
On Learning Hierarchical Embeddings from
Encrypted Network Traffic

Nikolas Wehner∗, Markus Ring†, Joshua Schüler∗, Andreas Hotho∗, Tobias Hoßfeld∗, Michael Seufert∗
∗University of Würzburg, Würzburg, Germany, firstname.lastname@uni-wuerzburg.de

†Coburg University of Applied Sciences and Arts, Coburg, Germany, markus.ring@hs-coburg.de

Abstract—This work presents a novel concept for learning
embeddings from encrypted network traffic. In contrast to
existing approaches, we evaluate the feasibility of hierarchical
embeddings by iteratively aggregating packet embeddings to flow
embeddings, and flow embeddings to trace embeddings. The hier-
archical embedding concept was designed to especially consider
complex dependencies of Internet traffic on different time scales.
We describe this novel embedding concept for the domain of
network traffic in full detail, and evaluate its performance for
the downstream task of website fingerprinting, i.e., identifying
websites from encrypted traffic, which is relevant for network
management, e.g., as a prerequisite for QoE monitoring or for
intrusion detection. Our evaluation reveals that embeddings are
a promising solution for website fingerprinting as our model
correctly labels up to 99.8% of traces from 500 target websites.

I. INTRODUCTION

Network operators face increasing challenges when man-
aging communication networks, which are driven by the
growing number of users, devices, applications, and their
diverse requirements, as well as the consequently required
increasing complexity of networks. Thus, network operators
strive to monitor their networks in order to quickly detect
and resolve performance or security issues. Considering per-
formance management, the last decades saw a transition from
monitoring of classical Quality of Service (QoS) metrics, such
as bandwidth, latency, or packet loss, towards application-
specific Quality of Experience (QoE) monitoring based on
Deep Packet Inspection (DPI). For example, DPI allowed
to inspect streaming flows to approximately reconstruct the
client’s playback buffer [1], [2], and thus, to detect imminent
or ongoing video stalling, i.e., playback interruptions, which
is a severe QoE degradation [3]. Such QoE monitoring allows
to ensure a high service quality and a high user satisfaction,
which avoids user churn in this competitive market. Also
security management has to be constantly adapted, as sophisti-
cation and amount of cyber attacks against networked systems
are increasing [4]. To face these threats, network operators
no longer rely on static defenses only, such as firewalls, but
more and more employ DPI as part of or in combination
with complex monitoring-based systems, such as Intrusion
Detection Systems (IDSs) [5], [6], which detect attacks based
on previously defined or anomalous traffic patterns.

However, in the last years, end-to-end encrypted traffic over
HTTPS has become the predominant type of traffic for all
kinds of services accounting for over 85% of Internet traffic
from desktop and mobile devices in 2019 [7]. This poses a
huge challenge for network management, as the encryption
hides the packets’ content, and thus, DPI can no longer provide
useful information for network operators. This means that
network operators lose visibility in their own networks, and it
is becoming more and more difficult for network operators to
monitor performance or security.

Nevertheless, novel capabilities to monitor fine-granular,
packet-level data in softwarized and virtualized networks
(SDN/NFV), based on more sophisticated software packet
processing technologies [8] like DPDK, or based on pro-
grammable switching hardware like P4 [9], allow for detailed,
real-time monitoring of statistical properties of traffic flows.
This availability of large amounts of data calls for the applica-
tion of artificial intelligence (AI) and machine learning (ML)
to overcome the reduced visibility of network operators [10].
For example, for the use case of monitoring the Quality of
Experience (QoE) of video streaming, several approaches [11],
[12], [13], [14] already managed to learn streaming behavior
and the resulting QoE with a high accuracy in tested lab
scenarios. However, these approaches are typically considering
packet arrivals as being independently distributed, and do not
fully capture the time series and sequence-like nature of net-
work traffic flows. In addition, they often utilize handcrafted
features, which require cumbersome preprocessing steps, and
also potentially miss relevant information, which would be
crucial for the considered or related ML downstream tasks.

To overcome this issue, we resort to learn embeddings for
time series network data. Embeddings are numerical vector
representations of categorical data and originate from the
natural language processing domain. They are typically used
to map words to vectors, which can serve as input to neural
networks, and play a key role in the latest advances in ML-
based text processing and understanding. However, the appli-
cation to the domain of network traffic is still in its infancy.
The major challenge here is that network traffic is not strictly
sequential like text, but Internet services are often transmitted
over multiple traffic flows at the same time, which not only
might influence each other, but might also be influenced by
background traffic and changing network conditions.

Figure 1 illustrates the idea behind the concept of learning
embeddings for encrypted network traffic. Neglecting the IP

F1

F2

…

Fi

…

Fn

Flows

P1 | P2 | P3 | … | Pi | … | Pn

Packet Sequences

P1 | P5 | P6 | … | Pi | … | Pn

P1 | P2 | P4 | … | Pi | … | Pn

P1 | P1 | P4 | … | Pi | … | Pn

P1

P2

P3

…

Pi

…

Pn

Packets Attributes Embeddings

0.01 0.77 0.91 -0.95

0.33 -0.10 0.01 0.55

0.41 -0.14 0.07 0.65

… … … …

0.77 0.10 -0.04 0.22

… … … …

0.65 0.17 0.06 0.15

A

B

C

…

S

…

Z

Fig. 1: Embedding concept for encrypted network traffic.

addresses and port information, we assume that the informa-
tion provided in the encrypted IP packets are sufficient to
estimate the purpose of a packet within a flow. We further
assume that there exist packets with similar purposes in
independent flows, e.g., flows F1 and F2 both contain packet
P1. This packet P1 may have a specific attribute A, which
could represent a DNS request or a TCP packet with enabled
SYN flag. The goal of embeddings is to convert these instances
P1-Pn or their corresponding attributes A-Z, respectively, to
representative continuous vectors (embeddings), which capture
the contexts and relations of the packets within the flows, and
thus, improve the performance for a ML downstream task.

In this work, we survey and discuss existing embedding
approaches for network traffic, and present a novel concept for
learning embeddings for encrypted network traffic. In contrast
to existing approaches, which learn embeddings for single
IP addresses or packets, we take into account that sequences
must be considered for analyzing network traffic. Therefore,
we evaluate the feasibility of a hierarchical embedding by
iteratively aggregating packet embeddings to flow embeddings,
and flow embeddings to trace embeddings. Thereby, a packet
embedding is the learnt representation for one network packet
and a flow embedding corresponds to the representation for
one bidirectional flow. Finally, we define a trace embedding
as the representation of all flows of one source IP address in a
certain time window. This hierarchical embedding concept is
supposed to especially consider complex dependencies on dif-
ferent time scales, which is a well-known property of Internet
traffic [15]. We describe this novel embedding concept in full
detail, and evaluate its performance for the downstream task
of website fingerprinting, i.e., identifying the websites from
encrypted traffic, which is both relevant for QoE monitoring
as well as for security monitoring.

This paper is structured as follows. Section II discusses
related works on learning embeddings for network traffic.
Section III presents our novel concept of hierarchical net-
work traffic embeddings. The evaluation methodology for the
website fingerprinting task is described in Section IV, and
the evaluation results are presented in Section V. Section VI
concludes this work and provides an outlook to future works.

II. RELATED WORK

This section reviews related work on learning embeddings
for network traffic and their application in downstream tasks
like QoE monitoring and intrusion detection.

Embeddings are vector representations for non-numerical
values and originate from NLP. Typical and widely used
approaches include BERT [16], FastText [17], GloVe [18] and
Word2Vec [19]. These methods usually rely on some kind
of neural networks or co-occurrence matrix in order to learn
vector representations for words. Meanwhile, embeddings are
widely used in other domains such as medicine [20] or
music [21], [22].

There are some approaches which transfer the idea of
learning embeddings to the area of network traffic. A fairly
simple adaptation of Word2Vec to flow-based network data is
presented by Henry [23]. This approach is called Flow2Vec
and learns an embedding for each flow. Thereby, a flow is
represented by its IP addresses, ports, bytes, and packets,
which leads to a huge number of different values and raises
problems in classification scenarios when new values are
occurring. In contrast to that, IP2Vec [24] aims to transform
categorical values of flow-based network traffic like IP ad-
dresses or port numbers into a continuous feature space Rm.
Thereby, similar IP addresses are mapped to similar vector
representations. Similarities are defined by extracting available
context information of flow-based network traffic. The authors
evaluate IP2Vec in the context of clustering and visualization
and achieve promising results. Fei et al. [25] further developed
this approach and use it to classify servers according to their
offered services.

Similar to IP2Vec, Goodman et al. [26] adapt the idea
of Word2Vec to packet-based network traffic. Then, the au-
thors evaluate their method Packet2Vec to identify malicious
network traffic based on a 2009 DARPA network data set.
Mimura and Tanaka [27] also learn embeddings for network
traffic by adapting Doc2Vec [28] to packet-based network data.
The authors use the header attributes transport protocol, ports,
and size of packets, and group 100 packets as one paragraph.
Then, a continuous vector representation is learned for each
paragraph and used for classification tasks afterwards.

Henry [23], Ring et al. [24] and Goodman et al. [26]
learn embeddings for network characteristics like IP addresses,
ports, or single flows. In contrast to them, our approach learns
embeddings for sequences of network traffic like [27]. While
the authors of [27] learn embeddings for sequences of pack-
ets, we also consider hierarchical information by extracting
knowledge from flows and traces.

III. HIERARCHICAL NETWORK TRAFFIC EMBEDDING

Next, we present our novel approach on learning hierarchi-
cal network traffic embeddings. The overall architecture of our
approach is presented in Figure 2. The figure depicts the three
embedding modules, namely, packet embedding, flow embed-
ding, and trace embedding, along with the downstream task
module. The embedding modules have a hierarchical depen-
dency and the embedding process starts on packet level. Our

Flow Embedding Trace Embedding
Downstream Task
(Fingerprinting)Packet Embedding

Index Embedding

Index Layer

Concatenation Layer

Size Embedding

Arr. Embedding

Concat

Avg. Pooling

Max. Pooling

1D-Conv.

Avg. Pooling

Max. Pooling

1D-Conv.

RNN
Dense

Dense
Type Embedding

Dir. Embedding

Dense

Dense Softmax

Naive Naive

Dense

Dense

Dense

Dense

Dense

Fig. 2: Neural network architecture of the hierarchical embedding approach.

idea is based on the assumption that hierarchical embeddings
best imitate the communication structures of networks [15].
In a preprocessing step, relevant information from encrypted
network packet headers is extracted. Then, by passing this
information through the packet embedding module we obtain
embeddings on packet level. These packet embeddings are then
passed on to the flow embedding module, where flow embed-
dings are learnt based on the packet embeddings. Finally, the
flow embeddings again are aggregated to trace embeddings to
represent a group of flows. Dashed horizontal lines indicate
alternatives for learning embeddings which means, e.g., that
either the Index Layer or the Concatenation Layer can be used
for packet embedding. Shaded blocks highlight the modules
where the individual embeddings are generated. All kinds of
embeddings are learned end-to-end, which means that the
embeddings are learnt along with the weights required for
the downstream task. In this work, we evaluate the impact on
fingerprinting accuracy when using the various embeddings.

In the following, the preprocessing of network data and the
individual modules of our architecture are discussed in detail.

A. Preprocessing

Given a PCAP file, we perform a packet and flow prepro-
cessing. This includes the extraction of IP packet attributes,
e.g., packet size and packet direction, and indexing the packets
based on their attributes. Additionally, we extract flow-based
information like flow IP addresses and ports, as well as the
unique flow tuples. We consider flows identical when they
share the same source and destination IP address, the same
source and destination port, and the same protocol.

Based on this information the input data is built for our
model. For each unique packet tuple and each unique flow
tuple, we define a vocabulary, which maps the unique tuples
to integers. Finally, we define the maximum number of flows
and the maximum number of packets, which we consider for
the embedding. To keep the input size concise, we utilize only
the top ten flows, sorted by the total download volumes in
the trace, and the first 500 packets of each flow to build the
input. Runs with less than ten flows or flows with less than

500 packets are padded with zeros, where zero corresponds
to the padding token in our vocabulary. We further remove
anomalous traces with an insufficient amount of flows (< 5).
We chose these numbers to trade off heavy flows with many
packets and light flows with a few packets. This is supposed to
avoid many flows with too much padding, but also to preserve
the characteristic patterns of a network trace .

We then stack these data to obtain input of shape
(FN,PN,AN), where FN corresponds to the maximum
number of flows, PN is the maximum number of packets,
and AN represents the number of packet attributes.

B. Packet Encoding

We define a packet as the four tuple P = {S, T,D,A},
where S represents the packet size, T represents the packet
type, D represents the packet direction, and A represents the
arrival time of a packet within a flow.

Size The packet size S is extracted from the IP header and
is limited from 0 to 1500 bytes (larger packets are clipped
to 1500 bytes). Packets with size 0 are usually connection-
oriented control packets containing for example TCP flags.

Type A packet is described by its purpose, which we
denote with the type T . A type hereby includes the protocol
of a packet along with its enabled flags, in particular we
distinguish only between TCP, UDP/QUIC, and DNS as
they are easily distinguishable. For TCP segments, the type
includes the TCP flags concatenated in canonicalized form,
e.g., F ACK|FIN denotes a TCP packet with active ACK
and FIN flags. UDP packets do not have any flags and are thus
represented by the empty symbol. Also, DNS packets can only
be queries or responses and we thus distinguish them with
DNS Q and DNS R.
Direction The direction D of a packet states whether the

packet is an upload or download packet from the perspective
of the host and is represented by -1 and 1, respectively.

Arrival Time The relative arrival time A denotes the
position, or more specifically the normalized time of the packet
in a flow relative to the first and last packet. This means that
the arrival time ranges from 0 (first packet) to 1 (last packet)

and that for example a packet at 0.5 corresponds to a packet
occurring at half of the flow duration. To keep the space of
arrival times concise, we round the normalized arrival time to
the second decimal, resulting in 101 possible values.

C. Packet Embedding

In this work, we test two different layers for learning
packet embeddings, which we call Index Layer (IL) and
Concatenation Layer (CL) in the following. Both layers are
presented in Figure 2 and differ in the following way.

Index Layer With the IL we consider each packet P
(defined by the four tuple {S, T,D,A}) as an instance and
the goal is to learn an embedding for each unique instance of
P . The IL is realized by mapping the packet encodings P to
a corresponding vocabulary, where each unique packet P is
represented by an integer. This vocabulary is then used in a
lookup table to learn an embedding for each packet along with
the downstream task. One disadvantage with this approach is
that it usually generalizes poorly, since there are no entries for
unknown combinations in the vocabulary. We will discuss this
problem later in Section V.

Concatenation Layer In contrast, the CL is supposed to
learn specific embeddings for each attribute (S, T , D, A)
which compose a packet P , before concatenating the learnt
embeddings and passing them through a dense layer to obtain
the packet embedding for P . For each attribute, we also
utilize lookup tables to learn the embeddings for each potential
attribute instance. The length of the four embeddings and the
number of units of the final dense layer are hyperparameters.

D. Flow Embedding

Based on these packet embeddings, the flow embeddings are
generated. The input shape for learning a flow embedding is
now (PN,PE), where PN represents the maximum number
of packets in a flow and PE represents the dimensionality of
the learnt packet embeddings.

There exist various possibilities to train a flow embedding
from this input. Here, the main goal is to aggregate packet
embeddings to a flow embedding, i.e., we have to reduce
the dimensionality by aggregating over the dimension PN .
However, during the aggregation we need to preserve the
characteristics of the packet streams as best as possible to
avoid information loss. The aggregation can be achieved for
example with pooling strategies, convolutional neural networks
(CNNs), recurrent neural networks (RNNs), or simply concate-
nating the vectors. We thus test 1D average/maximum pooling,
1D CNNs, and RNNs as flow embedding modules.

Naive The simplest way, however, would be to flatten
all packet embeddings, thus using the concatenated packet
embeddings without aggregation as flow embedding, and then
passing it to the next level of the hierarchy. Note that when we
use the naive approach for flow embeddings, we automatically
also take the naive approach for trace embeddings.

Pooling For the pooling mechanisms, we aggregate the
packet embeddings of a flow by maximizing or averaging over
all packet embeddings of a flow.

CNN As is common practice, we can utilize a 1D CNN to
process time series data. Therefore, we consider each packet as
a timestep and each packet embedding dimension as a channel.
This output is then again passed through a 1D maximum
pooling layer to provide the embedding.

RNN Finally, we utilize recurrent neural networks, in par-
ticular Gated Recurrent Unit, where we also consider each
packet as a timestep and where the learnt packet embeddings
correspond to the features of a timestep.

After obtaining our flow embedding FE by performing one
of the steps above for each of the ten largest flows within a
trace, we obtain data of the form (FN,FE) and then pass it
on towards the trace embedding module. Note that FE can
have a different embedding dimension than PE.

E. Trace Embedding

As a last step, the flow embeddings are transformed to trace
embeddings. Again, we have to reduce the dimensionality by
one and can thus apply similar techniques as above.

Naive All flow embeddings are flattened as before without
aggregation and then passed forward to the downstream task.

Pooling To obtain the trace embedding using pooling, we
again average or maximize all flow embeddings of a trace.

CNN We use a 1D CNN, where FN and FE represent the
timesteps and features, respectively.

F. Downstream Task

In the downstream task, the embeddings are used as input
and the actual website fingerprinting is performed. Website
fingerprinting is a multi-class classification task, which means
that the model must predict which website is accessed within
the encrypted network trace. In this work, we consider 500
websites as targets, so the output layer for this task is a
dense layer with 500 neurons. This is followed by a soft-
max activation, which computes the probability of a sample
belonging to a website. In addition to the output layer, we
use an additional dense layer of arbitrary size, which is
responsible for extracting the relevant features from the passed
embeddings beforehand.

IV. DATASET

Our dataset was collected to gather web performance met-
rics on different devices over multiple websites while experi-
encing varying network conditions. In a measurement testbed,
WebpageTest (WPT)1 was used to visit the top 500 Alexa
websites with the Chrome browser. Three devices, namely a
smartphone (Google Pixel 2XL), a tablet (Samsung Galaxy
Tab S5e), and a desktop computer, were used as clients,
each of which connected to the Internet through a separate
computer to act as a network emulator and traffic capture
device. Every page was visited at least ten times on each
device for a total of 13 different network conditions, either
applying an additional one-way delay of 10ms, 50ms, 100ms
or 200ms, adding a packet loss 0.1%, 0.5%, 1%, 2% or 10%,
or limiting the throughput to 0.5, 2, 5 or 10 MBit/s, resulting

1https://www.webpagetest.org/

HYPERPARAMETERS OPTIONS
Optimizer Adam
Layer Activation [ReLU, Tanh]
Packet Embedding Dimension [16, 32]
Flow Embedding Dimension [32,64]
Trace Embedding Dimension [64, 128]
Pooling Sizes [4x4, 6x6]
Kernel Sizes [4x4, 6x6]
Filters [16, 32]
Stride 1
Recurrent Units 32
Downstream Units 1024
Batch Size [16, 32]
Epochs 30

TABLE I: Overview on tested hyperparameters.

in a dataset containing over 200.000 runs. This dataset is
highly challenging in that it requires the trained models to
not only identify a broad range of diverse websites, such as
youtube.com and amazon.com, but also to distinguish between
very similar websites, such as google.com and google.es. After
performing the packet and flow preprocessing for our dataset
(described in Section III), we observe 739435 different packet
instances and 512 different packet types in total for our dataset.

V. EVALUATION

Now, the performance of our novel embedding approach
for website fingerprinting is evaluated and the influence of the
embedding space on the model’s performance is investigated.

Tensorflow and Keras have been used for all evaluations.
The data was split into training, validation, and test set,
whereby the validation set and test set contained at least one
sample of each website and test condition, i.e., we consider
a closed world scenario, in which the accessed websites are
known beforehand. After cleaning the data and removing
broken runs, the training set comprises 175904 samples, the
validation set contains 17312 samples, and the test set consists
of 18304 samples distributed over 500 websites.

Using categorical cross entropy as loss function, we train
each model combination of our hierarchical embedding ap-
proach for a maximum of 30 epochs. We also add early
stopping with a patience of five epochs to reduce training time.

A. Hyperparameter Tuning

For the various models, we perform hyperparameter tuning
using grid search implemented in Optuna2. Table I presents an
overview on the tested hyperparameters. We use the the Adam
optimizer with a learning rate of 1e-4. We test two different
embedding dimensions for each level on the hierarchy and
several pooling, kernel, and filter sizes for the pooling and
convolutional mechanisms to consider different scales. The
downstream units, i.e., the number of units of the last hidden
layer, were fixed at 1024. The batch size is either 16 or 32.

B. Performance Evaluation

Table II depicts the results for our performance evaluation of
the hierarchical embedding approach. We utilize accuracy, i.e.,

2https://optuna.readthedocs.io/en/stable/index.html

Packet Embedding Flow Embedding Trace Embedding Test Accuracy

IL

NAIVE NAIVE 0.998

AVG

NAIVE 0.771
AVG 0.611
MAX 0.769
CNN 0.918

CNN
NAIVE 0.995
AVG 0.892
MAX 0.987
CNN 0.982

MAX
NAIVE 0.961
AVG 0.741
MAX 0.723
CNN 0.935

RNN

NAIVE 0.969
AVG 0.714
MAX 0.002
CNN 0.943

CL

NAIVE NAIVE 0.997

AVG

NAIVE 0.769
AVG 0.549
MAX 0.698
CNN 0.845

MAX

NAIVE 0.960
AVG 0.827
MAX 0.887
CNN 0.963

CNN

NAIVE 0.997
AVG 0.829
MAX 0.963
CNN 0.981

RNN

NAIVE 0.863
AVG 0.802
MAX 0.791
CNN 0.942

TABLE II: Best results of performance evaluation.

the amount of correctly identified websites, on the test set as
performance metric. We show only the results of the best per-
forming model with respect to the hyperparameters. The most
relevant accuracies, which are discussed in the following, are
illustrated in bold. It can be observed that the best performance
for each packet embedding layer was obtained when using the
naive approach for both flow embedding and trace embedding.
Both the IL and the CL offered an almost perfect accuracy of
0.998 and 0.997, respectively, thus misclassifying only up to
55 out of the 18304 samples of the test set. The second best
results for both IL and CL were obtained when using CNNs
for computing the flow embeddings and then naively flattening
the trace embedding. The performance of the IL dropped only
slightly from 0.998 to 0.995, while the performance of the CL
did not change at all. For both layers, these results indicate that
CNNs are suitable solutions for flow embeddings, while the
usage of pooling mechanisms and RNNs stronger decrease the
classifier’s performance for this task due to information loss.
Further, we observe a performance drop when additionally
utilizing more sophisticated trace embeddings. For both IL
and CL, the combination of CNN as flow embedding and as
trace embedding shows very good results, again suffering from
a marginal performance drop only.

This shows that both IL and CL are suitable for learning
meaningful packet embeddings. From analyzing the sophisti-
cated flow and trace embeddings, we could observe that CNNs
are the most suitable for learning the characteristic patterns
in encrypted network traffic. Moreover, the usage of RNNs
should be avoided for learning embeddings since they are

slow to train and thus slow to converge. Finally, the pooling
mechanisms (AVG/MAX) proved to perform badly in general.

To sum up, the evaluation showed the potential of embed-
dings for ML-based tasks in encrypted network traffic, pro-
viding a high accuracy of up to 99.8% for the task of website
fingerprinting. For this simple use case, packet embeddings
and naive flow and trace embeddings were sufficient to obtain
high accuracy and it could be observed that accuracy decreased
with additional abstraction in form of more sophisticated,
aggregating flow and trace embeddings. Nevertheless, flow and
trace embeddings may become very relevant for other, more
complex use cases, e.g., for identifying malicious flows in a
network or predicting the QoE of a multi-flow web application.
Another benefit of flow embeddings is that they could possibly
be computed independently in deployment scenarios with
memory constraints. Thus, further research is necessary on
how to best preserve the information on the various levels of
the hierarchy.

C. Impact of Embedding Space

One drawback of the IL model is the large space of possible
packet manifestations P (characterized by S, T,D,A), which
may result in observing unknown packets, i.e., packets without
pretrained embedding, during deployment. This problem could
be solved by creating a default embedding for unknown
values [24], which may not be optimal for many use cases.

With our current implementation, the space of potential
packet manifestations is composed the following way. The
size S has 1501 manifestations, the direction D has two
manifestations, and the arrival time A has 101 manifestations.
For the type T , there are nine TCP flags [29], i.e., a maximum
of 29 = 512 TCP flag manifestations, two DNS manifestations
(request and response), and a single manifestation for UDP
packets, which covers the increasingly used QUIC protocol.
All in all, this results in a maximum of 515 possible type
manifestations for our use case. This number would increase
if additional protocols would be considered in other scenarios.

We observe that the packet size S is the limiting factor
in this factorial design. Further, the accuracy of the arrival
time A likely does not influence the model performance
strongly. Therefore, we first strongly reduce the potential
packet size manifestations by uniformly binning the packet
sizes into eleven manifestations (starting with 0 in steps of
150). Secondly, we reduce the manifestations of A by rounding
to the first decimal (not to the second decimal as before), also
resulting in eleven manifestations. Subsequently, performing
a factorial design for S, T , D, and A results in a maximum
of 124630 possible manifestations for P , which is a rather
small embedding space. After reducing the embedding space,
we observe only 3335 manifestations in our dataset (instead of
739435 before). Similar to the IL, we also limit the vocabulary
size of S and A for the CL with the reductions of above.

We then again evaluate the model performance using IL and
CL and the compressed embedding space. Therefore, we use
the best performing IL and CL models and train the models
again for 30 epochs. We observe an accuracy of 99.1% for IL,

which is only slightly worse than the model with the original
space (99.8%), and an accuracy of 98.7% for CL, which is also
slightly worse. This indicates that both the IL and CL with
a limited embedding space would also be proper solutions
for online deployment. Note, however, that the embedding
space compression could have a larger negative effect for
other downstream tasks, e.g., where packet sizes play a more
important role than for website fingerprinting.

D. Deployment Considerations

When considering to deploy our approach in a productive
setting, our embedding approach would additionally require
to identify web browsing sessions in order to know which
flows belong together to a certain website. As one possible and
easy-to-implement mitigation, flows could be grouped together
based on client IP address, assuming that clients typically
only request one website at a time. This simple heuristic
should provide sufficient accuracy most of the time. If a higher
precision is required, additional preprocessing steps could be
added later, e.g., performing a temporal clustering on large
network traces to learn co-occurring flows for a websites.

VI. CONCLUSION AND OUTLOOK

In this paper, we presented a novel concept for learning
hierarchical network traffic embeddings to especially consider
complex dependencies within encrypted network traffic on dif-
ferent time scales. For this, our approach iteratively aggregates
packet embeddings to flow embeddings, and flow embeddings
to trace embeddings. We therefore tested two different packet
embedding approaches and several flow and trace embedding
aggregation techniques. We evaluated its performance for the
downstream task of website fingerprinting using 500 different
websites as targets.

First, we observed high accuracies of up to 99.8% for
specific models. This shows that embeddings for encrypted
network traffic provide a promising research direction in
general. With respect to the hierarchical design, we showed
that the best performance is obtained when using packet em-
beddings together with naive flow and trace embeddings. Both
utilized packet embeddings offered high accuracy, even when
the embedding space was compressed strongly. Additional
abstractions by more sophisticated flow and trace embeddings
seemed to result in information loss, which was detrimental for
the website fingerprinting performance, but could nevertheless
become very relevant when considering other, more complex
downstream tasks.

In future work, we plan to extend our approach of hierar-
chical network traffic embeddings by additionally considering
flow information. Moreover, we want to train and evaluate
our approach on larger data sets and for more applications,
such as QoE monitoring and intrusion detection. In the best
case, a network traffic embedding should also be designed in
a way that it can be applied to multiple downstream tasks
without having to train a specific network embedding for
each downstream task. This again would require pre-trained
network traffic embeddings.

REFERENCES

[1] B. Staehle, M. Hirth, R. Pries, F. Wamser, and D. Staehle, “YoMo:
A YouTube Application Comfort Monitoring Tool,” in 1st Workshop
of Quality of Experience for Multimedia Content Sharing (QoEMCS),
2010.

[2] P. Casas, M. Seufert, and R. Schatz, “YOUQMON: A System for On-
line Monitoring of YouTube QoE in Operational 3G Networks,” ACM
SIGMETRICS Performance Evaluation Review, vol. 41, no. 2, pp. 44–
46, 2013.

[3] M. Seufert, S. Egger, M. Slanina, T. Zinner, T. Hoßfeld, and P. Tran-
Gia, “A Survey on Quality of Experience of HTTP Adaptive Streaming,”
IEEE Communications Surveys & Tutorials, vol. 17, no. 1, pp. 469–492,
2015.

[4] Check Point Research, “Cyber Security Report 2020,” Check Point
Research, Tech. Rep., 2020, accessed: 2021-05-18. [Online]. Avail-
able: https://www.checkpoint.com/downloads/resources/cyber-security-
report-2020.pdf

[5] N. Sultana, N. Chilamkurti, W. Peng, and R. Alhadad, “Survey on
sdn based network intrusion detection system using machine learning
approaches,” Peer-to-Peer Networking and Applications, vol. 12, no. 2,
pp. 493–501, 2019.

[6] A. Khraisat, I. Gondal, P. Vamplew, and J. Kamruzzaman, “Survey
of intrusion detection systems: techniques, datasets and challenges,”
Cybersecurity, vol. 2, no. 1, pp. 1–22, 2019.

[7] NetMarketShare, “HTTP vs HTTPS,” NetMarketShare, Tech.
Rep., 2021, accessed: 2021-08-23. [Online]. Available:
https://netmarketshare.com/report.aspx?id=https

[8] D. Cerović, V. Del Piccolo, A. Amamou, K. Haddadou, and G. Pujolle,
“Fast packet processing: A survey,” IEEE Communications Surveys &
Tutorials, vol. 20, no. 4, pp. 3645–3676, 2018.

[9] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese et al., “P4: Pro-
gramming protocol-independent packet processors,” ACM SIGCOMM
Computer Communication Review, vol. 44, no. 3, pp. 87–95, 2014.

[10] R. Boutaba, M. A. Salahuddin, N. Limam, S. Ayoubi, N. Shahriar,
F. Estrada-Solano, and O. M. Caicedo, “A comprehensive survey on
machine learning for networking: evolution, applications and research
opportunities,” Journal of Internet Services and Applications, vol. 9,
no. 1, pp. 1–99, 2018.

[11] V. Aggarwal, E. Halepovic, J. Pang, S. Venkataraman, and H. Yan,
“Prometheus: Toward Quality-of-Experience Estimation for Mobile
Apps from Passive Network Measurements,” in Proceedings of the 15th
Workshop on Mobile Computing Systems and Applications (HotMobile),
Santa Barbara, CA, USA, 2014.

[12] G. Dimopoulos, I. Leontiadis, P. Barlet-Ros, and K. Papagiannaki,
“Measuring Video QoE from Encrypted Traffic,” in Proceedings of
the ACM Internet Measurement Conference (IMC), Santa Monica, CA,
USA, 2016.

[13] I. Orsolic, D. Pevec, M. Suznjevic, and L. Skorin-Kapov, “A Machine
Learning Approach to Classifying YouTube QoE Based on Encrypted
Network Traffic,” Multimedia Tools and Applications, vol. 76, no. 21,
pp. 22 267–22 301, 2017.

[14] M. Seufert, P. Casas, N. Wehner, L. Gang, and K. Li, “Stream-
based Machine Learning for Real-time QoE Analysis of Encrypted
Video Streaming Traffic,” in 3rd International Workshop on Quality of
Experience Management, 2019.

[15] A. Feldmann, A. C. Gilbert, and W. Willinger, “Data networks as
cascades: Investigating the multifractal nature of internet wan traffic,”
ACM SIGCOMM Computer Communication Review, vol. 28, no. 4, pp.
42–55, 1998.

[16] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training
of Deep Bidirectional Transformers for Language Understanding,” in
Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, (NAACL).
Association for Computational Linguistics, 2019, pp. 4171–4186.

[17] P. Bojanowski, E. Grave, A. Joulin, and T. Mikolov, “Enriching word
vectors with subword information,” Transactions of the Association for
Computational Linguistics, vol. 5, pp. 135–146, 2017.

[18] J. Pennington, R. Socher, and C. D. Manning, “GloVe: Global Vectors
for Word Representation,” in Conference on Empirical Methods in
Natural Language Processing (EMNLP), 2014, pp. 1532–1543.

[19] T. Mikolov, I. Sutskever, K. Chen, G. Corrado, and J. Dean, “Distributed
representations of words and phrases and their compositionality,” arXiv
preprint arXiv:1310.4546, 2013.

[20] E. Choi, M. T. Bahadori, E. Searles, C. Coffey, M. Thompson, J. Bost,
J. Tejedor-Sojo, and J. Sun, “Multi-layer representation learning for med-
ical concepts,” in Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, 2016, pp. 1495–
1504.

[21] H. Liang, W. Lei, P. Y. Chan, Z. Yang, M. Sun, and T.-S. Chua, “Pirhdy:
Learning pitch-, rhythm-, and dynamics-aware embeddings for symbolic
music,” in Proceedings of the 28th ACM International Conference on
Multimedia, 2020, pp. 574–582.

[22] M. Zeng, X. Tan, R. Wang, Z. Ju, T. Qin, and T.-Y. Liu, “Musicbert:
Symbolic music understanding with large-scale pre-training,” arXiv
preprint arXiv:2106.05630, 2021.

[23] E. Henry, “Netflow and word2vec -¿ flow2vec,” 12 2016. [Online].
Available: https://edhenry.github.io/2016/12/21/Netflow-flow2vec/

[24] M. Ring, A. Dallmann, D. Landes, and A. Hotho, “Ip2vec: Learning
similarities between ip addresses,” in 2017 IEEE International Confer-
ence on Data Mining Workshops (ICDMW). IEEE, 2017, pp. 657–666.

[25] F. Du, Y. Zhang, X. Bao, and B. Liu, “FENet: Roles Classification of IP
Addresses Using Connection Patterns,” in International Conference on
Information and Computer Technologies (ICICT), 2019, pp. 158–164.

[26] E. L. Goodman, C. Zimmerman, and C. Hudson, “Packet2vec: Uti-
lizing word2vec for feature extraction in packet data,” arXiv preprint
arXiv:2004.14477, 2020.

[27] M. Mimura and H. Tanaka, “Reading Network Packets as a Natural
Language for Intrusion Detection,” in International Conference on Infor-
mation Security and Cryptology (ICISC). Cham: Springer International
Publishing, 2018, pp. 339–350.

[28] Q. Le and T. Mikolov, “Distributed Representations of Sentences and
Documents,” in International Conference on Machine Learning, 2014,
pp. 1188–1196.

[29] Devo, “Tcp flags,” 2019. [Online]. Available:
https://docs.devo.com/confluence/ndt/latest/searching-data/building-
a-query/operations-reference/packet-group/tcp-flags-tcpflags

