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Abstract

This paper is devoted to the numerical solution of constrained energy minimization problems

arising in computational physics and chemistry such as the Gross–Pitaevskii and Kohn–Sham

models. In particular, we introduce Riemannian Newton methods on the infinite-dimensional

Stiefel and Grassmann manifolds. We study the geometry of these two manifolds, its impact on

the Newton algorithms, and present expressions of the Riemannian Hessians in the infinite-

dimensional setting, which are suitable for variational spatial discretizations. A series of

numerical experiments illustrates the performance of the methods and demonstrates their

supremacy compared to other well-established schemes such as the self-consistent field iter-

ation and gradient descent schemes.

Keywords Riemannian optimization · Stiefel manifold · Grassmann manifold · Newton

method · Kohn–Sham model · Gross–Pitaevskii eigenvalue problem

Mathematics Subject Classification 65K10 · 65N25 · 81Q10

1 Introduction

The Kohn–Sham model [31, 37, 38] is a prototypical example of a constrained energy min-

imization problem stated on the infinite-dimensional Stiefel manifold. This means that the

sought-after minimizer is a p-frame of L2 -orthonormal functions. Another well-known exam-

ple is the Gross–Pitaevskii model for Bose–Einstein condensates of ultracold bosonic gases

[39, 43]. Here, the special case p = 1 is of interest, where we seek a single (minimizing)
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function on the unit sphere in L2, representing a unit mass constraint. Since these two appli-

cations are relevant for different communities, numerical methods are mostly considered

separately. One aim of this paper is to give a unified approach to solving energy minimiza-

tion problems. More precisely, we introduce Riemannian Newton methods for minimizing

energy functionals of Kohn–Sham type, which also includes the Gross–Pitaevskii model. In

general, the here considered PDE problems require a special treatment in terms of sparsity and

dimension-independent methods, which is not part of existing general purpose optimization

packages.

The numerical solution of the Gross–Pitaevskii model has been studied extensively in

recent years. The most common numerical techniques are iterative methods based on Rie-
mannian (conjugate) gradient descent methods or discretized Riemannian gradient flows in

various metrics [10, 11, 20, 22, 26, 29, 36, 44, 53]. A conceptually different approach is the

J -method [5, 33] with its inimitable sensitivity with regard to spectral shifts, allowing remark-

able speed-ups in a Rayleigh quotient iteration manner. Reformulating the minimization

problem as an eigenvalue problem with eigenvector nonlinearity—also known as nonlinear

eigenvector problem—the self-consistent field iteration (SCF) can be employed; see [14,

23, 45]. This method involves the solution of a linear eigenvalue problem in each step and

is strongly connected to the Newton method [28, 34]. Considering the extended nonlinear

system including the normalization constraint also allows a direct application of Newton or

Newton-type methods [12, 13, 24]. For an extended review on numerical methods for the

Gross–Pitaevskii model, we refer to [28].

Most of the above approaches (with appropriate adjustments) have been applied to the

Kohn–Sham model as well. This includes the direct constrained minimization algorithm [3,

47, 52] and the energy-adaptive gradient descent method [8]—both based on Riemannian

optimization—as well as gradient flow schemes [21, 32]. Moreover, the SCF algorithm with

different types of mixing is very popular in the computational chemistry community; see, e.g.,

[9, 15, 18, 19, 40]. For a discretized and simplified Kohn–Sham model (without the external

potential and the exchange-correlation energy), global convergence and local second-order

convergence of an inexact Riemannian Newton method on the Grassmann manifold has been

shown in [54]. An overview of existing software packages for density functional theory

problems can be found in [35].

In this paper, the point of origin is an energy functional defined on the infinite-dimensional

Stiefel manifold, which we introduce in Sect. 2. For a better understanding, we recall defini-

tions and properties of the Stiefel manifold and corresponding retractions in Sect. 3. Moreover,

we provide formulae for the Riemannian gradient and the Riemannian Hessian which are

needed for the Newton iteration. Since the considered energy functional is invariant under

orthogonal matrices, we also discuss the infinite-dimensional Grassmann manifold and exam-

ine a connection of its tangent space to a certain subspace of the tangent space of the Stiefel

manifold. The resulting Newton algorithms are then subject of Sect. 4. In particular, we

present an inexact Riemannian Newton method on the Grassmann manifold. In Sect. 5, we

consider the two mentioned examples of the Gross–Pitaevskii and the Kohn–Sham model in

more detail. For both applications, we derive the formulae including a spatial discretization

and illustrate the supremacy of the inexact Newton approach compared to well-established

methods such as the SCF iteration and gradient descent schemes.
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1.1 Notation

The sets of p × p real symmetric and skew-symmetric matrices are denoted by Ssym(p) and

Sskew(p), respectively. For M ∈ R
p×p , we write sym M = 1

2
(M + MT ) for the symmetric

part, and tr M denotes the trace of M . Further, Ip and 0p denote the p × p identity and zero

matrices, respectively. The expression diag(M) defines the column vector consisting of the

diagonal elements of M ∈ Rn×n and Diag(v) denotes the diagonal matrix with components

of the vector v ∈ R
n on the diagonal.

2 The Energy Functional and Nonlinear Eigenvector Problems

For a given spatial domain � ⊆ R
d , d ≤ 3, we consider the Hilbert spaces L2(�) and

Ṽ ⊆ H1(�). For p ≥ 1, we further define the Hilbert spaces V = Ṽ p and H = [L2(�)]p

of p-frames. Throughout this paper, we assume that V is dense in H and that V ⊆ H ⊆ V ∗

form a Gelfand triple, where V ∗ denotes the dual space of V .

For v = (v1, . . . , vp),w = (w1, . . . , wp) ∈ H , we define the dot product

v · w =
p∑

j=1

v j w j .

On the pivot space H , we further introduce an outer product

Jv,wKH =




(v1, w1)L2(�) . . . (v1, wp)L2(�)

...
. . .

...

(vp, w1)L2(�) . . . (vp, wp)L2(�)


 ∈ R

p×p (1)

and an inner product

(v,w)H =
p∑

j=1

(v j , w j )L2(�) = tr Jv,wKH . (2)

The inner product (2) induces the norm ‖v‖H =
√

(v, v)H on H . The canonical identification

I : V → V ∗ is defined by

〈 Iv,w〉 = (v,w)H for all v,w ∈ V ,

where 〈 ·, · 〉 denotes the duality pairing on V ∗ × V . This identification operator can also

be written as I = j∗ ◦ iH ◦ j with the trivial embedding j : V → H (the injective identity

operator), the Riesz isomorphism iH : H → H∗, which reads iH (u) = (u, · )H , and the

adjoint operator j∗ : H∗ → V ∗ satisfying j∗( f ) = f ◦ j for all f ∈ H∗. Since all these

operators act componentwisely, we have I(v3) = I(v)3 for all v ∈ V and 3 ∈ Rp×p.

Moreover, since V is a dense subspace of H , so is j(V ). Hence, j∗ is injective, and as

the composition of injective operators, I is also injective. As a result, I has a left inverse

J : V ∗ → V such that JIv = v for all v ∈ V .
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2.1 Energy and Applications

For a p-frame φ ∈ V , we consider the energy functional

E(φ) = 1

2

∫

�

tr
(
(∇φ(x))T ∇φ(x)

)
dx +

∫

�

ϑ(x) ρ(φ(x)) dx + 1

2

∫

�

Γ (ρ(φ(x))) dx (3)

with an external potential ϑ , the density function ρ(φ) = φ · φ, and a smooth nonlinearity

Γ (ρ). Our aim is to minimize this energy functional on the infinite-dimensional Stiefel
manifold of index p given by

St(p, V ) =
{
φ ∈ V : Jφ,φKH = Ip

}
. (4)

In other words, we are interested in solving the constrained minimization problem

min
φ∈St(p,V )

E(φ). (5)

A state of lowest energy is called the ground state. Such states play an important role in

quantum-mechanical models as they represent a most stable configuration of atoms and

molecules. These models include two famous applications in computational physics and

chemistry.

Example 1 (Gross–Pitaevskii model) For p = 1 and Γ (ρ) = 1
2
κρ2 with κ ∈ R, the energy

functional takes the form

EGP(φ) = 1

2

∫

�

‖∇φ(x)‖2 dx +
∫

�

ϑ(x) φ(x)2 dx + κ

4

∫

�

φ(x)4 dx . (6)

This is the well-known Gross–Pitaevskii energy used in the modeling of Bose–Einstein con-

densates of ultracold bosonic gases [39, 43]. Here, ϑ ∈ L∞(�) is the magnetic trapping

potential, φ ∈ H1
0 (�) is the quantum state of the Bose–Einstein condensate, and κ charac-

terizes the strength and the direction of particle interactions.

Example 2 (Kohn–Sham model) The (non-local) nonlinearity

Γ (ρ) = ρ

∫

�

ρ(φ(y))

‖x − y‖ dy + 2 ρ ǫxc(ρ)

yields the Kohn–Sham energy functional

EKS(φ) = 1

2

p∑

j=1

∫

�

‖∇φ j (x)‖2 dx +
∫

�

ϑion(x) ρ(φ(x)) dx

+ 1

2

∫

�

∫

�

ρ(φ(x)) ρ(φ(y))

‖x − y‖ dy dx +
∫

�

ρ(φ(x)) ǫxc(ρ(φ(x))) dx, (7)

where φ denotes a wave function with p components called single-particle orbitals and ρ(φ) is

the electronic charge density. Moreover, ϑion is the ionic potential, and ǫxc(ρ) is the exchange-

correlation energy per particle in a homogeneous electron gas of density ρ. This model is

based on the so-called density functional theory [31], which allows a significant reduction of

the degrees of freedom [17, 37, 38]. The last integral in (7) is a local density approximation to

the exchange-correlation energy obtained by using semi-empirically knowledge of the model

[42]. In the Kohn–Sham model, a ground state corresponds to the low-energy wave function
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of the considered molecule and the orthogonality condition Jφ,φKH = Ip means that there

is no interaction between the electrons in different orbitals.

At this point, it should be emphasized that, since the energy functional E in (3) is invariant

under orthogonal transformations, i.e. E(φ) = E(φQ) for all orthogonal matrices Q ∈ R
p×p,

the optimal solution to the minimization problem (5) is not unique. To overcome this difficulty,

we will transfer this problem to the infinite-dimensional Grassmann manifold defined in

Sect. 3.2.

2.2 Connection to Nonlinear Eigenvector Problems

We observe that the directional derivative of E from (3) at φ ∈ V along w ∈ V has the form

DE(φ)[w] = aφ(φ,w),

where

aφ(v,w) =
∫

�

tr
(
(∇v)T ∇w

)
dx + 2

∫

�

ϑ v · w dx +
∫

�

γ (ρ(φ)) v · w dx (8)

with γ (ρ) = d
dρ

Γ (ρ). One can see that for fixed φ ∈ V , aφ is a symmetric bilinear form on

V × V . Further note that aφ exhibits a special structure, namely

aφ(v,w) =
p∑

j=1

ãφ(v j , w j ) (9)

with a symmetric bilinear form ãφ : Ṽ × Ṽ → R given by

ãφ(v,w) =
∫

�

(∇v)T ∇w dx + 2

∫

�

ϑ vw dx +
∫

�

γ (ρ(φ)) vw dx .

Within this paper, we assume that ãφ is bounded and coercive on Ṽ ×Ṽ . Obviously, the bilinear

form aφ inherits these properties such that aφ is also bounded and coercive on V × V .

Introducing the Lagrangian L(φ,3) = E(φ)− 1
2

tr
(
3T (Jφ,φKH − Ip)

)
with a Lagrange

multiplier 3 ∈ Ssym(p), the first-order necessary optimality conditions for the minimization

problem (5) yield the nonlinear eigenvector problem (NLEVP)

aφ∗(φ∗,w) − (φ∗ 3∗,w)H = 0 for all w ∈ V , (10a)

Jφ∗,φ∗KH − Ip = 0p (10b)

with unknown φ∗ ∈ V , which is referred to as the eigenvector, and 3∗ ∈ Ssym(p), whose

eigenvalues are the lowest p eigenenergies of the system. Yet another formulation of the

NLEVP (10) follows from the special structure of the bilinear form aφ given in (9): seek φ∗ =
(φ∗,1, . . . , φ∗,p) ∈ St(p, V ) and p eigenvalues λ1, . . . , λp ∈ R such that

ãφ∗(φ∗, j , v) = λ j (φ∗, j , v)L2(�) for all v ∈ Ṽ . (11)

For fixed φ ∈ V , we introduce the operator Aφ : V → V ∗, called the Hamiltonian, which

is defined by

〈Aφ v,w〉 = aφ(v,w) for all v,w ∈ V .

123



    6 Page 6 of 25 Journal of Scientific Computing            (2024) 101:6 

Then the NLEVP (10) can be written as

Aφ∗φ∗ − I(φ∗3∗) = 0∗, (12a)

Jφ∗,φ∗KH − Ip = 0p, (12b)

where 0∗ ∈ V ∗ is the zero functional. Using the left inverse J of I, we find that

3∗ = Jφ∗,φ∗KH 3∗ = Jφ∗,φ∗ 3∗KH = Jφ∗,JAφ∗ φ∗KH . (13)

Remark 1 Due to the symmetry of the bilinear form ãφ , we conclude that
(
φi , (JAφ φ) j

)
L2(�)

= ãφ(φi , φ j ) = ãφ(φ j , φi ) =
(
φ j , (JAφ φ)i

)
L2(�)

for i , j = 1, . . . , p. This means that Jφ,JAφ φKH is symmetric for any φ ∈ V .

3 The Infinite-Dimensional Stiefel and GrassmannManifolds

In this section, we summarize definitions and properties of the infinite-dimensional Stiefel and

Grassmann manifolds and their tangent spaces, which lay the foundation of the Riemannian

optimization schemes in the upcoming section.

3.1 The Stiefel Manifold

We consider the infinite-dimensional Stiefel manifold St(p, V ) defined in (4). It is an embed-

ded submanifold of the Hilbert space V and has co-dimension p (p + 1)/2; see [8]. The

tangent space of St(p, V ) at φ ∈ St(p, V ) is given by

Tφ St(p, V ) =
{
η ∈ V : Jη,φKH + Jφ, ηKH = 0p

}
. (14)

The Riemannian structure of the Stiefel manifold St(p, V ) strongly depends on an underlying

metric. Within this paper, we equip St(p, V ) with the metric given by

g(η, ζ ) = (η, ζ )H = tr Jη, ζ KH , η, ζ ∈ Tφ St(p, V ). (15)

The normal space with respect to g is then defined as

T ⊥
φ St(p, V ) =

{
x ∈ V : g(x, η) = 0 for all η ∈ Tφ St(p, V )

}
.

It can also be represented as

T ⊥
φ St(p, V ) =

{
φS ∈ V : S ∈ Ssym(p)

}
. (16)

Further, any y ∈ V can be decomposed as y = Pφ( y) + P⊥
φ ( y), where

Pφ( y) = y − φ symJφ, yKH and P⊥
φ ( y) = φ symJφ, yKH (17)

are the orthogonal projections onto the tangent and normal spaces, respectively.

The Riemannian gradient of a smooth function E : St(p, V ) → R with respect to the

metric g is the unique element grad E(φ) ∈ Tφ St(p, V ) satisfying the condition

g(grad E(φ), η) = D E(φ)[η] for all η ∈ Tφ St(p, V ),

where E denotes a smooth extension of E around φ in V and D E(φ) is the Fréchet derivative

of E in V .
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For the energy functional E in (3), the Riemannian gradient at φ ∈ St(p, V ) with respect

to the metric g can be determined by using the L2-Sobolev gradient ∇ E(φ) ∈ V which is

defined as the Riesz representation of D E(φ) in the Hilbert space V with respect to the inner

product ( ·, · )H . Then, for all w ∈ V , we have

〈Aφ φ,w〉 = aφ(φ,w) = D E(φ)[w] =
(
∇ E(φ),w

)
H =

〈
I ∇ E(φ),w

〉

and, hence, ∇ E(φ) = JAφ φ. Furthermore, for all η ∈ Tφ St(p, V ), we obtain

(
grad E(φ), η

)
H = D E(φ)[η] =

(
∇ E(φ), η

)
H .

This implies that

grad E(φ) = Pφ

(
∇ E(φ)

)
= Pφ

(
JAφ φ

)
= JAφ φ − φ Jφ,JAφ φKH . (18)

The Riemannian Hessian of E at φ ∈ St(p, V ) with respect to the metric g, denoted by

Hess E(φ), is a linear mapping on the tangent space Tφ St(p, V ) into itself which is defined

by

Hess E(φ)[η] = ∇η grad E(φ) for all η ∈ Tφ St(p, V ),

where ∇η denotes the covariant derivative along η with respect to the connection ∇, cf. [1,

Sect. 5.3] for the finite-dimensional case.

The following theorem provides two expressions for the Riemannian Hessian of E in terms

of the directional derivative of grad E(φ) and the L2-Sobolev Hessian ∇2 E(φ) of E, which is

a linear operator mapping v ∈ V onto the Riesz representation of D2 E(φ)[v, · ] with respect

to the inner product ( ·, · )H .

Theorem 1 Let φ ∈ St(p, V ) and η ∈ Tφ St(p, V ). Then the Riemannian Hessian of a
smooth function E : St(p, V ) → R admits the expressions

Hess E(φ)[η] = Pφ

(
D grad E(φ)[η]

)
(19)

= Pφ

(
∇2 E(φ)[η] − η symJφ,∇ E(φ)KH

)
, (20)

where ∇ E(φ) and ∇2 E(φ) denote, respectively, the L2-Sobolev gradient and the L2-Sobolev
Hessian of a smooth extension E of E around φ in V .

Proof Since St(p, V ) is an embedded submanifold of the Hilbert space V , the expression (19)

can be shown similarly to the finite-dimensional case [1, Prop. 5.3.2].

In order to prove (20), we first compute the directional derivative

D grad E(φ)[η] = D
(
Pφ(∇ E(φ)

)
[η]

= Pφ(∇2 E(φ)[η]) + D Pφ[η]∇ E(φ). (21)

Let c(t) ⊂ St(p, V ) be a smooth curve defined on a neighborhood of t = 0 such that c(0) = φ

and d
dt c(0) = η. Then for all y ∈ V , we have

D Pφ[η] y = lim
t→0

1

t

(
Pc(t)( y) − Pφ( y)

)

= lim
t→0

1

t

(
y − c(t) symJc(t), yKH − y + c(0) symJc(0), yKH

)

= − lim
t→0

1

t

(
c(t) symJc(t) − c(0), yKH + (c(t) − c(0)) symJc(0), yKH

)

= −φ symJη, yKH − η symJφ, yKH .
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Inserting (21) into (19) and taking into account that

Pφ

(
D Pφ[η]∇ E(φ)

)
= −Pφ

(
φ symJη,∇ E(φ)KH + η symJφ,∇ E(φ)KH

)

= −Pφ

(
η symJφ,∇ E(φ)KH

)
,

we obtain (20). ⊓⊔

In order to derive a formula for the Riemannian Hessian of the energy functional E in (3), we

first compute the second-order derivative

D2 E(φ)[v,w] = lim
t→0

1

t

〈
Aφ+tv(φ + tv) − Aφ φ,w

〉

= lim
t→0

1

t

( ∫

�

(
tr
(
(∇(φ + tv))T ∇w

)
− tr

(
(∇φ)T ∇w

))
dx

+ 2

∫

�

ϑ
(
(φ + tv) · w − φ · w

)
dx

+
∫

�

(
γ (ρ(φ + tv))(φ + tv) · w − γ (ρ(φ))φ · w

)
dx

)

=
∫

�

tr
(
(∇v)T ∇w

)
dx + 2

∫

�

ϑ v · w dx

+
∫

�

γ (ρ(φ)) v · w dx + 2

∫

�

β(ρ(φ))(φ · v) (φ · w) dx

= 〈Aφ v + Bφ v,w〉,

where β(ρ) = d
dρ

γ (ρ) and the operator Bφ : V → V ∗ has the form

〈Bφ v,w〉 = 2

∫

�

β(ρ(φ))(φ · v) (φ · w) dx . (22)

Hence, the L2-Sobolev Hessian of E is given by ∇2 E(φ)[v] = J Aφ v + J Bφ v for all

v ∈ V . By the definition of the orthogonal projection onto Tφ St(p, V ) in (17), we conclude

that for η ∈ Tφ St(p, V ), the Riemannian Hessian of E is given by

Hess E(φ)[η] = Pφ

(
JAφ η + JBφ η − η Jφ,JAφ φKH

)

= JAφ η + J Bφ η − η Jφ,JAφ φKH

− φ sym Jφ,JAφ ηKH − φ sym Jφ,JBφ ηKH

+ φ sym
(
Jφ, ηKH Jφ,JAφ φ)KH

)
. (23)

Within optimization methods, we need to transfer data from the tangent space to the

manifold to keep the iterations on the search space. For this purpose, we can use retractions

defined as follows. Let T St(p, V ) be the tangent bundle to St(p, V ). A smooth mapping

R : T St(p, V ) → St(p, V ) is called a retraction if for all φ ∈ St(p, V ), the restriction of R

to Tφ St(p, V ), denoted by Rφ , satisfies the following properties:

1) Rφ(0φ) = φ, where 0φ denotes the origin of Tφ St(p, V ), and

2) d
dt Rφ(tη)

∣∣
t=0

= η for all η ∈ Tφ St(p, V ).
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Retractions provide first-order approximations to the exponential mapping on a Riemannian

manifold and are often much easier to compute. A retraction R on St(p, V ) is of second-

order, if it satisfies d2

dt2 Rφ(tη)
∣∣
t=0

∈ T ⊥
φ St(p, V ) for all (φ, η) ∈ T St(p, V ).

In [8], several retractions on the Stiefel manifold St(p, V ) have been introduced. They can

be considered as an extension of the corresponding concepts on the matrix Stiefel manifold

(see, e.g., [2, 46]) to the infinite-dimensional case.

For v ∈ V with linearly independent components, we consider the q R decomposition

v = q R, where q ∈ St(p, V ) and R ∈ R
p×p is upper triangular. Such a decomposition

exists and is unique if we additionally require that R has positive diagonal elements. Then

the q R decomposition based retraction is defined as Rq R(φ, η) = qf(φ+η), where qf(φ+η)

denotes the factor from St(p, V ) in the q R decomposition of φ + η. Such a factor can be

computed, e.g., by the modified Gram-Schmidt orthonormalization procedure on V presented

in [8].

An alternative retraction can be defined by using the polar decomposition v = uS, where

u ∈ St(p, V ) and S ∈ Rp×p is symmetric and positive definite. Assuming that the compo-

nents of v are linearly independent, S = Jv, vK
1/2
H and u = v Jv, vK

−1/2
H are uniquely defined.

This leads to the polar decomposition based retraction

Rpol(φ, η) = (φ + η)Jφ + η,φ + ηK
−1/2
H ,

which is of second-order. Indeed, computing the second-order derivative of R
pol

φ (tη) at t = 0

and exploiting (16), we obtain that

d2

dt2
R

pol

φ (tη)

∣∣∣
t=0

= −φ Jη, ηKH ∈ T ⊥
φ St(p, V ).

Note that second-order retractions are advantageous for second-order Riemannian optimiza-

tion methods; see, e.g. [1, Sect. 6.3].

3.2 The Grassmann Manifold

Let O(p) be the orthogonal group of Rp×p . Following [47], we define the infinite-dimensional

Grassmann manifold as the quotient

Gr(p, V ) = St(p, V )/O(p)

of the Stiefel manifold St(p, V ) with respect to the equivalence relation

φ ∼ φ̂ ⇐⇒ φ̂ = φ Q for some Q ∈ O(p).

The Grassmann manifold Gr(p, V ) can be interpreted as the set of the equivalence classes

given by

vφw =
{
φ̂ ∈ St(p, V ) : φ̂ = φ Q, Q ∈ O(p)

}

for φ ∈ St(p, V ). Similarly to the Grassmann matrix manifold [1, Prop. 3.4.6], one can show

that Gr(p, V ) admits a unique structure of quotient manifold. A canonical projection from

the Stiefel manifold into the Grassmann manifold is defined by

π : St(p, V ) → Gr(p, V )

φ 7→ vφw

and is a smooth submersion. This means that Dπ(φ) is surjective, and, hence, the equivalence

class π−1(vφw) is an embedded submanifold of St(p, V ); see [1, Prop. 3.4.4.].

123



    6 Page 10 of 25 Journal of Scientific Computing            (2024) 101:6 

In the following, we examine a useful connection of the Stiefel manifold and the Grass-

mann manifold. More precisely, we show that there is a one-to-one relation between the

tangent space of the Grassmann manifold and the so-called horizontal space, a subspace of

the tangent space of the Stiefel manifold. The tangent space Tφ St(p, V ) at φ ∈ St(p, V )

defined in (14) can be splitted with respect to the projection π and the metric g as

Tφ St(p, V ) = Vφ ⊕ Hφ , where

Vφ = Tφ π−1(vφw) =
{
φ Θ : Θ ∈ Sskew(p)

}
(24)

is the vertical space at φ and

Hφ = V⊥
φ =

{
x ∈ Tφ St(p, V ) : g(x, v) = 0 for all v ∈ Vφ

}

=
{

x ∈ Tφ St(p, V ) : Jφ, xKH = 0p
}

is the horizontal space at φ; see [47, Lem. 2]. The orthogonal projection of a tangent vector

η ∈ TφSt(p, V ) onto Hφ is given by

Ph
φ(η) = η − φ Jφ, ηKH . (25)

One can see that, moving on a curve in the Stiefel manifold St(p, V ) with direction in the

vertical space Vφ , we stay in the equivalence class vφw. The tangent space T
vφw

Gr(p, V )

of the Grassmann manifold Gr(p, V ) can then be identified with the horizontal space Hφ

in the sense that for any ψ ∈ T
vφw

Gr(p, V ), there exists a unique ψh
φ ∈ Hφ such that

Dπ(φ)[ψh
φ] = ψ . The unique element ψh

φ is called the horizontal lift of ψ at φ. This relation

allows us to introduce a metric on the Grassmann manifold Gr(p, V ), namely

gGr(ψ, ζ ) = g(ψh, ζ h), ψ, ζ ∈ T
vφw

Gr(p, V ), vφw ∈ Gr(p, V ),

where ψh
φ, ζ h

φ ∈ Hφ are the horizontal lifts of ψ and ζ at φ, respectively. Due to ψ h
φQ = ψh

φ Q
for all Q ∈ O(p), one can show that this metric does not depend on the choice of the

representative φ of the equivalence class vφw.

The connection of T
vφw

Gr(p, V ) and Hφ makes it possible to introduce optimization

methods on the Grassmann manifold, while still working on the tangent space of the corre-

sponding Stiefel manifold. Using the canonical projection π , the minimization problem (5)

on the Stiefel manifold St(p, V ) can be written as the minimization problem

min
vφw∈Gr(p,V )

F(vφw) (26)

on the Grassmann manifold Gr(p, V ), where the cost functional F: Gr(p, V )→R is induced

by E as E(φ) = F(π(φ)) and F(vφw) = E(π−1(vφw)). Note that this definition is justified by

the fact that E(φ) = E(φQ) for all Q ∈ O(p). The horizontal lift of the Riemannian gradient

grad F(vφw) ∈ T
vφw

Gr(p, V ) with respect to the metric gGr is given by

grad F(vφw)h
φ = grad E(φ) = Ph

φ

(
JAφ φ

)
= JAφ φ − φ Jφ,JAφ φKH . (27)

To obtain the horizontal lift of the Riemannian Hessian Hess F(vφw)[ψ], we proceed as before

but replace the projection Pφ by the orthogonal projection Ph
φ onto the horizontal space; see

Eq. (25). This leads to

(Hess F(vφw)[ψ ])h
φ = Ph

φ

(
D grad E(φ)[ψh

φ]
)

= Ph
φ

(
JAφ ψh

φ + JBφ ψh
φ − ψh

φJφ,JAφ φKH
)
. (28)
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Retractions on the Grassmann manifold are inherited from that on the Stiefel man-

ifold applied to the horizontal lift; see [1, Prop. 4.1.3]. For all vφw ∈ Gr(p, V ) and

ψ ∈ T
vφw

Gr(p, V ), we have

RGr,pol(vφw,ψ) = π
(
Rpol(φ + ψh

φ)
)
,

RGr,qR(vφw,ψ) = π
(
RqR(φ + ψh

φ)
)
.

Note that these retractions are independent of the chosen point φ, providing the same equiv-

alence class on Gr(p, V ).

Similar to the matrix case [1, 25], we can also derive an explicit expression for the Grass-
mann exponential Exp : T Gr(p, V ) → Gr(p, V ), which maps (vφw,ψ) ∈ T Gr(p, V ) to

the end point of the unique geodesic starting at vφw and going in the direction ψ . Let

ψh
φ = u6W T be a singular value decomposition of the horizontal lift ψh

φ of ψ , where

u ∈ St(p, V ), W ∈ O(p), and 6 ∈ Rp×p is diagonal with nonnegative diagonal elements.

Then the Grassmann exponential is given by

Exp(vφw,ψ) = π
(
φ W cos 6 + u sin 6

)
.

Using ψh
φ ∈ Hφ , one can verify that φ W cos 6 + u sin 6 ∈ St(p, V ). Therefore, it can be

considered as a representative of the resulting equivalence class.

Remark 2 For p = 1, the Stiefel manifold coincides with the Grassmann manifold and equals

the unit sphere

S =
{
φ ∈ Ṽ : ‖φ‖L2(�) = 1

}
.

Its tangent space is given by Tφ S = {η ∈ Ṽ : (η, φ)L2(�) = 0} and the orthogonal projection

onto this space takes the form Pφ(y) = y − (φ, y)L2(�)φ for y ∈ Ṽ . Furthermore, for

(φ, η) ∈ T S, the second-order retraction and the exponential mapping on S are given by

R(φ, η) = φ + η

‖φ + η‖L2(�)

,

Exp(φ, η) = cos
(
‖η‖L2(�)

)
φ + sin

(
‖η‖L2(�)

) η

‖η‖L2(�)

,

respectively.

4 Riemannian NewtonMethods

In this section, we present Riemannian Newton methods on the Stiefel manifold as well as

on the Grassmann manifold and discuss the inexact version of the latter.

Within the Riemannian Newton method on the Stiefel manifold St(p, V ), for given iterate

φk ∈ St(p, V ), we first compute the Newton search direction ηk ∈ Tφk St(p, V ) by solving

the Newton equation

Hess E(φk)[ηk] = − grad E(φk). (29)

The iterate is then updated by φk+1 = R(φk, ηk) for any retraction on St(p, V ). It should,

however, be noted that due to the non-uniqueness of the minimizer of (5) caused by the invari-

ance of E under orthogonal transformations, we cannot expect that Hess E(φk) is invertible

on Tφk St(p, V ). This is, indeed, vindicated by the following theorem.
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Theorem 2 Let φ ∈ St(p, V ) and let Vφ be the vertical space given in (24). Then the Rie-
mannian Hessian of the energy functional E from (3) in φ is non-invertible on Vφ , i.e.,(
ξ , Hess E(φ)[η]

)
H = 0 for all η, ξ ∈ Vφ .

Proof Let η, ξ ∈ Vφ be arbitrary. Then there exist the matrices Θη,Θξ ∈ Sskew(p) such that

η = φ Θη and ξ = φ Θξ . Using the definition of Hess E(φ) in (23) and the symmetry of the

matrix Jφ,JAφ φKH shown in Remark 1, we have

Hess E(φ)[η] = JAφ φ Θη+JBφ φ Θη−φ Θη Jφ,JAφ φKH −φ sym
(
Jφ,JAφ φKHΘη

)

− φ sym
(
Jφ,J Bφ φKH Θη

)
+ φ sym

(
ΘηJφ,JAφ φKH

)

= JAφ φ Θη−φ Jφ,JAφ φKH Θη+JBφ φ Θη−φ sym
(
Jφ,JBφ φKHΘη

)

and, hence,

(
ξ , Hess E(φ)[η]

)
H = tr

(
ΘT

ξ Jφ,JBφ φKH Θη − 2T
ξ sym

(
Jφ,JBφ φKH Θη

))
.

We now show that Jφ,JBφ φKH Θη = 0. With the skew-symmetric matrix Θη = [θi j ]p
i, j=1,

we first observe that

φ · (φ Θη) =
p∑

j=1

φ j

p∑

i=1

φiθi j =
p∑

i=1

φi

p∑

j=1

φ jθi j = −
p∑

i=1

φi

p∑

j=1

φ jθ j i = −φ · (φ Θη).

This implies φ · (φ Θη) = 0 and, hence, Jφ,JBφ φKH Θη = 0. As a result, we conclude that(
ξ , Hess E(φ)[η]

)
H = 0 for all η, ξ ∈ Vφ . ⊓⊔

It follows from Theorem 2 that if Eq. (29) is solvable, its solution is not unique. To overcome

this difficulty, we pass on to the Grassmann manifold Gr(p, V ). Given vφk w ∈ Gr(p, V ), the

Newton direction ψk ∈ T
vφk w

Gr(p, V ) is computed by solving the Newton equation

Hess F(vφk w)[ψk ] = − grad F(vφkw).

By applying the horizontal lift expressions (27) and (28), this equation leads to

Ph
φk

(
D grad E(φk)[(ψk)

h
φk

]
)

= − grad E(φk) (30)

with unknown (ψk)
h
φk

∈ Hφk
being the horizontal lift of ψk at φk . Note that this equation is

well-defined, since − grad E(φk) is an element of the horizontal space Hφk
.

For solving the Newton equation (30), we can employ any matrix-free iterative linear

solver which does not require the storage of the coefficient matrix explicitly but accesses it by

computing the matrix–vector product or—as in our case—by evaluating the linear operator

given in (28). The resulting Riemannian Newton method on the Grassmann manifold is

presented in Algorithm 1.

The Newton equation (30) can also be formulated as a saddle point problem. To this end,

we introduce the bilinear form

âφ(ψ,w) = 〈Aφ ψ,w〉 + 〈Bφ ψ,w〉 − (ψ Jφ,J Aφ φKH ,w)H .

Then, the equivalent problem to (30) reads: find (ψk)
h
φk

∈ V and a Lagrange multiplier

Mk ∈ Rp×p such that

âφk

(
(ψk)

h
φk

,w
)
+ tr

(
MT

k Jφk,wKH
)

= −aφk
(φk,w) for all w ∈ V , (31a)

Jφk , (ψk)
h
φk

KH = 0p. (31b)
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Algorithm 1 Riemannian Newton method on the Grassmann manifold

1: Input: initial guess φ0 ∈ St(p, V ), parameters δ, η ∈ (0, 1), σ ∈ (0, 1/2], ℓmax ∈ N

2: for k = 0, 1, 2 . . . do
3: Solve the Newton equation

Ph
φk

(
D grad E(φk )[(ψk )h

φk
]
)

= − grad E(φk )

for (ψk )h
φk

∈ Hφk
in an inexact manner by using an iterative solver.

If the condition

−
(

grad E(φk ), (ψk )h
φk

)
H ≥ η ‖(ψk )h

φk
‖2

H

cannot be attained within ℓmax steps, then set

(ψk )h
φk

= − grad E(φk).

4: Find the smallest ℓ ∈ N0 such that the Armijo condition

E
(
R(φk , δℓ(ψk)h

φk
)
)
− E

(
φk

)
≤ σ δℓ

(
grad E(φk ), (ψk)h

φk

)
H

is satisfied, where R(φk , δℓ(ψk )h
φk

) is a retraction on St(p, V ).

5: Set φk+1 = R
(
φk , δℓ(ψk)h

φk

)
.

6: Output: sequence of iterates {φk} with φk ∈ St(p, V )

The constraint (31b) implies that (ψk)
h
φk

∈ Hφk . Further note that any function w ∈ Hφk

satisfies Jφk ,wKH = 0p . Hence, for all w ∈ Hφk , Eq. (31a) reads

âφ

(
(ψk)

h
φk

,w
)

= −aφk
(φk,w) = −(grad E(φk),w)H ,

which is equivalent to the Newton equation (30).

One important property guaranteeing an isolated local minimum of the energy is that the

Hessian is positive at a stationary point. For a global minimizer of (5), denoted by φ∗, we

consider the following linear eigenvalue problem: seek φ ∈ Ṽ and λ ∈ R such that

ãφ∗(φ, v) = λ (φ, v)L2(�) for all v ∈ Ṽ . (32)

Then, due to (11), we know that the components of φ∗ = (φ∗,1, . . . , φ∗,p) satisfy Eq. (32)

together with the smallest p eigenvalues denoted by 0 < λ1 ≤ · · · ≤ λp . In the following,

we will assume that these eigenfunctions can be extended to a basis of Ṽ .

Assumption 3 (Basis and spectral gap) The eigenfunctions φ∗,1, φ∗,2, . . . ∈ Ṽ of the

eigenvalue problem (32) form an L2-orthonormal basis of Ṽ . The corresponding eigen-

values λ1 ≤ λ2 ≤ . . . are ordered by size with a spectral gap λp < λp+1.

Theorem 4 (Positive Hessian) Let φ∗ be a global minimal solution of (5) and let the cor-
responding eigenvalue problem (32) satisfy Assumption 3. Furthermore, assume that the
operator Bφ∗ fulfills (JBφ∗ψ

h
φ∗

,ψh
φ∗

)H ≥ 0 for all ψh
φ∗

∈ Hφ∗ . Then the Riemannian Hes-
sian of F at vφ∗w is positive, i.e.,

gGr
(

Hess F(vφ∗w)[ψ ],ψ
)

> 0

for all nonzero ψ ∈ T
vφ∗wGr(p, V ).
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Proof We extend the proof of [54, Th. 5.1], which considers the finite-dimensional case

for the simplified Kohn–Sham problem, to the infinite-dimensional case in a more general

setting. We know from (28) that the horizontal lift of the Riemannian Hessian of F at φ∗
takes the form

(Hess F(vφ∗w)[ψ])h
φ∗

= Ph
φ∗

(
JAφ∗ψ

h
φ∗

)
+ Ph

φ∗

(
JBφ∗ψ

h
φ∗

)
− Ph

φ∗

(
ψh

φ∗
Jφ∗,JAφ∗φ∗KH

)

= T1(ψ
h
φ∗

) + T2(ψ
h
φ∗

) + T3(ψ
h
φ∗

).

For the first term, we make the following considerations. Due to the orthogonality, each

component of ψh
φ∗

satisfies (φ∗,l , (ψ
h
φ∗

) j )L2(�) = 0 for l, j = 1, . . . , p. Hence, the j th

component of ψh
φ∗

takes the form ψ j = (ψh
φ∗

) j =
∑

l>p αl j φ∗,l for some coefficients αl j ∈
R and φ∗,l denoting the basis from Assumption 3. As a consequence, we get

(
Jφ∗,JAφ∗ψ

h
φ∗

KH
)

i j =
(
φ∗,i , (JAφ∗ψ

h
φ∗

) j
)

L2(�)
= ãφ∗(φ∗,i , ψ j )

=
∑

l>p

αl j ãφ∗(φ∗,i , φ∗,l) =
∑

l>p

αl j λi (φ∗,i , φ∗,l)L2(�) = 0

for all i , j = 1, . . . , p and, hence,

T1(ψ
h
φ∗

) = Ph
φ∗

(
JAφ∗ψ

h
φ∗

)
= JAφ∗ψ

h
φ∗

− φ∗Jφ∗,JAφ∗ψ
h
φ∗

KH = JAφ∗ψ
h
φ∗

.

For the second term, we get with the assumption on Bφ∗ that

g(T2(ψ
h
φ∗

),ψh
φ∗

) =
(
T2(ψ

h
φ∗

),ψh
φ∗

)
H

=
(
JBφ∗ψ

h
φ∗

− φ∗Jφ∗,JBφ∗ψ
h
φ∗

KH ,ψh
φ∗

)
H

=
(
JBφ∗ψ

h
φ∗

,ψh
φ∗

)
H − Jφ∗,JBφ∗ψ

h
φ∗

KT
H

(
φ∗,ψ

h
φ∗

)
H

=
(
JBφ∗ψ

h
φ∗

,ψh
φ∗

)
H ≥ 0.

Finally, by using (13), the third term takes the form

T3(ψ
h
φ∗

) = −Ph
φ∗

(
ψh

φ∗
Jφ∗,JAφ∗φ∗KH

)

= −ψh
φ∗

Jφ∗,JAφ∗φ∗KH + φ∗Jφ∗,ψ
h
φ∗

KH Jφ∗,JAφ∗φ∗KH

= −ψh
φ∗

3∗.

Let the columns of U ∈ O(p) form a basis of eigenvectors corresponding to the eigenvalues

λ1, . . . , λp of 3∗ and let ψh
φ∗

U = (ψ̃1, . . . , ψ̃p). Due to the assumed spectral gap, this yields

all together

gGr
(

Hess F(vφ∗w)[ψ],ψ
)

= g
(
(Hess F(vφ∗w)[ψ ])h

φ∗
,ψh

φ∗

)

= g
(
T1(ψ

h
φ∗

) + T2(ψ
h
φ∗

) + T3(ψ
h
φ∗

),ψh
φ∗

)

≥ tr JJAφ∗ψ
h
φ∗

,ψh
φ∗

KH − tr Jψh
φ∗

3∗,ψ
h
φ∗

KH

=
p∑

j=1

ãφ∗(ψ̃ j , ψ̃ j ) −
p∑

j=1

λ j (ψ̃ j , ψ̃ j )L2(�)

≥
p∑

j=1

(λp+1 − λ j ) (ψ̃ j , ψ̃ j )L2(�) > 0,
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which completes the proof. ⊓⊔

Remark 3 (Connection to the Lagrange–Newton method) The optimal solution of the con-

strained minimization problem (5) can also be determined by the Lagrange–Newton method.

Based on the first-order optimality conditions (12) with a symmetric Lagrange multiplier,

we aim to solve the nonlinear system of equations

f (φ,3) =




JAφ φ − φ 3

Jφ,φKH − Ip

3 − 3T


 =




0
0p

0p


 .

Computing the Jacobian of f , the Lagrange-Newton iteration is given as follows: for given

φk ∈ V and 3k ∈ R
p×p , solve the equations

JAφk ηk + J Bφk ηk − ηk3k − φk4k = −
(
JAφk φk − φk3k

)
, (33a)

Jφk, ηkKH + Jηk,φkKH = −
(
Jφk,φkKH − Ip

)
, (33b)

4k − 4T
k = −

(
3k − 3T

k

)
(33c)

for ηk ∈ V , 4k ∈ R
p×p and update φk+1 = φk +ηk , 3k+1 = 3k +4k . Note that φk+1 does

not necessarily belong to St(p, V ). Assuming φk ∈ St(p, V ) and 3k ∈ Ssym(p), however,

Eqs. (33b) and (33c) imply that ηk ∈ Tφk St(p, V ) and 4k ∈ Ssym(p), respectively. Resolving

Eq. (33a) for symmetric 4k , we find that

4k = sym
(
Jφk ,JAφk

ηkKH + Jφk,J Bφk
ηkKH − Jφk, ηkKH3k

)

+ Jφk ,JAφk φkKH − 3k .

Inserting this matrix into (33a) yields the Newton equation (29). This shows that the

Lagrange–Newton method with the modified update

φk+1 = R(φk, ηk), 3k+1 = Jφk+1,JAφk+1
φk+1KH

is equivalent to the Riemannian Newton method on the Stiefel manifold.

5 Examples and Numerical Experiments

This section is devoted to the numerical investigation of the Riemannian Newton methods.

To this end, we consider the Gross–Pitaevskii eigenvalue problem from Example 1 and the

Kohn–Sham model from Example 2.

5.1 Gross–Pitaevskii Eigenvalue Problem

The minimization of the Gross–Pitaevskii energy functional EGP in (6) leads to the following

nonlinear eigenvector problem: find φ ∈ Ṽ = H1
0 (�) with ‖φ‖L2(�) = 1 and λ ∈ R such

that

− 1φ + 2 ϑ φ + κ |φ|2φ = λφ (34)

for some space-dependent external potential ϑ ≥ 0 and an interaction constant κ > 0.

The latter means that the particle interactions are repulsive, i.e., we consider the so-called
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defocussing regime. In this case, we get the operators

〈Aφ v,w〉 =
∫

�

(∇v)T ∇w dx + 2

∫

�

ϑ vw dx + κ

∫

�

φ2vw dx, (35a)

〈Bφ v,w〉 = 2κ

∫

�

φ2vw dx (35b)

for v,w ∈ Ṽ . One can see that the bilinear form defined through (35a) corresponds to the

Laplacian with the L2-shift 2ϑ + κφ2. Assuming this shift to be constant and � = (0, 1)d

as the spatial domain, Assumption 3 is satisfied; see [50, Ch. 12]. Moreover, the nonlinear

operator from (35b) fulfills

(
JBφ ψ,ψ

)
L2(�)

=
〈
Bφ ψ,ψ

〉
= 2κ

∫

�

φ2 ψ2 dx ≥ 0,

such that Theorem 4 is applicable.

For the spatial discretization of the Gross–Pitaevskii problem (34), we use a biquadratic

finite element method on a Cartesian mesh of width h; see [16] for the corresponding error

analysis. The resulting discrete eigenvalue problem reads

Aϕ + 2Mϑϕ + κMϕ2ϕ = λ Mϕ, ϕT Mϕ = 1

with ϕ ∈ R
n , where n denotes the number of degrees of freedom. Here, A is the stiffness

matrix, M is the mass matrix, and Mϑ and Mϕ2 are the weighted mass matrices, respec-

tively, where ϕ2 should be understood as the elementwise product. Then the discrete version

of Jφ,JAφ φKH =
(
φ,JAφ φ

)
L2(�)

equals

λϕ = ϕT (A + 2Mϑ + κMϕ2) ϕ,

and the Newton equation takes the form

(I − MϕϕT )
(
(A + 2Mϑ + 3κ Mϕ2)ψ − λϕ Mψ

)

= −(I − MϕϕT )(A + 2Mϑ + κMϕ2) ϕ

with unknown ψ ∈ {ξ ∈ Rn : ξ T Mϕ = 0} = im(I − ϕϕTM).

We demonstrate the performance of the resulting Riemannian Newton method in compar-

ison with the SCF iteration combined with the optimal damping algorithm (ODA) proposed

in [23] and the energy-adaptive Riemannian gradient descent method (RGD) of [29] with a

non-monotone step size control as outlined in [8]. The numerical experiments are performed

on a sufficiently large bounded domain � = (−L, L)2 , L = 8, for two types of trapping

potentials. In Sect. 5.1.1, we consider a simple harmonic trap, whereas in Sect. 5.1.2, we add

an additional disorder potential. The interaction parameter κ as well as the spatial resolution h
will be specified separately for each case.

5.1.1 Ground State in a Harmonic Trap

For the first numerical experiment, we consider the harmonic trapping potential

ϑharm(x) = 1
2
‖x‖2 (36)
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Fig. 1 Ground state in the harmonic trap (potential in gray, properly rescaled) for κ = 10, 100, 1000 (from

left to right)
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Fig. 2 Convergence history of the residuals for the ground state in the harmonic trap for κ = 10, 100, 1000

(from left to right)

and the interaction parameters κ = 10, 100, 1000. The resulting ground states computed on

a Cartesian mesh of width h/(2 L) = 2−10 are depicted in Fig. 1.

To generate a joint and sufficiently accurate initial value for the three solvers of the dis-

cretized nonlinear eigenvector problem, we run the energy-adaptive RGD method starting

from the biquadratic finite element interpolation of the constant 1 (respecting the homoge-

neous Dirichlet boundary condition). We stopped this iteration once the residual fell below

the 10−2 tolerance and used the approximated ground state as the initial state to compare the

asymptotic behavior of the three different solvers. The corresponding convergence histories

are presented in Fig. 2 showing the evolution of the residuals during the iteration processes.

It can be observed that the Riemannian Newton method (with sparse direct solution of the

Newton equation using the Sherman–Morrison formula [48]) reaches the tolerance of 10−8 in

only three steps. While the performances of the SCF iteration and the energy-adaptive RGD

method abate with increasing κ , the Riemannian Newton scheme appears to be extremely

robust. We would like to emphasize that, although one Newton step is slightly more expensive

than one step of any other competing method, the overall costs are much smaller, especially

for increasing κ .

The convergence behavior of the Riemannian Newton scheme is also robust to the under-

lying mesh size h and, hence, independent of the dimension of the discretization space. This

is demonstrated in Fig. 3 with a fixed choice of κ = 1000. We consider a sequence of meshes

with h/(2L) = 2−1, . . . , 2−10 and use the same procedure as above to generate initial guesses

with residuals of order 10−2. The left graph shows the number of (outer) iterations of the

Riemannian Newton method to fall below the tolerance of 10−10 for each of these mesh

sizes. An increase in the number of iterations with smaller mesh size is not observed. In our

experience, this mesh independence of the Riemannian Newton optimization scheme is rep-
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Fig. 3 Computing the ground state in the harmonic trap for κ = 1000: iteration count of the Riemannian

Newton method to fall below the tolerance 10−10 (left) and the error in the minimal energy (right) versus

mesh size h. The dashed line indicates order h4

resentative for many other choices of potentials and interaction parameters. Note, however,

that this does not mean that the costs of a Newton step are independent of h. As for every

Laplace-type problem, methods such as multigrid need to be implemented in order to obtain

a mesh-independence also for the inner iteration. This holds for all competing methods in

the same way. For completeness, Fig. 3 also shows the corresponding errors in the minimum

energy approximation as a function of the mesh size, demonstrating the optimal fourth-order

convergence rate of the biquadratic finite element implementation [30].

5.1.2 Localized Ground State in a Disorder Potential

The second experiment considers the computationally more difficult case where the external

potential is the sum of the harmonic potential ϑharm defined in (36) and a potential ϑrand

reflecting a high degree of disorder. The disorder part ϑrand is chosen as a piecewise constant

function on the Cartesian mesh of width 2Lε, ε = 2−6, taking values 0 or ε−2 as depicted

in Fig. 4. For a potential in such a scaling regime, the low-energy eigenstates essentially

localize in terms of an exponential decay of their moduli relative to the small parameter ε.

For the linear case, i.e., for κ = 0, this has been analyzed in [4]. For growing κ , the ground

state consists of a growing number of localized peaks; see Fig. 4. Further details on the

phenomenon of localization in the Gross–Pitaevskii equation and the onset of delocalization

can be found in [6, 7]. As in the previous experiments, we use biquadratic finite elements

on a Cartesian mesh of width h/(2L) = 2−10. To illustrate the localization behavior that

occurs with the current parameter scaling for κ . 1, we consider the interaction parameters

κ = 0.1, 1, 10. The ground states for κ = 1, 10 are shown in Fig. 4. The ground state for

κ = 0.1 is hardly distinguishable from the one for κ = 1 and, therefore, it is not shown in

a separate figure.

Figure 5 displays the convergence history of the residuals for κ = 0.1, 1, 10. We employed

the same strategy as in Sect. 5.1.1 to generate suitable initial guesses with the residuals of

order 10−2 used for all methods. The results clearly indicate that the ground state computa-

tions with the disorder potential are already challenging for smaller values of κ . Particularly,

the energy-adaptive RGD method needs much larger iteration counts, which according to

[27], may be related to smaller spectral gaps between the first and second eigenvalue. The

Riemannian Newton method, on the other hand, still performs well and reaches the prescribed

tolerance 10−8 for the residual in only a few steps in all three examples. For comparison,

the SCF iteration converges very fast in the almost linear case but suffers from larger values
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Fig. 4 Piecewise constant disorder potential ϑrand (left, black elements refer to the value ε−2, white elements

refer to the value 0, ε = 2−6) and the corresponding ground states for κ = 1 (middle) and κ = 10 (right)
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Fig. 5 Convergence history of the residuals for the ground state in a disorder potential for κ = 0.1, 1, 10 (from

left to right)

of κ as the energy-adaptive RGD method. Here, again, the higher costs per Newton step are

compensated by far by the very small number of needed iteration steps.

5.2 Kohn–ShamModel

For the Kohn–Sham energy functional EKS introduced in (7), we have

〈Aφ v,w〉 =
∫

�

tr
(
(∇v)T ∇w

)
dx + 2

∫

�

ϑion v · w dx

+ 2

∫

�

( ∫

�

ρ(φ(y))

‖x − y‖ dy
)

v · w dx + 2

∫

�

µxc(ρ(φ)) v · w dx

with µxc(ρ) = d
dρ

(
ρ ǫxc(ρ)

)
. Moreover, the operator Bφ has the form

〈Bφ v,w〉 = 4

∫

�

(∫

�

φ · v
‖x − y‖ dy

)
φ · w dx + 4

∫

�

ζxc(ρ(φ))(φ · v) (φ · w) dx,

where ζxc(ρ) = d
dρ

µxc(ρ). The exchange-correlation function ǫxc(ρ) can additively be

decomposed as ǫxc(ρ) = ǫx(ρ) + ǫc(ρ), where the exchange component ǫx(ρ) has the

particular analytical expression ǫx(ρ) = − 3
4

(
3
π
ρ
)1/3

and the correlation component ǫc(ρ) is

usually unknown, but can be fitted by using quantum Monte-Carlo data [41]. For the numer-

ical experiments, we use the MATLAB toolbox KSSOLV [35, 51], in which the correlation
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component is implemented as

ǫc(ρ) =
{

a1 + a2 r(ρ) +
(
a3 + a4 r(ρ)

)
ln(r(ρ)), if r(ρ) < 1,(

1 + b2

√
r(ρ) + b3 r(ρ)

)
/b1, if r(ρ) ≥ 1,

where r(ρ) =
(

4π
3

ρ
)−1/3

is the Wigner-Seitz radius, and a j , b j ∈ R are fitted constants; see

[42, App. C].

For the spatial discretization, we employ the planewave discretization method as imple-

mented in KSSOLV. With n denoting the number of degrees of freedom, the matrix 8 ∈ C
n×p

contains the coefficients of the approximation of the wave function φ. Then the discretized

Kohn–Sham energy functional is given by

E(8) = 1

2
tr

(
8∗(L + 2Dion)8

)
+ 1

2
ρh(8)T L+ρh(8) + ρh(8)T ǫxc(ρh(8)),

where 8∗ denotes the complex conjugate transpose of 8, L ∈ C
n×n is the discrete Laplace

matrix, L+ ∈ Cn×n is its pseudoinverse, Dion ∈ Rn×n is the discretized ionic potential,

and ρh(8) = diag(88∗) ∈ R
n is the discretized electronic charge density. Note that the

matrix L is Hermitian and Dion is diagonal. In this setting, the minimization problem

min
8∈St(p,n)

E(8)

on the (compact) Stiefel manifold St(p, n) =
{
8 ∈ C

n×p : 8∗8 = Ip
}

leads to the

finite-dimensional nonlinear eigenvector problem

A(8)8 − 8 3 = 0,

8∗8 − Ip = 0,

where the discrete Kohn–Sham Hamiltonian is given by

A(8) = L + 2 Dion + 2 Diag
(
L+ρh(8) + µxc(ρh(8))

)
.

Further, the Riemannian gradient of E(8) becomes

grad E(8) = (I − 88∗)A(8)8 = A(8)8 − 8
(
8∗A(8)8

)
. (37)

In the Riemannian Newton method on the Stiefel manifold St(p, n), we need to solve the

equation

P8

(
A(8)9 + B(8,9) − 98∗A(8)8

)
= −(I − 88∗)A(8)8 (38)

for 9 belonging to the tangent space T8 St(p, n). Therein,

P8(Y ) = Y − 1
2

8
(
8∗Y + Y ∗8

)

is the orthogonal projector onto T8 St(p, n) and

B(8,9) = 2 Diag
(
(L+ + Diag(ζxc(ρh(8)))) diag(89∗ + 98∗)

)
8

is the discretization of Bφ . On the Grassmann manifold Gr(p, n) = St(p, n)/U(p) with the

unitary group U(p), the Newton equation takes the form

(I − 88∗)
(

A(8)9h
8 + B(8,9h

8) − 9h
88∗A(8)8

)
= −(I − 88∗)A(8)8 (39)

for 9h
8 ∈ H8 = {9 ∈ T8 St(p, n) : 8∗9 = 0}.

In our experiments, we compare the calculation of the ground state by using the SCF

iteration with the Anderson charge mixing scheme [51], the energy-adaptive RDG with
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non-monotone step size control [8], and the Riemannian Newton methods on the Stiefel

manifold (RNS) and on the Grassmann manifold (RNG). In all these methods, we choose

the same initial guess for the wave function by performing one SCF step with a randomly

generated starting point and stop the iterations once the Frobenius norm of the residual

R(8k ) = A(8k)8k − 8k3k with 3k = 8∗
k A(8k)8k is smaller than the tolerance 10−8.

Note that due to (37), ‖R(8k )‖F = ‖ grad E(8k)‖F , i.e., the norms of the residuals provide

the information on the size of the Riemannian gradients. In both Newton methods and the

energy-adaptive RGD method, we use the qR decomposition based retractions. The reference

minimal energy Emin is computed by the RNG method with the tolerance 10−10.

All algorithms are performed in an inexact manner, i.e., the occurring linear systems are

only solved up to a certain tolerance. In RNG, for instance, we follow Algorithm 1 using the

MATLAB built-in function minres as a linear system solver with the adaptive tolerance

min(1/k, 10−3‖ grad E(8k−1)‖F ) and the maximal number of inner iterations ℓmax = 15.

The remaining parameters are chosen as η = 10−8, δ = 0.5, and σ = 10−4. In RNS, we

proceed similarly, with the only difference that instead of (39) we solve the Newton equation

of the form (38). For solving the linear eigenvalue problems in SCF, we employ the KSSOLV

built-in LOBPCG algorithm for the pentacene model in Sect. 5.2.1 and the MATLAB built-in

function eigs for the graphene model in Sect. 5.2.2. Switching to another eigenvalue solver

is necessary due to the ill-conditioning in LOBPCG for the latter example. In both cases,

the tolerance for the inner iterations is set to be min(10−3, 10−3‖ grad E(8k−1)‖F ). For the

linear system solvers, we use the kinetic energy preconditioner, which provides, especially

for the energy-adaptive RGD method, better numerical results than the KSSOLV built-in

Teter–Payne–Allan preconditioner [49].

Finally, we would like to mention that similarly to the Gross–Pitaevskii example in

Sect. 5.1, the Riemannian Newton schemes for the Kohn–Sham model are again robust in

terms of the dimension of the discretization space used in KSSOLV. This means that the

number of Newton iterations needed to fall below a certain tolerance is not effected by finer

discretizations (as long as the number of inner iterations is sufficiently large).

5.2.1 Pentacene Molecule

In the first numerical experiment, we calculate the ground state for the pentacene molecule

C22H14 with p = 51 electron orbitals. A spatial planewave discretization on a 80× 55×160

sampling grid gives the discrete model of dimension n = 44791. In Fig. 6, we present the

convergence history of the residuals and the energy reduction during the iterations. One can

see that the RNS and RNG methods have very similar behavior and converge within 8 and

10 iterations, respectively. In comparison, the SCF method and the energy-adaptive RGD

method require 18 and 54 iterations to converge, respectively. In terms of computing time,

all methods perform quite similarly in this experiment. This can also be seen in Table 1,

which shows the values of the energy functional, the reached residuals, the number of (outer)

iterations, the total number of Hamiltonian evaluations, and the CPU time.

5.2.2 Graphene Lattice

As the second model, we consider a graphene lattice consisting of carbon atoms arranged in

9 hexagons with p = 67 electron orbitals. We use a 32× 55×160 sampling grid for the wave

function and get a discrete model of dimension n = 12279. Figure 7 presents the evolution of

the residuals and errors in the energy. We observe again that both Newton methods converge
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Fig. 6 Convergence history for the pentacene molecule: residuals (left) and energy reduction (right)
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Fig. 7 Convergence history for the graphene lattice: residuals (left) and energy reduction (right)

Table 1 Numerical results for the pentacene and the graphene models

Method Energy Residual # iter # Ham. eval. CPU time [s]

Pentacene molecule n = 44791, p = 51

RNS −1.3189 e + 2 3.2731 e − 9 10 208 1880.64

RNG −1.3189 e + 2 6.4308 e − 9 8 172 1572.17

SCF −1.3189 e + 2 7.4357 e − 9 18 276 1709.78

eaRGD −1.3189 e + 2 6.9843 e − 9 54 369 1739.08

Graphene lattice n = 12279, p = 67

RNS −1.7360 e + 2 5.5035 e − 9 8 657 568.69

RNG −1.7360 e + 2 1.0569 e − 9 10 693 741.55

SCF −1.7312 e + 2 4.8657 e − 4 100 69616 3422.67

eaRGD −1.7360 e + 2 9.4645 e − 9 64 914 991.22
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very fast compared to the energy-adaptive RGD method which needs 64 iterations to achieve

the tolerance 10−8 for the residual. In contrary, the SCF iteration has difficulties to converge.

Also other mixing strategies implemented in KSSOLV do not improve the convergence

property of SCF for the graphene model. This behaviour may be explained by a missing

spectral gap between the excited and non-excited states. A detailed comparison, including

the overall CPU time is part of Table 1. In this experiment (with the particular implementation

and used hardware), one can say that the computational complexity of the methods follows

the rule of thumb

1 step Newton ≈ 2 steps SCF ≈ 4 steps eaRGD.

Overall, this example clearly shows the supremacy of the Newton approach for more chal-

lenging examples.

6 Conclusion

In this paper, we have derived Riemannian Newton methods on the infinite-dimensional

Stiefel and Grassmann manifolds for Kohn–Sham type energy minimization problems. Start-

ing from an energy functional, we present a unified approach for applications in computational

physics (e.g., the Gross–Pitaevskii eigenvalue problem) and computational chemistry (e.g.,

the Kohn–Sham model). The remarkable gain in computational efficiency of the Riemannian

Newton methods compared to the so far more popular methods such as SCF and gradient

descent methods is demonstrated by a series of numerical experiments.
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