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Abstract. Based on the characterization of the polyconvex envelope of an isotropic function by
its signed singular value representation, we propose a simple algorithm for the numerical approxi-
mation of the polyconvex envelope. Instead of operating on the lifted space of d\times d matrices, the
algorithm requires only the computation of the convex envelope of a function on a d-dimensional
manifold, which is easily realized by standard algorithms. The significant speedup associated with
the dimensional reduction from d2 to d is demonstrated in a series of numerical experiments.
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1. Introduction. Many applications in the field of nonlinear elasticity aim at
finding a global minimizer of functionals of the form

I(u) =

\int 
\Omega 

W (\nabla u(x)) dx(1.1)

over a domain \Omega \subset \BbbR d in spatial dimension d \in \{ 2,3\} for a suitable weak class
of deformations u : \Omega \rightarrow \BbbR d. In many relevant cases, the density W : \BbbR d\times d \rightarrow 
\BbbR \infty := \BbbR \cup \{ \infty \} does not satisfy a suitable notion of convexity, and the existence
of minimizers cannot be guaranteed. In fact, the infimum may not be reached,
and nonconvexity, e.g., a multiwell structure of the energy density, may lead to
the emergence of increasingly fine microstructures within the minimizing sequences.
Moreover, the application of standard discretization methods for the minimization
of I typically leads to mesh-dependent results with oscillations in the discrete de-
formation gradient at the length scale of the mesh size. Therefore, alternative ap-
proaches are introduced for both mathematical analysis and numerical simulation
using relaxed formulations that focus on macroscopic features responsible for global
behavior by extracting the relevant information from the unresolved microstructures
[BCHH04, CD18, KNM+22, KNP+23, BKN+23].
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COMPUTATIONAL POLYCONVEXIFICATION OF ISOTROPIC FUNCTIONS 1403

The direct method in the calculus of variations links the limit behavior of a
minimizing sequence of I to the minimizer of the function when W is replaced by
its quasiconvex envelope W qc; see [Dac82, AF84] and [M\"ul99, Dac08, Rou20] for an
overview. Since the quasiconvex envelope W qc is rarely known explicitly or even
approximately, lower and upper bounds of W qc and their numerical approximation
are of great significance in computational nonlinear elasticity. While the rank-one
convex envelope provides an upper bound, a lower bound of W qc is provided by the
polyconvex envelope W pc. The notion of quasiconvexity requires growth conditions
for the existence of a minimizer, which reflect a rather unphysical behavior in the
compression regime (det(F ) \rightarrow 0). Such growth conditions are not necessary under
polyconvexity [Bal76, Bal77], and therefore polyconvexity is favorable for applications
in nonlinear elasticity [Bal02]. Overall, the accurate approximation of polyconvex
envelopes is of great importance for the practical realization of relaxation techniques.

In the context of elasticity, the main challenge for the efficient computation of
semiconvex envelopes like polyconvex ones arises from the high-dimensional nature of
the problem. Even the accurate numerical representation of the original density W
requires a mesh of a domain in d \times d-dimensional space. For d = 2, this is already
challenging but just about feasible with known linear programming algorithms for
approximating the polyconvex envelope [Bar05, EBG13, BEG15]. However, even these
efficient algorithms become practically infeasible for many relevant problems in d= 3
spatial dimensions.

In this work, we will therefore abandon the generality of these methods in fa-
vor of faster algorithms by restricting ourselves to the subclass of isotropic functions
W . These functions model a directionally independent local material response. The
relaxation of isotropic energy densities by polyconvexification is of fundamental engi-
neering interest since classical energies, such as the Saint Venant--Kirchhoff density,
are also non-polyconvex [Rao86]. More complex material models, for example, iso-
tropic damage [BO12], suffer even more from nonconvexity.

Isotropic functions can be identified with a function \Phi : \BbbR d \rightarrow \BbbR \infty by means of the
vector of signed singular values \nu (F ) \in \BbbR d of F , namely, W (F ) = \Phi (\nu (F )). In order
to utilize this dimension reduction, it becomes desirable to characterize also polycon-
vexity in terms of \Phi . Due to the high relevance of isotropic functions in nonlinear
elasticity, this task was already addressed during the introduction of polyconvexity
in [Bal77], and a sufficient condition for the polyconvexity in terms of the singular
values was derived there. However, it is a priori not necessary and thus not suited
for the computation of the polyconvex envelope. Sufficient and necessary conditions
are presented for d = 2 in [\v S97, Ros98, \v S99] and for d = \{ 2,3\} in [Mie05]. However,
these conditions are not directly accessible for the numerical polyconvexification due
to their implicit structure. For d= 2, a characterization of finite isotropic polyconvex
functions by means of merely a convex symmetric function was presented in [DM06].
Finally, for d \in \{ 2,3\} , such a characterization was achieved in [WP23], which can
handle also functions attaining infinity. This characterization corresponds to the def-
inition of polyconvexity restricted to the set of diagonal matrices and thus can be
considered optimal for isotropic functions. For functions arising in linear elasticity,
related results on dimension reduction are derived in [BKS19].

The characterization of polyconvexity of isotropic functions presented in [WP23]
leads to a simple algorithm for approximating their polyconvex envelope. Given a
mesh of a d-dimensional domain of signed singular values, the algorithm simply lifts
the mesh to a d-dimensional manifold embedded in three- and seven-dimensional
space for d = 2 and d = 3, respectively. The subsequent computation of the convex
envelope can be easily done with various algorithms, such as Quickhull [BDH96] or

© 2024 The Authors. Published by SIAM under the terms of the Creative Commons 4.0 license
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1404 NEUMEIER, PETER, PETERSEIM, AND WIEDEMANN

the ones based on linear programming mentioned above. The computational effort is
determined by the number of mesh points, which scales as in d-dimensional space. This
dimensional reduction from d\times d to d dimensions makes the novel algorithms feasible
for the approximation of the polyconvex envelopes even for engineering applications
in three dimensions.

The paper is organized as follows. In section 2, basic definitions, the analytical
theory of polyconvexity, as well as the characterization of polyconvexity in terms of
the signed singular values based on [WP23] are presented. Afterward, in section 3,
the numerical realization of the polyconvexification approach, i.e., discretization and
algorithmic treatment, is discussed. In section 4, a collection of numerical experiments
shows the feasibility of the algorithms even in three spatial dimensions. Moreover,
we numerically investigate polyconvexity properties of a parameter-dependent fam-
ily of exponentiated Hencky-logarithmic energy densities [NLG+15] beyond existing
mathematical results. We conclude with some remarks in section 5.

2. Polyconvexification of isotropic functions. Let d \in \{ 2,3\} , and let W :
\BbbR d\times d \rightarrow \BbbR \infty := \BbbR \cup \{ \infty \} be a function which maps d\times d matrices to real scalars or
infinity. We think of energy densities in functionals of the form (1.1). The possible
value infinity models practically unrealizable states of the deformation gradient. We
are interested in the polyconvex envelope W pc of the function W . The notion of
polyconvexity relies on the minors of matrices F \in \BbbR d\times d. Given the determinant
det(F ) and the adjoint adj(F ) of F , let

\scrM (F ) :=

\Biggl\{ 
(F,det(F )) if d= 2,

(F,adj(F ),det(F )) if d= 3
(2.1)

denote the minors of F . Since for d= 2 we identify \BbbR 2\times 2 \times \BbbR \sim = \BbbR 5 and for d= 3 we
identify \BbbR 3\times 3 \times \BbbR 3\times 3 \times \BbbR \sim =\BbbR 19, \scrM (F ) is considered as a vector of dimension Kd = 5
if d= 2 and Kd = 19 if d= 3. A function V : \BbbR d\times d \rightarrow \BbbR \infty is said to be polyconvex if
there exists a convex function G :\BbbR Kd \rightarrow \BbbR \infty such that for all F \in \BbbR d\times d,

V (F ) =G(\scrM (F )).(2.2)

The polyconvex envelope W pc :\BbbR d\times d \rightarrow \BbbR \infty of W , defined by the pointwise supremum

W pc(F ) := sup
\bigl\{ 
V (F ) | V :\BbbR d\times d \rightarrow \BbbR \infty polyconvex, V \leq W

\bigr\} 
,(2.3)

is the largest polyconvex function below W . It is equivalently characterized by

W pc(F ) = sup
\bigl\{ 
(G \circ \scrM )(F ) | G :\BbbR Kd \rightarrow \BbbR \infty convex,G \circ \scrM \leq W

\bigr\} 
.

For a given function W , we define the (not necessarily convex) function H :\BbbR Kd \rightarrow \BbbR \infty 
by

H(X) :=

\Biggl\{ 
W (F ) if X =\scrM (F ),

\infty if X /\in \scrM (\BbbR d\times d),
(2.4)

which is well-defined since \scrM is injective. The polyconvex envelope W pc of W is
equal to the convex envelope Hc of H, i.e.,

W pc(F ) =Hc(\scrM (F )).(2.5)

Note that for finite-valued functions, convexity implies continuity. This is not the
case for functions taking the value \infty . However, for the study of the functional

© 2024 The Authors. Published by SIAM under the terms of the Creative Commons 4.0 license
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COMPUTATIONAL POLYCONVEXIFICATION OF ISOTROPIC FUNCTIONS 1405

(1.1), it is important that the function G in the definition of polyconvexity (2.2) is
lower semicontinuous (lsc). In this sense, we call a function V lower semicontinuous
polyconvex (lsc-pc) if G in (2.2) is additionally lower semicontinuous. Note that
this definition extends the classical definition of polyconvexity. In the physically
relevant case that W (F ) = \infty for det(F ) \leq 0, W (F ) < \infty for det(F ) > 0, and
W (F )\rightarrow \infty for det(F )\rightarrow 0+, the function W is polyconvex if and only if W is lower
semicontinuous polyconvex. This holds also for the case that W (F ) is finite if and
only if det(F )\in [a, b]\subset \BbbR , which covers the case of isochoric functions, i.e., a= b= 1.
Accordingly, we define the lower semicontinuous polyconvex envelope W lsc-pc of W to
be the largest lower semicontinuous polyconvex function below W .

In this paper, we restrict ourselves to the study of polyconvexity of isotropic
functions. According to [Bal76], W :\BbbR d\times d \rightarrow \BbbR \infty is called objective if W (F ) =W (RF )
for all F \in \BbbR d\times d and for all R \in \scrS \scrO (d), where \scrS \scrO (d) denotes the special orthogonal
group of d \times d matrices. Furthermore, W is called isotropic if W is objective and
W (F ) = W (QFQT ) holds for all F and for all Q \in \scrO (d), the group of orthogonal
d\times d matrices. Therefore, W is isotropic if and only if

W (F ) =W (R1FR2)

for all F \in \BbbR d\times d and all R1,R2 \in \scrS \scrO (d), and we say that W is \scrS \scrO (d) \times \scrS \scrO (d)
invariant in this case.

The following lemma shows that the lower semicontinuous polyconvex envelope of
an isotropic function is again isotropic; i.e., the \scrS \scrO (d)\times \scrS \scrO (d) invariance is preserved
under polyconvexification. The similar case of \scrO (d)\times \scrO (d) invariance was considered
in [BDG94, Theorem 3.1], [Dac08].

Lemma 2.1. Let W :\BbbR d\times d \rightarrow \BbbR \infty be isotropic. Then W lsc-pc is isotropic.

Proof. Let V : \BbbR d\times d \rightarrow \BbbR \infty be lower semicontinuous polyconvex, not neces-
sarily isotropic, with V \leq W , that is, V (F ) = G(\scrM (F )) for G : \BbbR Kd \rightarrow \BbbR \infty 
with G convex and lower semicontinuous on \BbbR Kd . There exists an isotropic lower
semicontinuous polyconvex function Viso with V \leq Viso \leq W , namely, Viso(F ) :=
supR1,R2\in \scrS \scrO (d) VR1,R2(F ), where VR1,R2(F ) = V (R1FR2). By its definition, Viso is
isotropic. The lower semicontinuous polyconvexity of Viso can be observed by consid-
ering VR1,R2

(F ) =GR1,R2
(\scrM (F )) for

VR1,R2(F ) =

\Biggl\{ 
GR1,R2

(F,det(F )) if d= 2,

GR1,R2
(F,adj(F ),det(F )) if d= 3,

where GR1,R2(F, \delta ) = G(R1FR2, \delta ) for d = 2 and GR1,R2(F,A, \delta ) = G(R1FR2,
RT

2 AR
T
1 , \delta ) for d = 3, respectively. Here, the identities adj(R1FR2) = RT

2 adj(F )RT
1

and det(R1FR2) = det(F ) for F \in \BbbR d\times d and R1,R2 \in \scrS \scrO (d) have been used. It
follows that GR1,R2

is convex and lower semicontinuous, and hence Viso is lower semi-
continuous polyconvex. Using V \leq W and the isotropy of W , we observe

Viso(F ) = sup
R1,R2\in \scrS \scrO (d)

VR1,R2
(F )\leq sup

R1,R2\in \scrS \scrO (d)

W (R1FR2) =W (F )

for all F \in \BbbR d\times d, i.e., Viso \leq W . By its definition, Viso is isotropic and lower semi-
continuous polyconvex since convexity and lower semicontinuity are preserved for the
supremum.

© 2024 The Authors. Published by SIAM under the terms of the Creative Commons 4.0 license
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1406 NEUMEIER, PETER, PETERSEIM, AND WIEDEMANN

Consequently, it suffices to consider the supremum in (2.3) over isotropic lower
semicontinuous polyconvex functions Viso, i.e.,

W lsc-pc(F ) = sup\{ V (F ) | V lsc-pc, V \leq W\} 
= sup\{ Viso(F ) | Viso lsc-pc and isotropic, Viso \leq W\} .

This shows that W lsc-pc is isotropic.

Isotropic functions can be characterized by the signed singular values of their
arguments. Given F \in \BbbR d\times d with singular values 0 \leq \sigma 1(F ), . . . , \sigma d(F ) \in \BbbR d, the
signed singular values \nu 1(F ) = \varepsilon 1\sigma 1(F ), . . . , \nu d(F ) = \varepsilon d\sigma d(F ) \in \BbbR of F have the same
absolute values as the singular values of F , and the signs \varepsilon 1, . . . , \varepsilon d \in \{ 1,0, - 1\} satisfy

sign(\nu 1 \cdot . . . \cdot \nu d) = \varepsilon 1 \cdot . . . \cdot \varepsilon d = sign(det(F )).

Note that the signed singular values are only unique up to permutations in

\Pi d =
\bigl\{ 
P diag(\varepsilon )\in \scrO (d) | P \in Perm(d), \varepsilon \in \{  - 1,1\} d, \varepsilon 1 \cdot . . . \cdot \varepsilon d = 1

\bigr\} 
,

where diag(\bullet ) refers to the diagonal matrix with diagonal entries given by the vector
of its argument and Perm(d) \subset \{ 0,1\} d\times d denotes the set of permutation matrices.
By means of the signed singular values, we can identify the set of isotropic functions
W :\BbbR d\times d \rightarrow \BbbR with the set of \Pi d-invariant functions \Phi :\BbbR d \rightarrow \BbbR \infty , i.e., \Phi (\^\nu ) =\Phi (S\^\nu )
for all \^\nu \in \BbbR d and all S \in \Pi d. The identification is given by

W (F ) =\Phi (\nu (F ))(2.6)

for all F \in \BbbR d\times d and, vice versa,

\Phi (\^\nu ) =W (diag(\^\nu ))(2.7)

for all \^\nu \in \BbbR d.

Remark 2.2. Given this identification, we say that a \Pi d-invariant function \Phi :
\BbbR d \rightarrow \BbbR \infty is singular value polyconvex if the corresponding W defined by (2.6) is
polyconvex. Accordingly, a \Pi d-invariant function \Phi is called lower semicontinuous
singular value polyconvex (lsc-svpc) if W is lower semicontinuous polyconvex. We
define the lower semicontinuous singular value polyconvex envelope \Phi lsc-svpc : \BbbR d \rightarrow 
\BbbR \infty of \Phi by

\Phi lsc-svpc(\^\nu ) := sup\{ \Psi (\^\nu ) | \Psi lsc-svpc,\Psi \leq \Phi \} .

This definition is justified by the natural identification of the polyconvex envelopes of
an isotropic function W :\BbbR d\times d \rightarrow \BbbR \infty and the unique \Pi d-invariant function \Phi :\BbbR d \rightarrow 
\BbbR \infty that satisfies (2.6) or, equivalently, (2.7). Then W lsc-pc can be identified with
\Phi lsc-svpc; i.e.,

W lsc-pc(F ) =\Phi lsc-svpc(\nu (F )) and \Phi lsc-svpc(\^\nu ) =W lsc-pc(diag(\^\nu ))

hold for all F \in \BbbR d\times d and for all \^\nu \in \BbbR d.

In analogy to the original definition of polyconvexity based on the minors \scrM in
(2.1), we define a lifting of the arguments to a higher-dimensional space. For d\in \{ 2,3\} ,

© 2024 The Authors. Published by SIAM under the terms of the Creative Commons 4.0 license
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COMPUTATIONAL POLYCONVEXIFICATION OF ISOTROPIC FUNCTIONS 1407

we define kd := 2d  - 1, that is, kd = 3 if d = 2 and kd = 7 if d = 3, and the mapping
m :\BbbR d \rightarrow \BbbR kd by

m(\^\nu ) =

\Biggl\{ 
(\^\nu 1, \^\nu 2, \^\nu 1\^\nu 2) if d= 2,

(\^\nu 1, \^\nu 2, \^\nu 3, \^\nu 2\^\nu 3, \^\nu 3\^\nu 1, \^\nu 1\^\nu 2, \^\nu 1\^\nu 2\^\nu 3) if d= 3.

We will refer to m(\^\nu ) as the vector of minors of \^\nu \in \BbbR d. According to [WP23], the
lower semicontinuous polyconvexity of a isotropic function W can be characterized
by the existence of a convex function acting on the ambient space \BbbR kd of the image
md = \{ m(\^\nu ) | \^\nu \in \BbbR d\} of the lifting m.

Theorem 2.3 ([WP23, Theorem 1]). Let d \in \{ 2,3\} . An isotropic function W
is lower semicontinuous polyconvex if and only if there exists a convex and lower
semicontinuous function g : \BbbR kd \rightarrow \BbbR \infty satisfying the invariance g(m(\^\nu )) = g(m(S\^\nu ))
for all S \in \Pi d and all \^\nu \in \BbbR d such that for all F , it holds that

W (F ) = g(m(\nu (F ))).(2.8)

In other words, the function W is lower semicontinuous singular value polyconvex
if and only if \Phi defined by (2.7) is of the form \Phi = g \circ m with g convex and lower
semicontinuous.

Proposition 2.4. Let d \in \{ 2,3\} . Let W : \BbbR d\times d \rightarrow \BbbR \infty be isotropic. Define the
mapping h :\BbbR kd \rightarrow \BbbR \infty by

x \mapsto \rightarrow 

\Biggl\{ 
W (diag(\^\nu )) if x= m(\^\nu ),
\infty else,

and denote by hlsc-c its lower semicontinuous convex envelope. Then

W lsc-pc(F ) = hlsc-c(m(\nu (F ))).

Note that m is injective, and thus the function h is well-posed. Before we state the
proof of Proposition 2.4, we want to stress the relevance of the result in the context
of the \Pi d-invariant function \Phi , linked to W by (2.6) and (2.7).

Corollary 2.5. Let \Phi :\BbbR d \rightarrow \BbbR \infty be \Pi d-invariant. The mapping h :\BbbR kd \rightarrow \BbbR \infty 
of Proposition 2.4 can equivalently be described by

x \mapsto \rightarrow 

\Biggl\{ 
\Phi (\^\nu ) if x= m(\^\nu ),
\infty else.

(2.9)

Then the ployconvex envelope of \Phi can be described by

\Phi lsc-svpc = hlsc-c \circ m.

Indeed, this formulation is advantageous in the numerical treatment of the prob-
lem since it is formulated for the space of signed singular values in \BbbR d, the domain
of \Phi , instead of \BbbR d\times d, the domain of W , and hence reduces dimensionality in the
representative grid.

Proof of Proposition 2.4. By means of Theorem 2.3, we obtain

W lsc-pc(F ) = sup\{ V (F ) | V lsc-pc, V \leq W\} 

= sup

\biggl\{ 
gsym(m(\nu (F )))

\bigm| \bigm| \bigm| \bigm| gsym lsc-c, gsym \leq h,
\forall S \in \Pi d : gsym \circ m = gsym \circ m \circ S

\biggr\} 
.

© 2024 The Authors. Published by SIAM under the terms of the Creative Commons 4.0 license
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1408 NEUMEIER, PETER, PETERSEIM, AND WIEDEMANN

Actually, the symmetry assumption on the right-hand side is redundant due to the
symmetry of h. For any lower semicontinuous and convex function g \leq h, define the
function gsym :\BbbR kd \rightarrow \BbbR \infty with gsym \circ m = gsym \circ m \circ S for all S \in \Pi d by

gsym(x) := max
S\in \Pi d

\Biggl\{ 
g(S(x1, x2)

\top , x3) if d= 2,

g(S(x1, x2, x3)
\top , S(x4, x5, x6)

\top , x7) if d= 3.

By construction, gsym is lower semicontinuous and convex. Moreover, the \Pi d-invariance
of h \circ m shows that for any \^\nu \in \BbbR d,

gsym(m(\^\nu )) = g(m(S\^\nu \^\nu ))\leq h(m(S\^\nu \^\nu )) = h(m(\^\nu ))

holds with S\^\nu = argmaxS\in \Pi d
g(S\^\nu ). It follows that g\leq gsym \leq h and, all together, the

claimed assertion holds that

W lsc-pc(F ) = sup\{ g(m(\nu (F ))) | g lsc-c, g\leq h\} = hlsc-c(m(\nu (F ))).

3. Computational signed singular value polyconvexification. The poly-
convexification of a general function W acting on d \times d-matrices via the definition
(2.5) requires, in the absence of structural properties such as isotropy, the computation
of the convex envelope of a scalar function H acting essentially on a d2-dimensional
manifold in five- and 19-dimensional space for d = 2 and d = 3, respectively. So the
suitable representation of W on any computational mesh already suffers severely from
the high dimension, the actual computational convexification even more, no matter
which algorithm is used.

This often prohibitively high computational cost can be reduced considerably un-
der the structural assumption of isotropy. In this case, Corollary 2.5 shows that it
suffices to compute the lower semicontinuous singular value polyconvex envelope of
a \Pi d-invariant function \Phi acting on the signed singular values. This can be done by
computing the convex envelope hc of the function h given in (2.9). The polyconvexi-
fication of an isotropic function of dimension d thus requires only the convexification
of h acting essentially on a d-dimensional manifold in three- and seven-dimensional
space for d= 2 and d= 3, respectively. This drastic reduction in dimensionality makes
the polyconvexification problem feasible even for d= 3 in many cases.

3.1. Sketch of the algorithm. Let W :\BbbR d\times d \rightarrow \BbbR \infty be isotropic, let \Phi : \BbbR d \rightarrow 
\BbbR \infty be the corresponding \Pi d-invariant function satisfying conditions (2.6)--(2.7), and
let \^F \in \BbbR d\times d have signed singular values \^\nu = \nu ( \^F ) \in \BbbR d. This section presents an
abstract algorithm for approximating the lower semicontinuous polyconvex envelope
\Phi lsc-pc evaluated at the point \^\nu , thus providing an approximation of the lower semi-
continuous polyconvex envelope W lsc-pc in \^F via W lsc-pc( \^F ) = \Phi lsc-svpc(\^\nu ). Since
our algorithmic realization already ensures the lower semicontinuity, we abuse the
notation by identifying \Phi pc with \Phi lsc-svpc and W pc with W lsc-pc in the following.

As with any practical algorithm for computing (semi)convex envelopes, we assume
that the set of non-polyconvexity of \Phi , i.e., the support of \Phi  - \Phi pc, is bounded.
Without loss of generality, we assume that

supp(\Phi  - \Phi pc)\subset [ - r, r]d =:B(r)

for some bounding box B(r) with radius r > 0. The bounding box is discretized
by some grid. Although more general choices are possible, we restrict ourselves to
equidistant lattices of the form

© 2024 The Authors. Published by SIAM under the terms of the Creative Commons 4.0 license
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COMPUTATIONAL POLYCONVEXIFICATION OF ISOTROPIC FUNCTIONS 1409

Algorithm 3.1 Signed singular value polyconvexification.
Input: \Phi , \^\nu , \delta , r
1: \Sigma \delta := \delta \BbbZ d \cap B(r) (generate lattice in bounding box)
2: X\delta := m(\Sigma \delta ), h\delta := \Phi (\Sigma \delta ) (evaluate minors and function)
3: hc

\delta = convexify([X\delta , h\delta ]) (approximate convex envelope of h)
4: \Phi pc

\delta (\^\nu ) = interpolate(hc
\delta ,m(\^\nu )) (evaluate approx. polyconvex envelope at \^\nu )

Output: \Phi pc
\delta (\^\nu )

\Sigma \delta = \delta \BbbZ d \cap B(r)

with lattice size \delta > 0. By N\delta := (2\lfloor r\delta  - 1\rfloor +1)d, we denote the total number of lattice
points.

Given the function \Phi ; the point \^\nu , at which the polyconvex envelope is to be
approximated; and the discretization parameters \delta and r, the signed singular value
polyconvexification outlined in Algorithm 3.1 consists of four main steps.

Step 1 of Algorithm 3.1 represents the generation of the lattice \Sigma \delta introduced
above. In an actual implementation, \Sigma \delta can be represented by an N\delta \times d matrix,
where the rows contain the coordinates of the lattice points and induce a natural
enumeration of the lattice points.

Step 2 of Algorithm 3.1 lifts the N\delta lattice points \Sigma \delta to the points X\delta := m(\Sigma \delta )
on the manifold md. For d = 2 and specific choices of r and \delta , the resulting points
are visualized in Figure 3.1. The lifted points form an N\delta \times kd matrix in the imple-
mentation. In addition, the function \Phi needs to be evaluated in the lattice points \Sigma \delta ,
yielding h\delta = \Phi (\Sigma \delta ), an N\delta -dimensional row vector in an implementation. At this
point, possible infinite values of \Phi could (and should in practice) be eliminated from
h\delta as well as the corresponding points/rows from X\delta . They do not contribute to the
convex envelope.

Step 3 of Algorithm 3.1 is the computation of the convex envelope of the points
(h \circ m)(\Sigma \delta ) representing the graph of h \circ m. Computationally, this can be done in
several ways. The most well-known algorithm is probably the Quickhull algorithm
[BDH96] originating from the field of computational geometry. This algorithm will
be outlined in more detail in subsection 3.2 below. Alternatives for computing convex
envelopes arising from other fields of mathematics include the computation of the
convex envelope by its reformulation as an obstacle problem as done in [Obe07].
Suitable schemes for the resulting nonlinear partial differential equations can be used
to approximate the convex envelope. Similarly, the convex envelope of a function h
can be computed via a double Legendre--Fenchel conjugation due to the relation

hlsc-c = h\ast \ast .

Algorithmic realizations of the dual Legendre--Fenchel conjugation of a discrete func-
tion h\delta have been presented, for example, in [Luc96, Luc97, CEV15]. Such approaches
can benefit from parallelization, but the choice of the dual lattice is often tricky. In-
stead of approximating the full envelope in the bounding box, there are direct charac-
terizations of its evaluation at \^\nu in terms of a linear program, as originally proposed
by Bartels in the context of polyconvexity of general energy densities in [Bar05]. This
variant will be discussed in more detail in subsection 3.3.

In Step 4, depending on the choice of the method convexify and its specific out-
put representation, the approximate convex envelope of h at the target value \^\nu must
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1410 NEUMEIER, PETER, PETERSEIM, AND WIEDEMANN

Fig. 3.1. Discretization of signed singular values: manifold of minors m (colored surface, both),
lifted lattice points X\delta = m(\Sigma \delta ) (\bullet , left), supporting points of the polyconvex envelope X\mathrm{c}

\delta (\bullet , right),
and simplicial mesh (\scrT \delta ,X\mathrm{c}

\delta ) restricted area of non-polyconvexity (right) for the example of subsection
4.1. A sample point \^\nu is highlighted in both figures in red. The right figure also highlights the
tetrahedron of the mesh that contains \^\nu and thus forms the basis for the interpolatory evaluation of
the approximate polyconvex envelope in \^\nu .

be evaluated to obtain the desired approximation of \Phi pc(\^\nu ). The values hc
\delta typically

represent a continuous piecewise affine function on the convex envelope, which can be
represented by a simplicial mesh as illustrated in Figure 3.1. The desired approxima-
tion of \Phi pc(\^\nu ) can be realized by evaluating this piecewise affine function, which is
achieved by the function interpolate in the algorithm. The practical implementation
is discussed below along with the two convexification methods.

The quality of the approximation of the polyconvex envelope by Algorithm 3.1
depends on the lattice size \delta . It is almost independent of the choice of convexify,
whose error tolerances can typically be controlled reliably and accurately. The depen-
dence of the error arising from the lattice discretization has already been quantified
in [Bar05]. In our parameter setting, the original error estimate

0\leq W pc
\delta ,r(F ) - W pc(F )\leq 2 c\scrI \delta 

1+\alpha | W | C1,\alpha (Br\prime (0))
(3.1)

of [Bar15, Theorem 9.10] with some interpolation constant c\scrI > 0 can be rewritten in
the isotropic setting as

0\leq \Phi pc
\delta ,r(\^\nu ) - \Phi pc(\^\nu )\leq 2 c\scrI \delta 

1+\alpha | \Phi | C1,\alpha (Br\prime (0))
.(3.2)

3.2. Convexification by Quickhull. The method convexify in step 3 of
Algorithm 3.1 computes the convex envelope of the rows of the N\delta \times (kd + 1)-matrix
p= [X\delta ,\Phi (\Sigma \delta )]. This computation can be translated into the geometrical framework
and identified with the computation of the convex hull of the corresponding point set
in \BbbR kd+1. This issue can be addressed by a computational geometry approach; to
this end, one can use the Quickhull algorithm [BDH96]. For point sets in dimension
higher than three as in our case, it is also the most efficient one known. The algo-
rithm follows a divide-and-conquer approach and is of complexity \scrO (M\lfloor n/2\rfloor ), where
M denotes the number of input points and n their dimension [Sei81, Cha93]. This

translates to a worst-case complexity of \scrO (N
\lfloor (kd+1)/2\rfloor 
\delta ) in the present application.

The typical output representation of Quickhull is a simplicial mesh \scrT c
\delta of the

kd-dimensional convex hull in a kd + 1-dimensional space with vertices given by the
subset of the input points. This simplicial representation may not be unique unless the
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COMPUTATIONAL POLYCONVEXIFICATION OF ISOTROPIC FUNCTIONS 1411

vertices are in general position. However, this possible nonuniqueness in the output
does not affect the convex hull. Any simplicial representation of the lower hull is
perfectly fine for our purposes. Another technical problem, which is associated with
this computational geometry approach, is that it does not treat the point set as the
graph of a function; i.e., it returns the full convex hull of the point cloud rather than
the convex envelope, which corresponds to the function. However, the convex envelope
of the function can be easily extracted from the hull by computing the outer normals
of the facets (which are often provided by Quickhull implementations anyway). If
the (kd+1)st component of the normal is strictly negative, the corresponding facet is
part of the envelope of the function; otherwise, it needs to be removed from the mesh.

The simplicial mesh \scrT c
\delta usually encodes the convex hull as a surface consisting

of facets (kd-simplices) by providing for each facet its kd + 1 vertices as row indices of
the list of supporting vertices [Xc

\delta , h
c
\delta ]. The restriction of this mesh representation of

the lower convex hull to the kd-dimensional space is a simplicial volume mesh (\scrT c
\delta ,X

c
\delta )

of the convex hull of the lifted lattice points Xc
\delta \subset md, as illustrated in Figure 3.1.

Thus, the values hc
\delta represent a continuous piecewise linear function on this mesh of

conv(Xc
\delta ). In step 4 of the algorithm, the evaluation of this piecewise affine function

by interpolate can be realized as follows. A suitable search algorithm returns a
simplex conv\{ x1, . . . , xkd

\} \in \scrT c
\delta that contains m(\^\nu ) (the highlighted simplex in Figure

3.1). It remains to compute the barycentric coordinates \xi 1, . . . , \xi kd
\geq 0 of m(\^\nu ) within

this simplex, which satisfy

m(\^\nu ) =
kd\sum 
i=1

\xi ixi, \xi 1 + . . .+ \xi kd
= 1.(3.3)

Then the desired approximation of \Phi pc(\^\nu ) is given by

\Phi pc
\delta (\^\nu ) =

kd\sum 
i=1

\xi i(h
c
\delta )i.

In the case that \Phi attains \infty and some grid points are removed from the discretization,
\^\nu is not necessarily contained in a simplex of \scrT \delta . This corresponds to the fact that
\Phi pc

\delta (\^\nu ) =\infty , and this aspect has to be taken into account in the evaluation.
It is clear that the approximate polyconvex envelope can be evaluated for multiple

arguments by repeated calls of the interpolation procedure but without another call
to Quickhull. The feasibility of the resulting practical algorithm is demonstrated in
the numerical experiments of subsection 4.1.

3.3. Convexification by linear programming. The computational geometry
approach above aims for the convex envelope in the full bounding box. Often, we are
only interested in the evaluation of an approximated envelope in a small number of
points. In this case, it is useful to use the pointwise characterization of \Phi pc and hc at
\^\nu and \^x= m(\^\nu ), respectively, which is given by the optimization problem

\Phi pc(\^\nu ) = hc(\^x) = inf

\Biggl\{ 
kd+1\sum 
i=1

\xi ih(xi)

\bigm| \bigm| \bigm| \bigm| \xi i \in [0,1], xi \in \BbbR kd ,

kd+1\sum 
i=1

\xi i = 1,

kd+1\sum 
i=1

\xi ixi = \^x

\Biggr\} 
.

(3.4)

The formula for the convex envelope of h can be found in [Dac08, Theorem 2.35],
while the reformulation for the polyconvex envelope for not necessarily isotropic W

© 2024 The Authors. Published by SIAM under the terms of the Creative Commons 4.0 license
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1412 NEUMEIER, PETER, PETERSEIM, AND WIEDEMANN

was derived in [Bar05]. After suitable discretization of \BbbR kd , e.g., by the lifted lattice
m(\Sigma \delta ) = X\delta = \{ xi\} N\delta 

i=1, this nonlinear optimization problem turns into the following
linear program:

\Phi pc
\delta (\^\nu ) = hc

\delta (\^x) =min

\Biggl\{ 
N\delta \sum 
i=1

\xi i h(xi)

\bigm| \bigm| \bigm| \bigm| \xi i \geq 0,

N\delta \sum 
i=1

\xi i = 1,

N\delta \sum 
i=1

\xi ixi = \^x

\Biggr\} 
.(3.5)

Possible infinite values of h(xi) = h(m(\nu i)) =\Phi (\nu i) should be avoided by removing the
corresponding vertices from the lattice as discussed earlier. Rather than first com-
puting the full convex envelope and then searching for a facet that contains \^x= m(\^\nu )
as in Figure 3.1, this approach directly computes that facet. In exact arithmetic,
there exists a minimizer \xi with at most kd + 1 nonzero entries that represents the
barycentric coordinates of \^x with respect to the vertices of the kd-simplex. Up to
the possible nonuniqueness of the kd + 1 indices, which corresponds to nonzero en-
tries, and the simplicial mesh representation of the convex envelope, these vertices
xi and the corresponding nonzero coefficients \xi i coincide with those of (3.3). The
linear program (3.5) can be solved fairly efficiently by standard algorithms for linear
programming available in various software libraries. In [Bar05], an active set strategy
along with multilevel optimization and adaptive techniques were suggested to improve
the runtime in the setting of general nonisotropic functions further. We will use the
algorithm along with the MATLAB function for linear programming in the numerical
experiments of section 4.

4. Numerical experiments. In this section, we illustrate the performance of
the presented singular value polyconvexification algorithm with a number of numerical
examples. Due to the requirement of isotropy, we restrict ourselves to functions that
satisfy this condition. In our experiments, we use Algorithm 3.1 with both Quickhull

and the linear programming approach for convexification as discussed in subsections
3.2 and 3.3, respectively. Further, we apply both approaches also for the complete
matrix case by convexifying (2.4) in order to investigate the computational speedup
resulting from the dimension reduction.

A basic MATLAB [Mat22] implementation of the two variants of Algorithm 3.1
and their application to the examples of subsections 4.1 and 4.2 is available as sup-
plementary material (supplCodeCompPolyOfIsoFunct.zip [local/web 2.50KB]). We
use the MATLAB internal implementation of the Quickhull algorithm as well as the
Interior-Point-Legacy method for solving the linear program (3.5) using linprog.
The MATLAB implementation with application to the benchmark examples can also
be found at https://github.com/TmNmr/SVPC.

4.1. Kohn--Strang--Dolzmann example. The following example was studied
in [KS86a, KS86b], subsequently modified to achieve continuity in [Dol99, DW00],
and further studied in [Bar05]. We consider the function W :\BbbR 2\times 2 \rightarrow \BbbR , defined as

W (F ) :=

\Biggl\{ 
1 + | F | 2 if | F | \geq 

\surd 
2 - 1,

2
\surd 
2 | F | if | F | \leq 

\surd 
2 - 1,

where | F | := (
\sum d

i,j=1F
2
ij)

1/2 denotes the Frobenius norm of F . The polyconvex hull
of W is explicitly known and reads

W pc(F ) =

\Biggl\{ 
1 + | F | 2 if \varrho \geq 1,

2 (\varrho (F ) - | det(F )| ) if \varrho \leq 1,
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COMPUTATIONAL POLYCONVEXIFICATION OF ISOTROPIC FUNCTIONS 1413

(a) Surface plots of \Phi (upper) and \Phi \mathrm{p}\mathrm{c}

(lower), computed polyconvex hull \Phi \mathrm{p}\mathrm{c}
\delta 

shown as a lattice with black bullets.

(b) \Phi (solid black) and \Phi \mathrm{p}\mathrm{c} (dotted red) vs.
\nu 1 for \nu 2 = 0, computed polyconvex hull \Phi \mathrm{p}\mathrm{c}

\delta 

shown as a 1d lattice with black bullets.

Fig. 4.1. Illustration of function \Phi from (4.1), its polyconvex hull \Phi \mathrm{p}\mathrm{c} from (4.2), and computed
polyconvex hull \Phi \mathrm{p}\mathrm{c}

\delta using Quickhull and discretization parameters r = 1.05, \delta = 0.13125, using

N\delta = 172 lattice points.

where \varrho (F ) :=
\sqrt{} 

| F | 2 + 2 | detF | . Note thatW pc \not =W c in this example. The functions
W and W pc are isotropic, and, rewritten in terms of the signed singular values, they
reduce to \Phi ,\Phi pc :\BbbR 2 \rightarrow \BbbR with

\Phi (\^\nu ) :=

\Biggl\{ 
1 + \nu 21 + \nu 22 if

\sqrt{} 
\nu 21 + \nu 22 \geq 

\surd 
2 - 1,

2
\surd 
2
\sqrt{} 
\nu 21 + \nu 22 if

\sqrt{} 
\nu 21 + \nu 22 \leq 

\surd 
2 - 1

(4.1)

and

\Phi pc(\^\nu ) =

\Biggl\{ 
1 + \nu 21 + \nu 22 if \varrho \geq 1,

2 (| \nu 1| + | \nu 2|  - | \nu 1 \nu 2| ) if \varrho \leq 1
(4.2)

with \varrho (\^\nu ) = | \nu 1| + | \nu 2| . Figure 4.1 shows the function \Phi , its polyconvex envelope \Phi pc,
and the computed approximation \Phi pc

\delta resulting from Algorithm 3.1 with Quickhull

as outlined in subsection 3.2. Note that Figure 4.1(a) still shows nonconvexity of
\Phi pc

\delta along the diagonal \nu 1 = \nu 2, which is in line with the nonconvexity of \Phi pc. In
Figure 4.2, we compare this variant of the algorithm (referred to as svpc QH) with
the variant based on linear programming (svpc LP) described in subsection 3.3. For
reference, we also show the results for the corresponding algorithms for the polyconvex
hull W without exploiting isotropy. As a linear programming variant of the polycon-
vexification of W , we use the adaptive algorithm of [Bar05] and its implementation
presented in [Bar15] (denoted pc [Bar05]). We also implemented the direct convexifi-
cation of W using Quickhull, which convexifies H in (2.5) (pc QH). All simulations
were performed on a state-of-the-art laptop computer.

The left graph in Figure 4.2 shows absolute errors in evaluating the polyconvex
hull at the point

\^F =

\biggl[ 
0.2 0.1
0.1 0.3

\biggr] 
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1414 NEUMEIER, PETER, PETERSEIM, AND WIEDEMANN

10 - 3 10 - 2 10 - 1 100

10 - 3

10 - 5

10 - 7

meshsize \delta 

| W
\mathrm{p}
\mathrm{c}
(
\^ F
)
 - 
W

\mathrm{p}
\mathrm{c}

\delta 
(
\^ F
)| 

pc QH svpc QH svpc LP pc [Bar05] c \delta \{ 1,2\} c \delta \{  - 2, - 4\} 

10 - 3 10 - 2 10 - 1 100

10 - 2

100

102

meshsize \delta 
ti
m
e
(s
)

Fig. 4.2. Quantitative comparison of computational polyconvexification of the Kohn--Strang--
Dolzmann example of section 4.1 in the matrix \^F and known exact values W ( \^F ) \approx 1.095 and

W\mathrm{p}\mathrm{c}( \^F ) = 0.9. Left: absolute error with respect to lattice parameter \delta for several methods. Right:
corresponding computing times.

with singular values \^\nu 1 \approx 0.3618 and \^\nu 2 \approx 0.1282. For fixed r = 1.1, the presented
algorithms indeed converge at a rate \delta 1+\alpha for some \alpha \in [0,1] as the lattice parameter
\delta is refined, in agreement with theoretical predictions (3.1)--(3.2).

Although the algorithms are virtually equally accurate, they differ significantly in
computational complexity. With the exception of the pc [Bar05] variant, computation
times actually scale only linearly with the number of grid points, which in turn is
proportional to \delta  - 4 for pc QH and \delta  - 2 for svpc QH and svpc LP. This is much better
than the worst-case complexity of Quickhull, which predicts \delta  - 8 and \delta  - 4 for pc
QH. The observed behavior seems to correspond to the Quickhull complexity in the
dimensional space 4 or 2, which represents the dimensions of the manifolds and not
the ambient space.

In any case, the numerical results clearly demonstrate the claimed superiority
of the new algorithms in the isotropic regime. Of the two variants of singular value
polyconvexity, the linear programming variant appears to be faster for our implemen-
tation. Note, however, that Quickhull approximates the envelope throughout the
bounding box, and it would easily pay off if the polyconvex envelope were evaluated
at multiple points.

4.2. Multidimensional double-well potential. Since the generalization of
the previous example to three dimensions is not known explicitly, we consider the
function

W :\BbbR d\times d \rightarrow \BbbR 

F \mapsto \rightarrow 
\bigl( 
| F | 2  - 1

\bigr) 2
,

which is an established benchmark for analytical and computational semiconvexifica-
tion [KS86a, DW00, Bar05]. For any d\in \{ 1,2,3\} , the rank-one, the quasiconvex, and
the polyconvex envelope of W coincide with the convex envelope given by

W pc(F ) =

\Biggl\{ \bigl( 
| F | 2  - 1

\bigr) 2
if | F | \geq 1,

0 else.
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COMPUTATIONAL POLYCONVEXIFICATION OF ISOTROPIC FUNCTIONS 1415

Fig. 4.3. Slice of the three-dimensional double-well example. Function \Phi (4.3) (solid black), its
polyconvex hull \Phi \mathrm{p}\mathrm{c} (4.4) (dotted red) versus \nu 1 = \nu 2 = \nu 3, evaluation of polyconvex hull \Phi \mathrm{p}\mathrm{c}

\delta via
svpc LP (3.5) (blue crosses), and a selection of lattice points involved in the minimization problem
(black bullets).

The function W is isotropic and can be reformulated in terms of the signed singular
values via the function \Phi by

\Phi (\^\nu ) =

\Biggl( 
d\sum 

i=1

\nu 2i  - 1

\Biggr) 2

.(4.3)

Similarly, the polyconvex hull of \Phi can be expressed as

\Phi pc(\^\nu ) =

\left\{     
\biggl( 

d\sum 
i=1

\nu 2i  - 1

\biggr) 2

if
d\sum 

i=1

\nu 2i \geq 1,

0 else.

(4.4)

An illustration of the function \Phi and the computed envelope \Phi pc
\delta for three spatial

dimensions is given in Figure 4.3. The slice along the diagonal direction \nu 1 [1,1,1]
T is

plotted. The calculation via the svpc LP approach is based on the lattice characterized
by \delta = 0.28125 and the radius r = 1.125. In total, 93 = 729 lattice points are
involved in the minimization problem. A selection of those lattice points is marked by
black bullets, exactly the ones lying on the diagonal slice. The sequential pointwise
evaluation of \Phi pc

\delta is marked by blue crosses.
Given the performance of the algorithms in the two-dimensional example of sub-

section 4.1, we restrict the quantitative study of convergence and complexity to the
linear programming variant of Algorithm 3.1. For d = 2 and d = 3, absolute errors
and computing times are shown in Figure 4.4 relative to the lattice parameter \delta . The
radius of the bounding box is set to r= 2. For this particularly smooth energy density
and polyconvex envelope, the convergence of the error in the points

\^F =

\biggl[ 
0.2 0.1
0.1 0.3

\biggr] 
and \^F =diag(0.3,0.3,0.3) is faster than expected, proportional to \delta 4 in both the two-
and the three-dimensional case. The corresponding computing times scale linearly
and thus optimal in the number of lattice points; i.e., they are proportional to \delta  - d

for d= 2,3. However, in general, this behavior is limited to this benchmark example,
which is more of theoretical interest.
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10 - 2 10 - 1 100

10 - 1
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meshsize \delta 

| W
\mathrm{p}
\mathrm{c}
(
\^ F
)
 - 
W

\mathrm{p}
\mathrm{c}

\delta 
(
\^ F
)| 

svpc LP d = 2 svpc LP d = 3 c \delta \{ 3,4\} c \delta \{  - 2, - 3\} 

10 - 2 10 - 1 100

102

100

10 - 2

meshsize \delta 
ti
m
e
(s
)

Fig. 4.4. Quantitative comparison of computational polyconvexification via the svpc LP ap-
proach of the two- and three-dimensional double-well example of section 4.2 in the matrix \^F . Left:
absolute error with respect to lattice parameter \delta for d \in \{ 2,3\} . Right: corresponding computing
times.

4.3. Saint Venant--Kirchhoff. The next example shows the application to
functions of more relevance in real-world applications. We consider the well-known
Saint Venant--Kirchhoff energy density. It is given by

W (F ) =
E

8(1 + \~\nu )
\| FTF  - I\| 2 + E\~\nu 

8(1 + \~\nu )(1 - 2\~\nu )

\bigl( 
\| F\| 2  - 3

\bigr) 2
,

where E > 0 is Young's modulus and 0 \leq \~\nu < 1/2 is Poisson's ratio. Rewriting this
function in terms of the singular values leads to

W (F ) =
E

8(1 + \~\nu )

3\sum 
i=1

(\sigma i(F )2  - 1)2 +
E\~\nu 

8(1 + \~\nu )(1 - 2\~\nu )

\Biggl( 
3\sum 

i=1

\bigl( 
\sigma i(F )2  - 1

\bigr) \Biggr) 2

.

From [LDR95], it is known that the polyconvex envelope is of the form

W pc(F ) =\Psi (\sigma 1(F ), \sigma 2(F ), \sigma 3(F )),

where 0\leq \sigma 1(F )\leq \sigma 2(F )\leq \sigma 3(F ) denote the singular values of F and \Psi : \BbbR 3 \rightarrow \BbbR is
defined by

\Psi (\^\sigma ) =
E

8
[\sigma 2

3  - 1]2+ +
E

8(1 - \~\nu 2)
[\sigma 2

2 + \~\nu \sigma 2
3  - (1 + \~\nu )]2+

+
E

8(1 - \~\nu 2)(1 - 2\~\nu )
[(1 - \~\nu )\sigma 2

1 + \~\nu (\sigma 2
2 + \sigma 2

3) - (1 + \~\nu )]2+.

Here, [a]2+ is a2 if a\geq 0 and 0 if a< 0.
This function separates the tetrahedral cone 0\leq \nu 1 \leq \nu 2 \leq \nu 3 into four parts. The

evaluation point \^F = diag(0.2,0.4,1.5) is located in a part where \Psi and hence W pc

are not constant zero. Figure 4.5 shows the approximation error and corresponding
computation times utilizing the linear programming approach in Algorithm 3.1. We
choose material parameters E = 1, \nu = 1/4 and discretization radius r= 2. Quadratic
error convergence in the mesh size can be observed as well as a scaling of computation
times of the order of between \delta  - 5 and \delta  - 6. This reflects the challenges that arise
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Fig. 4.5. Quantitative study of computational polyconvexification via the svpc LP approach of
the three-dimensional Saint Venant--Kirchhoff example of section 4.3 in the matrix \^F . Left: absolute
error with respect to lattice parameter \delta . Right: corresponding computing times.

when dealing with more realistic energy densities and indicates that the application of
standard d\times d algorithms would not be possible due to the computational complexity.
However, the presented algorithm successfully performs a convexification of physically
relevant isotropic functions in the three-dimensional case, which is hardly feasible
without exploiting isotropy.

4.4. Exponentiated Hencky-logarithmic energies. The new efficient algo-
rithms for polyconvexication of isotropic energies allow us to shed light on a fam-
ily of exponentiated Hencky-type energies WeH : \BbbR d\times d \rightarrow \BbbR \infty recently proposed by
[NLG+15]. Given parameters \mu ,\kappa , k, \ell > 0, they are given by

WeH(F ) =

\Biggl\{ \mu 

k
ek\| devd logU\| 2

+
\kappa 

2\ell 
e\ell [log detU ]2 if det(F )> 0,

\infty if det(F )\leq 0,

where U :=
\surd 
FTF , logX is the matrix logarithm and devdX = X  - 1

d tr(X)Id is
the deviatoric part of a matrix X \in \BbbR d\times d. In the two-dimensional case, [NLG+15,
Theorem 3.11] shows that if k\geq 1

3 and \ell \geq 1
8 , then WeH is polyconvex. We will study

the sharpness of this result using our algorithm. For this purpose, WeH is rephrased
for the case d= 2 in terms of signed singular values as

\Phi eH(\^\nu ) =

\Biggl\{ \mu 

k
e

k
2 (log

\nu 1
\nu 2

)2 +
\kappa 

2\ell 
e\ell (log(\nu 1\nu 2))

2

if \nu 1\nu 2 > 0,

\infty else.
(4.5)

Figure 4.6 shows contour plots of the difference | \Phi eH  - \Phi pc
eH,\delta | on the quadrant of

positive signed singular values for parameters \mu = 1 and \kappa = 1 and three configura-
tions for the parameter pair (\ell , k). The approximation \Phi pc

eH,\delta was computed by the
Quickhull approach on a grid with radius r = 12. Note that the nonconvex regime
of \Phi eH is indeed larger than the area covered by the ball of radius r = 12. However,
we are only interested in the loss of polyconvexity in the neighborhood of the identity
(the point \nu 1 = \nu 2 = 1) since the application in boundary value problems would also
be in a ball of finite radius.

From Figure 4.6, it is clearly visible that each of the two parameters k and \ell 
triggers a certain region of non-polyconvexity in the space of signed singular values. To
investigate this further, we fix the material parameters \mu = 1 and \kappa = 1 and study the
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Fig. 4.6. | \Phi eH  - \Phi \mathrm{p}\mathrm{c}
eH,\delta | on \scrN \delta ,r for parameter pairs (\ell , k) = (0.06,1/3) on the left, (0.06,0.06)

in the middle, and (1/8,0.06) on the right. Discretization parameters for the svpc QH approach were
r= 12 and \delta = 0.09375.
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Fig. 4.7. Comparison of \Phi eH and \Phi \mathrm{p}\mathrm{c}
eH,\delta for varying parameters k, \ell and \mu = 1, \kappa = 1. Plot

shows log10 | \Phi eH  - \Phi \mathrm{p}\mathrm{c}
eH,\delta | \infty . Red lines indicate analytically known parameter bounds. k, \ell axes are

discretized with stepsize of 0.0025. Each polyconvexification has been carried out with discretization
parameters r= 8.0, \delta = 0.1250, corresponding to refinement level 7.

polyconvexity of \Phi eH depending on the parameters k and \ell . We choose a bounding box
of radius r= 8 and fix the lattice parameter to \delta = 0.1250. We compute the polyconvex
envelope in all lattice points using the Quickhull approach and compute the maximal
absolute error between this approximate polyconvex hull and the original function.
Errors at the order of the lattice parameter indicate polyconvexity of the original
function, while significantly larger errors indicate non-polyconvexity. These results
confirm the polyconvexity of WeH if k\geq 1

3 and \ell \geq 1
8 as shown in [NLG+15]. Moreover,

our numerical investigations show that the restriction of WeH to the bounded box
\nu 1, \nu 2 \leq r is also polyconvex for values k < 1

3 and \ell < 1
8 . For fixed \mu and \kappa , the bounds

might be relaxed as visualized in Figure 4.7.
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5. Conclusion. We have shown that the computational efficiency of algorithms
for polyconvex isotropic energy densities can be significantly improved. Based on
the characterization of isotropic polyconvexity in terms of the signed singular values
instead of the full matrix input [WP23], we have shown how the corresponding di-
mensional reduction from d2- to d-dimensional space can be realized algorithmically.
The convexification of the lifted space can be performed by computational geometry
algorithms or linear programming. Both variants not only have minimal complexity
in representative benchmarks but also allow numerical investigation of exponentiated
Hencky-logarithmic energy densities and their polyconvexity properties for a range of
parameters beyond those known analytically.
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K\"ohler are greatly acknowledged. We would like to thank the anonymous referees for
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