
ML-based Performance Prediction of SDN using
Simulated Data from Real and Synthetic Networks

Katharina Dietz, Nicholas Gray, Michael Seufert, Tobias Hossfeld
University of Würzburg, Germany

{katharina.dietz, nicholas.gray, michael.seufert, tobias.hossfeld}@uni-wuerzburg.de

Abstract—With increasing digitization and the emergence of
the Internet of Things, more and more devices communicate
with each other, resulting in a drastic growth of communication
networks. Consequently, managing these networks, too, becomes
harder and harder. Thus, Software-defined Networking (SDN)
is employed, simplifying the management and configuration of
networks by introducing a central controlling entity, which makes
the network programmable via software and ultimately more
flexible. As the SDN controller may impose scalability and
elasticity issues, distributed controller architectures are utilized
to combat this potential performance bottleneck. However, these
distributed architectures introduce the need for constant syn-
chronization to keep a centralized network view, and controller
instances need to be placed in appropriate locations. As a result,
thoroughly designing SDN-enabled networks with respect to a
multitude of performance metrics, e. g., latency and induced
traffic, is a challenging task. To assist in this process, we train
a performance prediction model based on properties which
are available during the network planning phase. We utilize a
simulation-based approach for data collection to cover a large
parameter space, simulating a variety of networks and controller
placements for two opposing SDN architectures. On basis of
this dataset, we apply Machine Learning (ML) to solve the
performance prediction as a regression problem.

                                                    
                                                  

I. INTRODUCTION

The complexity of modern communication networks is
rapidly increasing, caused by emerging trends such as Industry
4.0 and Internet of Things. Thus, Software-defined Networking
(SDN) is incorporated into the network design to increase the
manageability and flexibility of a communication system [1],
[2]. By introducing SDN into a network, a single controller
instance is now responsible for the management and configura-
tion of the whole network, which may result in a performance
bottleneck and a single point of failure. Therefore, distributed
SDN architectures are a common approach to avoid this
potential problem. These distributed architectures balance the
network load among several physical controller instances,
while still keeping the logical network view centralized. With
distributed architectures, new challenges arise, however, most
importantly the required synchronization of the network state
[3] and the placement of the controller instances within the
networks [4]. Consequently, SDN-enabled networks have to be
planned carefully, including the overall layout of the network,
the utilized architecture, and controller configuration.

In recent years, research has mainly focused on the eval-
uation of specific parts of the SDN ecosystem, such as
benchmarking different controller implementations concerning
throughput or latency. Other approaches utilize the conve-
nience of the centralized network view to collect network mea-
surements and evaluate the service quality and user experience
of dedicated services. In many cases, the network is already
deployed and the analysis focuses on a particular service or
SDN component of a specific network configuration [5], [6].

In this work, we tackle the problem of predicting the
performance of a network purely based on properties that
are known before deployment, e. g., topological metrics or
controller configurations. This prediction of operational perfor-
mance can serve as a helpful tool for network design already
in the network planning phase.

The first contribution of this work is the creation and
publication1 of a dataset with various dynamic performance
and topological metrics of fifty simulated, real-world SDN-
enabled networks for various configurations. Secondly, we
compare multiple preprocessing steps to reduce the dimen-
sionality of this dataset and evaluate the resulting performance
prediction of different Machine Learning (ML) models. Lastly,
we evaluate well-known graph generators to create synthetic
data to increase the size of our dataset and to substitute the
real-world networks during training.

The remainder of this work is structured as follows. Firstly,
in Section II, we give background information about SDN,
distributed architectures, and the OpenFlow OMNeT++ Suite2

(OOS) which was used to simulate SDN-enabled networks.
Section III outlines related work to our research topic. In
Section IV, we specify the simulation setup, dataset descrip-
tion, and ML pipeline, followed by an evaluation of SDN
architectures. We then evaluate the capability of well-known
graph generators to serve as training data for the real-world
networks in Section V. Lastly, we summarize our findings and
provide an outlook for future work in Section VI.

II. BACKGROUND

In this section, we briefly outline the main concept behind
SDN, with the OpenFlow protocol being one of its pioneers.
Furthermore, we present two different approaches for dis-
tributed architectures, as well as the OMNeT++ framework
and the extension OpenFlow OMNeT++ Suite2 (OOS).

1https://github.com/lsinfo3/noms2022-sdn-performance-prediction
2https://github.com/lsinfo3/OpenFlowOMNeTSuite



                                                                      

OpenFlow & Standard SDN Architecture. The core principle
of SDN is the separation of a network’s intelligence and
its executive authority, i. e., the separation of control and
data plane. The OpenFlow3 [7] protocol is one of the first
enablers to facilitate the communication between both planes
by standardizing the interaction of the controller with the
switches on the data plane. OpenFlow switches install flow
tables, which match incoming packets and determine further
actions, e. g., the next device the packet is sent to. The
controller is able to manage these devices and their flow tables,
such as configuring the lifetime of the entries in the table, also
called timeout value. If the switch is able to handle the packet
autonomously, this induces no traffic onto the controller and no
delay until packet forwarding, called the fast path. If no entry
matches the packet, the packet is relayed to the controller for
further information, called the slow path. It is desirable to keep
the relayed traffic at minimum, while keeping the complexity
of flow tables low due to limited resources [8], [9].

Distributed Architectures & Controller Placement. As the
single controller instance may impose a risk in case of
overloading when too many switches are requesting responses
from the controller, distributed architectures are employed.
To balance the network load physically, different approaches
can be pursued, i. e., flat and hierarchical approaches. One
representative of a flat approach is HyperFlow [10], in which
all instances maintain a global view and require constant
synchronization. Kandoo [11] follows a hierarchical approach
by introducing a root and several local controllers. The local
instances only maintain a partial view and query the root if a
task is out of their responsibility, e. g., forwarding a packet to
a switch managed by another controller. However, not only
do distributed architectures generate overhead in terms of
synchronization, but also introduce the Controller Placement
Problem (CPP), which describes how many controllers are
needed and where to place them [12]. This is a multi-
objective optimization problem with competing optimization
goals, e. g., minimizing controller-to-switch latency (C2SL)
and controller-to-controller latency (C2CL), or respecting bal-
anced switch-to-controller mappings. Changing the placement
of controllers may severely impact the performance of the
networks, as this may completely change the partial network
view of local controller instances. Thus, a careful evaluation of
the interplay between the myriad of different influence factors
on a network’s performance is an important task.

OMNeT++ & OOS. Even though SDN is an emerging
design paradigm for modern networks, access to large scale
software-defined networks and compatible hardware is still
limited [13], [14]. As a consequence, collecting data from a
wide variety of networks, multiple distributed architectures,
and controller placements or configurations is non-trivial.
Thus, we follow a simulation-based approach by utilizing
the OMNeT++ simulation framework4. We make use of the
OOS, which not only provides all necessary tools to mimic

3https://opennetworking.org/software-defined-standards/specifications/
4https://omnetpp.org/

the functionality the core OpenFlow components, but also
altered versions for HyperFlow and Kandoo. Additionally, the
OOS contains fifty real-world Wide Area Networks (WANs),
ported from the Internet Topology Zoo5 [15] and Internet2’s
Advanced Layer 2 Service6 (AL2S).

III. RELATED WORK

In this section, we give an overview of related work con-
cerning our research to point out similarities and differences.

SDN Controller & Switch Performance. As showcased in
[6], there exists a multitude of controller implementations,
written in a variety of programming languages and constructed
by diverging architectures. Thus, one important task is to
benchmark different implementations regarding their perfor-
mance, e. g., throughput and latency. For this, the authors in
[16] propose Cbench, a popular tool for benchmarking already
deployed devices. As access to deployed SDN-enabled net-
works is still limited, many works resort to either simulation-
based approaches [17], [18], utilize emulators [19], [20], or
mathematical models [9].

Just as important as an evaluation of the control plane,
is an analysis of the data plane, i. e., the switches. As for
controllers, there exists a variety of switches, some of which
are evaluated in [21]. Consequently, similar benchmarking
analyses regarding performance metrics may be conducted if
the deployed network can be accessed for performance studies.
As this is rarely possible, analogous to controller evaluations,
some works leverage simulations [22], while others utilize
mathematical models [23], [24].

In this work, we do not focus on a single SDN component,
but rather the whole SDN ecosystem. While latency- and
workload-based performance metrics are still important in our
analyses, we also focus on the interaction between the SDN
components, i. e., control and data plane.

ML-based Performance Prediction in SDN. The SDN con-
troller receives numerous amounts of data and with the recent
rise in popularity of big data, ML-based approaches offer
opportunities to gain superior insights into the data com-
pared to traditional approaches. In many cases, the centralized
controller simplifies the data collection, which is then used
as input for ML-based approaches in an offline manner. In
other cases, the ML algorithm is directly deployed onto the
controller to enable real-time decision making during runtime,
e. g., for security purposes [25].

In terms of SDN-enabled performance prediction, many
different goals can be pursued. On the network layer, perfor-
mance and traffic forecasting is the basis for various tasks such
as routing [26] or load balancing [27]. On the application layer
and closer to end-users, the authors in [28] secure the Quality
of Service (QoS) of a specific application, or even further,
the works in [29], [30] ensure the Quality of Experience
(QoE) of end-users. A more high-level work is [31], where the
authors identify correlations between various Key Performance

5http://www.topology-zoo.org/
6https://internet2.edu/services/layer-2-service/

                                                                                                                                              



                                                                      

Indicators (KPIs) and Key Quality Indicators (KQIs) as means
to enable root cause analysis for degraded QoS.

In the above works, the network is already online and the
aim is to optimize the performance of a specific service or task.
In this work, however, we neither focus on gaining benefits of
a centralized controller, nor do we predict the performance of
a specific service in an already deployed network. Rather, we
evaluate the performance of the network as a whole. The core
idea is to analyze its performance before the actual deployment
to support the network design process, e. g., when choosing the
underlying topology or controller architecture.

Compared to our initial work [32], we greatly increased
the size of our dataset by including a variety of controller
placements and configurations for each network. Further, we
conduct several profound ML-based performance analyses and
apply a naı̈ve transfer approach by synthesizing new networks
with well-known graph generators.

IV. REAL-WORLD NETWORKS

This section investigates the prediction of the performance
metrics solely based on real-world networks.

A. Methodology

In the following, we explain our methodology, i. e., the
simulation setup, the dataset, and the utilized ML pipeline.

1) Simulation Setup: The OOS provides an OpenFlow con-
troller implementation comprising a realistic set of function-
ality, such as topology discovery via the Link Layer Discov-
ery Protocol (LLDP), forwarding mechanisms, and Address
Resolution Protocol (ARP) proxy, as well as their respective
adaptions for a hierarchical and a flat architecture. In addition
to the network traffic caused by LLDP and ARP messages,
the main source of traffic are end-devices connected to the
switches. The end-devices are based on the StandardHost from
the INET7 framework in conjunction with a modified PingApp,
also from the INET framework. Unless mentioned otherwise,
we retain the default parameters of the original OOS for all of
the mentioned modules and applications. The exact values of
these parameters, the reasoning behind those parameters, and
detailed information about the implemented modules can be
found in the original OOS paper in [18].

The OOS contains several controller placements for the
ported WANs for three different numbers of controllers,
namely two, three, and five, placed with respect to C2SL and
C2CL with the Pareto Optimal Controller Placement (POCO)
framework8 [33]. As those two latencies are contradicting, this
results in a set of Pareto-optimal placements for each network.
For the hierarchical architecture the root is always placed with
respect to the controller-to-root latency (C2RL).

Each network is simulated for three different numbers of
controllers. For each number, the controller placement is
altered three times, totaling nine different combinations of
placement and number of controllers. For each of these nine
simulations, the timeout value of the controller is varied, as

7https://inet.omnetpp.org/
8https://github.com/lsinfo3/poco

TABLE I: Coarse overview of the dataset.

Short Description Metrics

Dynamic
Performance
Metrics

• Change throughout a simulation.
• Maximum and mean values.
• Serve as target variables.

RTT
S2C Traffic
C2C Traffic

Semi-
Dynamic
Controller
Metrics

• May change for a specific network.
• Mainly control plane-related.
• Dependent on placement/config.
• Serve as input variables.

Timeout
# Controllers
C2S Latency
...

Static
Topology
Metrics

• Stay the same for a specific network.
• Mainly data plane-related.
• Independent from placement/config.
• Serve as input variables.

# Switches
Betweenness
Closeness
...

different controller implementations may configure different
default values on the switches. We vary the timeout for twelve
values between 5 s to 60 s, inspired by default values found
in related literature [34]–[36]. Each combination of timeout,
placement, and controller amount is simulated four times,
each run reflecting a real-world timespan of 10min. For
fifty networks, this results in 3 · 3 · 12 · 4 · 50 = 21,600
simulations for each architecture, or 43,200 runs in total,
which reflects the size of our dataset. For one network the
OOS has configurations for four numbers of controllers with
one placement each, solely optimizing the C2SL. To account
for the same amount of data, we perform nine repetitions here.

2) Dataset Description: Table I coarsely summarizes the
the extracted features of our simulated datasets. All datasets
and an in-depth feature description can be found online9.

Dynamic performance metrics are the target of our regres-
sion, i. e., the values we want to predict. They are highly dy-
namic, as they change throughout each run, and are measured
as a time series. From this time series, the mean and maximum
values are contained in the dataset for each of the performance
metrics, i. e., round-trip time (RTT), switch-to-controller (S2C)
traffic, and controller-to-controller (C2C) traffic. The RTT is
the time that a packet needs to reach its destination and vice-
versa. The S2C traffic is the traffic induced on the controllers
from the data plane, e. g., due to mismatched packets. Lastly,
the C2C traffic depicts the required synchronization traffic be-
tween all controller instances. For the hierarchical architecture,
we focus on the local instances only.

In contrast, semi-dynamic controller metrics are used as
input features. They may change between runs for the same
network due to different configurations, e. g., the specified flow
entry timeout or the controller placements. They are mainly
control plane-related and thus, among others, include metrics
such as C2SL, C2CL, or the sheer number of controllers. All
of these metrics are known beforehand, as they do not change
throughout the simulation.

Similarly, static topology metrics are also known in advance
and serve as input. However, they are independent from the
actual configuration, as they are merely concerned with the
layout of the data plane, i. e., the switches. These metrics
can either be node-based or graph-based. Common node-

9https://github.com/lsinfo3/noms2022-sdn-performance-prediction
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Fig. 1: Compared ML pipelines.

based metrics include the betweenness, closeness, or degree of
nodes, whereas exemplary graph-based metrics are diameter
or radius, implemented after [37]. As node-based metrics
are computed for each switch in the network, we calculate
statistical measurements, such as mean, minimum, maximum,
standard deviation, and more. Graph-based metrics already
concern the whole network and thus consist only of a single
value each. If applicable, we calculate these graph metrics as
unweighted and weighted versions, i. e., with respect to the
number of intermediary devices and with respect to latency.

3) ML Pipeline: To process the extracted data, we define
various pipelines. The source code with all hyperparameters
and other implementation details can be found online10.

Training, Test, and Validation Set Splits. As we run four
repetitions for each combination of parameters, the splitting
of the dataset is crucial, as the performance of the repetitions
is similar. Thus, we need to ensure that all four repetitions are
either exclusively used for testing or training, as otherwise
the performance prediction would be trivial. Therefore, we
employ the GroupKFold() mechanism of the scikit-learn11

framework [38] to ensure that a group only appears in either
of the sets, not in both. Here, the group is the network. We
apply this splitting technique in a nested cross-validation (CV),
with a 5-fold outer and a 5-fold inner CV, used for robustness
analysis and hyperparameter optimization, respectively.

Feature Selection and Dimensionality Reduction. As not all
features are useful to predict the performance of a specific
target, we apply feature selection with SelectPercentile() from
scikit-learn. Since some of the graph metrics are highly
correlated [37], i. e., due to the presence of multicollinearity,
we apply dimensionality reduction techniques to reduce the
model complexity. Figure 1 depicts the different processing
pipelines we apply. The first pipeline defines the baseline,
which only applies feature selection. Secondly and thirdly,
we combine this with hierarchical clustering, which groups
correlated features together and chooses one out of each group.
Instead of a cluster analysis and feature selection, the fourth
pipeline only applies a Principal Component Analysis (PCA)
to transform the feature space into uncorrelated Principal Com-
ponents (PCs). Lastly, the fifth and sixth pipeline also utilize
PCA, once again in conjunction with the feature selection.

ML Models. As a base model we choose a Decision Tree
(DT), as it captures non-linear relationships, while still being

10https://github.com/lsinfo3/noms2022-sdn-performance-prediction
11https://scikit-learn.org/

easily visualizable and explainable. On this basis, we also
utilize bagging and boosting techniques, i. e., Random Forest
(RF) and AdaBoost (AB), possibly boosting the performance
at the cost of more complex models. We leave the tree-based
parameters, e. g., tree depth, at their respective default values
from scikit-learn. The parameters we optimize are the features
of SelectPercentile() for all pipelines, except the fourth, which
optimizes the amount of PCs instead of features. That is,
the fourth pipeline chooses the PCs maintaining the highest
variance of the data, instead of choosing features with respect
to the target. For pipelines five and six, all PCs are retained
and the PCA is merely a measure to remove correlation.
The search space of the number of features or PCs considers
10%, 20%, . . . , 100% of the most important features or the
retained variance, respectively.

B. Evaluation

Table II shows the evaluation results for the mean and
maximum prediction for the three performance metrics by
depicting the best performing models and pipelines with
respect to the Mean Absolute Error (MAE). To quantify
the absolute performance, we choose the MAE and Root
Mean Squared Error (RMSE). To put the performance into
relation with the actual value range, we also depict the Mean
Absolute Percentage Error (MAPE) and normalized MAE
(nMAE), normalized with the sample mean. We compute the
Pearson Correlation Coefficient (PCC) and Spearman Rank
Correlation Coefficient (SRCC), to quantify the directional
prediction performance, as it may also be of interest if a
network performs better than another network.

For all three performance metrics, the prediction of the mean
generally performs better than predicting the maximum. The
maximum is more prone to outliers, since a single extreme
value greatly influences this statistic. Further, the maximum is
numerically larger than the mean and thus the error magnitude
may also be influenced. In none of the scenarios a PCA-based
pipeline is performing best, possibly caused by the nature of
the transformation, which only retains the overall variance of
the features, not necessarily retaining the importance towards
the prediction target. The cluster-based pipelines, however,
show promising results. The correlations for all models exceed
90% with exception of the maximum RTT, showing feasible
results for the prediction of the directional movement.

For the S2C prediction we observe similar values for the
raw errors for both architectures, as well as for the relative
errors, since the S2C traffic is influenced by similar factors.
The prediction works well, with MAPEs not exceeding 9.6%.
For both architectures, the most important features chosen by
the feature selection in the baseline approach for the mean
value prediction concern the switch, e. g., the average number
of switches connected to a controller. Each new switch directly
introduces a new traffic source, as each switch has a number
of clients attached to it. The number of controllers is also
identified as important, as they distribute the network traffic.
The timeout value is of importance, as each mismatched
packet is relayed to the control plane, so maintaining flow

                                                                                                                                              



                                                                      

TABLE II: Best performing models and pipelines (according to MAE).

Hierarchical Architecture Flat Architecture

Metric Model Pipeline MAEa RMSEa MAPE nMAE PCC SRCC Model Pipeline MAEa RMSEa MAPE nMAE PCC SRCC

S2C Mean AB Cluster I 48.45 79.826 0.062 0.065 0.980 0.985 AB Cluster II 46.63 76.861 0.058 0.063 0.982 0.987
Max. AB Cluster II 716.5 1295.9 0.096 0.114 0.941 0.966 AB Cluster I 709.6 1320.4 0.093 0.112 0.938 0.967

C2C Mean RF Baseline 2.592 4.3226 0.127 0.097 0.989 0.986 AB Cluster II 3.633 5.4622 0.032 0.035 0.983 0.986
Max. RF Baseline 8.776 13.189 0.130 0.118 0.975 0.967 RF Cluster II 13.55 18.644 0.065 0.067 0.917 0.912

RTT Mean AB Baseline 8.174 15.023 0.263 0.206 0.929 0.932 AB Baseline 5.934 10.455 0.213 0.186 0.948 0.942
Max. RF Cluster II 110.9 224.29 0.472 0.351 0.811 0.872 RF Baseline 68.58 123.08 0.405 0.280 0.872 0.867

a in B/s for S2C and C2C, and in ms for RTT

entries longer reduces the overall controller load. Several
betweenness-related metrics are selected, as a switch of high
betweenness is contained in many shortest paths, increasing
the refreshing rate of flow entries and ultimately reducing
the controller workload. For the maximum value prediction,
the maximum number of switches is now also of importance.
The number of links is of interest, due to topology discovery
messages. For similar reasons, degree-related metrics and
node- and edge-disjoint paths are now chosen as well. For the
C2C prediction, the absolute error is smaller compared to the
S2C traffic, as the synchronization traffic is only a fraction
of the whole network load, i. e., numerically smaller. The
differences of errors for the two architectures are more obvious
here, as the synchronization mechanisms differ greatly. The
absolute errors are smaller for the hierarchical approach,
however, the relative errors are higher. The flat architecture
always synchronizes the total network view, so the traffic is
numerically larger. However, it is easier to predict, as the
hierarchical architecture is more complex. The C2C prediction
works well, with nMAEs not exceeding 11.8%.

For the mean value prediction for the hierarchical approach,
the most influential factor is the timeout, as each timed out
packet may result in a request to the root. This is followed by
several metrics that capture the balance of the S2C mapping,
as the hierarchical approach is dependent on how sufficient
the local views are. Closeness-, farness- and betweenness-
related features are important, as they directly correlate to the
probability that flow entries are refreshed as explained in the
previous section. Longer paths also increase the probability
to cross controller boundaries, resulting in root requests. The
latter gains more importance for the maximum, as these
topological metrics now rank higher than the balance-related
metrics. For the flat approach, the ranking puts less emphasis
on the S2C mapping balance, as the placements do not have
as much impact, since a global view is maintained anyway.

Lastly, while the RTT prediction seems partially feasible,
it shows a high degree of heteroscedasticity, i. e., the spread
of errors increases drastically with the actual value. This
effect may appear since the RTT has a tremendous value
range, as network locations range from small countries to
networks located over several continents. Naturally, for the
RTT prediction the feature selection mainly selects features
relating to various latencies, as the RTT is the sum of all
occuring delays during transmission. To counteract the lack
diverse physical distances, more data is needed, discussed next.

V. SYNTHETIC NETWORKS

Now that we established a baseline, we still need data
about the networks, even though the simulative approach
circumvents the problem of limited access. To reduce the need
of collecting real data, this section examines the performance
prediction of real-life networks based on synthetic networks.

A. Methodology

As we employ the same controller applications as before,
we focus on the methodology behind the artificial network
synthetization and changes to the ML pipeline.

1) Network Generation: We utilize the NetworkX12 [39]
package for Python, featuring several algorithms for random
graph generation, of which we choose four. Each algorithm
takes a number n of nodes as input, which we choose
according to a uniform random distribution between 25 and
40 to generate networks of similar sizes to the real networks.

The first and simplest algorithm employed is the Erdős-
Rényi model [40], which takes a probability pER as input,
reflecting the chance that an edge is created between two
nodes. As WANs typically do not contain too many redundant
links due to high geographical distances, we set pER = 5%.
The second algorithm is the Barabasi-Albert model [41].
Starting with a star graph of m + 1, more nodes are added
with a preferential attachment to m other high degree nodes.
To keep the complexity of the networks low, we set m = 1.

Thirdly and fourthly, we employ the Watts-Strogatz [42]
and Newman-Watts-Strogatz [43] models. Both start with a
ring constellation of nodes, which then are connected to their
k or k − 1 nearest neighbors, depending if k is even or odd.
The original Watts-Strogatz model replaces these edges with a
probability pWS with another edge, while the Newman-Watts-
Strogatz model merely adds another edge with probability
pNWS. For both, we set k = 2, as we are not interested in
creating highly inter-meshed networks. We set pWS = 80%
to allow the graph to break the ring structure, while we set
pNWS = 20%, as the ring structure is omitted by adding the
random edges.

We generate distances with a uniform and a geometric
distribution, each with three different settings, namely low,
medium, and high ranges. For each combination of algorithm,
distance distribution, and range, we create three random net-
works, meaning 72 networks in total. We transform the raw

12https://github.com/networkx/networkx

                                                                                                                                              



                                                                      

TABLE III: Results of training an RF on real versus synthetic data.

Hierarchical Architecture Flat Architecture

MAEa RMSEa MAPE nMAE MAEa RMSEa MAPE nMAE

Metric Synth. Real Synth. Real Synth. Real Synth. Real Synth. Real Synth. Real Synth. Real Synth. Real

S2C Mean 45.37 59.08 70.245 86.642 0.058 0.079 0.060 0.081 46.71 63.23 72.878 94.277 0.059 0.083 0.062 0.087
Max. 874.3 787.4 2180.3 1410.9 0.108 0.108 0.139 0.124 869.7 764.3 2177.1 1385.5 0.106 0.102 0.138 0.121

C2C Mean 3.645 2.592 6.3390 4.3226 0.168 0.127 0.136 0.097 5.257 4.160 8.6172 6.0428 0.047 0.037 0.050 0.040
Max. 9.856 8.776 14.894 13.189 0.150 0.130 0.132 0.118 17.88 14.82 30.601 21.471 0.081 0.071 0.090 0.074

RTT Mean 10.92 9.396 19.178 16.269 0.413 0.318 0.276 0.236 7.479 6.683 13.537 11.785 0.211 0.237 0.227 0.204
Max. 108.5 122.5 249.67 247.66 0.394 0.479 0.343 0.380 88.04 68.58 153.77 123.08 0.386 0.405 0.366 0.280

a in B/s for S2C and C2C, and in ms for RTT

graphs into the corresponding OMNeT++/C++ representation,
parameterizing the number of controllers with the same three
values as for the real-world networks, i. e., two, three, and five.
For each of the 72 networks and each amount of controllers,
we generate three different controller placements, with the
placement being chosen at random. The switches are assigned
to the closest controller with respect to the geographical dis-
tance. We vary the timeout for twelve different values and each
combination of timeout, placement, and controller amount is
repeated four times, resulting in 3 · 72 · 3 · 12 · 4 = 31,104
simulation runs for each architecture, or 62,208 runs in total.

2) ML Pipeline: As we now have a predefined split between
train and test set, i. e., random and real networks, we do not
employ an outer CV, only an inner CV. Lastly, we apply the
baseline pipeline with an RF to not lose any information.

B. Evaluation

Table III shows the results of training the RF with synthetic
data to predict the performance of the real-world networks.
We compare this to an RF trained with the baseline pipeline
and real data for comparability’s sake. The respective better
performance is highlighted in the table.

For both architectures, the absolute errors for the S2C
prediction for the mean value show promising results, also
manifesting in slightly lower relative errors. For the maximum
value, we see an increase of the absolute errors. While not
quite achieving the results of the baseline, this may still be
feasible, as the relative errors approximate the baseline. For
the C2C prediction, the MAEs for both architectures grow
overall, also manifesting in the relative errors increasing by
a few percentage points. However, similar to the S2C traffic,
the results still roughly approximate the training on real-world
networks and thus are still useful. Lastly, the RTT prediction
illustrates mixed results for this naı̈ve transfer approach.
For the maximum value for the hierarchical architecture this
approach outperforms the baseline in all aspects besides the
RMSE, while the mean value prediction underperforms. For
the flat architecture, only both MAPEs decrease, while the rest
of the errors increase.

To analyze the weaknesses of the synthesized networks,
we merge the datasets, label them either real or synthetic,
drop the performance metrics, and train an RF to classify
a network accordingly. The results show that an RF can
distinguish between real and synthetic networks with 89.8%

accuracy. The synthetic networks generally contain longer
paths, which influences many topological metrics, as they are
mostly distance-based. Furthermore, the chosen distribution
of the distances does not reflect the real-world networks, as
WANs may contain many short and few extraordinarily long
links, e. g., for inter-continental connections.

While this first approach is not optimized yet, we are still
able to approximate the baseline approach. This enables not
only the performance prediction during network planning, but
also without the need to collect real-world network data. The
generated networks do not capture the characteristics of the
real-world networks fully. Thus, we hope to generate more
realistic network graphs in the future to improve the prediction.

VI. CONCLUSION

In this work, we evaluated the feasibility of predicting
the performance of SDN-enabled networks based on network
properties, which are known during the design phase. For this,
we simulated over 100,000 runs, which sum up to a real-world
time of over two years. As a first scenario, we evaluated the
performance prediction based on a set of real-world WANs
for two different distributed SDN architectures, six different
ML preprocessing pipelines, and three different performance
metrics. We showed that it is feasible to predict the perfor-
mance by the extracted features. As a second scenario, we
created networks with well-known graph generators to reduce
the need of real-world data acquisition. We proceeded to
train the ML models on this synthetic data and evaluated the
three defined performance metrics again. While the synthetic
networks already showed promising results, there is still room
for improvement, as the generated networks did not capture
all characteristics of real-world WANs.

In the future, we aim to vary more factors, e. g., more
realistic traffic patterns and workloads of varying magnitude.
A more thorough investigation of the structure of real-world
WANs can increase the quality of the synthesized data. We
will investigate more sophisticated graph generation methods,
such as [44] or Generative Adversarial Networks (GANs) [45].
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