
Moving Down the Stack: Performance Evaluation of

Packet Processing Technologies for Stateful Firewalls

Katharina Dietz, Nicholas Gray, Manuel Wolz, Claas Lorenz*, Tobias Hoßfeld, Michael Seufert

University of Würzburg, firstname.lastname@uni-wuerzburg.de
*genua GmbH, claas_lorenz@genua.de

Abstract—Software-based network security solutions using
SDN/NFV provide high flexibility and short development cycles,
but may impose a bottleneck onto the network due to their lack
of ASIC-based hardware packet processing. To overcome this
limitation, several frameworks have emerged to enable flexible
high speed packet processing in software, e.g., NAPI, XDP, or
DPDK, or on programmable data planes in hardware, e.g., P4.
Despite aiming for a common goal, the design principles of these
technologies diverge, which raises the question of their suitability
for critical security-related network functions, such as firewalls.
In this work, we implement a stateful firewall, which is capable
of tracking TCP state and sequence numbers, for each of the
four aforementioned high speed packet processing technologies
and make the firewall modules publicly available. We integrate
multithreading strategies, where applicable, and discuss the impact
of each packet processing technology during the development
process. Finally, we evaluate and compare their performance in
terms of throughput in two scenarios following the guidelines of
RFC3511 in a 100 Gbps testbed.

I. INTRODUCTION

In recent years, innovation has brought forward a myriad of

new Internet services, communication protocols, and device

categories, which led to new application fields like the Internet

of Things (IoT), Industry 4.0, and Smart Cities. Despite the

benefits of these novel technologies, they also broaden the

attack surface. This is further aggravated by an ever rising

demand of bandwidth, thus, increasing the overall complexity.

Driven by the rising market share and importance of these

systems, cyber-criminals are constantly expanding their efforts

to profit from this changing environment [1].

Countermeasures, such as firewalls, have to evolve continu-

ously to cope with current and future threats to provide network

security. Firewalls are commonly deployed as middleboxes,

allowing for the use of Application-specific Integrated Circuits

(ASICs), which can greatly improve their performance. Yet, be-

ing situated at the network’s perimeter limits their effectiveness

as they are unable to mitigate insider attacks or contain the

damage once their borders have been breached. Furthermore,

they are rather inflexible as they are required to be physically

connected at the defined security boundaries and hence do not

integrate well into cloud environments. Concepts like Bring

Your Own Device (BYOD) or the increased necessity to work

from home due to COVID-19 make it even more difficult to

define clear security boundaries [2].

To counteract these drawbacks, concepts, such as virtualized

software-based firewalls, gained attention. Software-defined

Networking (SDN) and Network Function Virtualization (NFV)

allow for fast development cycles and more flexibility by

separating the data and control plane of legacy devices,

thus, enabling the use of Commodity-Off-the-Shelf (COTS)

platforms instead of proprietary systems.

A firewall implemented as Virtualized Network Function

(VNF) may impose a bottleneck onto the network due to its lack

of dedicated hardware acceleration. This is especially severe in

core and backbone networks with high bandwidth capacities,

as every packet needs to be inspected. Several techniques

have emerged to optimize the packet processing stack, e.g., by

interrupt mitigation/packet throttling via the overhauled New

API (NAPI) [3], early hooks for extended Berkeley Packet

Filter (eBPF) programs within the kernel with the eXpress Data

Path (XDP) [4], or entirely bypassing the kernel via the Data

Plane Development Kit (DPDK) [5]. Additionally, advances in

Programming Protocol-independent Packet Processors (P4) [6]

allow for the deployment of flexible custom programs, which

can run directly on the switching equipment.

Although the aforementioned approaches achieve their per-

formance optimization differently, they all move functionality

down the stack, i.e., closer to the origin of the network packet,

saving on operations and context switches. This comes at the

cost of enforced limitations and design principles, dictated by

the specific packet processing technology, thus, increasing

development costs or even rendering the implementation

impossible. Besides usability concerns, the question arises to

what extent the performance gain is dictated by the application,

packet processing technology, and other optimizations, e.g.,

multithreading. It remains unclear how suitable these tech-

nologies are for virtualized security applications in core and

backbone networks with speeds up to 100Gbps.
The contributions of this work are as follows:

1 Implementation and publication [7] of a modular stateful

firewall supporting four high speed packet processing technolo-

gies, i.e., Linux NAPI, XDP, DPDK, and P4.

2 Subjective discussion of the impact of packet processing

technologies on the development process.

3 Objective performance evaluation of the packet processing

technologies as engine for a stateful firewall in a high speed

100Gbps testbed, following the guidelines of RFC3511 [8].

The organization of this work is structured as follows.

Section II summarizes background and related work, before

the testbed setup and implementation of the stateful firewall

is detailed in Section III. Section IV presents the evaluation

results, and Section V concludes this work.



II. BACKGROUND & RELATED WORK

Stateful Firewalls. A firewall is defined as a networking

component, which inspects in- and outgoing network traffic

at a security boundary against a set of policies and blocks

violating data packets. The firewall can be implemented in

software and run as a virtual appliance, or can be deployed as

a physical device within the networking infrastructure. Several

types of firewalls exist [9], categorized by the amount of

information taken into account during the filtering process

as well as the layer of the Open Systems Interconnection

(OSI) [10] architecture on which they are operating.

As we focus on the performance of the underlying packet

processing techniques and not computationally intense attack

detection/mitigation logic as needed for firewalls of higher

generations, we implement a stateful packet filter. Commercial

stateful packet filters also support state verification of Internet

Control Message Protocol (ICMP) and User Datagram Protocol

(UDP) messages, while our implementation focuses on the state

inspection of Transport Control Protocol (TCP) packets.

As defined in RFC793 [11], TCP is connection-oriented

and requires the communication partners to partake in a

three-way-handshake, illustrated in Figure 1. Each packet

transmission/reception triggers a transition within the TCP state

machine on the client, server, and the stateful firewall. A similar

procedure is applied to close a connection. To enable packet

reordering and packet loss detection, the protocol employs

sequence (SEQ) and acknowledgement (ACK) numbers, where

the SEQ number of the first packet is randomized and

following packets continuously increase this number by the

bytes previously sent. The firewall evaluates a packet’s SEQ

and ACK numbers on a per flow basis and limits the range of

valid values, making it harder to successfully attempt a TCP

hijacking attack [12], as the injected packets need to comply to

the narrow range of accepted SEQ and ACK numbers. While

the validation of TCP state transitions mainly concerns only

initial and final packets of a connection, validating SEQ and

ACK numbers requires the inspection of all packets.

Enabling quick adaption of the infrastructure to new pro-

tocols and services, NFV [13] gained increasing popularity.

On-demand deployment and a seamless integration into cloud

enviroments helps saving capital expenditures (CAPEX) and

operating expenses (OPEX). Though, performance bottlenecks

of VNFs remain an ongoing challenge. especially with the

increase in transmission speeds of modern networks, the lack

of sophisticated scheduling/filtering of modern NICs, and the

amount of context switches involved in the network stacks of

general purpose operating systems (OSs) [14, 15]. To address

these bottlenecks, dedicated packet processing frameworks have

emerged, such as NAPI, DPDK, and XDP.

The need for dynamicity not only benefited NFV, but also

SDN [16]. By decoupling the control from the data plane via

programmable open interfaces, a new device category emerged.

These devices evolved to SmartNICs [17] and programmable

switches [18] capable of running task specific applications

directly on the hardware, often supporting the P4 language [19].

Fig. 1: Overview of firewall state transitions.

Existing Software-based Solutions. The tendency towards

software-based implementations is reflected by the multitude

of available systems [20]–[24]. Significant performance im-

provements are reported in [25]–[28] when upgrading systems

with XDP. Similarly, DPDK was incorporated in the past

to improve existing solutions [29]–[35]. The active use and

impressive results led us to include these frameworks within

our investigations. Enabled by the rise of SDN, OpenFlow-

based stateful firewalls have been implemented [36, 37].

Due to devices’ limitations of tracking stateful information,

the approaches require the interaction of a controller unit,

creating a trade-off between security and performance. Next

generation SDN-enabled devices provide more control over

internal processes and can often be programmed directly via

P4. [38]–[40] feature first implementations of basic stateful

firewalls whereas [41] presents an implementation featuring

simple stateless packet filtering. Other systems evaluate various

port knocking authentication mechanisms [42], scalable DDoS

mitigation [43, 44], or high performance Intrusion Detection

Systems (IDS) [45, 46], often coupled with offloading specific

tasks to P4-enabled switches. Encouraged by these recent

advances, we aim for implementing a stateful firewall capable

of tracking TCP state transitions and SEQ numbers in P4.

Thriving for a full implementation of the functionality within a

P4-enabled switch, we fall back to an intermediary controlling

unit when necessary as detailed next.

III. TESTBED DESCRIPTION, SYSTEM DESIGN, AND

DEVELOPMENT EXPERIENCE

Testbed Description. Figure 2 depicts the schematic server

configuration for the software-based approaches, i.e., NAPI,

DPDK, and XDP, as well as the setup for P4. In both cases

a single server acts as traffic generator/sink and is connected

with both ports to the device under test (DuT), running the

firewall modules. The servers in use are composed of an Intel

Xeon Silver 4114 @ 2.20GHz CPU with a total of 10 cores

and 188GB RAM. On both systems, the installed OS is Ubuntu

18.04.5LTS and the kernel version is fixed to 5.4.0-42-generic.

The servers are equipped with a two-port Mellanox ConnectX-5

NIC. Using both ports, we mimic common deployments, where

each port resides in its own network, thus, creating a security

boundary. Note that our setup in principle can be replicated

with any server and any multi-port NICs or multiple single-

port NICs. However, DPDK and XDP require using a NIC

driver, which supports these packet processing frameworks. For

the P4 approach, we employ the Barefoot Wedge 100BF-65X
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Fig. 2: Overview of the testbed configuration.

P4-enabled Tofino switch with a total switching capacity of

6.5Tbps, featuring 64 ports each having a maximum capacity

of 100Gbps. The chassis includes a host controller, which is

composed of a 8-core Intel Xeon CPU with 32GB of memory

running Ubuntu 18.04.

Firewall Modules Each firewall implementation consists of

three major building blocks, i.e., policy configuration, filter

& state logic, and packet processing. Initially, all firewalls

need to be configured by specifying the allowed connections,

defined by a 5-tuple of source/destination IP, port, and the

protocol. Currently, the Address Resolution Protocol (ARP)

and TCP are supported. The default firewall behavior is to

block incoming and outgoing packets, if no policy explicitly

allows the transmission. The policies are loaded into a map

data structure to provide O(1) access during the filtering stage.

The key of the hash map’s entry is derived as hash from

the extracted 5-tuple and the stored data is composed of the

initialized TCP state information.

In the filter & state logic stage, each packet is subject to

two validation checks. At first, the policy map is queried

to confirm that the packet header information is compliant,

before verifying the state information. Here, the stored state

of the TCP state machine is first compared to the packet’s

TCP flags, which may result in a violation, pass, or pass/state

transition. In case of a pass, the next verification examines if the

packet’s SEQ number remains within the expected boundaries.

In addition to the original equations given in RFC793 [11]

to validate SEQ numbers, we also incorporate the Window

Scale Factor [47], which allows sending and receiving larger

block sizes to increase the performance in high bandwidth

networks. If the packet passed the SEQ number check, the

state information is updated and the packet is cleared for

forwarding or dropped otherwise.

The packet processing component is responsible for receiving

packets from the NIC, triggering the aforementioned validation

processes, and – in case of a benign packet – sending it towards

its destination. This implies that a received packet has to

be transferred to another port, which is subject to different

copy processes depending on the packet processing technology,

and thus, may introduce a performance bottleneck. Figure 3

illustrates the design concepts of the three packet processing

frameworks used in this work, namely Linux NAPI, DPDK,

and XDP. It shows where the application is running and at

which stages system resources are consumed.

NAPI. NAPI addresses high computational overhead or

even live locks of standard Linux network routine triggers

by introducing interrupt mitigation. The system is informed via

Fig. 3: Overview of utilized packet processing engines.

an interrupt of an arriving packet as previously, but deactivates

future interrupts of the same NIC to transition to a polling mode.

NAPI also introduces packet throttling to reduce any overhead

furtherby simply overwritting packets within the NIC’s ring

buffer if not processed in time, instead being dropped by direct

kernel interaction.

However, as depicted in Figure 3, a packet is still subject to

several copy operations and context switches until it is received

by the application running in user space. At first, the packet is

copied from the NIC by the driver to dedicated kernel structures

and processed further. As the OS supports various protocols

and operations on packets, these operations may not be tailored

to the specific use case of the implemented network function,

resulting in inefficient resource utilization. Next, the contents

of the packets are requested via a system call through a socket

to user space causing a context switch and triggering additional

memory reallocation routines wasting time and resources as

analyzed in [48].

Being the most basic implementation, the realization via

NAPI serves as reference point and relies on two raw sockets

of the AF_PACKET protocol family as it provides access

to the entire packet without stripping the header fields. To

prevent blocking calls the function recv is called with the

MSG_DONTWAIT flag in an active polling loop. The hash

functionality is provided by the Klib [49] library, which was

chosen for its small footprint and good performance [50].

Multithreading is accomplished by the standard Pthreads library.

DPDK. DPDK improves the performance by providing direct

access to the contents of the packets to the application through

a dedicated driver, thus, circumventing the kernel of the OS

entirely as displayed in Figure 3. It cuts down on possibly

unnecessary operations and employs optimization techniques,

e.g., zero-copy and pre-allocation of memory via Hugepages.

Though, it forces the application to possibly re-implement

certain network functions, e.g., routing and forwarding, which

would be otherwise available by the OS, and it relays greater

responsibility on the application as safeguards enforced by the

system’s kernel are bypassed.

Before DPDK can be utilized within user space, a particular

driver needs be loaded, a compatible NIC has to be present

in the server, and the Hugepages, which provide the memory

storage for the packets, need to be mounted. We load the

uio_pci_generic driver in combination with our Mellanox

ConnectX-5 NIC and DPDK in version stable-18.05.1. One

receive and one send queue is bound to each of the two ports of

the interface. Klib is again employed for the hash computation

and storage management of the hash map, and multithreading is
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now implemented directly via DPDK’s rte_ctrl_thread_create

function, which is optimized for the framework. As before, the

packets are actively and constantly polled from the NIC.

XDP. Whereas the aforementioned approaches consolidate

the main functionality of the firewall in user space, the XDP

implementation runs almost completely in kernel space, as

seen in Figure 3. This is achieved by executing eBPF [51]

programs directly in the kernel within a VM. A user space

program initiates eBPF code and links it to the interface via the

bpf_set_link_xdp_fd function. As we use two ports of our NIC,

the initiation process needs to be done for both interfaces and

an eBPF map ties the individually operating programs together

for forwarding purposes. Furthermore, an eBPF map replaces

the prior Klib hash map, as external libraries are unavailable in

this context. Yet, the key to the hash map’s entry and the stored

data remain unchanged. Once the user space has finished the

initialization process, it yields and merely waits for an user

interrupt to properly shutdown the firewall operation.

P4. Moving further down the stack, the last firewall im-

plementation offloads certain functionality to a P4-enabled

switch, where each packet is processed by a pipeline design

pattern [19]. The advantage compared to the aforementioned

solutions is that we can achieve linerate on all ports, 6.5Tbps
in our scenario, which is not achievable with the software-based

solutions. Here, each packet is subject to a parser, which is able

to extract the metadata. This is used to perform lookups against

Match+Action tables to determine the further fate of the packet,

e.g., altering, dropping, or forwarding the packet. The Tofino

platform implements the so-called Protocol-Independent Switch

Architecture (PISA). This extends the P4 base operations by

enabling re-submission or packet mirroring/cloning, and offers

additional resources for basic arithmetic operations.

Determined to port the entire firewall module to P4-

programmable hardware, we quickly realized that this is

impossible due to the restrictions of the targeted device. The

most limiting factors are the amount of arithmetic operations,

which can be performed within one pipeline stage, and not

being able to read and write to the same register. Therefore, a

hybrid approach was chosen similar to [36], i.e, the functionality

is split between the P4 switch, which handles the forwarding,

and a controller, which implements the state tracking.

As our Tofino platform features an integrated management

host able to run a standard Linux OS, the controller is

implemented on the management host and can communicate via

the PCIe bus with the programmable switching fabric. However,

the standard Apache Thrift [52] API, which is used by a Python

controller, may impose a bottleneck. Thus, we implemented an

additional C controller, which accesses the PCIe bus directly.

For both implementations, the controller program reads the

configuration and installs rules to initially redirect the packets

of allowed connections to the controller. The controller then

extracts the relevant header information to monitor and validate

the state. In case of a violation, the controller drops the packet.

Otherwise, it is sent back to the switch and marked with a

special ingress port identifier, whitelisted by the P4 program, so

that it can be forwarded directly. As no packet can be queued in

TABLE I: Subjective experience with packet processing tech-

nologies, using the absolute category rating scale (;;:bad,

;:poor, (7):fair, 7:good, 77:excellent).

NAPI DPDK XDP P4

Documentation 77 77 ; ;

Universality 77 77 (7) ;

Functional Completeness 77 77 77 ;

External Libraries 77 77 ; ;;

Ease of Integration 77 77 7 ;;

Level of Control 77 77 ; ;

Risk 7 ; 77 7

the memory of the switch with the option to stall until further

instructions are received, the entire packet has to be forwarded

to the controller. This further increases the load on the PCIe

bus as no compression or aggregation can be performed. Early

development stages proved that forwarding every packet to

the controller breaches the device’s limitations and that the

validation of SEQ numbers is not possible. Thus, this validation

was disregarded for the P4-based firewall module. This allowed

us to alter the process, so that only packets which trigger a

TCP state transition are relayed to the controller, e.g., packets

during the initiation and the tear down of the connection, while

packets carrying the main payload can be forwarded instantly.

Multithreading Strategies. For NAPI and DPDK, we

implement a total of four multithreading strategies as depicted

in Figure 4. In the first variant, a single thread is used, which

handles the entire functionality. Hence, multicore architectures

cannot be used to their full capacity and the probability of CPU

cache misses rises due to the context switches. The two thread

variant merely parallelizes the functional blocks regarding both

ports of the NIC. The third approach extends this concept by

incorporating one thread for each of the functional blocks,

i.e., reading packets from the internal and external network,

validating packets, and forwarding packets to the internal and

external networks, summing up to a total of five threads. The

last variant further breaks apart the validation of packets, as

this is the computationally most intense part of the code. A

single thread is used to confirm the connection validity by

examining the packet’s header fields before the packet’s state

is checked. For the latter a variable number of worker threads

can be spawned. We opted for two worker threads as starting

point, which results in a total of seven threads for this variant.

Subjective Developer Experience. Table I summarizes our

experiences using a subjective scoring on a five-point absolute

category rating scale ranging from bad to excellent. Whereas the

documentation of NAPI and DPDK is excellent and features

many examples, XDP and the Tofino platform lack in this

category due to their novelty and public unavailability. The most

development time was spent on the latter technologies. The

term universality describes the flexibility of the technologies to

be applied in different fields. We assign NAPI and DPDK a high

rating, as they run completely in user space. XDP is limited

regarding its instruction set, but provides a built-in opportunity

to escalate the packet either to other kernel functions or to user

space. A similar statement can be made for P4 in combination

with the Tofino platform, yet the forwarding of packets to the

controller requires additional efforts. In terms of functional
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Fig. 4: Implemented thread strategies for the NAPI and DPDK firewall modules.

completeness, we were able to implement the desired firewall

module with all technologies except for P4. Due to their design,

XDP and P4 lack the support of external libraries. Yet, as stated

before XDP provides means to easily subject the packet to

kernel functions or to a user space program. Regarding the ease

of integration, using the NAPI implementation as reference

point, DPDK and XDP required almost no adaptations to the

main firewall logic. In contrast, the realization via P4 involved

a complete rewrite, an adaptation of the requirements, and

requires to be deployed physically in the network. The level

of control shows a similar trend. NAPI and DPDK provide

various ways to access and process the packets in combination

with how and where the program is run, XDP can only be

hooked to certain execution stages, and P4 enforces its pipeline

design pattern. At last, XDP provides the most safety due to its

limited instruction set, secure execution environment, and code

validation. NAPI and P4 achieve the same score, as packet

processing is protected by the kernel or by dedicated firmware

with limited access for change. DPDK bypasses the kernel,

which may result in unrecoverable errors due to user errors.

IV. EVALUATION

Scenario Configurations. Following the guidelines of

RFC3511 [8], we evaluate the firewall modules in two scenarios.

In the first scenario the impact of long lasting flows with varying

packet sizes is investigated. Here, iperf2 [53] is configured

on the traffic generator/sink server to send and receive TCP

streams. To saturate the link to the best possible rate, a total

of 8 sending processes are executed in parallel. To prevent the

OS to forward the packets internally, the sending and receiving

processes are started in different network namespaces [54]. All

processes are bound to a CPU using CPU core pinning for

optimal performance [55]. The packet size is either set to 88B,

the minimum size of a 802.1Q [56] tagged frame, or 1500B, a

common maximum MTU size, as the packet size has a direct

impact on the number of generated packets, influencing the load

on the firewall module under test. The available bandwidth

is set to different common rates as a parameter study. All

parameter combinations are repeated 5 times and executed for

30 s, of which the first 10 s are discarded as transient phase.

The second scenario evaluates the performance of the firewall

modules for HTTP traffic patterns, which feature fixed web

page sizes and concurrent connections. Here, single web

pages for various content sizes have been created with the

Linux tool dd [57]. The pages are statically supplied by an

Apache2 [58] web server to a Varnish [59] front end cache,

which is configured to hold the web pages in RAM and features

an optimized network stack. The requests are executed by the

Apache HTTP server benchmarking tool (ab) [60], which is

configured to run until 1280 requests are completed. Regarding

the varying number of concurrent connections, a parameter

study is performed and all configurations are repeated 5 times.

Baseline. Before diving into detailed performance analyses

of the four firewall implementations, we conduct a baseline

measurement without the interaction of a firewall, as the

output of the traffic generation process limits the maximum

achievable performance. To do so, the NIC ports of the

traffic generator and sink are directly connected. For the iperf

measurements an average throughput rate of 70 715Mbps
could be achieved when using 1500B as packet size, and

only 4217Mbps were achieved for 88B packets while using

16 cores. A similar behavior can be seen for a rising number

of concurrent connections for the HTTP scenario with ab. At

first, a higher number of connections benefits the throughput

utilization, as the link capacity can be utilized more efficiently.

In detail, the throughput with a web page size of 1KB
rises from 47Mbps for one connection, to 267Mbps for

eight parallel connections. Though, 256 parallel connections

drastically reduce the performance to 65Mbps again. The same

trend can be observed for larger web page sizes at a different

scale. For a web page size of 1MB, the throughput starts

at 2223Mbps, rises to 13 226Mbps with eight connections,

and sinks to 8687Mbps again for 256 connections. These

maximum values have to be considered when analyzing the

firewall implementations as a reduction in the performance

may be linked to the degradation of the traffic generator and

not the firewall module.

IP Throughput. Figure 5 depicts the results for the IP

throughput using iperf for all firewall implementations and

multithreading strategies. The upper and lower boxplot repre-

sent the two packet sizes 88B and 1500B, the x-axis depicts the

particular implementation, the y-axis the achieved throughput,

and the color-coding the applied bandwidth limitation. The

boxes extend from the lower to upper quartile showing a line

at the median. The whiskers show the range of the data except

for outliers, which are plotted as separate points. The round

marker indicates the mean value.

Comparing the achieved performance of the software-based

firewall implementations only, the DPDK module using a single

thread clearly outperforms NAPI and XDP. This is true for

both packet sizes, yet smaller packets also have a strong impact

on DPDK lowering its effectiveness by a factor of almost 50.

NAPI struggles for both packet sizes, while the throughput

of the XDP firewall leans more towards the performance of
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Fig. 5: IP throughput using iperf.

DPDK. Taking a closer look at the different multithreading

strategies, NAPI is the only module which profits from this

optimization approach. However, the performance gain quickly

stagnates with a rising number of utilized threads. For DPDK

the implementation using 7 threads is especially devastating,

which is reflected by the large variation of values starting with

an offered load of 40Gbps. Looking at the relative speedup

over the single thread implementation, NAPI can benefit from

multithreading up to 5 threads, while the speedup of DPDK

consistently follows a downward trend with more threads.

In contrast to the software-based firewall modules, the P4-

enabled implementation only performs state validation and

omits SEQ number checking. As shown in the figure, both

controller implementations operate at line rate considering the

limited capacity of the traffic generator. At last, the plot shows

a smooth and reliable operation for all firewall modules as

long as their limitations are not reached.

HTTP Transfer Rate. Figure 6 illustrates the measurements

for the HTTP transfer rate using ab for all implementations

as boxplots and for a multitude of parallel connections. The

analysis focuses on two web page sizes, i.e., 1KB in the upper

and 1MB in the lower boxplot, as these provide a suitable

resemblance of the entire parameter study. The x-axis depicts

the implementation, the y-axis the achieved throughput, and

the color-coding the number of concurrent connections.

In opposition to the previous analyses with iperf, most of

the software-based implementations perform similar regarding

the page size of 1KB, hence proving a strong dependence

on the subjected traffic. For larger page sizes, DPDK and

XDP are more effective than NAPI, except for the 7-thread

implementation of DPDK. As we repeated all runs with this

configuration, we can foreclose the possibility of a measurement

error in this case, but the exact cause of its poor performance is

yet to be identified. When comparing DPDK and XDP directly,

XDP is able to obtain similar speeds as DPDK.

In stark contrast to the software-based solutions stand the

P4-based implementations. The results clearly indicate that

incorporating the controller for connection initiation and tear

down imposes a significant bottleneck. This becomes even more

obvious when comparing it directly to the iperf measurements

for the IP throughput, where the flows are long lasting and the

P4-based modules outperformed the software-based solutions

and reached the limit of the traffic generator because the

initial trip to the controller is amortized over time. In contrast,

detouring the short HTTP flows via the controller has a
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Fig. 6: HTTP transfer rate using ab.

comparatively large impact on the performance. As the small

data volume of the HTTP flow is quickly transmitted, the

connection is only of short duration, which does not allow to

amortize the controller detour over time. To provide a numerical

example, the throughput of the P4-based solutions is at best

at 0.5Mbps for 1KB web pages, compared to possibly over

300Mbps for the software-based solutions.

V. CONCLUSION

Driven by the increasing number of cyber threats, concepts

like SDN and NFV are promising technologies, already

integrated into security solutions today. However, the packet

processing in software may impose a performance burden onto

the entire network, especially if a high bandwidth is demanded.

In this work, we therefore evaluate three packet process-

ing stacks regarding their usability and performance by the

example of a stateful firewall. In addition, we try to port

the functionality to a P4-enabled switch, hence moving the

operation further down the stack and closer to the packet.

The evaluation of the packet processing technologies showed

that high throughputs of up to 50Gbps are achievable with

the right framework. However, the experiments also proved

that these technologies may behave differently and unexpected

if they are subjected to varying traffic patterns or if multi-

threading strategies are applied. Our investigation regarding

the P4-based implementation revealed certain shortcomings

in the capabilities of the device, which made the need for an

external controller essential. Unfortunately, this design change

imposed a critical bottleneck on the system, which made the

implementation futile for specific scenarios. In general, we

found that current software-based solutions express higher

usability than the implement P4-based approach, with the

DPDK-based firewall module emanating as a clear winner from

our investigations, both from a subjective and objective point

of view, i.e., with regards to usability as well as performance.

For future work, we plan to investigate additional packet

processing technologies like Netmap [61], PF_Ring [62], or

Vector Packet Processing (VPP) [63], and traffic generators

such as pktgen [64] or trex [65].
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