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1. Introduction

With steadily increasing size and popularity, online social net-

works (OSNs) such as Facebook, Twitter, and Google+ have drawn

the interest of the scientific community. Analyzing the structure

and properties of these networks allows research in various fields.

By studying social behavior and finding patterns in the networks’

structure, it is possible to acquire knowledge about requirements and

parameters for future networks and applications. Additionally, OSNs

have a high impact on today’s users’ choice and consumption of on-

line media. Coupled with widespread availability of mobile Internet,

these phenomena give rise to the scientific field of socially aware

traffic management [29]. The main idea in this discipline is to utilize

social information about Internet users in order to enhance existing

traffic management strategies. For example, information from OSNs

about users’ interests allows for improved caching solutions. How-

ever, complete social networks are seldom available due to privacy
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estrictions and the OSN providers’ reluctance to publish the core

f their business data. Furthermore, running complex algorithms on

ocial network graphs in the order of magnitude of hundreds of

illions of nodes is usually infeasible due to time and resource

onstraints.

Graph sampling techniques address the latter issue by examining

nly a representative subset of a given graph. Formally, the task of

eriving a node sample from a given graph G = (V, E) with node set

of size n and edge set E can be defined as finding a subset of nodes

S⊆V whose topological information can be used in order to reliably

stimate various properties of G. There are two main quality require-

ents for sampling strategies. First, the generated sample has to be

nbiased. That is, the expected value of the sampled data and the

ctual value of the estimated parameter are equal. Second, the mini-

um amount of samples required for reliable results should be low.

Unfortunately, state-of-the-art graph sampling techniques are

imited to the topological analysis of huge graphs whereas socially

ware traffic management requires additional information on user

ttributes like interests, geographic location, and age. Retrofitting

hese algorithms with attribute sampling capabilities implicitly as-

umes the independence of attributes and topology and can provide

nferior results. Therefore, this work transfers ideas from graph sam-

ling to graphs with node attributes by proposing a joint sampling of

tructure and attributes, which takes possible dependencies between
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opology and attributes into account. The resulting sampling mech-

nism provides unbiased and reliable estimates of joint topological

nd attribute based properties of social network graphs in a resource

fficient fashion. As an application of this sampling approach, a graph

eneration method [8] is augmented to use a collected sample for

enerating synthetic social network graphs, which show joint struc-

ure and attribute properties similar to the original graph. In order to

uantify this similarity, measures were developed, which assess sim-

larity not only with respect to topology, but also take attributes into

ccount.

Thus, the contribution of this work is threefold:

• Existing sampling algorithms are extended to node attributes
• A novel sampling algorithm is proposed which allows for joint

capturing of structure and attribute characteristics
• A graph generation method is presented that reproduces topol-

ogy and attribute related properties of the original graph based

on sampling

Therefore, this work is structured as follows. Section 2 covers rel-

vant related work on attribute sampling and graph generation, and

escribes the used social network data sets. Section 3 introduces the

ampling mechanism and presents results. Topological graph simi-

arity measures are extended to additionally assess attribute related

imilarity in Section 4. A method to generate synthetic social network

raphs from a node sample with attributes is proposed in Section 5.

he performance of the algorithm is evaluated for different social net-

ork graphs and attributes. The results are discussed and an outlook

n future work is given in Section 6.

. Related work

.1. Graph sampling

Numerous approaches have emerged since graph sampling be-

ame a relevant scientific topic. We revisit state-of-the-art graph

ampling algorithms that are classified into three categories, namely,

niform Node Sampling (UNI), Breadth First Search (BFS), and ran-

om walks (RW). Though primarily focused on sampling topological

raph properties, these algorithms provide a solid foundation for the

esign of novel sampling algorithms. Due to extensive research and

everal performance benchmarks [17–19], they have proven proper-

ies and behavior and are also well-established in practice.

In the context of UNI, a given amount of nS nodes is drawn at ran-

om from the original graph’s set of nodes V. While this procedure

uarantees an unbiased sample, it is not practical in most situations

ue to several possible restrictions. These include sparse ID spaces

here multiple queries may be required in order to obtain a single

ample, or even completely unknown ID spaces where no informa-

ion about the domain of user IDs is available. Thus, UNI is consid-

red as reference for the theoretical best case. Although BFS and re-

ated methods like depth first search [17] and snowball sampling [12]

ere used for various sampling tasks in the past [24,25], current re-

earch suggests avoiding these methods due to a bias towards nodes

ith high degree [17,18]. Additionally, this bias is graph specific and

o mechanism for correcting this bias has been developed yet. Re-

ent graph sampling mechanisms rely on random walks [11,20,27], a

amily of algorithms that require only the basic operation of query-

ng a node for its set of neighbors. With the possibility to exactly

uantify the node degree bias encountered in random walks, tech-

iques for correcting this bias have been developed and allow collect-

ng samples that are unbiased with respect to topology. Most com-

only used representatives include the Metropolis Hastings Random

alk (MHRW) and the Re-Weighted Random Walk (RWRW). Based

n the Metropolis Hastings algorithm [23], MHRW is a rejection sam-

ling technique that corrects the bias on the fly. Its applications range

rom the analysis of P2P networks [26,31] to that of directed [34] and
ndirected [7] OSNs. In contrast, RWRW first performs a biased RW

nd then applies the Hansen–Hurwitz estimator [10] to the degree

istribution observed in the sample. By dampening the occurrence

robabilities of high degree nodes, this yields an unbiased distribu-

ion. The main advantage of RWRW over MHRW is that RWRW avoids

pending a large portion of its sampling budget on rejections. In the

ase of MHRW, around 55% of iterations are rejections [7]. Therefore,

n average, MHRW’s resulting set of sampled nodes not only con-

ists of fewer unique nodes, but also stems from a shorter walk. A

eneralization of the RWRW algorithm is presented in Section 3 and

s the basis of the developed sampling algorithm. It allows for esti-

ation of the two-dimensional distribution of node degrees and at-

ribute values. While the literature also offers techniques for sam-

ling from dynamic, time dependent graph streams [1], our proposed

ethod works with static graphs. The main reason for this behavior

s that typical methods involving dynamic graphs require operations

ike drawing a graph’s edges uniformly at random which is not possi-

le in real world OSN graphs. Furthermore, algorithms for estimating

graph’s size have been proposed [13]. However, we assume that the

raph’s size is part of the input.

.2. Graph generation

Modeling real networks is an important branch of science with

any applications, including the analysis of biological and social sys-

ems. When a model is able to use a real graph to consistently gener-

te synthetic graphs that capture the majority of the original graph’s

roperties, its resulting graphs can be used as input for algorithm

enchmarks and simulations, or as a means of anonymizing crawled

ata before publication. This section outlines three state-of-the-art

odels that can be used to generate synthetic graphs given either

he full input graph or even just a sample of its node set.

Exponential Random Graph Models (ERGMs) [16,30,35] constitute

family of statistical models whose goal is to reveal dependencies in

he process of edge creation in networks. This is achieved by quantify-

ng the importance of various graph statistics that summarize struc-

ural patterns in the graph. ERGMs are often used for characterizing

ocial networks [4,6,28]. Additionally, these models allow generating

ynthetic graphs once model parameters have been estimated. How-

ver, ERGMs require complete information on the input graph and

urrent implementations’ time complexity prohibits the analysis of

raphs whose size exceeds a few thousand nodes [36], thus exclud-

ng most real world OSNs.

In [14], the Multiplicative Attribute Graph Model (MAG), a gener-

tive model for graphs with categorical node attributes, is proposed.

he basic idea is that the probability of two nodes being involved in

n edge depends on the nodes’ pairwise combinations of attribute

alues. By quantifying the probability of edge formation for each pos-

ible combination of attribute values, various relationships like ho-

ophily, heterophily, or the tendency to seek connections to a spe-

ific attribute value can be expressed. Given the original graph, model

arameters representing the aforementioned probabilities can be es-

imated. Based on these parameters, the model is capable of gener-

ting synthetic graphs with realistic topological and attribute related

roperties [15]. Unfortunately, MAGs also require the full input graph

for parameter estimation. As in the case of ERGMs, this is the factor

hat makes the approach unsuitable for this work’s goals of analyzing

eal world OSNs and generating similar networks based on samples.

The authors of [8] present a method for generating a topology sim-

lar to the one of a real world graph without requiring full knowledge

f that graph. The input consists of a node sample collected during a

andom walk on the graph of interest. Main aspects to reproduce are

he joint degree distribution (JDD), basically an edge count for each

ype of degree–degree combination, as well as the average cluster-

ng coefficient per node degree. For this purpose, values of the afore-

entioned measures are derived from the collected sample and are
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2 https://snap.stanford.edu/data/soc-pokec.html
3 http://pokec.azet.sk/
4 https://archive.org/details/oxford-2005-facebook-matrix
forwarded to an algorithm that generates graphs whose measures ap-

proximate the targeted values.

The notion of 2.5K-Graphs stems from the work on dK-series [22]

that describes graph models that contain increasing degrees of infor-

mation on the graphs’ structure and have increasing complexity:

0K captures the average node degree.

1K captures the node degree distribution.

2K captures the joint degree distribution.

3K captures two distributions: counts of wedges (node chains of

length three) and counts of triangles among triples of node de-

grees k1, k2, k3.

For a graph G = (V, E) with node set V and edge set E, the 2K model

specifies the JDD as defined in Eq. (1). For each pair of node degrees k

and l, it returns the number of edges between nodes of those degrees.

The sets Vk and Vl denote the subsets of V that consist exclusively of

nodes of degree k and l, respectively.

JDD (k, l) =
∑

a∈Vk

∑

b∈Vl

1{{a,b}∈E} (1)

Unfortunately, the JDD does not contain information on any sort of

clustering or centrality, thus making the 2K not expressive enough to

model real networks. 3K, on the other hand, does contain such infor-

mation, but there is currently no efficient algorithm for the 3K model.

Therefore, 3K is not suitable for the analysis of real networks either.

The 2.5K model tries to bridge this gap by adding the average cluster-

ing coefficient per node degree c̄(k) to the 2K approach, thus main-

taining the efficiency of 2K but also providing a centrality measure in

order to achieve more realistic results.

The first step in the 2.5K framework consists of performing a ran-

dom walk on the graph to replicate. The random walk does not only

record each visited node’s ID and degree but also its adjacency list.

Later, it is possible to induce edges in the traversed graph by check-

ing different nodes’ sets of neighbors for intersections. By applying

the Hansen–Hurwitz estimator to the sampled set of nodes, the node

degree bias of the random walk is corrected and estimates for the

JDD and c̄(k) are derived. After a postprocessing step that includes

smoothing of the JDD and ensures that the resulting JDD is actually

realizable by a real graph, the generation phase of the algorithm is

initiated.

In this phase, the algorithm first creates a set of nodes that follows

the degree distribution encoded in the JDD. Each of these nodes has

a target degree and is therefore considered to have “stubs” that can

be connected to edges. In the second step, these stubs are connected.

Two important constraints are enforced during this procedure. First,

an edge may only be added if the resulting graph does not exceed the

edge count defined in the JDD. Second, edges are added in a greedy

fashion that strives for a high clustering coefficient. The latter part is

important for runtime purposes. In the final steps, double edge swaps

are performed in a Markov Chain Monte Carlo (MCMC) fashion. These

swaps guarantee that the JDD is preserved while c̄(k) approaches the

targeted distribution.

The results presented in the paper compare the 2.5K graphs with

real and generated graphs from the 2K model and show far better

performance while being fast enough for practical use on large real

world graphs. Graph statistics in this comparison include the distri-

butions of node degree and average neighbor degree per node degree,

the average clustering coefficient per node degree, and the joint de-

gree distribution.

Considering the goals of this work, the main issue with the 2.5K

approach is that its only interest lies in reproducing the input graph’s

topology while ignoring node attributes. Another concern may be

that the output graphs need to have roughly the same size as the

input graph as the JDD matrix contains absolute integer values that

lead to varying edge densities depending on the size of the output
raph. The approach presented in Section 3.2 tries to generalize the

DD estimation in order to support node attributes.

In [9], two graph generation algorithms capable of reproducing

ifferent characteristics of a given input graph are presented. Both al-

orithms guarantee achieving the same joint degree distribution as

he input graph. Additionally, the first algorithm aims at achieving an

verage clustering coefficient that is close to that of the input graph

hile the second is directed towards the joint distribution of node

egrees and attribute values. Similarly to the approach presented in

his work, the algorithm uses an extension of the JDD that captures

ttribute related properties, referred to as JDAM (joint degree and

ccurrence of attributes matrix), which is a concept already used in

arlier work [5,21]. In contrast to [9], our proposed graph generation

echanism strives towards both goals simultaneously, i.e., joint de-

ree and attribute distribution as well as average clustering coeffi-

ient. Furthermore, our algorithm deals with the challenge of having

n incomplete view of the input graph as its input consists of a ran-

om walk node sample rather than the entire graph.

.3. Data set description

In order to conduct performance evaluation of various graph al-

orithms presented in this work, realistic input data are required. As

he envisaged application of the algorithms is in the field of social

etworks and socially aware traffic management, we focus on pub-

icly available graphs of OSNs. The use of real world input graphs en-

ures representative results. For the experiments performed in this

ork, two data sets containing topological and attribute related in-

ormation were used. The Pokec data set2 published in [32] contains

he whole network of Pokec3, a popular Slovakian OSN with over 1.6

illion users. User profiles feature information on age, interests, gen-

er, and several other attributes. With over 1.6 million nodes, it is the

iggest network studied in this work. Additionally, a collection of 100

acebook subgraphs4 published in [33] is analyzed. These subgraphs

over different American colleges and universities whose sizes range

rom 760 to 41,000 nodes. They include information on students’ gen-

er, class year, major, high school, and dormitory. Details regarding

he graphs’ topological and attribute related properties can be found

n the corresponding publications. Various characteristics of the sub-

et of graphs that is used for evaluating the proposed sampling and

raph generation algorithms are listed in Table 3.

. Proposed sampling approach

.1. Extending existing sampling algorithms to attributes

When designing sampling algorithms that take into account both

he graph’s topology and its attribute values, a first approach could

e extending existing graph sampling algorithms to collect attribute

alues when visiting a node. While UNI, BFS, and MHRW can be in-

uitively extended to estimate the two-dimensional degree attribute

istributions, the re-weighting process of RWRW needs some mod-

fication. The resulting estimator for the two-dimensional attribute-

egree distribution is presented in Eq. (2), which indicates the cor-

ected probability for a node v with degree degv = d and attribute

alue attv = a. As the random walk bias does not depend on the node

ttribute, the Hansen–Hurwitz estimator of the one-dimensional

WRW can be adopted.

(degv = d, attv = a) =
∑

w∈VS

1{degw=d,attw=a}
d∑

w∈VS

1
deg

(2)

https://snap.stanford.edu/data/soc-pokec.html
http://pokec.azet.sk/
https://archive.org/details/oxford-2005-facebook-matrix
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Fig. 1. Comparison between the original two-dimensional degree age distribution in the Pokec graph and those observed by the extended sampling algorithms.
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Fig. 1a presents the two-dimensional joint distribution of age and

ode degree for the Pokec graph. Nodes’ age and node degree value

ombinations are aggregated in bins in order to achieve a smooth

lot. Each bin represents the combination of an individual age value

ith a range of degree values. In the figure, each rectangular cell cor-

esponds to a bin with age values on the x-axis and degree margins

n the y-axis. Analogous to logarithmically scaling the y-axis, the bin

idth with respect to node degree increases logarithmically in order

o fit the whole range of possible degree values. The color of each

ell indicates the probability of occurrence for the respective range of

ombinations. Fig. 1b, c, e, and f illustrate results of UNI, BFS, MHRW,

nd RWRW for a sample size of 100,000 on the Pokec graph. Addi-

ionally, the performance of these algorithms with respect to estimat-

ng the input graph’s two dimensional degree attribute distribution

s evaluated by calculating the Kolmogorov–Smirnov D statistic be-

ween the two dimensional degree attribute distribution observed in

he input graph and the distributions estimated by the sampling algo-

ithms. This statistic indicates the supremum of the distance between

he respective empirical cumulative distribution functions, which is

ensitive to both their locations and shapes and is thus an appropri-

te metric for the similarity of the distributions. While UNI yields a

istribution that is barely distinguishable from that of the original

raph (D = 0.0052), it does not come as a surprise that BFS does not

erform well in the joint sampling scenario (D = 0.3658) as it has al-

eady been shown to be no viable approach even in the context of

opological graph sampling. Also MHRW (D = 0.0341) clearly strug-

les with accuracy, especially in the lower half of the figure where

robabilities of combinations involving low degree values are plot-

ed. This phenomenon can be explained with the discrepancy intro-

uced by the rejection procedure of MHRW. RWRW (D = 0.0141), on

he other hand, shows the best performance of the three sampling

lgorithms that are feasible in practice.

Although the two-dimensional distribution can be reproduced

uite accurately by RWRW, no structural dependencies can be cap-

ured by the existing sampling methods. Therefore, we propose a

ovel sampling approach based on RWRW, which adds an estimate

or the joint two-dimensional degree attribute distribution. This es-

imate lays the foundation for a new graph generation algorithm,

hich allows for the reproduction of topological and attribute related

roperties of the original graph.
 f
.2. Sampling method

The sampling algorithm developed during this work is based on

he 2.5K approach of Gjoka et al. [8] that is outlined in Section 2 and

orks as follows. First, a random walk is performed on the original,

nknown graph. This random walk not only collects node degrees

nd associated attribute values, but also saves each visited node’s ID

nd a list of the IDs of its neighbors. Due to the multitude of possible

ttribute-degree combinations and therefore often very low number

f node occurrences per type, binning is applied with respect to the

ode degree. Afterwards, the random walk’s node degree bias is com-

ensated by applying the Hansen–Hurwitz estimator to the created

ins. These re-weighted bins can be used to estimate the probability

istribution of attribute-degree combinations in the original graph.

dditionally, the adjacency lists of sampled nodes can be used to in-

uce edges beyond those traversed by the random walk. Therefore,

n estimate of the joint degree attribute distribution (JDAD), ̂JDAD,

an be derived. Intuitively, the JDAD can be thought of as a distribu-

ion of edges in the graph. For each edge type defined by the degrees

nd attribute values of involved nodes, the JDAD returns the number

f edges of this type in the graph. A formal definition of the JDAD is

rovided in Eq. (3), where Vij denotes the subset of nodes that have

ode degree i and attribute value j. The JDAD is conceptually similar

o the JDAM proposed in [9], which provides the number of edges for

tuple of degree and attribute pairs. In contrast, the JDAD maps a

et of pairs, which is more appropriate in the context of undirected

raphs.

DAD({(i, j), (k, l)}) =
∑

v∈Vi j

∑

w∈Vkl

1{{v,w}∈E} (3)

Analysis of ̂JDAD allows estimating the assortativity of attributes

f interest as well as edge densities for observed edge types. Details

f the binning, re-weighting and edge induction steps are presented

n the following.

The binning mechanism works as follows. After setting a constant

in width wb, the observed degree range of each attribute is divided

nto bins with width wb. Each node v is assigned to a bin bin(v) de-

ending on its node degree and attribute value. Recommended values

or the bin width are 4–6. This results in sufficiently filled bins while
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mitory and Bucknell University Facebook subgraph as input graph.
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retaining enough accuracy with respect to observed node degrees. Af-

ter binning, an aggregated JDAD, JDADbin, can be defined according to

Eq. (4). Given two bin identifiers i and j, JDADbin({i, j}) denotes the

number of edges in G that are present between nodes inside these

bins.

JDADbin({i, j}) =
∑

v∈V
bin(v)=i

∑

w∈V
bin(w)= j

1{{v,w}∈E} (4)

In OSNs, not all users make all their information publicly avail-

able or may choose to provide incomplete profile data. Thus, in prac-

tice, sampling algorithms come across users with unknown attribute

values. In order to cope with such cases, the proposed sampling al-

gorithm maps unset attribute values to a unique reserved attribute

value (e.g., −1, N/A). On the one hand, this allows statements about

the percentage of users with unavailable attribute information. On

the other hand, the sampling budget spent on fetching the user’s data

is not wasted as topological properties still contribute to the overall

estimates, regardless of attribute values.

While the node sequence VS = (s1, . . . , sn) returned by a random

walk of length n yields at most n − 1 edges, namely those traversed

by the random walk, a multitude of edges can be induced when ad-

jacency lists of visited nodes are also taken into account. Edge in-

duction exploits the fact that the original graph G contains an edge

{u, v} iff u is part of v’s set of neighbors N (v). However, if v is sampled,

not all elements of N (v) are necessarily visited by the random walk.

Thus, degree and attribute information is only available for pairs

{u, v} where both u and v are in the sample and only edges between

such nodes can be added to the JDAD. Because of the random walk’s

bias towards high degree nodes, the distribution of induced edges

also has an inherent bias. In order to reduce effects caused by this

bias, the idea of using a safety margin M as proposed in [8] is em-

ployed. Ignoring induced edges that result from checking the adja-

cency lists of nodes that are closer than M positions in the node se-

quence returned by the random walk decreases introduced bias. It is

recommended to use values in the range 10 ≤ M ≤ 100 [8].

As in the case of the two-dimensional degree attribute distribu-

tion, the number of possible edge types defined by the degree and

attribute values of involved nodes is very large while individual num-

bers of occurrence are low. For this reason, the same binning proce-

dure is applied to the list of induced edges, resulting in edge types

being defined by pairs of bin IDs instead of pairs of degree-attribute

combinations. After this conversion, the lists of traversed and in-

duced edges are aggregated into an estimate of a joint bin distribution
̂JDADbin. For each observed edge type {i, j}, the value ̂JDADbin({i, j})
represents the ratio between the number of edges of this type and

the maximum possible number of such edges, given the sequence of

sampled nodes VS. Eq. (5) defines this value formally.

̂JDADbin({i, j}) =

∑
sk,sl∈VS,

s.t. bin(sk)=i,bin(sl)= j,
|k−l|=1∨|k−l|>M

1{{sk,sl}∈E}

∑
sk,sl∈VS,

s.t. bin(sk)=i,bin(sl)= j,
|k−l|=1∨|k−l|>M

1
(5)

As entries in ̂JDADbin represent density measures for each edge

type, they can be used to calculate an estimate of the original graph’s

assortativity. Additionally, scaling of this distribution with respect to

the output graph size is used in the context of graph generation in

order to determine goal values for the number of edges per type in

the output graph.

3.3. Results

As explained in Section 3.1, existing graph sampling algorithms

can easily be extended with attribute sampling capabilities. Fig. 2
uantifies the performance of these algorithms with respect to esti-

ating two dimensional degree attribute distribution of the Bucknell

niversity Facebook subgraph in terms of the Kolmogorov–Smirnov

statistic. Additionally, the performance of UNI and the proposed

ampling algorithm is presented. The x-axis indicates the sampling

udget in terms of the original graphs’ sizes, while the calculated

olmogorov–Smirnov D statistic is provided on the y-axis. In addi-

ion to the mean D value across 50 repetitions indicated by the bars’

eights, whiskers denote 90% confidence intervals. For various values

f the bin width parameter, the proposed graph sampling algorithm

as applied to different social network graphs. The results indicate

hat minimum D values are achieved with bin widths of 4 to 6. As

iscussed in Section 2, BFS and RW suffer from a bias towards high

egree nodes which results in a skewed degree distribution among

he collected nodes. Thus, it is not surprising that these algorithms

erform significantly worse than the presented alternatives. With in-

reasing sampling budget, BFS’s performance improves slightly. This

an be explained by the fact that the BFS algorithm visits each node at

ost once and thus is guaranteed to visit lower degree nodes when

higher sampling budget is available. UNI is the theoretical best case

s it draws random sample pairs from the original distribution. This is

eflected by UNI having the lowest D score among all sampling strate-

ies. For every sampling budget, the proposed algorithm outperforms

HRW, which is statistically shown by a two-sample t-test with p-

alues of 0.0028, 0.0002, 0.0038, 0.0026 for the different fraction val-

es 0.1, 0.2, 0.3, 0.5, respectively.

The above presented results for a rather small social network

raph with only 3824 nodes showed that the algorithms require sam-

le sizes beyond 20% of the original graph’s number of nodes in or-

er to achieve a good performance with respect to the Kolmogorov–

mirnov distance. However, results obtained from sampling huge

raphs like the Pokec graph show that a sampling budget in the or-

er of magnitude of 2% to 5% of the original graph’s size is sufficient

n order to produce a reliable estimate. This behavior is presented in

ig. 3 where the Kolmogorov–Smirnov distance between the original

DADbin and its sample based estimate, which is the foundation for

he proposed graph generation mechanism, is displayed for various

raphs and sample sizes. While the x-axis shows the sampling bud-

et, the y-axis indicates the aforementioned Kolmogorov–Smirnov

istance with respect to the JDADbin. For the four Facebook subgraphs

averford, Rice, Stanford, and Rutgers, the dormitory attribute was

ampled. In the case of Pokec, age was chosen. Three levels of perfor-

ance corresponding to the graphs’ size can be identified in the plot.

irst, the small graphs Haverford and Rice with 1446 and 4083 nodes

hich result in the highest Kolmogorov–Smirnov distances. Second,

edium sized graphs Stanford and Rutgers containing 11586 and

4568 nodes have significantly better performance values. Finally, for
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Fig. 3. Influence of the sampling budget on the Kolmogorov–Smirnov distance be-
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ford College Facebook subgraph and bin width 4.
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he Pokec graph consisting of more than 1.5 million nodes, a sampling

udget of 2% is sufficient for achieving D values below 0.01. These ob-

ervations suggest that in the context of huge real world graphs, the

esource efficiency achieved via sampling increases significantly.

Additional investigations show a graph and attribute independent

elationship between the absolute sampling budget and the resulting

olmogorov–Smirnov distance. Fig. 4 presents an aggregated view on

amples of dormitory, major, and year attributes from the four Face-

ook subgraphs Haverford, Rice, Stanford, and Rutgers, and the age

ttributes from the Pokec graph. It displays a scatter plot of abso-

ute sampling budgets on the x-axis alongside the corresponding D

alues on the y-axis. Furthermore, locally weighted polynomial re-

ression yields the smoothed curve with a shaded area indicating the

5% confidence intervals. When both axes are logarithmically scaled,

he fitted curve resembles a straight line which in turn corresponds

o a power law distribution. Thus, for the investigated social network

raphs, rather than relative sampling budget, the absolute sampling

udget seems to be a key performance indicator of the proposed al-

orithm. Hence, following figures present absolute values.

Depending on the intended use case, different user attributes

ay be of interest when performing attribute sampling and later

raph generation tasks. Fig. 4 already showed that a large sampling

udget provides accurate samples almost independent of graph size

nd attribute type. However, for small OSN graphs with low num-

ers of sampled nodes some challenges may arise. Fig. 5 provides an

verview of the attribute sampling algorithm’s performance when

pplied to the same topology but different attributes. In 20 exper-

ment repetitions per configuration, the graph sampling algorithm

as applied to the small Haverford graph (1446 nodes) using the

ttributes dormitory, major, and school year. While dormitory and
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ig. 4. Graph and attribute independent relationship between sampling budget and

he Kolmogorov–Smirnov distance between JDADbin and ̂JDADbin .
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ajor are categorical attributes, school year is a numerical attribute

ith integer values. With the sampling budget on the x-axis and the

olmogorov–Smirnov D statistic on the y-axis, the plot contains re-

ults for all three attributes. Each bar color represents one attribute.

he mean D score of all repetitions is indicated by the bars’ height,

nd whiskers depict the 90% confidence intervals. Similar to previous

bservations, similarity correlates with the sampling budget. How-

ver, the school year attribute requires a significantly higher sampling

udget in order to reach reasonable distance values. An explanation

or this behavior is that the characteristics of this attribute distribu-

ion are different from the two categorical attribute distributions. For

xample, the school year attribute has a high fraction of values which

nly occur very rarely. Therefore, the sampling algorithm needs to

isit a larger amount of nodes in order to observe enough repre-

entatives and provide reliable estimates. With a sampling budget of

89 (20%), the mean D value drops below 0.1 for all attributes.

On a machine equipped with an Intel Core i7 4770 CPU at 3.40 GHz

nd 16 GB of RAM, the sampling and JDADbin estimation procedure for

he Facebook subgraphs is completed within few seconds. In the case

f the large Pokec graph with more than 1.6 million nodes, runtimes

n the order of magnitude of 1 h are observed.

To sum up, using the proposed algorithm allows the same level

f accuracy as MHRW while investing a lower sampling budget, or a

igher level of accuracy than MHRW while investing the same sam-

ling budget. Additionally, the results confirm the intuition that in-

reasing the sampling budget results in better performance. As this

ffect is mainly depending on the absolute number of sampled nodes,

nly for small social network graphs a larger sampled fraction is

eeded. Additionally the properties of the sampled attributes have

o be taken into account in this case. For huge graphs, on the other

and, small sampling fractions are sufficient to obtain accurate sam-

les almost independent of graph and attribute properties.

. Graph similarity

In order to evaluate and compare the performance of algorithms

hat generate synthetic graphs based on a given input graph, it is nec-

ssary to be able to quantify the output graph’s similarity to the input

raph. This section presents approaches for assessing topological and

ttribute related similarity between graphs.

.1. Attribute based NetSimile

The comparison of multidimensional graph property distributions

e.g., by the Kolmogorov–Smirnov test) quickly becomes computa-

ionally expensive and does not provide insights into complex graph

haracteristics. Therefore, dedicated graph similarity measures like

etSimile [2] were designed specifically to assess graph similarity
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Table 1

Exemplary values of topological graph similarity mea-

sures for different Facebook subgraphs.

G1 G2 NetSimile EIG

Middlebury Vassar 0.10 0.06

Amherst Bowdoin 0.16 0.04

Simmons Swarthmore 0.27 0.26

Haverford Simmons 0.32 0.26
based on a variety of topological characteristics. The key idea of the

algorithm is to extract node level features from each graph, aggregate

these features in five ways (namely, mean, median, standard devia-

tion, skewness, and kurtosis), and return a size independent, graph

specific signature vector for each graph. By applying a distance mea-

sure to the resulting vectors, the graphs’ similarity can be quantified.

Unfortunately, the basic version of NetSimile is restricted to topo-

logical comparisons. Thus, additional attribute based features are

introduced in order to cope with graphs that have node attributes.

Following the idea of the established NetSimile measure, the de-

veloped extension, NetSimileAtt, does not rely on a single attribute

related property. Instead, differently aggregated statistics which rep-

resent diverse characteristics are taken into account simultaneously.

The developed NetSimileAtt measure contains four node centric

attribute based properties. Before this measure can be applied, the

graphs to be compared need to undergo a preprocessing step that

converts them to graphs with edge weights. Based on the attribute

values atti and attj of nodes involved in an edge {i, j} and whether

the attribute in question is categorical, continuous, or discrete, the

edge’s weight is determined. If the attribute is categorical, the edge

weight w{i, j} is defined as w{i, j} = 1{atti=att j}. On the other hand, if

the attribute is continuous or discrete, the edge weight is defined as

w{i, j} = e−|atti−att j |. This exponentiation ensures that in either case,

edge weights are normalized in the range [0; 1] where a value close

to 1 indicates a homophilous relationship between the edge’s nodes

and a value close to 0 indicates a heterophilous relationship between

them, respectively.

The following four node centric properties are analyzed by

NetSimileAtt:

Mean node weight For each node v, the mean weight of

its edges is calculated. This statistic is defined as w̄v =
1

degv

∑
u∈N (v) w{u,v} and quantifies the similarity between a

node and its neighbors.

Mean neighbor weight For each node v, this property captures

the mean value of w̄u among all of v’s neighbors u. Doing so

extends w̄v by an additional hop and thus analyzes the degree

of homophily found in the two hop neighborhood of v.

Egonet edge homophily The sum of edge weights in a node’s

egonet (i.e., the subgraph induced by v ∪ N (v)) is calculated.

Summation allows making a statement about both the size of

anode’s egonet and the level of similarity between included

nodes.

Egonet neighbor homophily Similar to NetSimile’s count of

egonet neighbors, the sum of potential edge weights between

node v and neighbors of its egonet u is calculated. Again, this

extends the previous property by a hop and allows for a deeper

insight into a node’s surroundings.

Like in the case of plain NetSimile, each of these statistics is com-

puted for every node in the compared graphs. Then, the five aggrega-

tion functions are applied to the resulting vectors which finally yields

the graphs’ signature vectors. The NetSimileAtt value between the in-

put graphs is defined as the Canberra distance between these sig-

nature vectors. Low values indicate a high level of similarity while

high values denote dissimilarity between graphs. In particular, the

NetSimile and NetSimileAtt measures are zero when the input con-

sists of two identical graphs. Section 4.3 shows examples of typical

values for similar and dissimilar pairs of graphs and experimentally

demonstrates the measure’s suitability for similarity assessment.

4.2. Attribute based eigenvalue extraction

Another measure for graph similarity is briefly introduced in [2].

The Eigenvalue Extraction (EIG) algorithm stems from the area of

spectral graph analysis and is based on the idea that eigenvalues can
e used as an index of centrality in network structures [3]. First, given

raphs are mapped to signature vectors. These vectors consist of the

largest eigenvalues of the graphs’ adjacency matrices, where k is an

lgorithm parameter. Usually, a value of k = 10 is sufficient. After that

he similarity measure is defined as the Canberra distance between

he resulting vectors.

Unlike NetSimile’s local feature extraction from each individual

ode, this approach extracts global features by considering the whole

djacency matrix at once. As in the case of NetSimile, EIG cannot

uantify the similarity of graphs with node attributes. Therefore, us-

ng the preprocessing approach developed for NetSimileAtt, EIG can

lso be extended to support graphs with node attributes. First, the

raphs’ edges {i, j} are assigned weights w{i, j} as defined in the pre-

ious section. Then, the same procedure as in EIG is applied: the k

argest eigenvalues of the graphs’ weighted adjacency matrices are

omputed. These eigenvalues compose the graphs’ signature vec-

ors that are finally compared via the Canberra distance. This whole

ethod of comparing graphs with node attributes is referred to as

IGAtt.

.3. Results

In this section, various methods for assessing graph similarity

ere introduced. These include NetSimile and EIG as well as their at-

ribute based counterparts NetSimileAtt and EIGAtt, respectively. Be-

ore the next section discusses the performance of graph genera-

ion algorithms with respect to these similarity measures, a brief

verview of the domains of these measures is provided. For this

urpose, the measures’ behavior for pairs of social network graphs

hat are intuitively similar or dissimilar based on criteria like size,

dge count, and attribute based assortativity is analyzed. Results from

hese comparisons provide a reference for assessing the performance

f the graph generation algorithm.

In addition to the results presented in this section, Fig. 9 in the

ext section illustrates a positive correlation between the proposed

etSimileAtt measure and Kolmogorov–Smirnov distances regarding

he node degree distribution, attribute value distribution, and JDADbin

istribution between input graphs and graphs produced by our gen-

ration algorithm. This relationship indicates that NetSimileAtt is in-

eed capable of capturing topological as well as attribute related

raph properties in a manner which is consistent with established

lternatives.

Table 1 provides values for the topological measures NetSimile

nd EIG for different pairs of graphs from the Facebook dataset. In

he first two examples, intuitively similar graphs are compared which

ll have pairwise similar sizes with respect to both, node and edge

ount. For these, NetSimile values are below 0.16 and EIG does not

xceed 0.06. The following two comparisons show dissimilar graphs.

hile having an almost identical number of nodes, the Simmons

raph exhibits only half as many edges as the Haverford or Swarth-

ore graphs. As a result, NetSimile and EIG values rise beyond 0.26.

In order to grade possible values for attribute based similarity

easures, Table 2 presents calculated values for NetSimileAtt and

IGAtt for different OSN graphs and attributes. Intuitively, two graphs

ith node attributes should be considered similar if they have a simi-

ar amount of nodes and edges as well as a similar degree of attribute
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Table 2

Exemplary values of attribute based graph similarity measures for dif-

ferent Facebook subgraphs.

G1 G2 Attribute NetSimileAtt EIGAtt

Haverford Swarthmore Dormitory 0.15 0.14

Amherst Bowdoin Dormitory 0.16 0.16

Oberlin Wellesley Dormitory 0.18 0.04

Amherst Vassar Dormitory 0.24 0.40

Amherst Smith Dormitory 0.31 0.44

Bowdoin Smith Dormitory 0.36 0.30

Haverford BFS20%
Hav Dormitory 0.45 0.82

Haverford BFS40%
Hav Dormitory 0.22 0.16

Haverford BFS80%
Hav Dormitory 0.08 0.10
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Fig. 6. Outline of the graph generation algorithm developed in this work.
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ased assortativity. The first three entries of the table provide such

xamples. In these cases, NetSimileAtt does not exceed 0.18 and val-

es of EIGAtt are 0.16 or less. The next three instances illustrate cases

here assortativity differs by a factor of around three which directly

ffects the measures’ values. They increase beyond 0.24 and 0.30, re-

pectively.

The bottom part of the table presents comparisons of the Haver-

ord graph with subgraphs of itself. BFSk%
Hav denotes the subgraph

f the Haverford graph that is based on a BFS sample of k% of

ts nodes. With increasing k, the subgraph approaches the origi-

al graph and thus, the similarity measures take on lower values.

hile NetSimileAtt drops as low as 0.08, EIGAtt’s minimum is 0.10.

his can be explained with the fact that EIGAtt has a dependency on

raph size which adds to the dissimilarity already present from BFS

ampling.

The examples provided in this section allow deriving thresholds

or the four similarity measures which in turn help interpreting

he results presented in the following section. For NetSimile, EIG,

etSimileAtt, and EIGAtt, these thresholds are 0.16, 0.06, 0.18, and

.16, respectively. If the similarity value between a generated output

raph and its underlying input graph falls below the corresponding

hreshold, the output graph is considered to be similar to the input

raph.
Table 3

Comparison of avg. clustering coefficient c̄, the assortativity a, the avg.

shortest path length l̄s, the number of cliques |C|, and the avg. closeness

centrality c̄c for original and generated graphs. Algorithm parameters:

attribute school year and bin width 4.

Fraction c̄ a l̄s |C| c̄c

Rice (|V | = 4087, |E| = 184826)

original 0.300 0.520 2.468 1145592 1.00 · 10−4

0.1 0.201 0.601 2.714 1048786 4.37 · 10−7

0.2 0.241 0.624 2.661 863602 7.51 · 10−7

0.3 0.258 0.575 2.636 1842283 1.27 · 10−6

0.5 0.310 0.577 2.644 2311427 1.94 · 10−6

Bucknell (|V | = 3826, |E| = 158863)

original 0.281 0.268 2.507 522476 1.05 · 10−4

0.1 0.197 0.031 2.763 441164 4.20 · 10−7

0.2 0.283 0.085 2.756 685400 1.40 · 10−6

0.3 0.294 0.270 2.725 690691 2.01 · 10−6

0.5 0.308 0.273 2.661 1039404 2.62 · 10−6

Smith (|V | = 2970, |E| = 97133)

original 0.289 0.157 2.498 151137 1.37 · 10−4

0.1 0.182 0.411 2.820 203916 1.13 · 10−6

0.2 0.228 0.137 2.713 282275 2.85 · 10−6

0.3 0.283 0.086 2.765 273109 3.21 · 10−6

0.5 0.333 0.197 2.780 376658 5.35 · 10−6

Haverford (|V | = 1446, |E| = 59589)

original 0.327 0.195 2.228 475705 3.14 · 10−4

0.1 0.234 0.152 2.416 232857 2.57 · 10−6

0.2 0.290 0.158 2.303 344723 4.23 · 10−6

0.3 0.311 0.153 2.277 629996 4.66 · 10−6

0.5 0.333 0.188 2.307 637602 5.65 · 10−6
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. Graph generation

.1. Algorithm

The graph generation algorithm developed during this work is ca-

able of creating graphs with node attributes based on a node sam-

le collected during a random walk and the target size n of the output

raph. In this work, n equals |V|, i.e., the size of the original graph, and

s part of the input. An overview of involved mechanisms is shown in

ig. 6.

The algorithm starts off by collecting a node sample via a random

alk. The sampling algorithm presented in Section 3.2 calculates oc-

urrence probabilities for every bin Bi = (Bi,a, Bi,l , Bi,r) defined by its

ttribute Bi, a and its degree range [Bi, l; Bi, r). Multiplying this bin dis-

ribution with the size of the input graph, and subsequent rounding

esults in node counts for every bin Bi. These counts are used to cre-

te a preliminary node set where nodes’ attribute values are fixed, but

hose degree range lies in the range defined by their source bin. For-

ally, such a preliminary node v is defined as triple (attv, leftv, rightv)

onsisting of its attribute value attv and left and right degree margins

eftv and rightv, respectively. Furthermore, the sampling mechanism

rovides ̂JDADbin, i.e., an estimate of the joint two-dimensional de-

ree attribute distribution, which contains the structural characteris-

ics of the graph.

Before connecting the nodes via edges, entries of the ̂JDADbin need

o be converted from density measures for each edge type to ac-

ual edge counts. For this, the ̂JDADbin is multiplied with ˆ|E|, an es-

imate for the number of edges in the original graph. This estimate

s derived by utilizing the reliable degree estimate provided by the

ansen–Hurwitz estimator and exploiting the relationship of node

egree and edge count. First, the Hansen–Hurwitz estimator is ap-

lied to the node degrees observed in the random walk’s node sam-

le, which yields estimates for the occurrence probabilities pk of each

ode degree k. These probabilities can be used in order to estimate

he average node degree in the original graph.

The ingredients collected so far are sufficient to create an out-

ut graph whose degree-attribute distribution is similar to that of

he original graph and whose edges follow the estimated ̂JDADbin.

he output graph can be constructed by iterating over all possible

dges between nodes of the created node set and adding only those

dges whose insertion neither violates the degree range of the in-

olved nodes nor leads to exceeding the edge count in the ̂JDADbin.

As explained in this section’s introduction, such an algorithm ig-

ores possible triangle structures and thus the created output graph

isses key characteristics of the input graph. To address this issue,

he algorithm is augmented by an estimate of the input graph’s av-

rage clustering coefficient ˆ̄c. The estimation is based on the set of

nduced edges Eind that is derived during the sampling process and is

escribed in detail in the work of Gjoka et al. [8].

Now, the algorithm is extended to first greedily create triangles

nd thus an output graph with a high average clustering coefficient.
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Fig. 7. Performance of the graph generation with optimal input in terms of NetSimile

and NetSimileAtt values between generated and original graph. Algorithm parameters:

attribute dormitory, bin width 4, and Bucknell University Facebook subgraph.
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attribute, and degree distributions.
This is achieved by associating every node v in the output node set

with a random one-dimensional coordinate rv, thus assigning each

possible edge a distance with respect to this coordinate system and

iterating through edge candidates sorted by their distance value. Fol-

lowing this principle, the constraints imposed by ̂JDADbin are still met

while the resulting average clustering coefficient is increased [8].

In most cases, this construction results in an output graph with

an average clustering coefficient greater than the one estimated in

the previous step. Thus, in a final step, ̂JDADbin preserving edge swaps

are performed in order to achieve an average clustering coefficient

close to the estimate ˆ̄c. An edge swap is a rewiring procedure applied

to a pair of edges {u, v} and {w, x} in which the edges exchange one

node with each other. This results in one of two alternative pairs of

edges, namely {u, x} and {v, w} or {u, w} and {v, x}. A ̂JDADbin preserv-

ing edge swap is defined as an edge swap that does not alter entries

in ̂JDADbin. Such an edge swap can be achieved by choosing a pair of

edges whose nodes’ bin memberships overlap. Given ˆ̄c, the maximum

number of iterations imax, and an accuracy threshold ε, edge swaps

are performed in an MCMC fashion. In each step two random edges

originating from nodes with identical bin membership are chosen

and the edges’ destinations are replaced with each other. If the swap

changes the output graph’s average clustering coefficient towards its

goal value, the swap is accepted. Either after the maximum number

of MCMC iterations has been performed or the difference between

the output graph’s average clustering coefficient and ˆ̄c drops below ε,

the MCMC procedure halts and the output graph is returned.

The current implementation of the graph generation algorithm is

limited to creating output graphs consisting of the same amount of

nodes as the input graph. Scaling the output graphs to arbitrary sizes

would require nontrivial changes to both, degree and edge distribu-

tions in order to achieve realistic results. This task is out of the scope

of this paper and left for future work.

5.2. Results

This section investigates the influence of different parameters on

the graph generation algorithm and compares its performance to

that of a state-of-the-art algorithm. Fig. 7 illustrates the performance

of the graph generation for both, the topology focused NetSimile

measure, as well as for NetSimileAtt, which covers similarity with

respect to graphs’ attribute values. Both plots are based on experi-

ments that generated synthetic social network graphs from the Buck-

nell University Facebook subgraph with 3824 nodes. The sampled at-

tribute is dormitory, a categorical value indicating a user’s residence.

To avoid propagated inaccuracies from the sampling process, the syn-

thetic graphs are generated using the original JDAD . Thus, the plot
bin
resents the theoretical performance of the generation algorithm

hen it is running with optimal input. It shows the CDFs of NetSim-

le and NetSimileAtt values after the generation of 15 synthetic graphs

ased on the original JDADbin. The NetSimile values between the orig-

nal graph and the generated graphs range from 0.11 to 0.14. Addition-

lly, NetSimileAtt values form a steep CDF with scores always below

.11. It follows that the generated graphs are very similar to the orig-

nal graph as both similarity measures are well below the thresholds

ound in Section 4.3. This means, the proposed graph generation algo-

ithm is able to accurately reproduce topological and attribute based

roperties based on JDADbin of the input graph. Note that in order to

btain JDADbin, full knowledge and processing of the input graph is re-

uired, which is not feasible for larger graphs. Therefore, each graph

eneration is usually preceded by a sampling process in practice.

The practical application performance of the graph generation al-

orithm is presented in Figs. 8 and 10. This means, a sampling was

erformed on four different graphs of the Facebook data set with four

ifferent sampling budgets and the estimates of ̂JDADbin were used as

nput to the generation algorithm. The chosen OSN graphs, namely

ice, Bucknell, Smith, and Haverford, cover a wide range of topologi-

al and attribute related characteristics. Thus, the algorithm’s perfor-

ance on these graphs can be used as indicator for the algorithm’s

verall performance. The collected attribute is school year. To present

he results for the different graphs in a decent way, sampled fraction

s used on the x-axis. However, note that the above findings on the

ccuracy of the proposed sampling algorithm remain valid and prop-

gate through the generation process. This means, instead of sampled

raction, the performance of the generation algorithm also mainly de-

ends on the absolute number of sampled nodes.

Fig. 8 shows the Kolmogorov–Smirnov distance between the orig-

nal JDAD and JDAD of the generated graph. In contrast to the
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Fig. 10. Influence of the sampling budget on NetSimile and NetSimileAtt values be-

tween generated and original graphs. Algorithm parameters: attribute school year and

bin width 4.
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5 http://www.minasgjoka.com/2.5K/instructions/index.html
esults reported in Fig. 5, the calculation of the distances presented

n this section also takes into account the fact that the graph gen-

ration mechanism might not be able to reconstruct the estimate of

DADbin exactly. Nonetheless, the value of the D statistic decreases for

ach graph when the available sampling budget is increased.

In order to investigate the relationship between the similarity

easures proposed in Section 4 and the established Kolmogorov–

mirnov D statistic, the different distance measures between orig-

nal and generated graphs are calculated and compared with each

ther. Fig. 9 presents the correlation between NetSimileAtt and the

olmogorov–Smirnov distance with respect to three different dis-

ributions. These include the single dimensional distribution of at-

ribute values, the single dimensional distribution of node degrees,

nd the combined distribution represented by JDADbin. While the

-coordinate of each point denotes its NetSimileAtt value, the y-

oordinate represents the corresponding Kolmogorov–Smirnov D. In

ddition to this scatter plot, a line representing the linear best fit is

dded for each distribution used by the Kolmogorov–Smirnov statis-

ic. The positive correlation between NetSimileAtt and topological, at-

ribute based, and joint Kolmogorov–Smirnov distances highlighted

n the figure demonstrates its feasibility for the performance assess-

ent of our graph generation mechanism. Thus, results are presented

n terms of NetSimileAtt for the remainder of this work.

In Fig. 10, the respective similarity measures NetSimile and

etSimileAtt are shown. Again, bar height indicates the mean across

0 repetitions while whiskers represent 90% confidence intervals.

ig. 10a conveys that there is a direct relationship between an output

raph’s similarity to the input graph and the size of the sample the

ormer is based on. This is not surprising as plots for the sampling

lgorithm revealed a similar relation. Thus, the graph generated on a

ore reliable estimate is also more likely to express a higher degree

f similarity to the original graph. Fig. 10b summarizes the algo-
ithm’s performance with respect to its ability to replicate attribute

ased graph characteristics. Using the same reasoning as before, an

ncreasing level of similarity is observed when a higher sampling

udget is available. In contrast to NetSimile, however, the algorithm

chieves good values of 0.18 and below for the NetSimileAtt measure

ith a sampling budget starting at 30%. Additionally, it can reliably

eproduce attribute characteristics of the Rice, Bucknell, Smith, and

averford Facebook subgraphs after analyzing just 20% of their nodes.

In Table 3, other numerical graph properties of the original and

enerated graphs are presented. These properties include the aver-

ge clustering coefficient c̄, the assortativity a, the average shortest

ath length l̄s, the number of cliques |C|, and the average closeness

entrality c̄c. The values for the generated graphs represent averages

ased on ten generation runs. It can be seen that the clustering coeffi-

ient, which is a target metric for the generation, and the assortativity

re well replicated by the generated graphs especially if the sampled

raction is high enough. However, the average shortest path lengths

end to become slightly larger and also the number of cliques and the

loseness centrality are not close to the original, which shows that

here is still some room for improvement of the algorithm.

While the results shown so far demonstrate performance and the

nfluence factors of the graph generation algorithm developed during

his work, Fig. 11 provides a direct comparison with a state-of-the-art

lgorithm. In addition to the publication introducing the mechanisms

tilized in the 2.5K approach [8], a Python implementation of the

raph generation algorithm is provided. Using this implementation5,

ocial network graphs were also generated via the 2.5K method.

ig. 11a compares the topological similarity achieved by the 2.5K ap-

roach with that achieved by the proposed mechanism. Experiments

http://www.minasgjoka.com/2.5K/instructions/index.html
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were conducted on the Facebook graph of the Bucknell University,

which contains 3824 nodes. The x-axis presents information on

the available sampling budget and the y-axis displays the mean

NetSimile value calculated for the input and output graphs after 20

experiment repetitions. Whiskers attached to the bars indicate the

90% confidence intervals. Different bar colors denote the two graph

generation algorithms. While the 2.5K algorithm outperforms the

proposed method in terms of topological similarity in all instances,

the difference becomes steadily lower until it is barely relevant

beyond a sampling budget of 1148 (30%), as confidence intervals

begin to overlap. The performance difference can be explained by the

binning mechanism incorporated in the proposed algorithm. This

mechanism adds some inaccuracy with respect to the output graph’s

node degree distribution in order to cope with estimation difficulties.

In its published version, the 2.5K algorithm is not designed for

generating graphs with node attributes. Nonetheless, a comparison

with the algorithm developed in this work can be drawn by assign-

ing attribute values to the graphs generated by the 2.5K approach.

The attributes are assigned to the output graph’s nodes according to

the degree specific attribute value distribution observed in the col-

lected sample. Fig. 11b presents NetSimileAtt values for this scenario.

Due to a lack of information on the attribute distribution in edges and

higher order substructures of the input graph, the 2.5K algorithm fails

to produce similar output graphs. On the other hand, the algorithm

developed in this work expresses a high degree of similarity as soon

as a sampling budget of 1148 (30%) is available. Paired with its capa-

bility of reliably reproducing the input graph’s topology, it should be

favored in scenarios containing graphs with node attributes.

Using the test machine6, the entire process of sampling, estima-

tion, and generation takes between 20 and 40 min for the Facebook

subgraphs under study. For these, the number of edges in the graph

is identified as the main influence factor on runtime. In the context

of large scale networks like Pokec, the time and memory require-

ments of the current implementation prohibit an evaluation. Future

work will address these issues by investigating alternative edge inser-

tion mechanisms in order to increase the maximum size of generated

graphs.

6. Discussion

In this work, a practical methodology for efficiently estimating

topological and attribute related properties of graphs with node at-

tributes was developed. As this estimation relies on a node sample

whose size is significantly smaller than that of the input graph’s node

set, the developed sampling algorithm can be used in order to esti-

mate properties of huge real world graphs like online social networks.

This property makes it suitable for different use cases, e.g., socially

aware traffic management, where attribute related graph properties

need to be computed in a fast and reliable manner. Furthermore, a

mechanism for generating synthetic graphs with node attributes was

designed. In contrast to previous state-of-the-art graph generation al-

gorithms, it does not require full knowledge of the input graph in or-

der to replicate the graph’s key characteristics with respect to topol-

ogy and node attributes. Thus, crawling a small subset of an input

graph allows generating realistic graphs that can be used in the con-

text of algorithm benchmarks or simulations.

After designing and implementing both algorithms, their perfor-

mance was evaluated in a test framework on several real social net-

work graphs with attributes. The evaluation helped to quantify the

influence of algorithm parameters on their performance and to find

optimum values for these parameters. Comparisons indicate that the

developed mechanisms are on a par with state-of-the-art algorithms

when it comes to performance with respect to topological aspects.
6 Intel Core i7 4770 CPU at 3.40 GHz with 16 GB of RAM.
owever, the implemented algorithms come out ahead when graphs

ith node attributes are to be analyzed or generated. Further exper-

ments show that small sample sizes are sufficient for reliable esti-

ates of topological and attribute related graph properties. There-

ore, the developed algorithms provide time and resource efficient

eans of analysis and generation of graphs with node attributes.

In the context of socially aware traffic management, for example,

ampling methods that take into account not only topology but also

raphs’ attribute values can contribute to enhancing existing traffic

anagement techniques with social information. Time and resource

fficient analysis of social network data (e.g., users’ interests) allows

SPs to employ techniques like prefetching and caching in order to

inimize expenses for inter-AS traffic and improve QoE for end users.

raph generation algorithms, on the other hand, can help researchers

onduct performance evaluation of graph algorithms by providing re-

listic input data.

The performance evaluation of the algorithms focused on social

etwork graphs, which are highly relevant because of their size and

he usability of obtained insights. An open point remains to what ex-

end the proposed algorithms can be applied to other graphs than so-

ial networks. As the design of the algorithms is very general, a decent

erformance for all types of networks can be expected. However, an

xtensive evaluation of the sampling and generation algorithms for a

uge variety of graphs remains for future work.

With many other possible applications in a variety of use cases,

he developed algorithms provide a solid foundation for further re-

earch. In the future, research might focus on extending the graph

eneration algorithm with scaling capabilities. This would allow gen-

rating similar graphs of arbitrary sizes from a single input graph.

hus, phenomena like the temporary evolution of OSN graphs could

e simulated. Additionally, mechanisms for estimating missing at-

ribute values in user profiles and practical extensions to multiple at-

ributes would allow creating even more accurate and thus realistic

utput graphs. Finally, extending the generation algorithm’s capabil-

ties so that it can handle larger networks can increase the range of

ossible applications.
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