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Abstract—Wide Area Network (WAN) research benefits from
the availability of realistic network topologies, e. g., as input to
simulations, emulators, or testbeds. With the rise of Machine
Learning (ML) and particularly Deep Learning (DL) methods,
this demand for topologies, which can be used as training data, is
greater than ever. However, public datasets are limited, thus, it is
promising to generate synthetic graphs with realistic properties
based on real topologies for the augmentation of existing data
sets. As the generation of synthetic graphs has been in the focus of
researchers of various applications fields since several decades,
we have a variety of traditional model-dependent and model-
independent graph generators at hand, as well as DL-based
approaches, such as Generative Adversarial Networks (GANs).
In this work, we adapt and evaluate these existing generators
for the WAN use case, i. e., for generating synthetic WANs with
realistic geographical distances between nodes. Moreover, we
investigate a hierarchical graph synthesis approach, which divides
the synthesis into local clusters. Finally, we compare the similarity
of synthetic and real WAN topologies and discuss the suitability
of the generators for data augmentation in the WAN use case.

                                              
                                                      
                                   

I. INTRODUCTION

Graphs are an important concept in many research areas,

and their topology often has decisive impact on the studied

systems, whether it is the communication flow in social

networks, the composition of chemical molecules, or the

architecture of computer networks. In the latter case, the

network topology has a big impact on research for Wide

Area Networks (WAN), such as the controller placement in

Software-defined Networking (SDN), the gateway placement

in Long Range Wide Area Networks (LoRaWANs), or the

prediction of Key Performance Indicators (KPIs), such as

round-trip times (RTTs) and network load. Researchers often

resort to testbeds, simulations, or emulators for parameter

studies, and thus, require realistic network topologies to obtain

meaningful results.

Several public datasets exist, such as the Internet Topology

Zoo (ITZ) [1] or the Survivable fixed telecommunication

Network Design library (SNDlib) [2], containing over 250

and 25 different network topologies, respectively. However, as

the size of these datasets is limited, researchers already have

expressed the concern that the zoo is too small for their field of

application [3], and resorted to simple algorithmic approaches

to create new data points [4].

Another possibility to obtain realistic network topologies is

to use model-based graph generators, such as Barabási–Albert

(BA) [5], Erdős–Rényi (ER) [6], and Watts-Strogatz (WS) [7],

which can produce topologies with desired properties. In

combination with small sets of realistic network topologies,

the addition of synthetic network topologies with realistic

properties allows for data augmentation, which is especially

beneficial for machine learning based approaches [8]. Besides

data augmentation, the synthesis of network graphs may also

serve as a privacy mechanism, as organizations or enterprises

may be hesitant to publish information about their network

topology, as tomography-based topology inference poses a

crucial threat to communication networks [9]. Still, these

algorithmic approaches may not always yield optimal results

and show room for improvement [4], as the layout of computer

networks does not adhere to any general model [1].

However, in recent years, more sophisticated and model-

agnostic ways to synthesize networks have arisen. Instead of

conforming to an underlying model, these approaches take

information from the real network as input, e. g., the joint

degree distribution (JDD) [10], and try to replicate the real

network as close as possible. Similarly, Deep Learning (DL)-

based approaches such as Generative Adversarial Networks

(GANs) [11] are also model-agnostic. They use presented

information and obfuscate it to synthesize new data.

Summarizing, research on graph generation presents us with

model-dependent, model-independent, and DL-based graph

generation. However, it is unclear, which graph generation

is best suited for WAN research. The complexity of WAN

generation lies in the geographical distances of links, as these

distances directly influence a network’s performance, and the

weights are not easily interchangeable, i. e., we cannot switch

the weight of a link connecting two continents with the weight

of an edge connecting two cities, as it would drastically

influence graph metrics and consequently also performance

metrics, such as the RTT. Thus, the goal of this paper is to

evaluate the vastly different approaches with respect to the

WAN use case and discuss their pros and cons. To the best of

our knowledge, there exists no work on synthesizing WANs by

adopting and comparing traditional as well as DL approaches.

The main contributions of this paper are:

1) We evaluate graph generation approaches for the WAN

problem, comparing the similarity of synthetic and real

network topologies.

2) We study both unweighted and weighted graphs, for

which the latter contain additional link attributes, such

as the geographical distance of the WAN nodes.

                             

                                                                           

64
                                                                                                                                              



3) We investigate a hierarchical graph synthesis approach,

which divides the synthesis into local clusters.

4) We publish our code and generated networks [12].

The remainder of this work is structured as follows. Firstly,

in Section II, we give background information about network

topologies, algorithmic graph generators, and GANs, while

Section III outlines related work. In Section IV, we specify

the utilized networks, graph generators, and graph metrics.

We then evaluate the generators’ capability to synthesize

unweighted network topologies similar to the real networks

in Section V. In Section VI we adapt the initial approach

to generate weighted graphs, representing WANs, which we

further extend in Section VII, where we study a hierarchical

graph synthesis approach. Section VIII provides a discussion

by highlighting the respective (dis)advantages of the studied

approaches. Lastly, we summarize our findings and provide an

outlook for future work in Section IX.

II. BACKGROUND

In this section, we briefly outline characteristics of WANs.

Furthermore, we discuss the possibility of creating synthetic

networks via algorithmic and DL-based approaches. Lastly, we

discuss graph metrics, which may be used for graph analysis.

WANs. Computer networks can be generally divided into

different categories, e. g., regarding their geographical distri-

bution and functionality. The main characteristic of WANs

compared to other computer networks are long(er) links be-

tween the comprising nodes, e. g., intercontinental or cross-

country connections, having great impact on the performance

metrics like the RTT. WAN generation is more complex

compared to computer networks where there is no such big

variance, as a misplacement of such a long link may have

great impact on the metrics. As identified by Knight et al. [1]

the layout of such computer networks is not conforming to

any common guidelines, thus, showing great diversity in their

design and differing greatly from other networks, such as

social networks [13]. We interpret a WAN as a Graph G, where

intermediary devices such as routers and switches depict the

nodes V , and links between those devices depict the edges E.

Table I illustrates common notations used in this paper.

Algorithmic Graph Generators. As available data for WAN

topologies is exhaustible, generating more networks is desir-

able. Model-dependent graph generators typically have one

or more input parameter via which the model generation can

be controlled, and do not need any information about the

real network, that we are trying to replicate. Nevertheless,

the parameters need to be configured properly and may not

be universally applicable. Thus, throughout the years, more

sophisticated, model-agnostic approaches emerged. Instead

of being configurable via input parameters, the generators

take explicit information about the network we are trying to

replicate, which they then try to match as close as possible.

This type of generation is often coupled with graph sampling

to approximate characteristics of larger networks.

GANs. With the rise of DL, approaches such as GANs [11]

– widely used for image generation – have also been adapted

TABLE I: Utilized notations, adapted from Faez et al. [16].

Notation Description

V Node (or vertex) set of a graph.
E Edge (or link) set of a graph.
G A graph, G = (V,E).
n Number of nodes, n = |V |
m Number of edges, m = |E|

N(v) Neighbour set of a node v ∈ V
spu(v1, v2) Shortest unweighted path from a node v1 to a node v2.
spw(v1, v2) Shortest weighted path from a node v1 to a node v2.

deg(v) Degree of a node v.

for many other applications such as topology generation.

Generally, a GAN consists of two neural networks (NNs),

namely the discriminator and the generator. The generator is

responsible for synthesizing fake data samples and thus tries

to trick the discriminator. It starts off with random noise and

then iteratively improves its output, whereas the discriminator

is fed real data as well as the synthesized samples from the

generator and tries to classify them correctly. GANs can be

seen as a zero-sum game between those two actors, where

the discriminator tries to minimize the so-called loss, which

represents the discriminator’s ability to distinguish between

real and fake data. The generator tries to maximize this loss.

By simply taking a graph’s adjacency matrix as input for the

GAN, we can easily utilize existing approaches for GAN-

based data generation, as both images and adjacency matrices

are also basically just n× n matrices.

Graph Metrics. Many graph metrics can be calculated and

compared between real and synthesized networks. Usually,

most graph metrics are based on the shortest paths in the

network or the node degree [14], and may be node- or graph-

based, i. e., consist of multiple values for all nodes, or just one

for the whole graph. The closer the metrics for the synthesized

samples are, the better the reconstruction is. However, as al-

ready observed by Bojchevski et al. [15], perfectly replicating

a network is not the goal, as otherwise one could just copy

the existing data point in the dataset, without performing any

sort of network synthesis. Thus, while we want the generated

networks on average to have similar graph metrics to the real

network, variations in the metrics are still desired.

III. RELATED WORK

In this section, we give an overview of related work con-

cerning graph generation, and discuss which approaches we

adopt for the WAN synthesis.

Algorithmic Graph Generation. First approaches to synthe-

size networks via algorithmic generators date back decades.

One of the most well-known and simplest approach is the

Erdős-Rényi (ER) model [6], where a graph is simply con-

structed by defining a probability, that an edge between two

nodes is created. As the rather random structure of ER graphs

may not be fitting, alternatives are the Barabási-Albert (BA)

model [5], which models a preferential attachment of nodes

by creating hubs, or the Watts-Strogatz (WS) model [7],

which starts off with a ring structure and then randomly

rewires edges. Clearly, all of these models make underlying
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assumptions about the graphs, which may only be applicable

in specific cases.

Research on graph synthesis nowadays has shifted to a

more model-agnostic way of modeling graphs. The 2K+-

framework [10] is a state-of-the-art approach of such a model-

agnostic approach. Given explicit information such as a joint

degree matrix (JDM), the algorithm tries to construct a graph

that matches this information as close as possible.

The above approaches are mainly geared towards social

networks and have been tested thoroughly in this field of

application. The goal of this work is to investigate these

approaches in the context of WANs by providing an extensive

analysis of weighted and unweighted graph metrics.

Graph Generation via GANs. An alternative to algorithmic

approaches is DL-based graph generation. As showcased by

Faez et al. [16], research for such deep graph generators

mainly focuses on chemical and bioinformatics [17], social

structures [15], [18]–[20], or synthetic datasets [19], [20],

created by ER, WS, and others.

In this paper, we adopt some techniques from other appli-

cation fields to evaluate for our use case of WAN generation.

Specifically, we take inspiration from Tavakoli et al. [21] for

the general approach, and Liu et al. [22] for the hierarchical

synthesis. Though, our methodology drastically varies in terms

of utilized GAN architecture or utilized clustering/community

detection algorithms in the hierarchical case. Both works

focus on social and/or synthetic datasets. WANs differ from

networks in other research areas, as the works mainly zero

in on unweighted graphs (possibly associated categorical at-

tributes). To the best of our knowledge, there exists no work

on synthesizing WANs via DL-based approaches, as well as a

comparison with traditional approaches.

IV. METHODOLOGY

In this section, we firstly outline the chosen networks we

utilize in our studies. Secondly, we explain the chosen network

generators and their configuration. We conclude this section

by defining the graph metrics we use for comparing synthetic

networks to the real network.

(a) BREN (b) BtNorthAmerica

(c) GÉANT (d) GtsSlovakia

Fig. 1: The chosen WANs from the ITZ – red links depict small

geographical distances (in relation to the respective maximum

distance), yellow links bigger ones.

A. Chosen Networks

We pick four networks from the ITZ, which are depicted in

Figure 1, as they cover topologies with varying characteristics.

In detail, we utilize a subset of the ITZ provided by Gray

et al. [23], [24] where networks from the original ITZ in

.graphml format have been transformed into a more readable

format, e. g., given longitudes and latitudes have already

been converted to physical distances, hyper-edges have been

resolved, or nodes with no location or connection have been

removed. Thus, any description of these networks adheres to

the conversion of Gray et al. Note that some connections

initially have a weight of zero, which we set to one (minimum

weight), to make them distinguishable from non-connections.

a) BREN: The first network is the Bulgarian Research

and Education Network (BREN), connecting various Bulgarian

universities, representing the network in the ITZ subset with

the largest number of links, with m = 107 and n = 27. It

has a peculiar layout, with inter-meshed clusters, and thus

is particularly interesting to investigate. Again, we want so

emphasize on the importance of geographical distances of

links in a WAN, as the (in)correct inference of those weights

may drastically influence a network’s performance. Placing

one of the longer links in the fully-meshed clusters here will

skew the average path delay.

b) BtNorthAmerica: Next, we also choose the network

with the second most links, drastically decreased to m = 70
and n = 33. It depicts a network distributed throughout the

whole continent of North America, thus spanning a wider

geographical range than BREN, while also being structurally

different with a more random layout.

c) GÉANT: The third network we choose is GÉANT as it

represents a medium network with a close to median amount of

links with m = 38 and n = 27 (median is 38.5 links). GÉANT

is the collaboration of various European National Research and

Education Networks (NRENs), connecting them, including the

previously introduced BREN.

d) GtsSlovakia: Lastly, we choose an even sparser net-

work as our fourth option, namely GtsSlovakia with m = 30
and n = 28. Note that we specifically do not opt for the net-

work with minimum links here, which would be GtsCzechRe-

public, as this network is mostly path-like. Instead we choose

a network with a more characteristic network design, as it fits

the general model idea of one of the traditional generators, and

we find that an in-depth discussion is more appropriate. We

will, however, briefly discuss the results for GtsCzechRepublic

in the evaluation as well for the sake of consistency.

B. Network Generators

Before synthesizing networks, we have to decide on a set

of network generators and configure them in a fair way. In the

following, we adhere to the nomenclature of NetworkX [25],

which we use for the algorithmic generators.

a) ER: To configure the ER-model, we may only influ-

ence the output via the pER parameter, depicting the proba-

bility that a specific edge is constructed between two nodes.

Thus, the number of expected edges is
�

n
2

�

· pER edges, as
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in a fully connected graph there are
�

n
2

�

= n(n−1)
2 edges.

Therefore, we configure pER as follows to match a network

(on average) with m edges: pER = 2m
n(n−1) . As it may occur

that the generated graph is disconnected, we rewire the graph

by adding a random edge between the largest component and

smaller components/isolated nodes, and then capping an edge

in the graph for every added edge while ensuring connectivity.

b) BA: To configure the BA-model, we may only change

the output via the mBA parameter, representing the number

of other nodes a newly added node is connected to, when

generating the network. On average, a node in the BA-model

has a degree of 2 ·mBA [26, p. 432], i. e., n ·mBA expected

edges for an undirected graph. Therefore, we configure mBA

to match a network (as close as possible) with m edges as

follows: mBA =
�

m
n

�

. Since mBA has to be an integer, we

round it to the nearest integer. Here, the output is always

connected, thus no need for rewiring.

c) WS: To configure the WS-model, we may change two

parameters, i. e., the number of nearest-neighbours kWS a node

initially connects to, and the probability pWS that an initial

edge is rewired. While the parameter kWS actually influences

the total number of edges, pWS only affects the rewiring. As

each node is connected to its kWS closest neighbours, the

average node degree is also kWS , meaning kWS ·n
2 edges in

the network. To model a network with close complexity to a

network with m edges, we configure: kWS =
�

2m
n

�

.

As the node is connected to kWS nodes only if kWS is

even, and kWS−1 if it is odd, we also distinguish between the

calculated kWS and an alternative k∗WS = kWS+1 and choose

the better fit of both. Lastly, the higher pWS is configured, the

more chaotic the graph gets, so we set pWS = 0.2, to retain

the possible ring-like structure, as a totally randomly generated

graph is already covered by the ER-model. Similarly to ER,

we will rewire the graph in the same manner, if the output is

not fully connected.

d) 2K: Compared to the three previous classical model-

based graph generators, 2K-graphs [10] are a state-of-the-art

approach for graph synthesis. Instead of adhering to a general

underlying model that we need to configure, the algorithm

takes the joint-degree distribution (JDD) of the graph as input.

In detail, the algorithm takes the joint degree matrix (JDM)

as input, where the element in the i-th row and j-th column

depicts the number of nodes of degree i attached to nodes

of degree j. The core idea of the algorithm is to start with

each node having stubs which edges can be connected to,

reflecting the degree of that node. Edges are then iteratively

added to the graph to match the given JDD. Thus, instead

of making assumptions about some sort of graph model, 2K

directly infers information about the network to be generated,

in this case the JDD. Again, we will rewire the graph as before,

if the output is not fully connected.

e) GAN: In the following, we explain the setup of the

GAN-based approach. As this is more complex, we subdivide

this into three parts, namely input, architecture, and output.

Input. As mentioned in the previous section, we utilize a

network’s unweighted and weighted adjacency matrix for the

Fig. 2: BREN, BtNorthAmerica, GÉANT, and GtsSlovakia as

images (left to right), top: as BW, bottom: as RGB.

GAN approach, which we can interpret as images as illustrated

in Figure 2. The top row illustrates the four networks from

Figure 1 as simple black-and-white (BW) images, where a

black pixel indicates that there is a link between nodes.

Similarly, the bottom row depicts the topologies as red-green-

blue (RGB) images, where a black pixel with RGB-channels

(0, 0, 0) depicts no connection, and the gradient from yellow

to red depicts a connection with varying min/max-normalized

geographical distances and analogous color-coding to the

networks in Figure 1, i. e., RGB-color channels of (1, i, 0) with

i ∈ [0, 1]. Similar GAN input has been proven useful in other

use cases, such as dynamic link prediction [27]. Though, we

deliberately utilize a second color channel instead of utilizing

the full spectrum of the greyscale, as otherwise a lower value

would indicate a less important link, but in our scenario every

link is equally important, independently from the geographical

distance. In other words, the red color channel is a binary

value, which simply states the existence of a link, whereas

the green color channel is a continuous value, depicting the

geographical distance. We do not utilize the blue color channel

of images and thus omit it. In the future, this channel may be

used to encode bandwidths or other WAN properties. Also,

note that we are not restricted to only three color channels,

though we choose this analogy for the sake of explainability.

As proposed by Tavakoli et al. [21], we feed the GAN

10,000 permutation matrices of the original network. In other

words, we randomly relabel the node ordering, which results

in different adjacency matrices/images, while still representing

the same network. Thus, we are able to generate new networks

with only one original network.

Architecture. Figure 3 illustrates the architecture of our

utilized GAN. The architecture is adapted from [28], designed

to synthesize images of numbers from 0 to 9, and implemented

in TensorFlow. As the image size and overall task complexity

is similar to our use case, we reuse this architecture and

adapt it. In detail, we parameterize the architecture to take any

size of input, as well as adding color-channels, as the initial

architecture is only designed for BW images. Additionally,

we make the discriminator and generator symmetrical, which

is not the case in the original, where the generator has an

extra convolutional layer. For BW images, we remove this

additional layer from the generator, and for RGB images we

add an additional layer to the discriminator as well, as BW

images are less complex than RGB images.

Output. As the GAN may produce samples, where the entry

in the matrix is not exactly binary, i. e., to represent whether
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Fig. 3: Architecture of the utilized GAN.
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Fig. 4: Unweighted synthesis for BREN.

an edge exists between two nodes or not, but is a real number

between 0 and 1, we need to postprocess the output. For this,

we model the probability p(i, j) that there is an edge e(i, j)
in the postprocessed adjacency matrix, i. e., post[i][j] = 1,

as a Bernoulli distribution with p(i, j) = pre[i][j]+pre[j][i]
2

depending on pre[i][j], which is the corresponding entry of

the preliminary adjacency matrix that was synthesized by

the GAN. In other words, if the GAN is confident, that

e(i, j) exists, the edge is more likely to persist through the

postprocessing. Note that the adjacency matrix for undirected

graphs is symmetrical with respect to the diagonal axis, thus

we take into account two entries in the above calculation. If

we synthesize weighted topologies and have decided on the

existence of a link via the first color channel, we choose as

link weight the average of the two symmetrical entries of the

raw GAN output in the second color channel. Lastly, as for the

previous algorithms, the GAN can also produce disconnected

graphs, so we again proceed in the same manner.

C. Graph Metrics

To compare the synthesized networks to the real networks,

we need to decide on a set of graph metrics. For this,

we choose graph metrics that have proven to be useful

in the context of communication networks, such as Time-

Sensitive Networking (TSN) [29], SDN-enabled performance

prediction [4], LoRaWAN gateway placement [30], SDN

controller placement [31], or Virtualized Network Function

(VNF) placement [32]. Thus, our graph metrics consist of

the Betweenness Centrality (BC), Closeness Centrality (CC),

and Degree Centrality (DC). For all metrics, we compute the

unweighted version, as well as their weighted version with

respect to the geographical distances.

The (unweighted) BC of a node is the fraction of shortest

paths, that a node is contained in, and is computed as follows:

BCu(v1) =
�

v1 ̸=v2 ̸=v3

|{spu(v2, v3)|v1 ∈ spu(v2, v3)}|

|spu(v2, v3)|
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Fig. 5: Unweighted synthesis for BtNorthAmerica.

The weighted BC is computed analogously, with the

weighted shortest paths spw(v2, v3) as basis. The (unweighted)

CC of node is the reciprocal of the sum of the shortest path

lengths to all other nodes, and is computed as follows:

CCu(v1) =
|V |

�

v2∈V |spu(v1, v2)|

Again, the weighted CC is computed analogously, with

the weighted shortest paths spw(v1, v2) as basis. Lastly, the

(unweighted) DC is the (normalized) degree of a node:

DCu(v1) =
deg(v1)

|V | − 1

As there is no universally accepted definition of a weighted

DC, we define it as the sum of all outgoing edge weights:

DistΣ(v1) = DCw(v1) =
�

v2∈V

w(e(v1, v2))

V. SYNTHESIS OF UNWEIGHTED TOPOLOGIES

In this section we examine a total of 1,000 synthesized

networks for each of the five generators and compare the

chosen graph metrics to the real networks. We start off by

providing an objective description of the results, and conclude

this section with a subjective interpretation. Note that for

the GAN, as we sample random permutation matrices and

generally GANs tend to oscillate [33], we generate these 1k

networks from ten different seeds to obtain robust results.

1) BREN: Figure 4 depicts the results for the BREN

network. On top, the average BC, CC, and DC of the synthetic

BREN-like networks are shown, with the red dashed line

showing the real value of BREN. On bottom, the average

Kolmogorov-Smirnov (KS) distance between the distribution

of the metric in the synthetic networks and in the real network

is illustrated. The whiskers indicate the standard deviation

of the KS metric. For the average BC and CC, it becomes

apparent that the legacy generators are not able to capture the
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Fig. 6: Unweighted synthesis for GÉANT.

average centrality with their generated networks. This is due to

the peculiar structure of BREN, as it contains one big cluster

of fully meshed nodes, as well as some smaller clusters. The

DC, however, is captured on average perfectly for WS and

ER. However, this is expected, as we optimized all generators

to have the same, or as similar as possible, number of links

as the real network. 2K and the GAN are able to capture

all three centrality metrics for the average generated network.

The main difference between both here is the variance of

generated networks, which is especially obvious for the DC.

Looking at the more distribution-focused KS distances, the

higher variance of the generated networks of the GAN is also

reflected there, with 2K possessing the best fits on average,

for the BC and DC, and CC being similar to that of the GAN.

2) BtNorthAmerica: Figure 5 depicts the results for Bt-

NorthAmerica in the same fashion as before. Generally, all

generators perform very similar – even the legacy ones –

as the network is less structured and simply capturing a

fitting number of links is more sufficient compared to BREN.

However, none of the generators is quite able to catch the

average BC and CC and all are slightly off. Again, 2K

expresses low variance in the generated networks, especially

for the DC, whereas GAN and ER are more deviating from

the mean. In this scenario, the GAN acts very similar to ER

in terms of average performance and induced variance.

3) GÉANT: Figure 6 depicts the results for GÉANT in

the same fashion as before. 2K produces again the best

fitting networks on average, however, with very low variances.

Similar to BtNorthAmerica, GAN and ER perform similarly,

as GÉANT, too, is a more random network. Thus, BA and WS

do not capture the three centrality metrics, especially obvious

for the DC. A look at the KS distances confirms this, which

also shows that GAN has a slight advantage over ER.

4) GtsSlovakia: Figure 7 depicts the results for GtsSlovakia

in the same fashion as before. Again, 2K creates networks

close the original network, but with very low variance. BA

performs second best here, as the star-shaped topology adheres

to the underlying model of BA well. It becomes also apparent,

that GAN is better at approximating the real network than a

random generator, i. e., the ER-model, thus depicting a definite

advantage over the traditional algorithms.

5) Discussion: Generally, 2K approximates the real net-

work closest. Though, as we potentially want to utilize the

topology synthesis for data augmentation, we do not require
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Fig. 7: Unweighted synthesis for GtsSlovakia.

exact replicas of the input, which we anyways already have in

the dataset. This is especially obvious for the DC, where the

2K-generated networks show zero variance. So, if we perform

analyses where this centrality metric is an important KPI, we

do not obtain additional variance in the data, as the DC directly

relates to the JDM, which 2K is trying to duplicate.

GANs illustrate a viable alternative by inducing more vari-

ance as they do not rely on explicit information, while still be-

ing able to appropriately capture the original network metrics

on average. Hence, it expresses variation in all of the chosen

centrality metrics, including the DC, perfectly capturing the

DC on average in most scenarios, even though it was only

implicitly trained to do so. Though, the currently showcased

GAN approach still leaves room for improvement. By feeding

the GAN permutations of the real network, it is mainly able

to maintain network characteristics, that persist throughout

the node relabeling, e. g., star-like topologies or full meshs.

When investigating topologies such as GtsCzechRepublic (as

mentioned earlier), which consists of a more tree-, path-, or

ring-like structure, the GAN may encounter inaccuracies, as

the topology is optically not distinguishable from a randomly

meshed network after permutating the node labels.

Lastly, the legacy generators perform well in selected sce-

narios, e. g., for more chaotic graphs ER is sufficient, and for

star-like graphs BA performs well. Though, as each of those

legacy algorithms has an underlying model it adheres to, none

of them depict a general solution. Additionally, BA and WS

show zero variance in the DC, as the number of links is fixed

per design, while the average node degree of ER follows a

Binomial distribution, thus showing more deviation.

VI. SYNTHESIS OF WEIGHTED TOPOLOGIES

After examining the synthesis of unweighted topologies, we

focus on more use case-specific attributes in the following,

namely the synthesis of weighted topologies, where the weight

depicts the actual geographical distances of two nodes in a

WAN, e. g., two switches/routers in different cities. For this,

we examine the four networks as in the previous section, with

respect to the weighted equivalents of the centrality metrics.

As the model-based generators generally showed inferior

performance, we only focus on 2K- and GAN-generated net-

works for the remainder of this work. Note that both methods

only generate unweighted graphs, so we generate a weighted

graph by sampling the real weights onto the generated net-
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Fig. 8: Weighted synthesis for the four networks.

works, which we call 2K and GANBW , respectively. However,

for GAN, there is the additional possibility to generate the

weights natively, i. e., via the previously shown color channels.

Thus, we also investigate this much more implicit weighted

network synthesis which does not expect any explicit infor-

mation about the network, called GANRGB . Figure 8 depicts

the average centrality metrics for the generated networks in

comparison to the original four networks.

1) BREN: In Figure 8a, we see the results for BREN as

a box plot. For the BC, we see that GANBW performs best,

as the GAN in the previous section achieved the best fitting

results for the average BC, and simply sampling real distances

has an advantage over the implicit approach of GANRGB .

However, this also showcases a GAN’s capability of just

implicitly inferring the geographical distances, as GANRGB

performs similar to 2K.

Furthermore, the results for the CC illustrate further advan-

tages of the GANRGB . While all approaches are far off the real

average (note the logarithmic y-axis), GANRGB performs bet-

ter than both of the explicitly sampled approaches. As BREN

consists of clusters with smaller distances which are connected

via longer links, the wrong placement of these longer links is

detrimental and influences the weighted graph metrics. Thus,

GANRGB is at least capable of placing these links not in

middle of these clusters, while the other approaches do not

make any differentiation when placing weights.

Lastly, as we sample geographical distances for 2K and

GANBW directly from the real weights, it is expected that we

achieve a perfect fit on average. While GANRGB performs not

as perfect as GANBW , it still approximates the real network

sufficiently by only implicitly inferring the weights.

2) BtNorthAmerica: Figure 8b illustrates the results for

the weighted topology synthesis for BtNorthAmerica. Overall,

2K and GANBW perform very similar, with both GANs

expressing slightly higher value ranges. Note that the variance

of GANBW of the weighted DC is slightly higher than 2K,

even though both approaches sample from the same weights,

as we defined the weighted DC as the sum of all edge weights

connected to a single node, which is directly influenced by the

number of links, which in return has a greater variance for the

GAN, as seen in the previous section. As depicted in the previ-

ous section, though, the metrics of BtNorthAmerica are more

difficult to replicate by the algorithms, which becomes also

apparent for the weighted metrics here. GANRGB performs

worse for the CC as it predicts the edge weights implicitly,

however, especially for the BC and DC, the performance

approaches the two sampled versions.

3) GÉANT: Figure 8c depicts the results for GÉANT. We

see comparable trends to BtNorthAmerica, with GANRGB

performing slightly worse. However, the algorithms generally

are better at approximating the real values. Additionally, we

can observe a trade-off between 2K and GANBW , where 2K

is able to match the BC better, and GANBW matches the CC

better. Again, the GAN-based approaches also express slightly

more variance.

4) GtsSlovakia: Lastly, Figure 8d illustrates the results

for GtsSlovakia. We see an identical trend compared to Bt-

NorthAmerica concerning the trade-off for the BC and the

CC, and a similar trend concerning the value ranges of the

generated networks.

5) Discussion: The analysis of the weighted topologies

showcases, that 2K and GANBW , as expected, perform

slightly better than GANRGB , as they explicitly infer infor-

mation about the edge weights. However, it also illustrates

that GANRGB is capable of implicitly inferring the weights

appropriately, though it has a slight tendency to underestimate

the distances compared to the real values, which directly

correlates to overestimating the closeness. Although, in case

of BREN even outperforms the other two approaches for the

CC. Additionally, there seems to be a trade-off between 2K

and GANBW , where 2K is generally better at approximating

the BC, and GANBW is a better match for the CC, which can

be seen when investigating GÉANT and GtsSlovakia. Lastly,

we also observe that the correct placement of edge weights

is important, as it can drastically change weighted metrics,

which we examine in the next section.

VII. HIERARCHICAL TOPOLOGY SYNTHESIS

In this section, we investigate a possible solution for the

correct placement of edge weights, focusing especially on

long-distance links, which have a great impact on WANs and

their performance. We start by dividing the topology into dif-

ferent clusters, and then proceed with the same methodology

as before for the resulting clusters. Though, we lower the
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Fig. 9: Hierarchical synthesis of BREN.

amount of permutation matrices fed into the GAN to 5,000,

as the clusters are much smaller than the whole topology.

1) Spectral Clustering: Spectral clustering is an unsuper-

vised ML-algorithm highly suitable for graphs, which takes

as input a similarity matrix to cluster a graph. This type

of clustering is especially useful here, as we only have

our distances as features, so it is basically a 1D clustering,

rendering traditional methods such as k-means inapplicable.

The similarity matrix can be computed via the given physi-

cal distances of nodes. By computing the weighted shortest

paths between all node pairs, we interpret these distances

as a measure of dissimilarity. We convert the corresponding

dissimilarity matrix D into a similarity matrix S, by first

normalizing D via min/max-normalization, and then define

S = 1−Dnorm. We cluster S with sklearn’s implementation,

and set the number i of clusters to 2, 3, and 4, and call the

clusters Cj local views, with edges Elocalj and nodes Vlocalj

with cluster IDs j ∈ [0, i):

Vlocalj = {v ∈ Cj}

Elocalj = {e(v1, v2) ∈ E|v1 ∈ Cj ∩ v2 ∈ Cj}

The local views are connected via the residual edges not

contained in the clusters, which we call the global view, with

edges Eglobal and nodes Vglobal:

Vglobal = {v1 ∈ Cj |∃v2 ∈ N(v1) ∩ v2 /∈ Cj} ∀j

Eglobal = {e(v1, v2) ∈ E|v1 ∈ Cj ∩ v2 ∈ Ck ∩ j ̸= k} ∀j, k

2) Case Study: For our evaluation of the hierarchical graph

synthesis we focus on BREN, as here the challenge of placing

the edge weights correctly was the most difficult. Figure 9

illustrates the results for the hierarchical synthesis, for the

naı̈ve approach with one cluster, as well as three different

amounts of local views. For the weighted BC, we observe that

the approximation first slightly improves for more clusters,

but then worsens again for both GAN-based approaches, and

introduces no further benefit for 2K. As we create several

clusters, we also introduce overhead as we have to merge the

partial views again, potentially influencing the graph metrics

negatively, when we make the clusters too fine-grained.

For the weighted CC, on the contrary, we see a drastic

improvement for the approximation for all approaches. As we

cluster the network into local views and a global view, we

more or less force the generators to place the longer distances

at plausible locations. Both GAN-based approaches are able

to match the CC the most accurate for four clusters here.

For the DC, we see that the clustering reduces the value

range, especially visible for 2K and GANRGB , as we narrow

down the problem and thus remove some of the inference

work with this preprocessing. Though, the GAN still has a

slight tendency to underestimate the distances as seen before.

Naturally, the smaller the views are, the more probable it is

that the GAN will produce a perfect (partial) fit, as the search

space is limited, the variety in possible permutation matrices

is low, and thus it will produce a valid sample more likely. In

conjunction with this lack of input diversity, it is observable

that small views are more prone to mode collapse, i. e.,

produce potentially convincing/high quality samples of limited

output variety [34], another reason for reduced variance.

VIII. DISCUSSION

As we have performed several analyses, we summarize

the main pro and cons for each algorithm observed in those

analyses in Table II. 2K is generally very close in the approx-

imation of the real networks, and compared to GANs a fast

algorithmic approach, that is still being extended. Though, it

takes as input explicit information about the network, which it

tries to replicate perfectly, resulting in no variation for metrics

such as the DC. This possibly renders it less suitable for data

augmentation tasks, where the DC is a parameter we want

to investigate. Furthermore, there is no support for weighted

graphs or other edge attributes.

GANs depict a DL-based approach to synthesize networks.

They are highly flexible, as they only infer the information

implicitly and thus also show variation for, e. g., the DC while

still being able to match it appropriately on average. GANs

also support the weight synthesis natively by utilizing the color

channels, and possible allow for even more attributes, such as

bandwidth, to be encoded into the input. However, as we fed

the GAN permutations of the real matrix, some information,

e. g., long paths or ring structures may be lost. GANs are also

complex, thus need a training time, more processing, and are

also sensitive to configure.

Lastly, the legacy algorithms are very simple approaches

which do not infer any information explicitly. We also observe

that they perform decently, if the underlying model is fitting.

However, the algorithms have one or more parameters that

need to be configured, and sometimes cannot be configured

appropriately at all. They also support no weight synthesis and

similar to 2K, for some algorithms we also have a fixation on

metrics, e .g., for BA and WS we fixate the number of edges.

IX. CONCLUSION

The synthetic generation of graphs dates back decades and

has been a focus of researchers in various fields of application

since then. Related work presents us with model-dependent,

model-independent, and DL-based graph generators, which
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TABLE II: Summary of pros and cons of the various graph generation approaches.

2K GAN BA, ER & WS

+ Close approximation of all networks/metrics + Flexible, i. e., no fixation on specific metrics + Very simple and fast algorithms
+ Fast computation, no training needed + Native support of weights/distances + No explicit network information neededPro

+ Close approximation for most networks/metrics + Work well if the underlying model fits

− Fixation of metrics, e. g., joint degrees − Struggles with permutation dependency − Optimal parameters varying
− No support for weight synthesis − Training needed (> 1 hour) − No support for weight synthesisCon

− Complex post-/preprocessing and configuration − Possible fixation of metrics, e. g., links

all have their respective advantages. As public datasets are

limited, this paper compared different methods for synthetic

graph generation in the context of data augmentation for Wide

Area Networks (WANs) research. The results illustrate that

while algorithmic graph generators approximate the original

networks closely, by fixating explicitly on a metric, they po-

tentially do not introduce enough desired variance for some of

the graph metrics. Generative Adversarial Networks (GANs),

on the other hand, do not infer any information explicitly,

while still being able to appropriately match the real networks.

However, there is still room for improvement, as GANs were

not able to capture all characteristics of the chosen networks.

Future work can pursue two main directions. Firstly, we aim

to improve the current approaches by employing more sophis-

ticated measures of adding weights to the generated graphs,

e. g., by employing attribute sampling similar to Seufert et

al. [35], and also enhance the GAN approach by employing

punishments/rewards to the loss function, e. g., punishing the

generator if it creates disconnected graphs or other undesired

properties. Similar approaches have already been shown to be

fruitful in other research areas [17].

Secondly, we want to shift our focus to more task-specific

analyses, as in previous analyses we found that the underlying

network topology highly correlates to important performance

metrics [4], [23]. Now that we investigated more general

graph metrics and gained an overview of existing methods

and their (dis)advantages, we may evaluate the similarity of

communication network-centric performance indicators and

investigate the desired variance for a specific use case.
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