While dormitory and
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major are categorical attributes, school year is a numerical attribute
with integer values. With the sampling budget on the x-axis and the
Kolmogorov-Smirnov D statistic on the y-axis, the plot contains re-
sults for all three attributes. Each bar color represents one attribute.
The mean D score of all repetitions is indicated by the bars’ height,
and whiskers depict the 90% confidence intervals. Similar to previous
observations, similarity correlates with the sampling budget. How-
ever, the school year attribute requires a significantly higher sampling
budget in order to reach reasonable distance values. An explanation
for this behavior is that the characteristics of this attribute distribu-
tion are different from the two categorical attribute distributions. For
example, the school year attribute has a high fraction of values which
only occur very rarely. Therefore, the sampling algorithm needs to
visit a larger amount of nodes in order to observe enough repre-
sentatives and provide reliable estimates. With a sampling budget of
289 (20%), the mean D value drops below 0.1 for all attributes.

On a machine equipped with an Intel Core i7 4770 CPU at 3.40 GHz
and 16 GB of RAM, the sampling and JDADy,;,, estimation procedure for
the Facebook subgraphs is completed within few seconds. In the case
of the large Pokec graph with more than 1.6 million nodes, runtimes
in the order of magnitude of 1 h are observed.

To sum up, using the proposed algorithm allows the same level
of accuracy as MHRW while investing a lower sampling budget, or a
higher level of accuracy than MHRW while investing the same sam-
pling budget. Additionally, the results confirm the intuition that in-
creasing the sampling budget results in better performance. As this
effect is mainly depending on the absolute number of sampled nodes,
only for small social network graphs a larger sampled fraction is
needed. Additionally the properties of the sampled attributes have
to be taken into account in this case. For huge graphs, on the other
hand, small sampling fractions are sufficient to obtain accurate sam-
ples almost independent of graph and attribute properties.

4. Graph similarity

In order to evaluate and compare the performance of algorithms
that generate synthetic graphs based on a given input graph, it is nec-
essary to be able to quantify the output graph’s similarity to the input
graph. This section presents approaches for assessing topological and
attribute related similarity between graphs.

4.1. Attribute based NetSimile

The comparison of multidimensional graph property distributions
(e.g., by the Kolmogorov-Smirnov test) quickly becomes computa-
tionally expensive and does not provide insights into complex graph
characteristics. Therefore, dedicated graph similarity measures like
NetSimile [2] were designed specifically to assess graph similarity
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based on a variety of topological characteristics. The key idea of the
algorithm is to extract node level features from each graph, aggregate
these features in five ways (namely, mean, median, standard devia-
tion, skewness, and kurtosis), and return a size independent, graph
specific signature vector for each graph. By applying a distance mea-
sure to the resulting vectors, the graphs’ similarity can be quantified.
Unfortunately, the basic version of NetSimile is restricted to topo-
logical comparisons. Thus, additional attribute based features are
introduced in order to cope with graphs that have node attributes.
Following the idea of the established NetSimile measure, the de-
veloped extension, NetSimileas;, does not rely on a single attribute
related property. Instead, differently aggregated statistics which rep-
resent diverse characteristics are taken into account simultaneously.

The developed NetSimilea;; measure contains four node centric
attribute based properties. Before this measure can be applied, the
graphs to be compared need to undergo a preprocessing step that
converts them to graphs with edge weights. Based on the attribute
values att; and att; of nodes involved in an edge {i, j} and whether
the attribute in question is categorical, continuous, or discrete, the
edge’s weight is determined. If the attribute is categorical, the edge
weight wy; ; is defined as wy; j, = 1{att,-=attj}' On the other hand, if
the attribute is continuous or discrete, the edge weight is defined as
wy; jy = e 1% This exponentiation ensures that in either case,
edge weights are normalized in the range [0; 1] where a value close
to 1 indicates a homophilous relationship between the edge’s nodes
and a value close to 0 indicates a heterophilous relationship between
them, respectively.

The following four node centric properties are analyzed by
NetSimileag:

Mean node weight For each node v, the mean weight of
its edges is calculated. This statistic is defined as w, =
¢1e17gVZueN(v) Wi,y and quantifies the similarity between a
node and its neighbors.

Mean neighbor weight For each node v, this property captures
the mean value of w, among all of v’s neighbors u. Doing so
extends w;, by an additional hop and thus analyzes the degree
of homophily found in the two hop neighborhood of v.

Egonet edge homophily The sum of edge weights in a node’s
egonet (i.e., the subgraph induced by v U A/ (v)) is calculated.
Summation allows making a statement about both the size of
anode’s egonet and the level of similarity between included
nodes.

Egonet neighbor homophily Similar to NetSimile’s count of
egonet neighbors, the sum of potential edge weights between
node v and neighbors of its egonet u is calculated. Again, this
extends the previous property by a hop and allows for a deeper
insight into a node’s surroundings.

Like in the case of plain NetSimile, each of these statistics is com-
puted for every node in the compared graphs. Then, the five aggrega-
tion functions are applied to the resulting vectors which finally yields
the graphs’ signature vectors. The NetSimilea value between the in-
put graphs is defined as the Canberra distance between these sig-
nature vectors. Low values indicate a high level of similarity while
high values denote dissimilarity between graphs. In particular, the
NetSimile and NetSimiles; measures are zero when the input con-
sists of two identical graphs. Section 4.3 shows examples of typical
values for similar and dissimilar pairs of graphs and experimentally
demonstrates the measure’s suitability for similarity assessment.

4.2. Attribute based eigenvalue extraction
Another measure for graph similarity is briefly introduced in [2].

The Eigenvalue Extraction (EIG) algorithm stems from the area of
spectral graph analysis and is based on the idea that eigenvalues can

be used as an index of centrality in network structures [3]. First, given
graphs are mapped to signature vectors. These vectors consist of the
k largest eigenvalues of the graphs’ adjacency matrices, where k is an
algorithm parameter. Usually, a value of k = 10 is sufficient. After that
the similarity measure is defined as the Canberra distance between
the resulting vectors.

Unlike NetSimile’s local feature extraction from each individual
node, this approach extracts global features by considering the whole
adjacency matrix at once. As in the case of NetSimile, EIG cannot
quantify the similarity of graphs with node attributes. Therefore, us-
ing the preprocessing approach developed for NetSimiley, EIG can
also be extended to support graphs with node attributes. First, the
graphs’ edges {i, j} are assigned weights wy;  as defined in the pre-
vious section. Then, the same procedure as in EIG is applied: the k
largest eigenvalues of the graphs’ weighted adjacency matrices are
computed. These eigenvalues compose the graphs’ signature vec-
tors that are finally compared via the Canberra distance. This whole
method of comparing graphs with node attributes is referred to as
EIG -

4.3. Results

In this section, various methods for assessing graph similarity
were introduced. These include NetSimile and EIG as well as their at-
tribute based counterparts NetSimilea, and EIGp, respectively. Be-
fore the next section discusses the performance of graph genera-
tion algorithms with respect to these similarity measures, a brief
overview of the domains of these measures is provided. For this
purpose, the measures’ behavior for pairs of social network graphs
that are intuitively similar or dissimilar based on criteria like size,
edge count, and attribute based assortativity is analyzed. Results from
these comparisons provide a reference for assessing the performance
of the graph generation algorithm.

In addition to the results presented in this section, Fig. 9 in the
next section illustrates a positive correlation between the proposed
NetSimilea, measure and Kolmogorov-Smirnov distances regarding
the node degree distribution, attribute value distribution, and JDADp;,
distribution between input graphs and graphs produced by our gen-
eration algorithm. This relationship indicates that NetSimileay is in-
deed capable of capturing topological as well as attribute related
graph properties in a manner which is consistent with established
alternatives.

Table 1 provides values for the topological measures NetSimile
and EIG for different pairs of graphs from the Facebook dataset. In
the first two examples, intuitively similar graphs are compared which
all have pairwise similar sizes with respect to both, node and edge
count. For these, NetSimile values are below 0.16 and EIG does not
exceed 0.06. The following two comparisons show dissimilar graphs.
While having an almost identical number of nodes, the Simmons
graph exhibits only half as many edges as the Haverford or Swarth-
more graphs. As a result, NetSimile and EIG values rise beyond 0.26.

In order to grade possible values for attribute based similarity
measures, Table 2 presents calculated values for NetSimilea, and
EIGay for different OSN graphs and attributes. Intuitively, two graphs
with node attributes should be considered similar if they have a simi-
lar amount of nodes and edges as well as a similar degree of attribute

Table 1
Exemplary values of topological graph similarity mea-
sures for different Facebook subgraphs.

Gy G, NetSimile  EIG

Middlebury  Vassar 0.10 0.06
Amberst Bowdoin 0.16 0.04
Simmons Swarthmore 0.27 0.26
Haverford Simmons 0.32 0.26




Table 2
Exemplary values of attribute based graph similarity measures for dif-
ferent Facebook subgraphs.

Gy Gy Attribute NetSimilea EIGaw
Haverford ~ Swarthmore  Dormitory  0.15 0.14
Ambherst Bowdoin Dormitory  0.16 0.16
Oberlin Wellesley Dormitory ~ 0.18 0.04
Amberst Vassar Dormitory  0.24 0.40
Ambherst Smith Dormitory  0.31 0.44
Bowdoin Smith Dormitory  0.36 0.30
Haverford ~ BFSZYs Dormitory ~ 0.45 0.82
Haverford ~ BFS{)s Dormitory ~ 0.22 0.16
Haverford  BES{os Dormitory ~ 0.08 0.10

based assortativity. The first three entries of the table provide such
examples. In these cases, NetSimiley does not exceed 0.18 and val-
ues of EIGp are 0.16 or less. The next three instances illustrate cases
where assortativity differs by a factor of around three which directly
affects the measures’ values. They increase beyond 0.24 and 0.30, re-
spectively.

The bottom part of the table presents comparisons of the Haver-
ford graph with subgraphs of itself. BFS,’f;fw denotes the subgraph
of the Haverford graph that is based on a BFS sample of k% of
its nodes. With increasing k, the subgraph approaches the origi-
nal graph and thus, the similarity measures take on lower values.
While NetSimileai drops as low as 0.08, EIGa’s minimum is 0.10.
This can be explained with the fact that EIG, has a dependency on
graph size which adds to the dissimilarity already present from BFS
sampling.

The examples provided in this section allow deriving thresholds
for the four similarity measures which in turn help interpreting
the results presented in the following section. For NetSimile, EIG,
NetSimileas, and EIGpy, these thresholds are 0.16, 0.06, 0.18, and
0.16, respectively. If the similarity value between a generated output
graph and its underlying input graph falls below the corresponding
threshold, the output graph is considered to be similar to the input
graph.

Table 3

Comparison of avg. clustering coefficient ¢, the assortativity a, the avg.
shortest path length Iy, the number of cliques ||, and the avg. closeness
centrality cc for original and generated graphs. Algorithm parameters:
attribute school year and bin width 4.

Fraction ¢ a Is || cc

Rice (|V| = 4087, |E| = 184826)

original 0300 0520  2.468 1145592 1.00-104

0.1 0.201 0.601 2.714 1048786 4.37-1077
0.2 0.241 0.624  2.661 863602 7.51-1077
0.3 0.258 0575  2.636 1842283 1.27-10°6
0.5 0.310 0577  2.644 2311427 1.94.10°6

Bucknell (V| = 3826, |E| = 158863)

original 0.281 0268  2.507 522476 1.05-1074

0.1 0.197 0.031 2.763 441164 4.20-1077
0.2 0.283  0.085  2.756 685400 1.40-10-6
0.3 0294 0270 2725 690691 2.01-10°¢
0.5 0308  0.273 2.661 1039404 2.62.10°

Smith (|V| = 2970, |E| = 97133)

original 0.289  0.157 2.498 151137 137104

0.1 0.182 0.411 2.820 203916 1.13-10°°
0.2 0228  0.137 2.713 282275 2.85-10°6
0.3 0.283  0.086  2.765 273109 3.21-10°¢
0.5 0.333 0.197 2.780 376658 5.35.10°°

Haverford (|V| = 1446, |E| = 59589)

original 0.327 0.195 2.228 475705 3.14-10°4

0.1 0234  0.152 2.416 232857 2.57-10°6
0.2 0.290 0.158 2303 344723 4.23.10°°
0.3 0.311 0.153 2.277 629996 4.66-10°6
0.5 0.333 0.188 2307 637602 5.65-10°°
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Fig. 6. Outline of the graph generation algorithm developed in this work.

5. Graph generation
5.1. Algorithm

The graph generation algorithm developed during this work is ca-
pable of creating graphs with node attributes based on a node sam-
ple collected during a random walk and the target size n of the output
graph. In this work, n equals |V], i.e., the size of the original graph, and
is part of the input. An overview of involved mechanisms is shown in
Fig. 6.

The algorithm starts off by collecting a node sample via a random
walk. The sampling algorithm presented in Section 3.2 calculates oc-
currence probabilities for every bin B; = (B; 4, B; |, B; ;) defined by its
attribute B; , and its degree range [B; ;; B; ;). Multiplying this bin dis-
tribution with the size of the input graph, and subsequent rounding
results in node counts for every bin B;. These counts are used to cre-
ate a preliminary node set where nodes’ attribute values are fixed, but
whose degree range lies in the range defined by their source bin. For-
mally, such a preliminary node v is defined as triple (att,, left,, right, )
consisting of its attribute value att, and left and right degree margins
left, and right,, respectively. Furthermore, the sampling mechanism
provides ]mbm, i.e., an estimate of the joint two-dimensional de-
gree attribute distribution, which contains the structural characteris-
tics of the graph.

Before connecting the nodes via edges, entries of the ]ﬁfﬁ)bm need
to be converted from density measures for each edge type to ac-
tual edge counts. For this, the J@bm is multiplied with |E|, an es-
timate for the number of edges in the original graph. This estimate
is derived by utilizing the reliable degree estimate provided by the
Hansen-Hurwitz estimator and exploiting the relationship of node
degree and edge count. First, the Hansen-Hurwitz estimator is ap-
plied to the node degrees observed in the random walk’s node sam-
ple, which yields estimates for the occurrence probabilities p, of each
node degree k. These probabilities can be used in order to estimate
the average node degree in the original graph.

The ingredients collected so far are sufficient to create an out-
put graph whose degree-attribute distribution is similar to that of
the original graph and whose edges follow the estimated ]ﬁ/ﬁ)bin.
The output graph can be constructed by iterating over all possible
edges between nodes of the created node set and adding only those
edges whose insertion neither violates the degree range of the in-
volved nodes nor leads to exceeding the edge count in the]@bin.

As explained in this section’s introduction, such an algorithm ig-
nores possible triangle structures and thus the created output graph
misses key characteristics of the input graph. To address this issue,
the algorithm is augmented by an estimate of the input graph’s av-
erage clustering coefficient ¢. The estimation is based on the set of
induced edges E;,4 that is derived during the sampling process and is
described in detail in the work of Gjoka et al. [8].

Now, the algorithm is extended to first greedily create triangles
and thus an output graph with a high average clustering coefficient.
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Fig. 7. Performance of the graph generation with optimal input in terms of NetSimile
and NetSimile values between generated and original graph. Algorithm parameters:
attribute dormitory, bin width 4, and Bucknell University Facebook subgraph.

This is achieved by associating every node v in the output node set
with a random one-dimensional coordinate ry, thus assigning each
possible edge a distance with respect to this coordinate system and
iterating through edge candidates sorted by their distance value. Fol-
lowing this principle, the constraints imposed by ]@bm are still met
while the resulting average clustering coefficient is increased [8].

In most cases, this construction results in an output graph with
an average clustering coefficient greater than the one estimated in
the previous step. Thus, in a final step,]@bm preserving edge swaps
are performed in order to achieve an average clustering coefficient
close to the estimate ¢. An edge swap is a rewiring procedure applied
to a pair of edges {u, v} and {w, x} in which the edges exchange one
node with each other. This results in one of two alternative pairs of
edges, namely {u, x} and {v, w} or {u, w} and {v, x}. A jﬁA\Db,-n preserv-
ing edge swap is defined as an edge swap that does not alter entries
in ]EA\Db,-n. Such an edge swap can be achieved by choosing a pair of
edges whose nodes’ bin memberships overlap. Given ¢, the maximum
number of iterations img, and an accuracy threshold &, edge swaps
are performed in an MCMC fashion. In each step two random edges
originating from nodes with identical bin membership are chosen
and the edges’ destinations are replaced with each other. If the swap
changes the output graph’s average clustering coefficient towards its
goal value, the swap is accepted. Either after the maximum number
of MCMC iterations has been performed or the difference between
the output graph’s average clustering coefficient and ¢ drops below ¢,
the MCMC procedure halts and the output graph is returned.

The current implementation of the graph generation algorithm is
limited to creating output graphs consisting of the same amount of
nodes as the input graph. Scaling the output graphs to arbitrary sizes
would require nontrivial changes to both, degree and edge distribu-
tions in order to achieve realistic results. This task is out of the scope
of this paper and left for future work.

5.2. Results

This section investigates the influence of different parameters on
the graph generation algorithm and compares its performance to
that of a state-of-the-art algorithm. Fig. 7 illustrates the performance
of the graph generation for both, the topology focused NetSimile
measure, as well as for NetSimilep,, which covers similarity with
respect to graphs’ attribute values. Both plots are based on experi-
ments that generated synthetic social network graphs from the Buck-
nell University Facebook subgraph with 3824 nodes. The sampled at-
tribute is dormitory, a categorical value indicating a user’s residence.
To avoid propagated inaccuracies from the sampling process, the syn-
thetic graphs are generated using the original JDAD;,. Thus, the plot
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Fig. 8. Influence of the sampling budget on the Kolmogorov-Smirnov distance be-

tween original and generated JDADy,;,. Algorithm parameters: attribute school year and
bin width 4.

presents the theoretical performance of the generation algorithm
when it is running with optimal input. It shows the CDFs of NetSim-
ile and NetSimileag; values after the generation of 15 synthetic graphs
based on the original JDADy;,. The NetSimile values between the orig-
inal graph and the generated graphs range from 0.11 to 0.14. Addition-
ally, NetSimileas; values form a steep CDF with scores always below
0.11. It follows that the generated graphs are very similar to the orig-
inal graph as both similarity measures are well below the thresholds
found in Section 4.3. This means, the proposed graph generation algo-
rithm is able to accurately reproduce topological and attribute based
properties based on JDADy;, of the input graph. Note that in order to
obtain JDADy;,, full knowledge and processing of the input graph is re-
quired, which is not feasible for larger graphs. Therefore, each graph
generation is usually preceded by a sampling process in practice.

The practical application performance of the graph generation al-
gorithm is presented in Figs. 8 and 10. This means, a sampling was
performed on four different graphs of the Facebook data set with four
different sampling budgets and the estimates of ]Efv)bm were used as
input to the generation algorithm. The chosen OSN graphs, namely
Rice, Bucknell, Smith, and Haverford, cover a wide range of topologi-
cal and attribute related characteristics. Thus, the algorithm’s perfor-
mance on these graphs can be used as indicator for the algorithm’s
overall performance. The collected attribute is school year. To present
the results for the different graphs in a decent way, sampled fraction
is used on the x-axis. However, note that the above findings on the
accuracy of the proposed sampling algorithm remain valid and prop-
agate through the generation process. This means, instead of sampled
fraction, the performance of the generation algorithm also mainly de-
pends on the absolute number of sampled nodes.

Fig. 8 shows the Kolmogorov-Smirnov distance between the orig-
inal JDADy;,, and JDADy;, of the generated graph. In contrast to the
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results reported in Fig. 5, the calculation of the distances presented
in this section also takes into account the fact that the graph gen-
eration mechanism might not be able to reconstruct the estimate of
JDADy;,, exactly. Nonetheless, the value of the D statistic decreases for
each graph when the available sampling budget is increased.

In order to investigate the relationship between the similarity
measures proposed in Section 4 and the established Kolmogorov-
Smirnov D statistic, the different distance measures between orig-
inal and generated graphs are calculated and compared with each
other. Fig. 9 presents the correlation between NetSimileay and the
Kolmogorov-Smirnov distance with respect to three different dis-
tributions. These include the single dimensional distribution of at-
tribute values, the single dimensional distribution of node degrees,
and the combined distribution represented by JDADp;,. While the
x-coordinate of each point denotes its NetSimiley, value, the y-
coordinate represents the corresponding Kolmogorov-Smirnov D. In
addition to this scatter plot, a line representing the linear best fit is
added for each distribution used by the Kolmogorov-Smirnov statis-
tic. The positive correlation between NetSimileas; and topological, at-
tribute based, and joint Kolmogorov-Smirnov distances highlighted
in the figure demonstrates its feasibility for the performance assess-
ment of our graph generation mechanism. Thus, results are presented
in terms of NetSimiley for the remainder of this work.

In Fig. 10, the respective similarity measures NetSimile and
NetSimile are shown. Again, bar height indicates the mean across
20 repetitions while whiskers represent 90% confidence intervals.
Fig. 10a conveys that there is a direct relationship between an output
graph’s similarity to the input graph and the size of the sample the
former is based on. This is not surprising as plots for the sampling
algorithm revealed a similar relation. Thus, the graph generated on a
more reliable estimate is also more likely to express a higher degree
of similarity to the original graph. Fig. 10b summarizes the algo-
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Fig. 11. Performance comparison between the 2.5K approach and the algorithm pro-
posed in this work. Algorithm parameters: attribute school year, bin width 4, and Buck-
nell graph.

rithm'’s performance with respect to its ability to replicate attribute
based graph characteristics. Using the same reasoning as before, an
increasing level of similarity is observed when a higher sampling
budget is available. In contrast to NetSimile, however, the algorithm
achieves good values of 0.18 and below for the NetSimile,s measure
with a sampling budget starting at 30%. Additionally, it can reliably
reproduce attribute characteristics of the Rice, Bucknell, Smith, and
Haverford Facebook subgraphs after analyzing just 20% of their nodes.

In Table 3, other numerical graph properties of the original and
generated graphs are presented. These properties include the aver-
age clustering coefficient C, the assortativity a, the average shortest
path length I, the number of cliques |C|, and the average closeness
centrality cc. The values for the generated graphs represent averages
based on ten generation runs. It can be seen that the clustering coeffi-
cient, which is a target metric for the generation, and the assortativity
are well replicated by the generated graphs especially if the sampled
fraction is high enough. However, the average shortest path lengths
tend to become slightly larger and also the number of cliques and the
closeness centrality are not close to the original, which shows that
there is still some room for improvement of the algorithm.

While the results shown so far demonstrate performance and the
influence factors of the graph generation algorithm developed during
this work, Fig. 11 provides a direct comparison with a state-of-the-art
algorithm. In addition to the publication introducing the mechanisms
utilized in the 2.5K approach [8], a Python implementation of the
graph generation algorithm is provided. Using this implementation>,
social network graphs were also generated via the 2.5K method.
Fig. 11a compares the topological similarity achieved by the 2.5K ap-
proach with that achieved by the proposed mechanism. Experiments

5 http://www.minasgjoka.com/2.5K/instructions/index.html
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were conducted on the Facebook graph of the Bucknell University,
which contains 3824 nodes. The x-axis presents information on
the available sampling budget and the y-axis displays the mean
NetSimile value calculated for the input and output graphs after 20
experiment repetitions. Whiskers attached to the bars indicate the
90% confidence intervals. Different bar colors denote the two graph
generation algorithms. While the 2.5K algorithm outperforms the
proposed method in terms of topological similarity in all instances,
the difference becomes steadily lower until it is barely relevant
beyond a sampling budget of 1148 (30%), as confidence intervals
begin to overlap. The performance difference can be explained by the
binning mechanism incorporated in the proposed algorithm. This
mechanism adds some inaccuracy with respect to the output graph’s
node degree distribution in order to cope with estimation difficulties.

In its published version, the 2.5K algorithm is not designed for
generating graphs with node attributes. Nonetheless, a comparison
with the algorithm developed in this work can be drawn by assign-
ing attribute values to the graphs generated by the 2.5K approach.
The attributes are assigned to the output graph’s nodes according to
the degree specific attribute value distribution observed in the col-
lected sample. Fig. 11b presents NetSimilea values for this scenario.
Due to a lack of information on the attribute distribution in edges and
higher order substructures of the input graph, the 2.5K algorithm fails
to produce similar output graphs. On the other hand, the algorithm
developed in this work expresses a high degree of similarity as soon
as a sampling budget of 1148 (30%) is available. Paired with its capa-
bility of reliably reproducing the input graph’s topology, it should be
favored in scenarios containing graphs with node attributes.

Using the test machine®, the entire process of sampling, estima-
tion, and generation takes between 20 and 40 min for the Facebook
subgraphs under study. For these, the number of edges in the graph
is identified as the main influence factor on runtime. In the context
of large scale networks like Pokec, the time and memory require-
ments of the current implementation prohibit an evaluation. Future
work will address these issues by investigating alternative edge inser-
tion mechanisms in order to increase the maximum size of generated
graphs.

6. Discussion

In this work, a practical methodology for efficiently estimating
topological and attribute related properties of graphs with node at-
tributes was developed. As this estimation relies on a node sample
whose size is significantly smaller than that of the input graph’s node
set, the developed sampling algorithm can be used in order to esti-
mate properties of huge real world graphs like online social networks.
This property makes it suitable for different use cases, e.g., socially
aware traffic management, where attribute related graph properties
need to be computed in a fast and reliable manner. Furthermore, a
mechanism for generating synthetic graphs with node attributes was
designed. In contrast to previous state-of-the-art graph generation al-
gorithms, it does not require full knowledge of the input graph in or-
der to replicate the graph’s key characteristics with respect to topol-
ogy and node attributes. Thus, crawling a small subset of an input
graph allows generating realistic graphs that can be used in the con-
text of algorithm benchmarks or simulations.

After designing and implementing both algorithms, their perfor-
mance was evaluated in a test framework on several real social net-
work graphs with attributes. The evaluation helped to quantify the
influence of algorithm parameters on their performance and to find
optimum values for these parameters. Comparisons indicate that the
developed mechanisms are on a par with state-of-the-art algorithms
when it comes to performance with respect to topological aspects.

6 Intel Core i7 4770 CPU at 3.40 GHz with 16 GB of RAM.

However, the implemented algorithms come out ahead when graphs
with node attributes are to be analyzed or generated. Further exper-
iments show that small sample sizes are sufficient for reliable esti-
mates of topological and attribute related graph properties. There-
fore, the developed algorithms provide time and resource efficient
means of analysis and generation of graphs with node attributes.

In the context of socially aware traffic management, for example,
sampling methods that take into account not only topology but also
graphs’ attribute values can contribute to enhancing existing traffic
management techniques with social information. Time and resource
efficient analysis of social network data (e.g., users’ interests) allows
ISPs to employ techniques like prefetching and caching in order to
minimize expenses for inter-AS traffic and improve QoE for end users.
Graph generation algorithms, on the other hand, can help researchers
conduct performance evaluation of graph algorithms by providing re-
alistic input data.

The performance evaluation of the algorithms focused on social
network graphs, which are highly relevant because of their size and
the usability of obtained insights. An open point remains to what ex-
tend the proposed algorithms can be applied to other graphs than so-
cial networks. As the design of the algorithms is very general, a decent
performance for all types of networks can be expected. However, an
extensive evaluation of the sampling and generation algorithms for a
huge variety of graphs remains for future work.

With many other possible applications in a variety of use cases,
the developed algorithms provide a solid foundation for further re-
search. In the future, research might focus on extending the graph
generation algorithm with scaling capabilities. This would allow gen-
erating similar graphs of arbitrary sizes from a single input graph.
Thus, phenomena like the temporary evolution of OSN graphs could
be simulated. Additionally, mechanisms for estimating missing at-
tribute values in user profiles and practical extensions to multiple at-
tributes would allow creating even more accurate and thus realistic
output graphs. Finally, extending the generation algorithm’s capabil-
ities so that it can handle larger networks can increase the range of
possible applications.
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