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Abstract—Providing sophisticated web Quality of Experience
(QoE) has become paramount for web service providers and
network operators alike. Due to advances in web technologies
(HTML5, responsive design, etc.), traditional web QoE models
focusing mainly on loading times have to be refined and improved.
In this work, we relate Google’s Core Web Vitals, a set of metrics
for improving user experience, to the loading time aspects of web
QoE. To this end, we first perform objective measurements in the
web using Google’s Lighthouse. To close the gap between metrics
and experience, we complement these objective measurements
with subjective assessment by performing multiple crowdsourcing
QoE studies. In these studies, we use CWeQS, a customized
framework to emulate the entire web page loading process, and
ask users for their experience while controlling the Core Web
Vitals. Our results suggest that the Core Web Vitals have less
predictive value for web QoE than expected and that page loading
times remain the main influence factor in this context.

                                             
                              

                                                                     

I. INTRODUCTION

Since browsing the web is one of the most popular activities
on the Internet, understanding Quality of Experience (QoE) for
the web has become essential for web service providers and
network operators. While currently proposed models approxi-
mate web QoE [1] either based on perceived loading times [2],
[3] or on interactivity [4], no holistic approaches exist yet
considering multiple potential influence factors like perceived
loading time, interactivity, and visual stability.

In 2020, Google introduced the Web Vitals, a set of metrics
supposed to provide guidance on how to guarantee a great
user experience (UX) for web pages [5]. The Core Web Vitals
(CWV) are a subset of these Web Vitals and are considered
essential for every web page. The CWV consist of the largest
contentful paint (LCP), the first input delay (FID), and the
cumulative layout shift (CLS). The LCP is defined as the
loading time of the largest visible text or image element in the
viewport, and thus, is an indicator for perceived loading time.
The FID describes interactivity and is defined as the period
between the first user input and the page response to said
input. Finally, the CLS is an indicator for visual stability and
describes the maximum layout shift of visible elements in the
viewport during page load. Consequently, as the CWV cover
different aspects that are also related to QoE, the CWV may
have the potential to provide guidance not only for improving

UX, but also for improving web QoE assessment. In this work,
we focus on the network-influenced aspects of web QoE, and
thus, analyze the relationship between CWV and web QoE
by asking: To which extent do the CWV metrics correlate with
the end-user’s web QoE? To answer this question, we perform
both objective and subjective measurements in different Qual-
ity of Service (QoS) scenarios, which allow to understand the
relationship between CWV and web QoE.

Our objective measurements are performed using Google’s
Lighthouse and the top 50 Tranco web pages [6]. In particular,
we analyze the sensitivity of the CWV in the network by emu-
lating various QoS conditions. These objective measurements
are complemented by QoE crowdsourcing studies, in which
we emulate different LCP, FID, and CLS conditions for three
custom web pages with CWeQS, our custom Crowdsourcing
Web QoE Study framework, which we present in detail. We
use CWeQS to conduct crowdsourcing studies for each CWV,
in which participants subjectively rate the QoE as perceived
after loading and interacting with the web pages.

Using both kinds of measurements, we evaluate the utility
of the CWV to assess web QoE. We contribute by showing
that the CWV seem to be less insightful for web QoE than
expected and, in particular, inferior to traditional metrics like
Page Load Time (PLT) or Speed Index (SI). Our results also
indicate that user studies targeting user engagement (as done
by Google for the CWV) have to be considered fundamentally
different compared to traditional loading time studies.

The remainder of this work is structured as follows: Sec-
tion II discusses related work. The objective Lighthouse
measurements and the corresponding results are presented
in Section III. This is followed by the description of our
novel study framework CWeQS as well as the description
of our performed Core Web Vitals studies in Section IV
and Section V. The obtained results from these studies are
summarized in Section VI, before Section VII concludes.

II. RELATED WORK

The authors of [7], [8] have shown in early works that load-
ing times, in particular the PLT, are fundamental for estimating
web QoE [9]. In the meantime, new metrics focusing on the
visible portion of a web page have been proposed, e.g., the
Above the Fold Time (ATF) [3] and the Speed Index (SI) [10].
The SI quantifies how fast a web page is loaded by computing
the integral of complementary visual progress based on a
screen capture. Various cheap computational approximations                                    
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(a) Speed Index.
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(b) Largest Contentful Paint.
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(c) First Input Delay.
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(d) Cumulative Layout Shift.

Fig. 1: CDFs of the 75 percentile of the metrics per web page for the Lighthouse measurement.

have been developed and were also tested within traditional
web QoE models [2]. These traditional web QoE models are
usually based on the IQX and WQL hypotheses. While the
IQX hypothesis assumes an exponential relationship between
waiting time and web QoE [11], the WQL hypothesis assumes
a logarithmic relationship on a linear ACR scale [7], [12].
Several works have shown network quality fluctuations affect
the loading process [13]–[15]. In addition to loading times,
web QoE is also influenced by usability [16], aesthetics [17],
and device type, i.e., desktop, smartphone, and tablets [1].
The authors of [18] also show that most web QoE metrics
are specifically designed for desktop environments and that
these metrics poorly reflect web QoE on mobile devices due
to different user behavior. In this work, we focus on loading
times and do not consider the impact of usability, aesthetics,
and other influence factors.

In recent studies, user attention and interest have been
included into web QoE assessment. Therefore, novel systems
like WebGaze [19] and Eyeorg [20] have been developed.
In contrast to earlier studies, user-perceived page load time
(uPLT) is estimated by allowing participants to mark the
point in time at which they consider a web page completely
loaded. In [19], the authors show in lab and crowdsourcing
studies that in contrast to uPLT both PLT and SI over- and
underestimate the actual QoE severely. In [21], the authors
perform crowdsourcing studies using Eyeorg to collect feed-
back on uPLT. They reveal that the uPLT distribution is often
multi-modal, and thus requires different objective metrics for
different modes.

While previous web QoE models usually rely on a single
aspect or metric expressing the complete page loading behav-
ior, e.g., PLT or SI, in this work we aim to model web QoE
based on various aspects of a page load, i.e., loading behavior,
interactivity, and visual stability, as defined by the CWV.

III. OBJECTIVE MEASUREMENTS WITH LIGHTHOUSE

In the following, we conduct and evaluate measurements
using Google’s Lighthouse1, which is a tool for improving the
quality of web pages and is able to run a variety of tests against
a web page while monitoring various performance metrics like
the CWV and SI. We perform these measurements for two
reasons. First, we are able to observe the potential range of

1https://developers.google.com/web/tools/lighthouse

CWV scores in the wild, which allows us to validate Google’s
recommendations on the one hand and which provides us
guidance on how to determine the study conditions on the
other hand. Second, we are able to quantify the influence of
QoS on the CWV, which may be beneficial for estimating the
CWV from network measurements later.

Our Lighthouse study setup is a dockerized environment, in
which we perform headless Lighthouse runs with NodeJS and
use Linux tc to emulate varying network conditions on the
network interface, on which Lighthouse runs. For the purpose
of emulation, we use docker-tc provided on GitHub2. All
Lighthouse reports are then stored in a MinIO3 instance.

The utilized network shapings include adding one-way
delay to the packet transmissions (50, 100, 250, and 500ms),
introducing different packet losses (0.1, 1, and 10%), and
limiting the available bandwidth (0.1, 0.5, 1, and 10 Mbps).
We performed at least 30 runs for all top 50 Tranco web
pages [6] for an emulated mobile device and an emulated desk-
top device. Our evaluation revealed that mobile and desktop
measurements behaved similar except for increased PLTs on
desktop and increased CLS values on mobile.

Figure 1 therefore depicts only the results for selected
network shaping conditions of the desktop Lighthouse mea-
surements in form of CDFs. As Google recommends that 75%
of web page visits should provide a good experience [5], for
each web page, we consider the 75 percentile of LCP, FID,
CLS, and SI over all measurement runs for this web page. The
CDFs depict the distribution of these 75 percentiles over all 50
web pages. The CDFs are styled and labeled according to their
network shaping conditions, whereby D denotes packet delays,
L denotes packet losses, B denotes bandwidth limitations,
and N denotes no shaping. Additionally, the green, yellow,
and red areas represent Google’s recommendations for good,
moderate, and poor performance. In general, the CDFs indicate
that most pages show good and moderate performance.

Considering the three CWV, it can be observed that only
LCP shows a significant different behavior when facing dif-
ferent network conditions (Fig. 1b). In particular, the LCP
behaves very similar to the SI (cf. Fig. 1b and Fig. 1a),
and both easily end up with poor performance as soon as
the network conditions are really bad. This is reasonable as

2https://github.com/lukaszlach/docker-tc
3https://min.io/

                                                                                                                                              



Fig. 2: Example for a custom page (blog page).

both metrics represent loading behavior and indicates that the
LCP may act as a proxy for the SI. In contrast, FID and CLS
are barely influenced by deteriorating network conditions (cf.
Fig. 1c and Fig. 1d). This suggests that FID and CLS strongly
depend on the design of the individual web pages and that
in-network monitoring of these metrics proves to be difficult.

Summarizing, we observed that most web pages align with
Google’s recommendations and that LCP is the only CWV
metric affected by the network. Moreover, by measuring
popular web pages in the wild, we identified meaningful study
conditions for the crowdsourcing QoE studies.

IV. CWEQS: CROWDSOURCING WEB QOE STUDIES

For our web QoE studies we use CWeQS4, a custom crowd-
sourcing framework, which allows to fully control the loading
behavior of custom web pages. Moreover, it provides a rich
set of required features for crowdsourcing QoE studies, such
as questionnaires, preparation of study conditions, and means
to assess reliable study execution. It is based on JSPsych [22],
a JavaScript framework for browser-based studies.

To have complete control over the web page loading be-
havior, CWeQS follows a top-down approach, i.e., instead of
varying network conditions to generate a variety of web page
loading behaviors, we emulate these behaviors independent of
the network conditions by manipulating the appearance of the
DOM elements with arbitrary timings.

In detail, these timings are realized with the setTimeout()
functionality of JavaScript, which executes an arbitrary func-
tion after a specified timeout has been reached. Here, this
function corresponds to the rendering of an element, i.e.,
setting the element’s visibility in CSS to true, and the timeout
corresponds to a specified loading time. Each page element
is thus assigned a loading time or timeout, respectively, and
setTimeout() is called simultaneously on all page elements as
soon as the participant triggers the page load. Page elements
are then rendered as soon as their timeouts have expired.

In total, we use four parameters with which we specify
a complete page load. These four parameters, named FP
(first paint of small header elements), TTTEXT (time to first
substantial text), TTIMAGE (time to first substantial image),
and PLT (page load time), are sorted in ascending order, i.e.,
FP ≤ TTTEXT ≤ TTIMAGE ≤ PLT . Note that PLT

4https://github.com/lsinfo3/CWeQS

here corresponds to the ATF time, as we only show elements in
the viewport. These parameters are evenly spaced with respect
to the PLT, and to avoid an unrealistic step by step loading be-
havior, where many elements appear at once, we additionally
use a β(7.2, 0.8)-distribution to smooth the loading process
for around half of the elements. As a consequence, the mean
loading time of the distributed elements is 90% of the actual
specified loading time with a standard deviation of 10%.

As this approach requires us to know beforehand which
integral elements appear on a web page, we can only use
custom web pages in CWeQS at the moment. To rule out
any negative network impacts during the study, we preload all
web page elements on client-side with a JSPsych plugin when
the framework is first loaded in the browser. We implemented
three pages which represent common web page categories,
namely, an online shop and a news page, consisting of a mix
of texts and images, and a blog page, consisting of much text
and a single large picture (as depicted in Figure 2).

To align with best practices for crowdsourced QoE stud-
ies [23], CWeQS requires a method for evaluating the validity
of participants. Our framework provides two different types
of validation: image validation and hyperlink validation. With
both types, participants have to interact with the web pages,
which provides the additional benefit of making the study
tasks more realistic. With image validation, participants are
primed in the instructions to mark target images on a web
page by clicking them. A random number (up to three) of
these target images are inserted in the web page by randomly
exchanging the actual images with the target images. Any
image on the page that is clicked is then framed with a
red border. The number of total target images as well as
correctly identified target images are then used to identify
unreliable study participants, which are excluded before the
evaluation. Hyperlink validation works the same way except
that hyperlinks, i.e., pieces of highlighted text, are supposed
to be clicked by participants. Both a marked and a not yet
marked hyperlink are illustrated in Figure 2.

Finally, CWeQS can be operated in two different execution
modes: study mode and standalone mode.

1) Study Mode: The procedure in study mode consists of
seven phases: First, during study startup, a chain of checks is
performed whether a user is allowed to participate in the study.
This includes, for example, the verification of the participant
ID and browser size requirements. After providing a first set
of instructions, participants are asked for demographic infor-
mation and browsing habits. This is followed by instructions,
in which the actual study procedure is explained and in which
participants are briefed what they are supposed to do. Then,
training stimuli are shown to the participants to prime them on
the task. This is again followed by another set of instructions,
before the actual test stimuli are shown to the participants.
Participants are asked for their opinion immediately after
each stimuli. After observing all test stimuli, participants are
rewarded with a verification code. A training or test stimuli
hereby consists of the emulated page load and the subsequent
questionnaire, in which participants rate the perceived loading

                                                                                                                                              



TABLE I: Crowdsourcing study conditions.

CWV Parameter Parameter Values PLT [s]

LCP [s]
(1.00, 1.50, 2.00) 2.0
(1.00, 1.50, 2.50, 3.75, 5.00) 5.0
(1.00, 1.50, 5.00, 7.50, 10.00) 10.0

FID [s]
(0.1, 0.3, 0.5, 1.0, 2.0) 2.0
(0.1, 0.3, 0.5, 1.0, 2.0) 5.0
(0.1, 0.3, 0.5, 1.0, 2.0) 10.0

CLS
(0.0, 0.1, 0.2, 0.3) × (PLT/2, PLT) 2.0
(0.0, 0.1, 0.2, 0.3) × (PLT/2, PLT) 5.0
(0.0, 0.1, 0.2, 0.3) × (PLT/2, PLT) 10.0

time on the Absolute Category Rating scale [24].
2) Standalone Mode: To perform a single page load in

standalone mode, only the loading parameters of each element
have to be passed via the URL. With these URL parameters,
we are then able to populate CWeQS with the required
configuration and start the timings of a page as usual. This
mode allows us to replay the stimuli observed by the partici-
pants during the study locally in order to compute additional
metrics. Using this method, we additionally compute the SI
of all stimuli in this work. This is achieved by performing
screen captures while replaying the logged configurations
and then computing the SI with existing scripts provided by
WebPageTest5 based on these screen captures. We automate
this task with Selenium6 and FFmpeg7.

V. CONDUCT OF CORE WEB VITAL STUDIES

We conducted a QoE study for each of the three CWV with
CWeQS. For this, we selected a subset of realistic parameter
values from the parameter ranges observed in the Lighthouse
measurements. In particular, we tested three different PLTs (2,
5, and 10 seconds) in each study and tested no more than five
manifestations of each CWV. A comprehensive overview on
all crowdsourcing study conditions and CWV parameters is
given in Table I. In the following, the realization of the CWV
metrics in CWeQS is outlined.

1) Largest Contentful Paint: We simulate LCP by randomly
selecting one of the available images on a web page and by
increasing width and height of this image significantly to fixed
values. Width and height of the LCP are not varied throughout
the study. This enlarged image is then rendered as usual to a
specified time. We design these rendering times in dependency
of the PLT. In detail, we use 50%, 75%, and 100% of the PLT
as time for displaying the LCP. For PLTs of 5 and 10 seconds,
we additionally use LCPs of 1 and 1.5 seconds to be able to
compare LCP across the different PLTs.

2) First Input Delay: To simulate FID, we monitor the
user interactions with a web page and artificially delay the
web page response to the first user interaction, i.e., a click to
an image or a hyperlink, by again utilizing the setTimeout()
functionality of JavaScript. All additional user interactions

5https://github.com/WPO-Foundation/visualmetrics
6https://www.selenium.dev/
7https://www.ffmpeg.org/

occurring after the first interaction and during the FID are
blocked and queued. All user interactions are then responded
to, i.e., by marking the clicked element with a red box,
simultaneously as soon as the FID timeout has passed.

Note that FID is triggered by the user’s first click on
a visible interactive event, which can happen at any time
(even after the PLT). However, participants are supposed to
experience the FID during the page load, as it would be
unnatural to have an input delay after the page is completely
loaded. Thus, we additionally instructed the participants to
click the targets as fast as possible after their appearance.

The selected FID values are partly recommended by Google,
and partly determined in dependency of a PLT of 2 seconds.

3) Cumulative Layout Shift: CLS represents the largest
observed layout shift score during the entire page load. A
page load can hence contain multiple layout shifts. Layout
shift scores are computed by multiplying the impact fraction
with the distance fraction. The impact fraction defines the
fractional area of the viewport, in which unstable elements
have moved between two frames. If the viewport is already
filled completely during a layout shift, the impact fraction is
1. The distance fraction defines the largest fractional distance
any of the unstable elements has moved in the viewport.

To simplify the emulation of CLS, which depends on
basically all elements in the viewport, we perform layout
shifts by displaying a banner with a specific height on top
of the original page at a specific time. An example can be
seen in Figure 2, where the CLS is caused by displaying
the blue banner above the actual page content, shifting all
other elements, including headline, image, and text, towards
the bottom. We consider two times for performing the layout
shift. In the first case, we perform the layout shift at the end of
the page load. Since the whole viewport is occupied then, the
impact fraction is automatically 1. Consequently, the distance
fraction, i.e., the banner height relative to the viewport size,
fully determines the CLS score. In the second case, we perform
the layout shift at half of the PLT, at which time only the first
row of elements and the header are in the viewport. This gives
a fixed impact fraction, which can now be multiplied with the
distance fraction from above to obtain the desired CLS score.

In our CLS study, we provide stimuli of both use cases to
the participants and use the CLS values provided in Table I,
which are again aligned to the recommendations of Google.

VI. STUDY RESULTS

All three studies were conducted in December 2021 and
January 2022 using the crowdsourcing platform Microwork-
ers8. In pre-studies, we observed that the validation task does
not seem to have any influence on the rating behavior of the
crowd. Thus, to avoid conflicts with the LCP, we decided to
only use hyperlink validation. After ensuring that the browser
size was large enough to fully display the page, participants
were shown six randomly selected test stimuli in total. The
selected types of pages, i.e., news, shopping, and blog page,

8https://www.microworkers.com/
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Fig. 3: Relation of Google’s Core Web Vitals (LCP, FID, CLS) to actual web QoE (MOS).

used for these stimuli were also uniformly distributed. After
each stimuli, participants answered a single question How did
you experience the loading of the last page? on ACR scale.

512 participants completed the LCP study, while the FID
study had 227 participants and the CLS study had 417
participants. We excluded participants if they marked less
than 80% of the displayed hyperlinks correctly. For the FID
study, we additionally removed participants who took longer
than five seconds to perform the first click after the first
hyperlink was rendered. Finally, we excluded participants
giving the same rating for each test stimuli, even though the
stimuli differed strongly. After this very strict filtering, 183
participants remained for the LCP study, which rated a total
of 1098 test stimuli. For the FID study, 140 participants and
840 rated test stimuli remained, and for the CLS study, 207
participants and 1014 rated test stimuli remained after filtering.

All valid 323 participants were older than 18 years. 33.9%
were women, 65.5% were men, and the rest were diverse.
54.7% of participants were from Asia, followed by 18.6% and
17.5% from Europa and South America, respectively. More
than 93% of the participants use the Internet daily.

Relation of CWV to Web QoE: Figure 3 shows the mean
opinion score (MOS) along with the 95% confidence intervals
for each crowdsourcing study in dependency of the PLT. The
x-axis describes the CWV conditions, while the y-axis denotes
the MOS. The different colors of the bars illustrate the total
PLT. As we tested two different event times for CLS, we added
an additional legend in Figure 3c, which states the time of the
layout shift in dependency of the PLT. Thin bars correspond
to PLT/2, while regular bars correspond to PLT.

In all three figures, it can be observed that PLT is the main
influence factor, as indicated by the different MOS regions
around 4.5 for a PLT of 2s (green), around 3.5 for 5s (yellow),
and around 2 for 10s (red). What is highly surprising is
that these MOS regions are stable with respect to the CWV
conditions. This means that, considering the same PLT value,
no variation of the LCP, FID, or CLS parameters has a signif-
icant impact on the MOS. This also holds when considering
Google’s recommended parameter ranges for good, moderate,
and poor performance highlighted by the green, yellow, and
red areas. Thus, these results indicate that the CWV metrics
do not properly express the actual web QoE in terms of MOS.

Impact of PLT and SI on Web QoE: As our crowdsourcing
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Fig. 4: Relation of PLT and SI to MOS.

studies found no significant impact of CWV on web QoE,
we will now investigate the impact of PLT and SI in more
detail. We use the standalone mode of CWeQS and compute
the SI observed by participants during the studies by replaying
logged configurations locally. Both PLT (−0.74) and SI (−0.70)
show a high negative Spearman’s Rank-Order Correlation
Coefficient (SROCC) to the user ratings, which comes as
expected considering results of previous QoE studies [2], [8].

Figure 4 visualizes the relationship between averaged user
ratings and SI as light blue dots on the continuous SI scale. We
also bin the SI in 1s intervals, and visualize the MOS along
with the 95% confidence intervals for each bin in black. When
fitting the MOS values for every bin, we observe that both
IQX [11] and WQL hypothesis [7], [12] clearly apply for SI,
which confirms the results of [2]. The best fit, slightly better
than WQL, is IQXSI(t) = 4.424 · exp(−0.189 · t) + 0.724,
which gives a very high coefficient of determination R2 =
0.9544. Comparing this fit with the previous work of [2], we
see that our model shows a steeper slope and uses almost the
full range of MOS in the considered SI range, which indicates
that the participants in our studies are less tolerant with respect
to the page loading times as expressed by SI.

Still, when visualizing the MOS and 95% confidence in-
tervals for all three investigated PLT values, as depicted in
yellow, we clearly see a linear trend. This is confirmed by
an almost perfect fit LINPLT (t) = −0.320 · t + 5.137 with
R2 = 0.9998. This is a surprising finding considering that
previous web QoE studies did not find linear relationships

                                                                                                                                              



between PLT and MOS. When comparing our PLT model to
the PLT models of [2] and [12], our model is more tolerant
with respect to short waiting times. However, the covered MOS
range of our model is higher than in [2] and more similar to
the PLT models of [12].

Discussion: To summarize, we observed in our crowdsourc-
ing studies that, although the CWV are influenced by site
loading and rendering behavior, they do not seem to be good
indicators for web QoE in terms of MOS. The submitted user
ratings depended only on PLT and SI, respectively. While
IQX and WQL hypotheses from previous work applied to SI,
which confirms the validity of our measurements, we also
observed a linear relation between PLT and MOS. These
results consequently lead us to the question why Google’s
recommendation for good, moderate, and poor experience for
the CWV are not at all reflected in our measurements. After all,
Google also relied on human perception and Human-Computer
Interaction research to establish these recommendations [25].

A key reason might be the difference regarding overall study
designs and data collection approaches. While Google relied
on field data focusing on engagement [25], we performed
crowdsourcing studies, in which users were not able to stop
a web page load without quitting the study and losing their
progress. Thus, our studies evaluated instantaneous user opin-
ion ratings, while Google focused more on (longer term) user
behavior. These differences of study setups seem to influence
the results significantly. As a consequence, we cannot rule out
a potential influence of the CVW on the MOS, that we might
have not been able to detect due to our study design.

VII. CONCLUSION

In this work, we related Google’s Core Web Vitals (CWV)
to web QoE by performing objective Google Lighthouse
measurements and subjective crowdsourcing studies. We pre-
sented a novel study framework called CWeQS which allows
us to measure web QoE while completely controlling the
loading behavior of custom web pages and which we used to
conduct crowdsourcing studies. Using Google’s Lighthouse,
we revealed that only LCP is affected by the network, while
FID and CLS behave differently for each web page. These
findings suggest that accurate in-network monitoring of the
CWV could be difficult to implement on service provider level.

In our crowdsourcing studies, we have further shown that
the CWV did not correlate well with web QoE. Also, no in-
fluence of Google’s recommendations for poor, moderate, and
bad CWV scores could be observed in the user ratings. Instead,
PLT and SI again proved to be the better indicators for web
QoE, also confirming the IQX and WQL hypotheses. This is
a surprising result provoking questions regarding what causes
such discrepancies. We primarily explain these discrepancies
between our studies and Google’s work on establishing the
CWV by the different means of data collection. While Google
relied on user engagement measured in the field, we performed
crowdsourcing studies targeting both CWV and PLT. These
study design differences seem to affect results significantly, a
hypothesis to be validated in future work.

As a consequence, our next steps include a direct compari-
son with Google studies by adjusting CWeQS and our CWV
studies such that user engagement is considered.
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