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1. Introduction

Video distribution networks, like YouTube [1] or Netflix
[2], recently adopted HTTP Adaptive Streaming (HAS) tech-
nology. HAS allows for a flexible adaptation of the video
quality to the available network resources and device
capabilities. Thereby, it also mitigates the problem of buf-
fer underruns and the interruption of the playback, i.e.,
stalling, which is caused by limited network resources.

To apply HAS, the video content has to be available in
multiple bit rates, i.e., quality levels, and split into small
segments each containing a few seconds of playtime. The
client measures the current bandwidth and/or buffer sta-
tus and requests the next part of the video in an appropri-
ate bit rate such that stalling is avoided and the available
bandwidth is best possibly utilized. Hence, the control
intelligence, i.e., which segment to stream, has moved from
the servers to the clients. The HAS technology is adopted
by a wide range of applications and video content provi-
ders [3] and is also standardized in ISO/IEC 23009-1
(MPEG-DASH) [4].

Much research in the HAS area tries to find the best
adaptation strategy in order to maximize a user’s Quality
of Experience (QoE). Therefore, HAS adaptation algorithms
monitor the current network conditions, as well as video
bit rate and buffer status. Based on these monitored data,
they decide which quality level to request next in order
to avoid stalling to the greatest possible extent. In [5], dif-
ferent adaptation algorithms are compared and classified
with respect to user-perceived influence parameters.
Such QoE influence parameters of HAS, which are typically
investigated, are initial delay, stalling delays and frequen-
cies, played back video quality, and frequency of quality
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switches [6]. However, a holistic QoE model for HAS
streaming, which can be used to assess the performance
of adaptation algorithms with respect to the user-per-
ceived QoE, is still missing.

In this work, we lay the foundations for benchmarking
the performance of HAS adaptation algorithms compared
to the theoretical QoE optimum. Therefore, we propose a
Mixed Integer Linear Programming (MILP) problem for-
mulation to compute the theoretical optimum for a single
client first. Second, subjective crowdsourcing surveys to
identify the key influence parameters for HAS streaming
are conducted. Based on the subjective results, the appro-
priate objective function for the MILP is designed. Third,
we perform a statistical evaluation based on real network
traces for one exemplary video clip. Different adaptation
mechanisms from literature are investigated in a test-bed
and the achieved QoE is compared with the optimal QoE
obtained from MILP. Finally, our approach is extended to
a multi-user scenario. If multiple HAS clients share a bottle-
neck link, like in the case of live streaming, the distributed
download control may introduce unfairness with respect to
the individual user-perceived qualities. Hence, we investi-
gate whether adaptation algorithms can achieve a fair
QoE distribution for multiple clients.

The paper is structured as follows. Section 2 introduces
HAS streaming and revisits related work. The evaluation
framework used to compute the theoretical optimum is
discussed in Section 3. The subjective results on QoE of
HAS-based streaming are highlighted in Section 4.
Section 5 presents the results for the single user optimiza-
tion, and Section 6 the results concerning fairness for the
IPTV use-case in a multi-user environment. Conclusions
are drawn in Section 7.
2. Background and related work

With classical HTTP video streaming, network condi-
tions and video requirements are insufficiently aligned.
Either the video bit rate is smaller than the available band-
width which leads to a smooth playback but spare
resources, which could be utilized for a better video qual-
ity, or the bit rate is higher than the available bandwidth
which introduces delays and will eventually cause stalling
(i.e., the interruption of playback due to empty playout
buffers), which degrades the Quality of Experience (QoE)
severely (e.g., [7,8]). This misalignment is tackled by
HTTP Adaptive Streaming (HAS) which is a new technology
that improves classical video streaming by flexibly select-
ing the video quality, which is delivered to the end users.
2.1. Background on HAS technology

HAS requires the video to be available in different bit
rates, i.e., in different quality representations, and split into
small chunks which contain a few seconds of playtime
each. On the client side the current bandwidth condition
and/or buffer status are monitored, and the adaptation
algorithm decides which part of the video to download
next. It requests the next chunk in an appropriate bit rate,
such that stalling is avoided and the available bandwidth is
best possibly utilized. Quality adaptation can effectively
reduce stalling by 80% when bandwidth is decreased under
vehicular mobility, and it was responsible for a higher uti-
lization of the available bandwidth when bandwidth
increases [9]. Also in non-mobile environments, HAS is
beneficial because it avoids stalling by switching the qual-
ity when the available bandwidth fluctuates. HAS has sev-
eral more benefits compared to classical streaming. For
example, HAS enables video service providers to adapt
the delivered video to the users’ demands (e.g., home users
vs. mobile users) or to the selected service levels. This
allows for flexible pricing schemes which accurately take
into account the consumed service levels [10]. Thus, nowa-
days not only YouTube [11], which is a prominent example,
but an increasing number of video applications employ
HAS as their default video streaming technology.

2.2. Quality of Experience impact for HAS streaming

In telecommunication networks, the Quality of Service
(QoS) is described objectively by network parameters like
packet loss, delay, or jitter. However, a good QoS does
not necessarily mean that all customers notice the service
quality to be good. Thus, Quality of Experience (QoE) was
introduced [12], which explicitly refers to subjectively per-
ceived quality by relying on subjective criteria. For classical
HTTP video streaming, the key influence factors on QoE are
initial delay and stalling [7,13]. HAS can influence both fac-
tors by the configured chunk size and trade-off stalling or
delay for adaptation (e.g., a small video chunk size leads
to less stalling but more quality switches [9,14]).
However, it changes the delivered video quality during
playback, which introduces an additional impact on the
subjectively perceived video quality [8,15].

The adaptation of image quality for layer-encoded
videos was investigated in [16], showing that the frequency
of switches should be kept as small as possible. If a switch
cannot be avoided, its amplitude should be kept as small
as possible. Thus, a stepwise reduction of image quality
was rated slightly better than one single decrease. Flicker
effects for SVC videos, i.e., rapid alternation of base layer
and enhancement layer, were analyzed for adaptive video
streaming to handheld devices in [17]. As a result, the fre-
quency effect and the amplitude effect were identified,
and additionally the influence of content was determined
to play a significant role in how adaptation is perceived
by the end users. Smooth to abrupt switching of image
quality is compared in [18]. Thereby, down-switching is
generally considered annoying. Abrupt up-switching, how-
ever, might even increase QoE as users might be pleased to
notice the visual improvement. A survey on QoE studies on
HAS is provided in [6].

Complementary to existing works in literature, we pro-
vide a basic QoE model for HAS in Section 4 which returns
the QoE optimal playout strategy for any network condi-
tion and any video sequence. It has to be noted that the
optimization problem can be formulated without quantify-
ing QoE. The results from the conducted QoE, cf. Section 4,
indicate the following rationale of the optimization prob-
lem. To maximize QoE for a single user, the time the video
is played out in its highest quality level should be



2 ‘‘Tears of Steel’’ is available at: https://mango.blender.org/.
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maximized. If several playout strategies reach the maxi-
mum video quality level, then the number of switches
should be minimized.

2.3. HAS adaptation algorithms

With detailed knowledge about preconfigured applica-
tion layer parameters and network conditions it is possible
to compute the optimal playout strategy and thus provide
an optimal video playout as discussed in Section 3. The
HAS adaptation algorithm at an end device, however, lacks
detailed knowledge about the current and future network
conditions. Based on the current quality indicators on
application layer like pre-buffered video length and video
quality, and estimations on the current network conditions,
e.g, the current TCP congestion window or the average
throughput for the last segment, the adaptation algorithm
has to decide which segments shall be downloaded next.
There are a number of algorithms, each following specific
policies when deciding on which chunk to request next. A
rate adaptation algorithm based on smoothed bandwidth
changes measured through segment fetch time is proposed
in [19]. Another approach [20] develops an adaptation
engine based on the dynamics of the available throughput
in the past and the current buffer level to select the appro-
priate representation. It is a rather conservative algorithm,
which only requests a medium quality level on average but
preserves a low switching frequency. In [3], an algorithm
for single-layer content of constant bit rate is presented
which selects representations according to current band-
width, current buffer level, and the average bit rate of each
segment. A QoE-aware Dynamic Adaptive Streaming over
HTTP (DASH) system (QDASH) is presented in [21]. It com-
prises a quality adaptation algorithm using bandwidth
measurements based on packet round-trip times, the cur-
rent buffer state, and the average fragment size of a quality
level to decide what to download next. Further approaches
based on control theory are presented in [22,23]. Theses
approaches also utilize network and application conditions
to provide a smooth video playback. Additionally, they also
support multi-server DASH. A very aggressive strategy is
presented in [24] which decides only on the current play-
back buffer which segment to download next. It often deliv-
ers the highest quality representation to the end user but
also has a very high switching frequency. In [5], the BIEB
algorithm is proposed, which downloads segments based
on size ratios between the different quality levels. An over-
view of existing HAS adaptation algorithms and their
details is provided in [6].

All existing algorithms select the next segment to
download based on technical parameters like bandwidth
or video bit rate, but do not take the expected video quality
perceived by the end user into account. So far, no model
exists which can be used to evaluate the performance of
the HAS adaptation algorithms in terms of QoE. A major
contribution of this paper is to formulate the optimization
problem which allows to investigate any kind of HAS adap-
tation algorithm and the difference to the QoE optimal
solution. In the paper, we exemplary solve this problem
for chosen HAS algorithms in a real-test bed. However,
the evaluation framework can be applied to compute the
efficiency of any HAS adaptation algorithm for arbitrary
network scenarios and video characteristics.

3. Framework for evaluation

3.1. Definition of variables and parameters

First of all, the notation and variables frequently used in
this work are introduced. A summary can be found in
Table 1. It is assumed that U clients are simultaneously
in the system who want to stream a video. A video is avail-
able in R ¼ f1; . . . ; rmaxg representations and split into n
segments. Each segment Sij contains data for s seconds of
the video representation j 2 R, and has to be played out
at time Di for i ¼ 1; . . . ;n. Each user receives an amount
of data VðtÞ ¼ v during the time ½0; t�. This means, it takes
the time TðvÞ ¼ V�1ðtÞ to download volume v. In compli-
ance with the available download volume, the client
downloads segments and plays them out before their
respective deadline. After the first segment has been
downloaded, the video playout can begin. Any additional
time from the start of the video download until the start
of the video playback is called start-up/initial delay T0.

These variables are sufficient to formulate the optimiza-
tion problems. The Boolean target variable xij indicates if
the client downloads segment Sij or not, and serves as input
to the optimization function. Thus, the optimal assignment
xij describes the outcome of an optimal adaptation strat-
egy. This assignment is realizable under the given condi-
tions, however, no indications of the optimal decisions
are contained, i.e., the optimal assignment does not indi-
cate when to download which segment.

In order to remove dependencies on the actual band-
width conditions and video characteristics, the results pre-
sented in this work are normalized. Therefore, the
bandwidth factor b is introduced. A bandwidth factor
b ¼ 1 means that a video of duration ns with total size
S� ¼

Pn
i¼1Sirmax of the highest quality representation rmax

can be downloaded completely without stalling and initial
delay. In other words, the received download volume at ns
equals the total size of the highest quality representation,
i.e., VðnsÞ ¼ S�.

3.2. Network traffic pattern and video content

As video content we choose ‘‘Tears of Steel2’’, an open-
source short movie produced and published by the Blender
Foundation. The movie has a playback length of about
12 min and features high image quality with fast-paced
action scenes and slow-paced character close-ups in a
science fiction scenario. We transcoded the movie into
H.264/SVC with spatial scalability using the JSVM reference
software version 9.19.15 [25]. The GoP (Group of Pictures)
size was set to 8 frames, the instantaneous decoding refresh
(IDR) period and intra period to 24 frames, and the quantiza-
tion parameter (QP) was set to 24. A description of the cod-
ing parameters can be found in [26]. Three spatial
resolutions were configured, 1280 � 720, 640 � 360 and

http://https://mango.blender.org/


Table 1
Notations and variables frequently used. Default values are given in square
brackets.

Variable Explanation

U Number of simultaneous clients in the system
R½¼ f1;2;3g� Available representations
n½¼ 350� Number of segments
s½¼ 2 s� Duration of a segment
Sij Size of segment i from representation j including all

required representations
wij Weighting factor indicating the QoE value of

segment i for representation j
Di Playback deadline for segment i
T0½¼ 0 s� Start-up (or initial) delay
VðtÞ Total amount of data VðtÞ received by a client during

the time ½0; t�
TðvÞ Time TðvÞ required by a client to download volume

v ; TðvÞ is the inverse function of VðtÞ, i.e. TðVðtÞÞ ¼ t
xij 2 f0;1g Target variable indicating if client downloads

segment i from representation j (xij ¼ 1Þ or not
(xij ¼ 0Þ

b Bandwidth factor for normalization,
b ¼ 1() VðnsÞ ¼

Pn
i¼1Sirmax

Table 2
Characteristics of video contents and the segment sizes Sir of
representation r.

Representation r ¼ 1 r ¼ 2 r ¼ 3

Total volume (MB) 26.52 84.86 238.57
Mean segment size (kB) 75.77 242.47 681.64
Maximum segment size (kB) 301.17 789.66 2142.00
Minimum segment size (kB) 3.76 9.60 20.22
Standard deviation (kB) 37.14 127.09 419.74
Coefficient of variation 0.49 0.52 0.62
Lag-1 autocorrelation 0.76 0.82 0.87
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Fig. 1. Segment sizes of the 3 representation layers for the example video
of duration 700 s used for the numerical results. The segment sizes are
plotted on a logarithmic scale and sum up to 238.57 MB, 84.86 MB,
26.52 MB for r ¼ 3; 2; 1.
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Fig. 2. Network pattern, i.e., available bandwidth over time, of the first
three evaluation runs. The measured traffic pattern was adjusted to the
given video and wrapped around with a randomized starting point for
each evaluation run.
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320 � 180. The encoded movie shows average bitrates of
0.26 Mbps, 0.95 Mbps, and 2.67 Mbps and a maximum
bitrate of 1.28, 3.37, and 10.46 for the three spatial layers.

For use with MPEG DASH (Dynamic Adaptive Streaming
over HTTP), we chose a segment duration s of 2 s (48 frames)
resulting in n ¼ 350 segments in total. Three inter-depen-
dent DASH representations R ¼ f1;2;3g from the SVC seg-
ments were created by dissecting the SVC bitstream along
the spatial scalability. Table 2 shows the properties of each
representation r where r ¼ 1 corresponds to the lowest
quality SVC spatial layer (320 � 180) and r ¼ 3 to the high-
est (1280 � 720). Note that scalable video coding is used,
which means that for decoding the segment Sij, the seg-
ments Si0; . . . ; Siðj�1Þ are also required. In the following, we
define the segment size Siz as the sum of the segment plus
all required lower layer segments (Siz ¼

P z
j¼1Sij). A total vol-

ume of 238.57 MB is required to download the video con-
tent in the highest quality, 84.86 MB and 26.52 MB for the
medium and lowest quality level, respectively. The DASH
segments have an average size from the lowest to the high-
est layer of 75.77 kB, 242.47 kB, and 681.64 kB with a stan-
dard deviation of 37.15 kB, 127.09 kB, and 419.74 kB. The
segment sizes of the three representations are depicted in
Fig. 1 on a logarithmic scale.

In the evaluation we relay on a realistic traffic pattern
recorded in a vehicular mobility scenario by Müller et al.
[3]. The traffic pattern was recorded in and around
Klagenfurt, Austria driving on a highway while connected
to the Internet with a mobile UMTS stick and measuring
the throughput of a large HTTP download. The mean mea-
sured bandwidth was 359.97 kBps. We adjusted the mea-
sured bandwidth over time in such a way, that after
ns ¼ 700 s (i.e., the video duration) the video is completely
downloaded in its highest representation (b ¼ 1), i.e.,
VðnsÞ ¼

Pn
i¼1SiR. This results in a mean adjusted bandwidth

of 340.82 kBps. The standard deviation of the bandwidth is
174.83 kBps and the lag-1 autocorrelation is 0.89. The net-
work pattern is wrapped around and for each evaluation
run a randomized starting point is selected. Thus, different
realistic bandwidth patterns can be used albeit statistical
characteristics of the bandwidth (e.g., mean, standard
deviation, skewness, kurtosis, autocorrelation) are identical
in each run. Fig. 2 shows the available bandwidth over time
of the first three evaluation runs. It can be seen that the
bandwidth fluctuates rapidly in a range from 0.58 kBps to
663.62 kBps during each run.
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4. Subjective user study on QoE objectives

For computing the theoretical QoE optimum, we use
MILP and formulate a corresponding optimization prob-
lem. The objective function of the optimization problem
needs to take into account the relevant QoE influence fac-
tors. Therefore, it is necessary to understand the main
influence factors on HAS QoE as perceived by the end user.
To this end, subjective user studies on HAS have been con-
ducted in February 2014 by means of crowdsourcing. The
results of the crowdsourcing experiments allow to formu-
late the rationale of the objective functions as used by the
MILP optimization problems.
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Fig. 3. MOS values of the subjective user study for a video with two
representations in high quality level yH and low quality level yL . The
representations were obtained by using H.264/SVC with different spatial
layers to adjust the quality level.
4.1. Crowdsourcing experiments

In order to have a diverse and large user base for our
crowdsourcing experiments, we cooperated with
microworkers.com, a large international platform for dis-
tributing tasks over the Internet to anonymous workers
on the basis of monetary compensation. The platform
allows researchers to create a task, define a compensation,
and make it available to the crowd. The experiments were
set-up utilizing the web-based framework QualityCrowd2
proposed by [27]. The framework allows web-based quality
assessment of video content through common web servers
and common web browsers on the client side, respectively.
To obtain the QoE model for adaptive video streaming, a
user study with approximately 100 test subjects was con-
ducted. In the following, we describe the demographics of
the crowd and the set-up of the conducted experiment.

Before being able to start the experiment, every partici-
pant was asked to complete a short demographic survey.
The majority of the users accessed the campaign’s web-site
from Asia (70%) and from Europe (26%). 42% of the partici-
pants were between the age of 22 and 25. The age-groups
18–21 and 26–30 were represented with 18% each. As
occupation, 47% of the test subjects specified to be a stu-
dent, followed by 32% who stated to be in employment.
40% of the participants completed a 4-year college and
17% a 2-year college. 17% stated high school as their high-
est education. Almost all test persons use the Internet daily
(97%) utilizing a fixed line (85% fixed line, 15% mobile
access) access technology. A majority of the participants
(61%) visit video web-sites several times a day and primar-
ily access the Internet from work (64% at work, 36% at
home). 31% of the participants specified to be wearing pre-
scription glasses.

After the demographic survey, a short introduction was
presented to the user explaining with pictures how to
watch and rate the test sequences. After the user acknowl-
edged the introduction, the test sequences were presented
to the participant sequentially. Each test sequence was first
completely transferred to the browser cache to prevent
any stalling. On completion of the download, a play button
was activated for the user to start the playback. After the
playback of the video sequence, the user was asked Did
you notice any changes in quality during playback? If yes,
did you feel annoyed by them? and was presented a 5-point
ACR slider with the options Imperceptible (did not notice
any), Perceptible but not annoying (did notice, but did not
care), Slightly annoying, Annoying, and Very annoying.

For the experiment, we choose a 15 s (360 frames) seg-
ment of the video content used in the evaluation. The start
of the segment corresponds to the timestamp 00:00:25 of
the full short-movie. The scene depicts two persons stand-
ing on a small bridge and contains a low level of detail and
motion, which also results in low spatial/temporal infor-
mation (SI/TI) values (SI: 8.5, TI: 5.37). We encoded the test
sequence in two quality levels by downscaling the source
material to 640 � 360 and 160 � 90. Note that in the brow-
ser of the user, the two quality levels were both scaled to a
window size of 320 � 180.

After the demographic survey, six different quality level
switching patterns were presented to the user in random
order. Two patterns with zero switches were presented,
one which only shows the higher quality to the user and
one only showing the lower quality level. The other four
patterns start and end on the highest level, but include
quality switches which reduce the playout time of the
highest quality to 86%, 71%, and 36%, respectively.

4.2. QoE results for HTTP adaptive streaming

The numerical QoE results of the conducted experi-
ments are visualized as bar plot in Fig. 3. It presents the
mean opinion scores (MOS) of the different switching pat-
terns, which are ordered along the x-axis according to the
respective time t on the representation layer at highest
quality. It can be seen that the user perceived quality for
HTTP adaptive streaming is bounded by the quality of
highest layer yH and lowest layer yL. The bounds yH and
yL correspond to the mean values of the ratings of the video
clip with high and low quality. To be more precise, the
MOS values yH and yL were obtained in experiments in
which the video was played out with constant high and
constant low quality, respectively. In Fig. 3, the bounds
are plotted with dashed lines. A detailed analysis of the
results of the subjective user studies identifies the main
influence factors on HAS QoE and assesses the main effect
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sizes [28]. The results reveal that the time on highest video
quality layer is a key influence factor which allows to for-
mulate a simple QoE model.

The model function f ðtÞ maps the time t on the highest
layer to the corresponding MOS value. If there is no switch,
the equation f ð1Þ ¼ yH holds, which represents the QoE of
the video played out constantly in highest quality. If the
video is delivered in low quality level only, limt!0f ðtÞ ¼ yL

holds. Switching the quality level between the high and
low quality level has a negative influence on QoE.

A fundamental functional relationship between QoE
and QoS parameters is described by the IQX hypothesis
(exponential interdependency of quality of experience
and quality of service) [29]. The formula relates changes
of QoE with respect to QoS to the current level of QoE
and assumes the following differential equation
@QoE
@QoS

� �ðQoE� cÞ ð1Þ

which has an exponential solution. As a result, the IQX
hypothesis suggests the following relation f between QoE
(in terms of mean opinion scores) and the time t on highest
layer:

f ðtÞ ¼ aebt þ c: ð2Þ

From the MOS values for the different switching pat-
terns, the corresponding fitted function
f ðtÞ ¼ 0:003 � e0:064�t þ 2:498 can be obtained, which is also
plotted in Fig. 3. The fitted function describes the relation-
ship between time on high layer and MOS very well, which
is also indicated by a high coefficient of determination
R2 ¼ 0:98. It has to be noted that more subjective tests have
to be conducted in order to examine additional influence
factors and to provide a generic QoE model for HTTP adap-
tive streaming, e.g., consideration of more than two layers.

Nevertheless, from the observations of the QoE study
we conclude the following. To maximize QoE for a single
user, the video time played out in its highest quality level
should be maximized. This is the basic rationale of the
optimization problems formulated in this paper.

It has to be noted that [30] suggests to maximize the
downloaded volume which leads to a different quality value
function to maximize end user’s perception. The rationale
behind this assumption is the fact that a representation in
a higher quality requires a larger volume than a representa-
tion in a lower quality level. However, in practice it may
appear that a low quality representation of segment k
may be larger than the high quality representation of
another segment i, i.e., Si1 > Skr; r > 1. In that case, which
may be due to different motion patterns and scenes in the
video, the optimization would not select the highest possi-
ble quality layer. This issue is discussed in more detail in
Section 5.3.

5. Optimal adaptation for single user

5.1. Mixed integer linear program for deriving the optimal
initial delay

In case of insufficient resources to deliver a video, the
video playout buffer may be utilized by delaying the video
playout in such a way that the video content can be down-
loaded without any QoE degradation. In particular, no stal-
ling must occur [31]. Formally, initial delay shifts the
regular video segment deadlines, such that the deadline
Di of each segment i can be considered as the sum of the
initial delay T0 and the segment’s position is in the video.

Di ¼ T0 þ is; for all k ¼ 1; . . . ;n: ð3Þ

From the end user’s perspective, the objective is to
minimize the initial delay [32]. [33] derives a simple
closed-form expression for the initial playout buffer level
that provides a probabilistic guarantee for undisturbed
playback by using a fluid model. We assume however per-
fect knowledge of VðtÞ and can therefore derive an optimal
initial delay T0 for compensating insufficient resources
when watching the entire video in representation r. For
r ¼ 1, the obtained initial delay shows the minimum
required time in order to achieve smooth playback, while
for r ¼ 3, the corresponding delay shows the minimum
time required to watch the video in its best quality.
Before deadline Di of segment i, the video contents of
representation r need to be downloaded completely.

Xk

i¼1

Sir 6 VðDiÞ ¼ VðT0 þ isÞ; for all k ¼ 1; . . . ;n ð4Þ

However, Eq. (4) needs to be reformulated as MILP con-
straint which can be done by using the inverse function
TðvÞ instead of VðtÞ.

T0 P Tð
Xk

i¼1

SirÞ � i� 1ð Þs; for all k ¼ 1; . . . ;n ð5Þ

The Optimization Problem 1 formulates the derivation
of the optimal initial delay in order to completely down-
load a video in representation r as linear program.
Thereby, no segment deadlines must be violated which
results in a smooth playback without stalling.

Optimization Problem 1 (Optimal initial delay T0 for
downloading representation r without stalling)

minimize T0 2 RP0 ð6Þ

subject to T0 P Tð
Xk

i¼1

SirÞ � i� 1ð Þs; 8k ¼ 1; . . . ;n ð7Þ

Solving this problem allows to quantify the minimal ini-
tial delay which is needed by any algorithm in order to
avoid stalling. Fig. 4 shows this optimal initial delay T0 for
different target representations r 2 R depending on differ-
ent bandwidths. The plot is normalized by the bandwidth
factor b, which is set to 1 by definition, if the download vol-
ume equals the video size in highest representation.

It can be seen that in order to achieve smooth playback
without any initial delay the lower quality representations
r require a bandwidth factor which is equal to the ratio of

the representations’ sizes, i.e.,
P

i
SirP

i
Si3

. With lower download

volumes, the needed minimum initial delay T0 increases.
Obviously, if the bandwidth factor is cut in half, a user
would have to wait a whole playback duration until the
video could be played out smoothly.
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3 http://www.gurobi.com/.
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5.2. Optimal adaptation strategy based on objective value
functions

A two-step approach for modeling the optimal QoE
adaptation for a single user is provided in [30]. The optimal
adaptation strategy is formulated and obtained by mixed
integer linear programming. In the first step, the down-
loaded data volume is maximized, since [30] assumes that
larger data volume results into higher video quality. In a
second step, the number of switches is minimized while
stalling is avoided at any time. Based on [30], we use mixed
integer linear programing to find the optimal adaptation
strategy, but we investigate different objective functions
in the first step for maximizing QoE.

For the formulation of the optimization problem, we
introduce the target variables xij 2 f0;1g indicating if the
client downloads segment i from representation j (xij ¼ 1Þ
or not (xij ¼ 0Þ. The playout of a segment has different
impact on QoE depending on the selected representation.
Therefore, in order to optimize for QoE, a value function
wij is introduced which indicates the quality value of a seg-
ment i in representation j. This value function, which indi-
cates the contribution of a segment to the overall
perceived quality, is unknown and has to be determined
by future research. In this work, different options for
expressing the value of a segment are presented and will
be discussed in Section 5.3.

While [30] focused on maximizing the downloaded vol-
ume only ðwij ¼ SijÞ, this work investigates whether the
proposed optimization problem has to take QoE results
into account. In particular, the results from the subjective
user studies in Section 4 have shown that the quality layer
has to be maximized first. From a practical point of view, it
is a natural consequence to minimize the number of
switches in a second step in order to avoid flickering
affects, which could negatively influence QoE [17]. Thus,
two optimization problems 2 and 3 can be formulated.
This two-step approach will lead to an optimal QoE with-
out requiring a dedicated QoE model that maps parameters
to QoE.

Optimization Problem 2 (Maximize quality value for
single user without stalling).
maximize W ¼
Xn

i¼1

Xrmax

j¼1

wijxij with xij 2 f0;1g

ð8Þ

subject to
Xrmax

j¼1

xij ¼ 1 8i ¼ 1; . . . ;n ð9Þ

Xk

i¼1

Xrmax

j¼1

Sijxij 6 VðDkÞ 8k ¼ 1; . . . ;n ð10Þ

This problem will maximize the downloaded quality
value depending on the value function wij. Constraint (9)
ensures that for each segment only one representation is
downloaded and Eq. (10) ensures that all segments i are
downloaded before their deadline Di. In this respect,
VðDiÞ represents the maximum amount of data the client
can download until the playback deadline of segment i.
In the following, the optimal quality value W of Problem
2 will be denoted by Wopt .

Optimization Problem 3 (Minimize switches for single
user without stalling at given target quality Wopt)

minimize
1
2

Xn�1

i¼1

Xrmax

j¼1

ðxij � xiþ1;jÞ2 with xij 2 f0;1g

ð11Þ

subject to
Xrmax

j¼1

xij ¼ 1 8i ¼ 1; . . . ;n ð12Þ

Xk

i¼1

Xrmax

j¼1

Sijxij 6 VðDkÞ 8k ¼ 1; . . . ;n ð13Þ

Xn

i¼1

Xrmax

j¼1

wijxij P Wopt ð14Þ

Similarly, constraints (12) and (13) in optimization
Problem 3 are the same as constraints (9) and (10) in
optimization Problem 2. Additionally, constraint (14)
ensures that minimizing the number of quality switches
does not decrease the overall quality value below the opti-
mum Wopt .

Problem 2 is known as Multiple-Choice Nested
Knapsack Problem (MCNKP, [34]), while Problem 3 is a
Quadratic MCNKP. It is known that MCNKP is NP-hard,
but pseudo-polynomial time algorithms exist which we
deploy by using the software gurobi.3

5.3. Rationales behind objective value functions

Still the problem remains how to indicate the quality
value of a segment. In Table 3, different options for quality
value functions are presented. The VOLUME value function
resembles the approach of [30] and maximizes the down-
loaded data volume. The LAYER function weights each seg-
ment of representation j by j 2 f1; . . . ; rmaxg which results
in an optimization of the mean representation number.

http://www.gurobi.com/


Table 3
Different value functions in optimization problems 2 and 3.

Name Value function Rationale of objective
function

VOLUME wij ¼ Sij Maximize downloaded
volume, as higher
representations need more
data volume

LAYER wij ¼ j Maximize mean
representation

LAYERVOLUME wij ¼
Pn

k¼1Skj Maximize volume-weighted
mean representation

SSIM wij ¼ SSIMij Maximize SSIM metric
HIGHESTLAYER wij ¼ 1;000:00 j ,

n < 1;000:00

Maximize time on highest
layer
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Similarly, the LAYERVOLUME provides an optimization for
the mean representation weighted by the total data vol-
ume of layer j. The SSIM function weights each segment
by its mean structural similarity (SSIM) index [35]. The
HIGHESTLAYER function will always prefer a segment of
a higher representation, and thus accounts for an optimiza-
tion of the time on highest layer.

In order to investigate the different quality value func-
tions they are compared with respect to the achieved

maximal average quality level �l ¼ 1
n

Pn
i¼1

P3
j¼1j � xij.

Therefore, the optimization problems 2 and 3 were solved
for the test video and different bandwidth factors
0:16 6 b 6 1. Smaller bandwidth factors are not meaning-
ful because stalling cannot be avoided in such cases. For
each value function, 30 runs were conducted per band-
width factor with permuted bandwidth patterns as
described in Section 3.2. In Fig. 5a, the resulting means
and 95% confidence intervals of �l are plotted. Obviously,
the LAYER function optimizes exactly for �l, and thus,
results obtained for that function correspond to the best
possible results under this metric. However, optimizing
the downloaded volume (VOLUME value function) also
achieves good results from a QoE point of view and thus
could also be considered further. It can be seen that only
slightly worse results are reached by using the
LAYERVOLUME, HIGHESTLAYER, and SSIM value functions.
In any analysis, LAYER and VOLUME perform almost
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Fig. 5. Comparison of optimal solutions fo
identically, therefore, only LAYER will be considered in
the following discussions.

Fig. 5b shows the means and 95% confidence intervals of
the minimal number of switches which correspond to the
average quality levels in Fig. 5a. It can be seen that SSIM
has an early increase of minimal number of switches when
the bandwidth factor decreases. With further decreasing
bandwidth factor (b < 0:7), the LAYERVOLUME function
accounts for the highest minimal number of switches. The
steady gradual increase of LAYER and HIGHESTLAYER is
promising for further consideration.

Taking a closer look at what segments are played out for
each optimal solution, it can be seen for the LAYER and
HIGHESTLAYER value functions that the ratio of highest
representation segments increases monotonically when
the bandwidth factor increases. The LAYER value function
shows a very balanced behavior, as the ratio of lowest qual-
ity representation decreases fast and more medium quality
(r ¼ 2) representations are downloaded. Eventually, with
higher b, the number of medium segments decreases again
as more highest quality chunks can be downloaded. The
HIGHESTLAYER solution, on the other hand, reaches a
higher number of highest level (r ¼ 3) representations
due to its definition, but consists only of lowest and highest
quality level segments. As this high switching amplitude
results in a lower QoE (cf. [16,17]), the LAYER value func-
tion will be considered for the remainder of this work.
5.4. Application for adaptation logic benchmarking

The linear program for optimal adaptation strategies can
be used for the performance evaluation of HAS adaptation
strategies. Consider an evaluation scenario in which differ-
ent algorithms are tested for various videos and different
network conditions. This allows for a comparison of the
algorithms among each other. With the presented linear
program, an optimal adaptation strategy can be computed
for each video and bandwidth trace. This extends the per-
formance evaluation of adaptation strategies to quantify
how close each algorithm reaches the optimum.

As an example, four adaptation algorithms from litera-
ture (BIEB [5], Tribler [24], KLU [3], TUB [20]) were
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compared in a test bed for one video and 30 different band-
width patterns. Additionally, the linear program was used
to compute the optimal strategy for each pattern.

Fig. 6 shows a single experiment for the BIEB algorithm
under the network conditions labeled ‘run 1’ in Fig. 2. To be
more precise, the end user is able to download data with
bandwidth bðtÞ which is the available network bandwidth
bðtÞ from the measured traffic trace ‘run 1’. The QoE opti-
mal playout strategy only utilizes a fraction of the available
bandwidth and downloads the video segments over time
with bandwidth boptðtÞ 6 bðtÞ. Besides the theoretical QoE
optimal playout, a concrete implementation of a HAS algo-
rithm, like the BIEB algorithm in Fig. 6, achieves a network
utilization below the optimum, as a concrete HAS algo-
rithm does not have knowledge about the current and
future network conditions. As a consequence, the HAS
algorithm uses a bandwidth balgðtÞ 6 boptðtÞ 6 bðtÞ.

In the upper plot of Fig. 6, the x-axis depicts the time of
the video playback in seconds, and the y-axis shows the
cumulative download volume in MB. The largest area
shows the available cumulative download volume VðtÞ
under the given network condition, i.e. the data amount

VðtÞ ¼
R t
s¼t0

bðsÞds which can be possibly downloaded over

the network from t0 until t. The area below the largest one
depicts the behavior of the theoretical QoE optimal adapta-
tion strategy under the given conditions resulting in the

download volume VoptðtÞ ¼
R t
s¼t0

boptðsÞds 6 VðtÞ. The

smallest area shows the cumulative download volume of
the BIEB algorithm, i.e., the amount of data

ValgðtÞ ¼
R t
s¼t0

balgðsÞds 6 VoptðtÞ that was downloaded by

the adaptation logic at the given time t. In the lower plot,
the representation roptðtÞ and ralgðtÞ of corresponding
played out segments are depicted over the time for both
the QoE optimal adaptation and the BIEB implementation,
respectively. To be more precise, the plot shows which
quality layer from 1 (lowest quality) to 3 (highest quality)
was played out at a given time t, respectively.

The illustrative results from the single experiment in
Fig. 6 show that the QoE optimal adaptation better utilizes
the available bandwidth (especially from around 250 s)
because it knows and takes into account the future network
conditions. Thus, the optimal strategy is also able to play
out a higher quality layer more often than the BIEB algo-
rithm. In addition, it is possible to recognize that the BIEB
algorithm does not perform well in the beginning of the
video. It plays out layer 1 and 2 segments although down-
load and play out of layer 3 would have been theoretically
possible under the given conditions (cf. played out seg-
ments by QoE optimal adaptation in the lower part of the
figure). These insights gained from the comparison with
the QoE optimal adaptation strategy are very valuable for
removing the shortcomings of BIEB in future work.

The results of such single experiments can be aggregated
for a comprehensive performance evaluation. Fig. 7 shows
the CDF of the quality differences of each of the four adapta-
tion algorithms to the optimum over 30 different band-
width patterns. In general, the algorithms’ performance is
indicated by the absolute difference to the optimum and
the gradient of the CDF. The more left an algorithm is
depicted, the closer its performance compared to the opti-
mum. Additionally, the steeper its CDF, the more robust
the algorithm with respect to bandwidth fluctuations. It
can be seen that the BIEB algorithm outperforms the other
investigated algorithms because it is closest to the optimum
and shows a robust behavior.

To sum up, with the proposed optimization problems
and the corresponding linear program, optimal adaptation
strategies can be computed, which indicate what is theo-
retically possible for any given condition (i.e., video file
and bandwidth pattern). This allows for a more compre-
hensive assessment and benchmarking of the performance
of adaptation logics.

6. Multiple users in an IPTV scenario

6.1. Evaluation of shared bottleneck for IPTV

The presented optimization problems can be extended
to take into account multiple users. Thereby, it is possible
to analyze optimal solutions in case that many users con-
currently download and watch the same video over a
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shared bottleneck link as it is typical for IPTV services.
Thus, in the multi-user scenario we consider U different
users starting to watch same IPTV content and do a sys-
tem-wide optimization. Therefore, the optimization vari-
able is extended to xuij to identify which representation j
of segment i is downloaded by user u. This allows for the
formulation of optimization Problems 4 and 5.

Optimization Problem 4 (Maximize quality value for
multi-user scenario without stalling).

maximize W ¼
XU

u¼1

Xn

i¼1

Xrmax

j¼1

wijxuij; xuij 2 f0;1g ð15Þ

subject to
Xrmax

j¼1

xuij ¼ 1; 8u ¼ 1; . . . ;U; 8i ¼ 1; . . . ;n

ð16Þ

XU

u¼1

Xk

i¼1

Xrmax

j¼1

Sijxuij 6 VðDkÞ; 8u ¼ 1; . . . ;U;

8k ¼ 1; . . . ;n

ð17Þ

Optimization Problem 5 (Minimize switches for multi-
user scenario without stalling at given target quality Wopt).

minimize
1
2

XU

u¼1

Xn�1

i¼1

Xrmax

j¼1

ðxuij � xuiþ1;jÞ2; xuij 2 f0;1g ð18Þ

subject to
Xrmax

j¼1

xuij ¼ 1; 8u ¼ 1; . . . ;U; 8i ¼ 1; . . . ; n

ð19Þ

XU

u¼1

Xk

i¼1

Xrmax

j¼1

Sijxuij 6 VðDkÞ; 8u ¼ 1; . . . ;U; 8k ¼ 1; . . . ;n

ð20Þ

XU

u¼1

Xn

i¼1

Xrmax

j¼1

wijxuij P Wopt ð21Þ

Note that there are U � n constraints (cf. Eqs. (16) and
(19)), as each user downloads one representation per seg-
ment and stalling must be avoided. Thus, the number of
runs and the video duration had to be cut due to comput-
ing time. Following the considerations from Section 5.3,
the LAYER quality value function was used when solving
the optimization problems for multiple users. For the eval-
uation, the average quality levels and minimal numbers of
switches of all users are considered as well as fairness
aspects.

6.2. Impact of service provisioning on QoE and fairness

Fig. 8 presents the mean of the average quality level�l (a)
and the mean of the minimal number of switches and 95%
confidence intervals (b) for different number U of users in
the system. For U ¼ 1; 2; 4, the video can be downloaded
and watched in the highest quality if the bandwidth factor
b is 1; 2; 4, respectively, which corresponds to the
definition of b. However, the more users are in the system
at the same time, the lower average quality levels can be
achieved by optimal solutions. In contrast to these rather
intuitive results, the minimal number of switches does
not follow the same simple principles. It can be observed
that it increases rapidly already for few users until it
reaches a maximum. This means, that in order to achieve
the highest possible average quality level for all users in
the system, the optimal solutions rely on an increasing
number of quality switches. With more users, �l drops
below 2 and also the number of switches decreases. This
is due to the fact that with increasing number of users less
representations with j > 1 can be downloaded for the opti-
mal solutions. This behavior continues until eventually
only representation 1 can be streamed for a maximum
number users. If more users would be in the system in par-
allel, stalling of some users could not be avoided anymore,
e.g., only 8 users can be supported in lowest quality for
b ¼ 1 or 17 for b ¼ 2. It has to be noted that confidence
intervals are too small to be visible in these cases.

Fig. 9 relates the results from the multi-user IPTV sce-
nario to a different parameter on the x-axis. In contrast
to the number of users as used in Fig. 8, the effective band-
width b� is now considered which normalizes the band-
width factor b by the number U of simultaneous users.
Thus, the effective bandwidth is defined as the average
bandwidth factor per user, i.e. b� ¼ b=U. Fig. 9a and b show
the average quality level and the average number of
switches depending on the effective bandwidth, respec-
tively. Although in the experiments, the bandwidth factor
(b ¼ 1; 2; 4) as well as the number U of users
(U ¼ 1; . . . ;20) are varied, the overlapping curves indicate
that both parameters can be abstracted into the effective
bandwidth. Thus, the optimal solution in the multi-user
IPTV scenario depends only on the effective bandwidth a
user obtains as well as the video characteristics.

However, these results on their own are not yet mean-
ingful when considering a system-wide perspective. Some
users could have to suffer (i.e., download the video in low
quality) for the global optimum. Therefore, these optimal
solutions are analyzed with respect to their fairness among
all users. Jain’s fairness index [36] is used, which is defined
as 1

1þc2
x

with cx being the coefficient of variation of x (e.g.,

average quality level). It can be seen that the globally opti-
mal solutions are almost perfectly fair with a fairness index
larger than 0.98, i.e., the minimal number of switches is
almost the same for all users. The same is true for the aver-
age quality level. This means, optimal adaptation strategies
in the multi-user scenario are also fair among all users,
which was not obvious.

However, [37] revealed that large segment sizes have
negative effects on fairness although they allow for a high
network utilization. In order to check this finding, the
bundling factor b is introduced which means that b seg-
ments are bundled into a larger one. Solving the optimiza-
tion problems for different number of users U and bundling
factors b, first of all, no significant impact of U can be
found. Thus, exemplary results are shown in the following
which can be generalized to all numbers of concurrent
users. For U ¼ 6, the average quality level reduces only
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Fig. 8. Optimal solution in multi-user IPTV scenario with service provisioning.
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minimally from 2.0621 for bundling factor 1 down to
1.9957 for bundling factor 15, and also the fairness index
stays very close to 1 (i.e., 0.9991 in the worst case).
Fig. 10 shows the impact of different bundling factors b
on the minimal number of switches and the resulting fair-
ness index. Evidently, for larger bundling factors, the num-
ber of switches is decreased. But also the fairness index in
terms of number of switches decreases which means that
the number of switches is higher for some users. Thus, it
can be confirmed that the optimal solution for larger seg-
ment sizes decreases fairness in terms of number of
switches but not related to the average quality levels.

7. Conclusions and outlook

HTTP Adaptive Streaming (HAS) provides a more flexi-
ble video delivery by allowing end devices to dynamically
adjust the video bit rate and therewith the video quality.
Multiple downloading strategies have been proposed in
literature, which differ with respect to user-perceived
application parameters like the average played back qual-
ity or the number of quality switches.

The contribution of this paper is threefold. Firstly, we
introduced an evaluation framework which allows the
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computation of theoretical optimum of a HAS downloading
algorithm, as well as if QoE fairness in a multiple user
environment is possible. Secondly, we performed user sur-
veys to identify the key performance indicators for HAS. It
turned out that switching frequently to a better video qual-
ity results in a better QoE than keeping a low video quality
constantly. Hence, to maximize the overall QoE of a user,
the time on highest layer should be maximized, while the
number of switches should be minimized. Thirdly, we per-
formed a statistical evaluation of single-user and multi-
user scenarios for several downloading strategies.
Therefore, we formulated and solved the optimization
problems for a set of network conditions and an exemplary
video clip. We compared the QoE performance of four exist-
ing adaptation strategies to the optimal adaptation and
quantified the quality differences. In general, our presented
approach allows for a more comprehensive assessment and
benchmarking of the performance of adaptation logics with
respect to QoE. In the multi-user scenario, we showed that
the effective bandwidth per user properly abstracts the net-
work conditions to derive the optimal solution. Based on
this we evaluated the fairness among multiple clients com-
peting for a high QoE in case of a shared bottleneck. From a
system-wide perspective, the globally optimal solutions
indicate a high fairness across the involved users as long
as adaption intervals are short. Increasing the length of
video segments, however, results in an unfairness in terms
of the number of switches while still providing fairness in
terms of average played back video quality. As concerns
future work, a proper system architecture and a distributed
algorithm are to be developed and evaluated which aim at
reaching the QoE optimal solution in practice. Dynamic
programming techniques for instance may be a promising
path to derive novel adaptation strategies providing an
optimal video quality without previous knowledge of the
currently available networking resources.
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