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User-centric Evaluation of Adaptation Logics for HTTP Adaptive Streaming

Abstract: HTTP Adaptive Streaming (HAS) is the de-facto
standard for over-the-top (OTT) video streaming services. It
allows to react to fluctuating network conditions on short
time scales by adapting the video bit rate in order to avoid
stalling of the video playback. With HAS the video content
is split into small segments of a few seconds playtime each,
which are available in different bit rates, i.e., quality level
representations. Depending on the current conditions, the
adaptation algorithm on the client side chooses the appro-
priate quality level and downloads the respective segment.
This allows to avoid stalling, which is seen as the worst
possible disturbance of HTTP video streaming, to the most
possible extend.Nevertheless, theuserperceivedQuality of
Experience (QoE) may be affected, namely by playing back
lower qualities and by switching between different quali-
ties. Therefore, adaptation algorithms are desired which
maximize theuser’sQoE for the currently availablenetwork
resources. Many downloading strategies have been pro-
posed in literature, but a solid user-centric comparison of
these mechanisms among each other and with the global
optimum is missing. The major contributions of this work
are as follows. A proper analysis of the influence of quality
switches and played out representations on QoE is con-
ducted by means of subjective user studies. The results
suggest that, in order tooptimizeQoE, first, the quality level
of the video stream has to be maximized and second, the
number of quality switches should beminimized. Based on
our findings, aQoEoptimizationproblem is formulatedand
the performance of our proposed algorithm is compared to
other algorithmsand to theQoE-optimal adaptation.
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I Introduction

Video streaming has evolved to the dominating application
in the current Internet and its share is expected to grow
even further within the near future [1]. Over-the-top (OTT)
video distribution networks like YouTube, Hulu, or Netflix
typically use a HTTP/TCP progressive streaming approach.
This allows for the use of the advantages of HTTP, i.e., the
HTTP delivery structure, an easy Network Address Transla-
tion (NAT) and firewall traversal, as well as the advantages
of TCP, i.e., congestion control and guaranteed packet de-
livery. The buffering of content at the client’s end further
allows to overcome limitations of network resources on
short time scales and to assure a continuous playout of the
video content. If this is not possible, e.g., in case of live
video streaming, limited network resources may lead to
buffer underuns and the interruption of the playback, i.e.,
stalling.

To overcome this problem and to allow for a flexible
adaptation of the video quality to the available network
resources and device capabilities, HTTP Adaptive Stream-
ing (HAS) has been designed. The video content is avail-
able in multiple bit rates, i.e., quality levels, and split into
small segments each containing a few seconds of playtime.
The client measures the current bandwidth and/or buffer
status and requests the next part of the video in an appro-
priate bit rate, such that stalling is avoided and the avail-
able bandwidth is best possibly utilized. Hence, the con-
trol intelligence which segment to stream has moved from
the servers to the clients. The HAS streaming technology is
adopted by a wide range of applications and video content
providers [2] and is standardized in ISO/IEC 23009-1 [3].

FromthenetworkperspectiveHASenables the efficient
and easy use of existing content distribution and network
infrastructure components such as Content Distribution
Networks (CDNs),HTTP caches,NATdevices, and firewalls.
The protocol is typically used with single layer codecs like
H.264/AVC, however, recent studies [4] showed that with
scalable video codecs (SVC) likeH.264/SVC amore efficient
usage of the infrastructure and a better played out video
quality can be achieved. Further, a scalable video codec
allows more download flexibility since already down-
loaded parts of the video clip can be enhanced at a later
time.
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Much research in the HAS area tries to find the best
downloading strategy in order to maximize the user per-
ceived quality. Recently, several download algorithms for
HAS have been proposed, both for single layer and multi
layer codecs. These algorithms try to improve on typically
investigated performance parameters, such as initial de-
lay, stalling delays and frequencies, played out video qual-
ity and switching frequency. However, a solid user-centric
comparison of these mechanisms among each other and
with the theoretical optimum ismissing.

The contribution of this paper is fourfold. First, we
discuss existing adaptation logics including our proposed
BIEB algorithm for H.264/SVC HAS streaming [5] which
implements ’Bandwidth Independent Efficient Buffering’.
Second, we conduct a subjective user study to identify the
impact of video qualities and quality switching frequen-
cies on the user perceived quality. Based on these results
we model a Quality of Experience (QoE)-optimal adapta-
tion strategy as amixed integer program, which is the third
contribution of this paper. Finally, we perform a user-
centric comparison of the discussed adaptation logics
among each other and with the global optimum.

The remainder of this paper is structured as follows.
Section II gives an overview on the principle of HTTP
adaptive video streaming and introduces existing adapta-
tion logics from literature. For the sake of completeness,
the Bandwidth Independent Efficient Buffering (BIEB) al-
gorithm as proposed in [5] is described in detail and pseu-
docode for its implementation is given in Section III. The
QoE influence factors on HAS are then summarized in
Section IV, before the subjective user tests and the ob-
tained user ratings are discussed. As a result of this QoE
study, an optimal QoE adaptation is found. Section Vmod-
els the optimal QoE adaptation strategy with mixed integer
programming and formulates the optimization functions
based on the QoE findings from the subjective tests. Sec-
tion VI compares the different adaptation algorithms from
literature with the optimal solution with respect to the user
perceived quality. Finally, Section VII concludes this work
and highlights future steps.

II HTTP Adaptive Streaming

The principle of HTTP Adaptive Streaming is first intro-
duced in Section II-A, before existing adaptation logics are
briefly summarized in Section II-B. In particular, the pro-
posed algorithms KLU [2], TUB [6], and Tribler [7] are
revisited.

A Principle of HTTP Adaptive Streaming

HTTP video streaming is a popular Internet service but
suffers from several drawbacks when network conditions
and video requirements are badly aligned. If the available
bandwidth is smaller than the video bit rate, playout buffer
depletes which will eventually cause stalling, i.e., inter-
ruption of playback due to insufficient data, which deterio-
rates the QoE severely (e.g., [8], [9]). However, if the video
bit rate is smaller than the available bandwidth the video
can be played out smoothly, but resources are spared
which could be utilized for a better video quality. HAS
tackles this misalignment by flexibly selecting the video
quality which is delivered to the end users.

To allow for adaptation, a video clip has to be available
in different video bit rates, i.e., in different quality level
representations. Themedia is split into small segments of a
few seconds duration, such that switching the quality is
possible at fixed, short time intervals. On the client side, the
current network conditions and/or buffer status are moni-
tored and the adaptation logic decides which video part to
download next. It requests the next segment in an appro-
priate bit rate, such that stalling is avoided and the avail-
able bandwidth is best possibly utilized. [10] evaluated
HAS under vehicular mobility and found that quality adap-
tation could effectively reduce stalling by 80% when
throughput decreased, and that it achieved ahigher utiliza-
tion of the available bandwidth when throughput in-
creased. Also in non-mobile environments, HAS mitigates
the drawbacks of classicalHTTP video streaming. Thus, it is
very popular nowadays which manifests in an increasing
number of video applications employing different HAS so-
lutions asdefault video streaming technology, and standar-
dization efforts, suchasMPEG-DASH [3].

B Existing Adaptation Logics

Many adaptation logics were already proposed in related
literature. Three algorithms have been selected for com-
parison to our proposed algorithm. These are the prototype
implementation of Müller et al. from Klagenfurt University
(KLU [2]) and the algorithm proposed by Miller et al. from
TU Berlin (TUB [6]) which were both designed for single-
layer content like AVC. Furthermore, a chunk selection
strategy based on Tribler by Oechsner et al. (Tribler [7]) is
considered which was developed for multi-layered content
like SVC. The selected three adaptation logics are de-
scribed briefly in the following.

KLU uses the current bandwidth, the current buffer
level, and the average bit rate of each representation for its
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decision. The current bandwidth is compared to the aver-
age bit rates of each representation, and the representation
with the highest bit rate less or equal the estimation is
selected. The bandwidth estimation is a function of the
current buffer level and the throughput measured for the
last segment. The estimation is decreased if the buffer level
is less than 35% and increased if the buffer level is equal or
higher than 50%.

TUB decides based on the average bit rate of each
representation, the current bandwidth, and the current
buffer level. For a buffer level less or equal to a configured
minimum threshold the algorithm switches to the lowest
representation. For a level less than a configured low
threshold, the algorithm switches to the next lower repre-
sentation, if the bandwidth is less than the average bit rate
of the current representation. For a high buffer level, the
algorithm increases the quality level by one, if the band-
width is higher than the average bit rate of the next seg-
ment. Thus, in contrast to KLU, TUB tries to adapt stepwise
only by one quality level at a time. The current bandwidth
is estimated by the throughput of recent segments, but the
estimation is modified depending on the current buffer
level. To minimize the initial delay, a fast-start phase was
introduced in addition to the normal mode of operation.

Tribler relies on two configuration parameters, that
are the threshold of base layer segments and themaximum
number of segments. Starting from the current segment, it
downloads only the lowest quality (i.e., base layer) of the
following segments. If the threshold of base layer seg-
ments is reached, the algorithm tries to download all qual-
ity levels of all succeeding segments up to a maximum
number of segments.

It is important to mention that existing algorithms
select among the available chunks just based on technical
parameters like bandwidth or bit rate, but do not take the
expected video quality perceived by the end user into
account. SVC encoding introduces some overhead but
SVC-based algorithms allow that different representations
of the same time slot can be requested independently and
incrementally. Single-layer strategies, on the other hand,
can also request different representation of the same time
slot, but only completely downloaded segments can be
used for decoding. Thus, SVC-based algorithms may cope
better with highly variable bandwidth, e.g., in mobile sce-
narios, than single-layer codecs [11]. In the following, our
proposed SVC-based adaptation algorithm (BIEB [5]) is
presented, and the algorithms are compared among each
other andwith respect to the QoE-optimal adaptation.

III BIEB Algorithm for Video
Adaptation

The BIEB (’Bandwidth Independent Efficient Buffering’)
algorithm1 is an adaptation logic for SVC videos. In con-
trast to other algorithms, it does not rely on estimations of
the available bandwidth and does not postulate a constant
bit-rate of the content, however, it assumes a constant size
ratio between the segments of each representation. A com-
prehensive presentation is given in [5] but the most impor-
tant aspects will be described in the following.

BIEB uses a number of parameters during playback.
The size ratio between the segments of each representation
is given by brðrÞ ¼ Bavg;r

Bavg;1
with Bavg,r being the average bit-

rate of representation r without the dependency layers
needed for decoding. rcurr is the currently selected repre-
sentation, 1 is the lowest (i.e., the base layer) and rmax the
highest representation, respectively.

We define �, a base number of segments which stati-
cally increases the desired buffer level for all selected
representations. According to the size ratio br(r), BIEB
computes the number of segments which should be addi-
tionally buffered for each quality level r. For example, if
the enhancement layer is three times the size of the base
layer, three times more segments of the base layer should
be buffered than segments of the enhancement layer, in
addition to � segments.

Thus, the desired buffer level �(r, rcurr) for each se-
lected representation r is given by

�ðr; rcurrÞ ¼ � þ brðrcurr � r þ 1Þ if rcurr � r þ 1 � rmax;
� þ ðrcurr � r � rmax þ 2Þ � brðrmaxÞ

�

else.
The algorithm loops from the minimum quality level

to the current quality until it encounters a level where the
number of currently buffered segments �(r) is less than the
desired number for this level �(r, rcurr). If all quality levels,
including the current, have already reached their desired
number of segments, the algorithm increases the base
numbers for each quality and switches to the next higher
level. The pseudo code for the algorithm is given in Algo-
rithm 1. In Figure 1, the steady phase is depicted relative
to the current playback position pcurr with three segments
missing (displayed faded out) to the desired buffer levels
�(r, rcurr) for all selected representations. Note that in the
growing phase the buffer level requirements are increased

1 An implementation of BIEB algorithm is available at http://git.io/
GTAuGg.
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past the amount required for the next representation (cf.
rcurr +2 in �(r, rcurr + 2)). This is done to inhibit any short-
term throughput fluctuations from causing unwanted
quality switches. In the case of rcurr = {rmax – 1,rmax}, virtual
layers for r = {1, 2} might be needed whose size is estimated
as amultiple of br(rmax).

Fig. 1: BIEB algorithm: Desired buffer levels with some segments
already in the buffer (displayed filled) and threemissing segments
(displayed faded out) before entering the growing phase.

For the BIEB algorithm, [5] presents objective results and
compares its performance with the other adaptation logic
presented in Section II-B. However, it is unclear how far
away the algorithms are from the QoE-optimal adaptation
strategy, i.e., the adaptation strategy which maximizes the
subjectively perceived quality under given network condi-
tions. Therefore, QoE influence factors are discussed in the
following and the optimal adaptation is modeled.

Algorithm 1: BIEB Adaptation Algorithm. An implementation is
available at http://git.io/GTAuGg.

IV On Qoe of HTTP Adaptive
Streaming

The different influence factors on HTTP adaptive video
streaming are considered in Section IV-A. An understand-
ing of those factors is required in order to design a subjec-
tive user study for quantifying the impact of those factors
on QoE. Section IV-B introduces the setup of the user tests,
which were conducted in a crowdsourcing environment
[12], summarizes the demographics of the test participants,
and quantifies QoE in terms of mean opinion scores of the
individual user ratings. The derived QoE model formulates
the rationale of the optimization problem for the QoE
optimal adaptation of HAS.

A QoE Influence Factors

Quality of Service (QoS) in telecommunication networks is
usually described objectively by network parameters like
packet loss, delay, or jitter. However, a good QoS does not
necessarily mean that all customers perceive a good ser-
vice quality. Hence, QoE was introduced [13] which expli-
citly relies on subjective criteria. For classical HTTP video
streaming, [8], [14] showed that the subjectively perceived
quality is most influenced by initial delay and stalling.
HAS, in contrast, trades off stalling or delay for adapta-
tion (e.g., a small video chunk size leads to less stalling
but more quality switches [10], [15]). However, the chan-
ging of the delivered video quality during playback intro-
duces an additional impact on QoE [9], [16].

Several works investigated this impact of adaptation
on QoE. In the following, some general findings of image
quality adaptation are presented. However, it must be
noted that also adaptations in other dimensions are pos-
sible, e.g., switching of resolution or frame rate. [17]
found that the frequency of quality switches should be
kept as small as possible. If a switch cannot be avoided,
its amplitude should be kept as small as possible. Thus, a
stepwise reduction of image quality is preferred to one
single decrease. [18] investigated rapid alternation of
base layer and enhancement layer in adaptive video
streaming to mobile devices. They also confirmed the
frequency effect and the amplitude effect, and addition-
ally found that the content played an important role how
adaptation impacts QoE. [19] investigated the impact of
changing the quantization parameter of H.264 video
streams. They found that QoE falls slowly when the quan-
tization parameter starts to increase, i.e., the video bit
rate decreases and the image quality gets worse. Only
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after reaching a high quantization parameter the per-
ceived quality drops faster.

B Subjective User Studies and QoE Results

As related work suggested that the played out quality level
and the number of switches have a significant impact on
QoE, a subjective study was designed to confirm these
findings. To have a diverse and large user base, a crowd-
sourcing experiment was conducted in cooperation with
microworkers.com, a large international platform for dis-
tributing tasks over the Internet to anonymous workers on
the basis of monetary compensation. The platform allows
researchers to create a task, define a compensation, and
make it available to the crowd. The experiments were set-
up utilizing the QualityCrowd2 framework [20] and de-
signed according to the best practices for QoE tests in
crowdsourcing as suggested in [12] in order to cope with
remoteness and reliability of participants. The framework
allows web-based quality assessment of video content
through common web servers and common web browsers
on the client side, respectively. To obtain the QoE model
for adaptive video streaming, a user study with approxi-
mately 100 test subjects was conducted.

Before being able to start the experiment, every parti-
cipant was asked to complete a short demographic survey.
Themajority of the users accessed the campaign’s web-site
from Asia (70%) and from Europe (26%). 42% of the parti-
cipants were between the age of 22 and 25. The age-groups
18 to 21 and 26 to 30 were represented with 18% each. As
occupation, 47% of the test subjects specified to be a
student, followed by 32%who stated to be in employment.
40% of the participants completed a 4-year college and
17% a 2-year college. 17% indicated that high school was
their highest education. Almost all test persons use the
Internet daily (97%) mainly utilizing a fixed line (85%
fixed line, 15% mobile access) access technology. A major-
ity of participants (61%) visits video websites several times
a day and primarily access the Internet from work (64% at
work, 36% at home). 31% specified to wear prescription
glasses.

After the demographic survey, a short introduction
was presented to the user explaining with pictures how to
watch and rate the test sequences. After the users acknowl-
edged the introduction, the test sequences were presented
to the participants sequentially. Each test sequence was
completely downloaded to the browser cache to prevent
any stalling. On completion of the download, a play button
was activated for the user to start the playback. After the
playback of the video sequence, the user was asked Did

you notice any change in quality during playback? If yes, did
you feel annoyed by them? and was presented a 5-point
ACR slider with the options Imperceptible (did not notice
any), Perceptible but not annoying (did notice, but did not
care), Slightly annoying, Annoying and Very annoying.

As test sequence a 15 second (360 frames) video from
the movie „Tears of Steel“, an open-source short movie
produced and published by the Blender Foundation, was
used. The scene depicts two persons standing on a small
bridge and contains a low level of detail and motion (SI:
8.5, TI: 5.37). We encoded the test sequence into two qual-
ity levels by downscaling the source material to 640x360
and 160x90. Note that in the browser of the user, the
two quality levels were both scaled to a window size of
320x180. Six different representation switching patterns
were presented to the user in random order. Two patterns
with zero switches were presented, onewhich only showed
the higher quality to the user and one only showing the
lower quality level. The other four patterns started and
ended on the highest layer, but included 2, 4, 8, and 14
quality switches, which were uniformly distributed over
the 15 seconds of the sequence.

Fig. 2: Subjective user ratings asMOS for a video with two
representations.

Figure 2 shows the QoE results of the conducted experi-
ments. It presents MOS for the test sequences depending
on the number of quality switches x and the corresponding
fitted function f(x). Switching between the high and low
quality level representation has a negative influence on
QoE. However, the user perceived quality is bounded by
the MOS of the highest layer and the lowest layer. Thus, if
there is no switch, QoE follows as f(0) = α + �, which
represents the MOS of the high layer. When the number of
switches increases and, thus, the low quality representa-
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tion is delivered more frequently, lim
x!1

f ðxÞ ¼ �. The IQX
hypothesis [21] suggests an exponential relation between
QoE (in terms of MOS) and the number x of quality
switches

f(x)= αe–βx + γ. (1)

From the subjective user studies we obtain the following
fitting f(x)=1.90e–0.32x + 2.98. However, it has to be noted
that more subjective tests have to be conducted to consider
more than two layers, to examine additional influence
factors, and to provide a generic QoE model for HTTP
adaptive streaming. Nevertheless, from the results of the
QoE study the following rule of thumb can be concluded.
To maximize QoE for a single user, the video time played
out in its highest quality level should be maximized, while
the number of switches should be minimized. This is the
basic rationale of the optimization problems formulated in
this paper.

V Modeling Optimal Qoe
Adaptation

Modeling of the optimal QoE adaptation follows a two-step
approach in order to take into account the QoE findings.
The optimal adaptation strategy is formulated as a mixed
integer program which is based on [22]. In the first step the
video time on highest quality level is maximized and in a
second step the number of switches is minimized while
stalling is avoided at any time. It has to be noted that [22]
optimizes the downloaded data volume rather than the
video time on highest quality level which we suggest for
QoE optimal adaptation. Section V-A introduces the vari-
ables and parameters as used in the two-step mixed inte-
ger program in Section V-B.

A Definition of Variables and Parameters

First of all, the used notation is presented and is also
summarized in Table I. It is assumed that a video is avail-
able in R = {1,. . .,rmax} representations and split into n
segments. Each segment Sij contains data for τ seconds of
the video representation j ∈ R, and has to be played out at
time Di, i =1,. . .,n. During the time [0,t] the user receives an
amount of data V (t)= v. In compliance with the available
download volume, the client downloads segments and
plays them out before their respective deadline, such that
no stalling occurs. In this work, no start-up/initial delay is

considered. This means, after the first segment has been
downloaded, the video playout begins.

These variables are sufficient to formulate the optimi-
zation problems. The boolean target variable xij indicates if
the client downloads segment Sij or not, and serves as
input to the optimization function. Thus, the optimal as-
signment xij describes the outcome of an optimal adapta-
tion strategy. This assignment is realizable under the given
conditions without stalling, however, no indications of the
optimal decisions are contained, i.e., the optimal assign-
ment does not indicate when to downloadwhich segment.

In order to remove dependencies on the actual band-
width conditions and video characteristics, the results pre-
sented in this work are normalized. The available band-
width was adjusted, such that a video of duration nτ with
total size S� ¼ Pn

i¼1 Sirmaxof the highest quality representa-
tion rmax can be downloaded completely without stalling
and initial delay. In other words, the received download
volume at nτ equals the total size of the highest quality
representation, i.e.,V (nτ )= S*.

Table I:Notations and variables used for the optimization problem.

variable explanation

R available representations, i.e. R = {1,. . .,rmax}

n number of segments

τ duration of a segment

Sij size of segment i from representation j

wij weighting factor indicating the QoE value of segment i
for representation j

Di playback deadline for segment i

V (t) total amount of data received by a client during the
time [0,t]

xij ∈ {0, 1} target variable indicating if client downloads segment
i from representation j (xij = 1) or not (xij= 0)

Wopt optimal quality value for single user without stalling

B Optimal Adaptation Strategy asMixed
Integer Program

Based on [22], the optimal adaptation strategy can be
formulated as mixed integer program. For the definition
of the optimization problem, the target variable xij ∈ {0, 1}
is introduced indicating if the client downloads segment i
from representation j (xij = 1) or not (xij = 0). The playout
of a segment has different impact on QoE depending on
the selected representation. Therefore, in order to opti-
mize for QoE, a value function wij is introduced which

280 Tobias Hoßfeld, Michael Seufert, Christian Sieber, Thomas Zinner and Phuoc Tran-Gia



indicates the quality value of a segment i in representa-
tion j, i.e., the contribution of a segment to the overall
perceived quality. In this work, the used value function
weights each segment of representation j ∈ {1,. . .,rmax} by
j, which results in an optimization of the mean representa-
tion number.

It has to be noted that [22] suggests to maximize the
downloaded volume and to minimize the quality switches
which leads to a different quality value function. The ratio-
nale behind this assumption is the fact that a representa-
tion in a higher quality requires a larger volume than a
lower quality representation. However, a low quality repre-
sentation of segment k may be larger in practice than the
high quality representation of another segment i, i.e.,
Si1 >Skrmax, rmax > 1. In that case, which can occur due to
different motion patterns and scenes in the video, the
optimization would not select the highest possible quality
layer.

Two optimization problems 1 and 2 can be formulated
which take into account the QoE results which have shown
that the quality layer has to be maximized first, and the
number of switches have to be minimized in a second step.
This two-step approachwill lead to an optimal QoEwithout
requiring a dedicated QoE model that maps parameters to
QoE.

Optimization Problem 1: Maximize quality value for single
user without stalling.

maximize W ¼
Xn
i¼1

Xrmax

j¼1

wijxij  with xij 2 f0; 1g (2)

subject to
Xrmax

j¼1

xij ¼ 1        8i ¼ 1; . . . ; n (3)

Xk
i¼1

Xrmax

j¼1

Sijxij � VðDkÞ 8k ¼ 1; . . . ; n (4)

Optimization problem 1 will maximize the downloaded
quality value depending on the value function wij. Con-
straint (3) ensures that for each segment one representa-
tion is downloaded and constraint (4) ensures that all
segments i are downloaded before their deadline Di. In this
respect, V (Di) represents the maximum amount of data the
client can download until the playback deadline of seg-
ment i. In the following, the optimal quality value W of
problem 1 will be denoted byWopt.

Optimization Problem 2: Minimize switches for single user
without stalling at given target quality Wopt.

minimize 
1
2

Xn�1

i¼1

Xrmax

j¼1

ðxij � xiþ1;jÞ2 with xij 2 f0; 1g (5)

subject to
Xrmax

j¼1

xij ¼ 1         8i ¼ 1; . . . ; n (6)

Xk
i¼1

Xrmax

j¼1

Sijxij � VðDkÞ 8k ¼ 1; . . . ; n (7)

Xn
i¼1

Xrmax

j¼1

wijxij � Wopt (8)

Similarly, constraints (6) and (7) in optimization problem 2
are the same as constraints (3) and (4) in optimization
problem 1. Additionally, constraint (8) ensures that mini-
mizing the number of quality switches does not decrease
the overall quality value below the optimumWopt.

Problem 1 is known as Multiple-Choice Nested Knap-
sack Problem (MCNKP, [23]), while problem 2 is a Qua-
dratic MCNKP. It is known that MCNKP is NP-hard, but
pseudo-polynomial time algorithms exist which were em-
ployed by using the software gurobi2.

VI User-centric Evaluation of
Adaptation Logics

The goal of this work is the user-centric evaluation of the
four HAS adaptation algorithms in a demanding realistic
scenario to stress their quality adaptation and compare
their performance to theQoE-optimal adaptation. The com-
plete „Tears of Steel“ movie was chosen as example video
content, which has a playback length of about 12 minutes
and features high image quality with fast-paced actions
scenes and slow-paced character close-ups in a science
fiction scenario. Themovie was transcoded into H.264/SVC
with spatial scalability using the JSVM reference software
(version 9.19.15). The GoP size was set to 8 frames, the
IDR and intra period to 24 frames and the QP factor
was set to 24. Three spatial resolutions were configured,
1280x720, 640x360, and 320x180. The encoded movie
shows averages bitrates of 0.26 Mbps, 0.95 Mbps, and 2.67
Mbps, and amaximumbitrate of 1.28Mbps, 3.37 Mbps, and
10.46Mbps for the three spatial layers.

For usage with MPEG-DASH, a segment duration τ of
2 seconds (48 frames) was chosen which leads to n = 367
segments in total. Three inter-dependent representations

2 http://www.gurobi.com/
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Fig. 3: Bandwidth utilization.

Fig. 4: Average quality level of different adaptation logics.

R = {1, 2, 3} were created from the SVC segments by dissect-
ing the SVC bitstream along the spatial scalability. Note
that as scalable video coding is used here, for decoding the
segment Sij the segments Si,1,. . .,Si,(j-1) are also required. In
the following, segment size is defined as the sum of
the segment plus all required lower layer segments
(Siz ¼

Pz
j¼1 Sij). A total volume of 238.57 MB is required to

download the video content in the highest quality, 84.86
MB and 26.52 MB for the medium and lowest quality level,
respectively. The DASH segments have an average size
from the lowest to the highest layer of 75.77 KB, 242.47 KB,
and 681.64 KB with a standard deviation of 37.15 KB,
127.09 KB, and 419.74 KB.

For evaluation under realistic network conditions, a
bandwidth pattern is used, which was recorded in a vehi-
cular mobility scenario by Müller et al. [2]. The bandwidth
pattern was recorded in and around Klagenfurt, Austria
driving on a highway while connected to the Internet with

Fig. 5: Played out segments.

Fig. 6:Number of quality switches.

a mobile UTMS stick and measuring the throughput of a
large HTTP download. The mean measured bandwidth
was 2.81 Mbps but it was adjusted over time in such a
way that after the video duration nτ, the video is comple-
tely downloaded in its highest representation, i.e.,
Vðn�Þ ¼ Pn

i¼1 Sirmax . This resulted in a mean adjusted
bandwidth of 2.67 kBps.

In order to emulate different network conditions for
the different simulation runs while keeping the total
download volume constant, the bandwidth trace from the
vehicular mobility scenario was permuted to obtain 30
different bandwidth patterns. For each bandwidth pat-
tern, measurements of the four adaptation algorithms
were performed in the test-bed at the University of Würz-
burg in December 2012. Moreover, the optimization pro-
blem was solved for each pattern, which provides the
QoE-optimal adaptation result for each bandwidth pat-
tern.
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Figure 3 depicts the CDF of the bandwidth utilization
by the adaptation algorithms. BIEBandTriblerwere always
able to use at least 82 % and 78 % of the available band-
width,whereasKLUandTUBwere using only down to 58%
and40%, respectively. Also the latter twoalgorithms’max-
imum utilization of 56 % and 62 % is low compared to the
other adaptation logics. The optimal solutionwould almost
always utilize the whole available bandwidth, but Tribler
andBIEBcancomecloseup to around90%utilization.

However, the bandwidth utilization alone does not
reflect the perceived quality of the algorithm. Therefore,
according to the QoE results above, the average quality
level and the number of switches have to be considered.
Figure 4 shows the CDF of the average quality level achie-
ved by each algorithm. BIEB and Tribler again perform best
which is a rather intuitive result that could be expected
from the algorithms’ bandwidth utilization. In the 30 runs
they achieve a mean average quality level of 2.67 and 2.61,
which is close to the mean average optimum of 2.90. TUB
and KLU do not reach such high average quality levels
which results inmeanvalues of 2.07 and2.22, respectively.

Figure 5 shows the playback quality in terms of ratio of
played segments of each representation. The optimal
adaptation would playout the highest representation for
90 % the time and would never play out the lowest quality
representation. In terms of highest representation, Tribler
comes closest with 73% of the time playing out the best
image quality, followed by BIEB with 68%. KLU and TUB
select the highest representation only 37% and 19% of the
time but use the medium representation 49% and 70% of
the time. This again shows that BIEB and Tribler clearly
outperform KLU and TUB regarding the playback quality
and come close to the QoE-optimal adaptation.

Fig. 7: Scatter plot for the 30 trial runs: average quality level vs.
number of switches for the different adaptation algorithms and the
optimal solution.

Considering the number of switches which are introduced
by each adaptation logic a different result can be seen in
Figure 6. TUBandBIEBneed only few switches and are very
close to the optimum. Note that the optimum can require
more switches because the average quality level is opti-
mized in first place before the number of switches is mini-
mized. KLU and Tribler need significantly more switches
and on average change the quality of the playback every
5.15 s and 6.81 s, respectively. In contrast, BIEB and TUB
adapt every 61.33 s and 92 s, respectively,which are reason-
able values to have only a low impact on the QoE. To put it
in a nutshell, KLU and Tribler are very aggressive algo-
rithms and try to immediately adapt to the current network
condition. This, however, leads to a high quality switching
frequency. BIEB and TUB are more conservative resulting
in a low frequencyand low impact on theQoE.

Figure 7 combines the previous findings in a single
plot and shows the number of switches over the achieved
average quality level. Thus, the optimal values are located
in the lower right corner of the plot. It can be seen that each
adaptation logic forms an own cluster which suggests that
the performance results presented in this analysis are con-
sistent over all runs. Here again it is obvious that BIEB
shows the overall best performance from an user-centric
point of view and is close to the QoE-optimal adaptation.
Although Tribler also leads to a high playback quality, the
QoE suffers from the high number of quality switches. KLU
performs worse considering playback quality and fre-
quency. Although TUB shows only medium playback qual-
ity, it has the advantage of a low number of quality
switches.

VII Conclusions and Outlook

In this paper, a user-centric SVC-based algorithm for HTTP
adaptive streaming was presented and compared to exist-
ing algorithms regarding achieved Quality of Experience.
It was confirmed with a subjective study that the quality
level and the number of switches in played out video
stream are the key influence parameters of perceived qual-
ity. These results could be used to formulate an optimiza-
tion problem whose solution are QoE-optimal adaptation
for given bandwidth conditions and video content. The
comparison of the algorithms was conducted by means of
measurements in a test-bed for a mobile scenario. The
results show that the BIEB mechanism outperforms the
other algorithms in terms of video quality, switching fre-
quency, and utilization of the available resources for the
investigated network scenario. Moreover, a comparison
with the optimal adaptation showed that the BIEB me-
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chanism comes close to what is possible in the investigated
mobile scenario.

In future work, the BIEB algorithm will be objectively
and subjectively evaluated for different scenarios. Besides
more network scenarios, the impact of other parameters
like the segment length or the specific number and quality
of the SVC layers will also be part of our investigations.
Moreover, the impact of cross-traffic or background traffic
as well as multi-user scenarios are also of interest. To
conclude, we aim at refining the BIEB algorithm to pro-
vide a QoE as close as possible to the theoretical optimum
for a wide range of possible parameters and network sce-
narios.

Funding: This work was partly funded by Deutsche For-
schungsgemeinschaft (DFG) under grants HO 4770/1-1 and
TR257/31-1 and in the framework of the EU ICT Project
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