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ratings, e.g., when the degradation mixes with background

noise, or lower ratings, e.g., when the degradation affects

the loudness, compared to ratings collected in a controlled

laboratory environment [3]. To minimize the effect of such

unwanted factors, the eligibility of test participants (e.g.,

normal hearing ability in speech quality test, or color vision

deficiencies for video quality test), as well as the suitability

of working environment (e.g., quiet environment [4], or bad

lighting) and the devices (headset, or monitor with proper size

and setting) should be examined before the test [5].

Besides, due to the absence of a test moderator, some par-

ticipants might not fully follow the instruction, be interrupted,

or rush the process to increase their hourly payout, which

can lead to random ratings [2]. Those cases can partially

be captured by gold standard [6] and trapping questions [7].

During the post-processing of submission, sessions in which

participant failed in any of the integrated tests should be re-

moved. It is also recommended to remove submissions, which

show specific patterns in the ratings, or which are flagged by

outlier detection methods. Although previous works showed

that applying the best practices produce highly reliable and

valid measurements in multiple studies (with some variations

between them) [8], [9], there is no guaranty or method to

evaluate that in absence of ground truth.

Therefore, there is a need for single measurement metric

that represents the reliability of the entire study in the absence

of ground truth. In this paper, we compare different inter-rater

reliability metrics in terms of their sensitivity in identifying

common issues associate to crowdsourcing studies.For this, we

simulate a ground truth of user ratings following the discrete

QNormal distribution according to the subject bias theory [10].

We investigate the impact of the the users’ bias and rating

uncertainty, as well as the presence of unreliable raters, on

traditional reliability metrics. Finally, we identify a concrete

guideline when the reliability of a crowdsourced QoE study is

highly questionable, such that researchers are encouraged to

revisit their study design in order to eventually improve the

reliability of results from crowdsourcing-based quality studies.

This means, for example, to cure issues stemming from

the presence of unreliable users by implementing additional

consistency checks and filtering mechanisms, or to cure issues

stemming from high uncertainty among raters by providing

more accurate instructions and better training of participants.

The paper is organized as follows. In Section II, we briefly

review common inter-rater reliability metrics. The simulation

process for obtaining ground truth rating data is explained
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I. INTRODUCTION

Traditionally, the media’s perceived Quality of Experience

(QoE) [1] is assessed by performing subjective tests in con-

trolled laboratory environments following the relevant rec-

ommendations. During the passive tests, representative group

of participants, are invited to the laboratory and exposed to

different test conditions by listening and/or watching a set of

stimuli. The Absolute Category Rating (ACR) test procedure is
the most common test method, in which participants are asked

to rate their opinion about the overall quality of each stimulus

on a predefined 5-point discrete scale, ranging from bad (1) to
excellent (5). The test is executed on well-defined devices in 
a controlled laboratory environment to avoid that participants’ 
ratings are influenced by unwanted additional factors. This 
leads to a high reliability and validity in the measurement,

but sacrifices some realism, as the used devices and the test

environments typically do not reflect normal usage situations.

Meanwhile, crowdsourcing offers a faster, cheaper, and 
more scalable approach in subjective testing [2]. There, test

participants are workers from a crowdsourcing platform, who

perform the QoE test in their working environment using

their hardware, usually in exchange for monetary reward.

The uncontrolled environment, heterogeneous and uncalibrated

devices may lead to positive and negative biases in the ratings.

For instance, in speech QoE tests, the environment noise might 
mask the degradation under study leading to either higher
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in Sections III and IV. The results of our analyses and the

comparison of inter-rater reliability metrics are reported and

discussed in Section V. Finally, a summary and proposals for

future work conclude the paper in Section VI.

II. RELIABILITY METRICS AND RELATED WORKS

The concept of reliability relates to the overall consistency

of a measure when assessing a trait [11]–[14]. This means that

repetitions of a reliable experiment would provide essentially

the same results. In contrast, the related concept of validity

is the extent to which a measure actually measures the trait,

and is out of scope of this work. Several metrics have been

proposed in literature, which can be used to assess the reliabil-

ity of a QoE experiment in terms of the inter-rater reliability,

which is manifested in the agreement or consistency between

the ratings of different participants.

The most commonly used approach to assess the inter-

rater reliability is by computing rank correlation coefficients

between the users’ ratings, such as Spearman’s rho (ρ) or

Kendall’s tau (τ ) [15]. These correlation coefficients express

the pairwise similarity of different users’ rank ordering of

stimuli, which is obtained from their QoE ratings, e.g., [16].

In this work, the average correlation ρ̄ or τ̄ over all pairs of

raters is considered to assess the reliability of the QoE exper-

iment. Intraclass correlation (ICC) is a family of parametric

correlation coefficients [17], [18], which is closely related to

ANOVA, and compares the variance between raters with the

variance over all ratings. For this, the metric can target either

absolute agreement or consistency. In this work, ICC(3, 1)
will be investigated, which is applicable to assess consistency

in QoE experiments as it is based on the single ratings of a

fixed set of raters, which rate all stimuli.

A more strict metric, which is based on absolute categorical

agreement is Cohen’s kappa [19]. It considers the share of

equal ratings among two raters, i.e., per cent agreement,

but additionally accounts for the possibility of agreement by

chance. An extension for multiple raters was proposed by

Fleiss [20], such that Fleiss’ kappa (κ) can be applied for QoE

experiments with a large group of participants. Note that κ
considers ratings on a categorical rating scale. We hypothesize

that κ will not be a strong metric for QoE ratings, which are

given on an ordinal rating scale. However, due to its popularity,

we include it in the evaluation.

Krippendorff’s alpha (α) is a large family of reliability coef-

ficients, which embraces several other reliability coefficients,

and thus, can handle various scenarios, such as number of

observers, levels of measurement (e.g., categorical, ordinal),

sample sizes, and presence or absence of missing data [13]. It

accomplishes this by calculating disagreements instead of cor-

recting percent-agreements, thereby avoiding some limitations

of other metrics.

Finally, we consider the SOS parameter (a) [21], which

reflects the level of rating diversity across users for the dif-

ferent scenarios by relating the MOS values and the standard

deviation of a QoE study. It allows for a compact statistical

summary of subjective user tests, and it supports checking the

reliability of test result data sets as well as their comparability

across different QoE studies.

For the specific use case of the reliability of crowdsourced

QoE experiements, several other related works exist, which

are briefly outlined. [16] used reliability metrics not only to

assess inter-rated reliability, but also intra-rater reliability in

order to detect unreliable users. [22] presented two metrics for

crowdsourcing studies based on task difficulty and resulting

errors, which can be used to detect unreliable subjects. Also

many other mechanisms and approaches for identifying and

rejecting unreliable user ratings were proposed, e.g., [2], [6],

such as consistency tests, content questions, gold standards,

attention tests, or proper monitoring of the user device. Note,

however, that intra-rater reliability and detection of unreli-

able users is out of scope of this work. Furthermore, [10]

investigated reliability in crowdsourced QoE studies from a

theoretical perspective, and presented the subject bias theory to

explain user ratings using random variables. As our simulation

model is based on this theory, it will be shortly outlined below.

[23] presented an analysis method for detecting inconsistent

subjective data by checking for typical or atypical rating score

distributions. Finally, we do not want to correct subjective

ratings of participants (in contrast to [24] for bias removal),

but rather evaluate the reliability of the entire study as a whole.

III. MODEL FOR USER RATING DISTRIBUTIONS

To account for many possible outcomes in the rating be-

havior, for any stimuli and any users, a user’s rating R ∼
RV (μ, σ) is modeled with a random variable, which has

mean μ and standard deviation σ. Here, μ represents the

central tendency of the user’s experience, and σ quantifies

the uncertainty of the user. The subject bias theory [10]

proposes a normal distribution, R ∼ N (μ, σ), which is then

limited to the range [1; 5] and discretized by rounding. The

bounded and rounded continuous normal distribution leads

to the so-called QNormal distribution with parameters μ and

σ: Q ∼ QNorm(μ, σ) = [N (μ, σ)]
5
1 . Please note that, in

general, the expected user rating E[Q] = m = μ and the

observed standard deviation Std[Q] = s = σ due to the effect

of bounding and rounding.

As discussed above, the not fully controlled environment

in crowdsourcing studies can lead to biases in the resulting

ratings. Here, we will focus on a scenario with no bias and

three bias scenarios, namely, positive bias, mixed bias, and

fake users. In the no bias scenario, all users are unbiased and

rate according to Q ∼ QNorm(μ, σ). The three bias scenarios

differ from the no bias scenario in that a certain share of

unbiased ratings are replaced by the ratings of biased users.

a) Positive bias: In many studies, we observe a shift

of user ratings towards higher scores for different reasons,

such as pleasing the employer [6], [25]. This may be taken

into account by shifting the mean μ of the underlying normal

distribution by a constant β > 0. Typically values for β are

in the order between 0.25 and 0.75, see, for example, [2], [6],

[26], [27]. The resulting distribution of a positively biased user

rating is Q ∼ QNorm(μ+ β, σ), β > 0.
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b) Mixed bias: In addition to users with a positive bias,

there may also be users which are not able to properly consume

the test contents, e.g., due to noisy environment [3], hidden

influence factors like improper devices [2], or different cultural

perception of aesthetics [25]. This may again be taken into

account by shifting the mean μ as above, this time using a

negative constant β < 0. In the mixed bias scenario, both

positively and negatively biased users can appear. Note that

we will not cover a scenario with only negatively biased users,

as it is mostly analogue to the positive bias scenario.

c) Fake users: Finally, there may be some workers who

are not understanding the test or who are not conducting the

test properly. As described in [2], these users are denoted as

fake users if the user rating is uncorrelated to the stimuli and

purely randomly selected. Although it may be easy to identify

and filter fake users, we consider in our analysis both the

presence of those fake users, as well as filtered QoE results

without ratings from fake users. We take the discrete uniform

distribution over all five categories, i.e., Q ∼ U(1, 5), P (Q =
i) = 1

5 , as the rating distribution of fake users.

Figure 1 illustrates bias β and uncertainty σ in the user

rating distribution Q. The left plot shows the effects of bias

on a user with a true average user rating of μ = 4.5, who

has a high uncertainty (σ = 1.0). If there is no bias (orange

distribution), the resulting average user rating is m = 4.32,

and we clearly observe the spread of the user rating across

the rating scores from 2 to 5 due to the high uncertainty

(s = 0.80). Note once again here that, following the subject

bias theory, there is a difference in the true average user rating

μ and true uncertainty σ, and the resulting average user rating

m and resulting standard deviation s due to bounding and

rounding, respectively. In case of negative bias (β = −0.5,

blue distribution), the user rating distribution is shifted towards

lower QoE ratings (m = 3.93), while the positive bias of

β = 0.5 (green distribution) shifts probability towards the

right (m = 4.63). Moreover, it can be seen that the resulting

standard deviation becomes smaller if the mean user rating

moves closer to the edges, which is a consequence of the

bounded rating interval, and will be discussed below.

The remaining plots in Figure 1 illustrate the effects of

uncertainty. The middle figure shows the resulting user rating

distributions for a true average user rating of μ = 2.25 and

various levels of uncertainty σ. It can be seen that a very

low level of uncertainty σ = 0.1 (green distribution) does

not spread the user rating far from the underlying μ. Thus,

rounding causes the resulting user rating distribution to al-

most degrade to a fully deterministic distribution approaching

m = 2 and s = 0. As uncertainty increases, the spread

of the user rating increases, which also causes the resulting

distribution to flatten and spread. Note that for 0.5 ≤ σ ≤ 1,

the resulting m and s stay close to the true μ and σ. Eventually,

for larger uncertainty σ, the user rating distribution degenerates

more and more towards a discrete uniform distribution.

The right figure shows the resulting standard deviation of

the user rating distribution depending on the resulting mean

and the degree of uncertainty σ. The shape of the curves is

similar to the MOS-SOS plots [21], however, we are only

considering the rating of a single user (and hence no MOS

values across users). We visualize the theoretical minimum

standard deviation smin (dashed line) given a mean user rating

m, which is smin =
√

m∗(1−m∗) with m∗ = m − �m�.

Here, it can be seen that a low uncertainty of σ = 0.25 is

still very close to the theoretical minimum. For increasing

uncertainty, also the resulting standard deviation increases as

the user rating distribution degenerates towards a discrete

uniform distribution, which would result in the maximum

s =
√
2 ≈ 1.41 for m = 3.

This effect can be nicely illustrated considering the example

of the middle plot of μ = 2.25. When following the vertical

line at m = 2.25 in the right plot, it can be seen that the

minimum possible s is 0.43. As observed in the middle plot,

for σ above the minimum s, the resulting m and s stay close

to μ and σ. However, such low s is not possible for smaller

σ, which results in a shifted m closer to the nearest integer

and greatly reduced s for the user rating distribution. As σ
approaches 0, the resulting user rating distribution generates

towards a deterministic rating distribution. On the other end,

as σ approaches s =
√
2, we eventually see a shift of m

towards 3, which is a consequence of the degeneration towards

a discrete uniform distribution. Further increasing σ towards

its maximum value 2 will cause W- or U-shaped distributions

due to the truncation of the tails of the normal distribution at

the bounds of the rating scale, which might not be considered

realistic rating distributions for a single user and a single

stimulus, and thus, are out of scope of this work.

Finally, the plot also shows that the resulting standard

deviation is decreasing towards the edges of the rating scale

as the rating distribution is confined by the resulting mean

user rating. For example, a resulting mean user rating closer

to 5 would require more and more probability mass to reside

in rating category 5, which leads to a decreasing resulting

standard deviation almost independent of the underlying true

uncertainty σ.

IV. SIMULATION OF QOE EXPERIMENTS

We simulate QoE experiments, in which the bias, the uncer-

tainty, and the true user ratings are known. This ground truth

is required to understand the influence of bias and uncertainty

on reliability metrics applied to crowdsourced QoE studies. In

particular, the absolute values of the reliability metrics can be

put into relation with bias, uncertainty, or ratio of fake users.

As a result, guidelines can be derived when a crowdourced

QoE study is considered not to be reliable.

The simulated QoE experiment consists of k test conditions

(or stimuli), for which each stimulus x has a certain true MOS

value Mx for x = 1, . . . , k. We use perfectly designed and

selected stimuli, which result in equidistant true MOS values

Mx ∈ [1, 5]. Hence, Mx = 1 + (x− 1) 5−1
k−1 for x = 1, . . . , k.

For each stimulus x, every user u = 1, . . . , n has the true

central tendency (or true average user rating) corresponding to

the true MOS of that stimulus, i.e., μx = Mx. Thus, according

to the subject bias theory, for all stimuli x and users u, the
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Fig. 1. Illustration of Bias and Uncertainty. Resulting user rating distributions for different bias β (left figure), different degrees of uncertainty σ (middle
figure) as well as the first two moments, i.e. mean m and standard deviation s, of the resulting user rating distributions (right figure).

rating of a single user follows the QNormal distribution with

parameters μx + βu and σu due to the crowdsourcing setting:

Qu,x ∼ QNorm(μx + βu, σu)

Please note that we are considering simplified scenarios, for

which the bias is independent of the stimulus x. Nevertheless,

this can be a realistic assumption, for example, in case users

may please the employer (positive bias) or in case the degrada-

tion is masked by the effect of environment’s condition. We are

also assuming that the uncertainty of the users is not depending

on the concrete stimulus, but rather on the type of service or

application under test in the QoE study. This is inspired by

the SOS hypothesis [21], where the user rating diversity is

expressed by a single parameter only, which is denoted as the

SOS parameter a in [21]. As we will see below, our simulation

methodology also fulfills the SOS hypothesis, and there is a

direct mapping between σ and a.

In a single QoE experiment, we are considering k = 21
stimuli or test conditions, and it follows that stimulus x has

a true MOS value of Mx = x+4
5 . Each stimulus is rated by

n = 30 subjects. To investigate the impact of bias on reliability

metrics, four scenarios are considered:

• No bias: The users are not biased, hence, we assume

β = 0 for all users and all stimuli.

• Positive bias: Two different types of users are considered.

One user class has no bias (β = 0), while the other group

has a positive bias of β = 0.5. Each user is randomly

assigned to one of the two classes with probability 1
2 .

• Mixed bias: Three different types of user classes are

considered: no bias (β = 0), positive bias (β = 0.5),

negative bias (β = −0.5). Each user is randomly assigned

to one of the three user classes with probability 1
3 .

• Fake users: In this scenario, we do not want to simply

replace regular ratings with the ratings of fake users, to

keep the same amount of n = 30 regular users for all

scenarios. Thus, we consider 15 additional fake users,

such that the number of raters increases to nF = 45.

This results in a fake user ratio of 1/3, which may be

realistic in crowdsourced QoE studies, e.g., [6].

Another key influence factor on reliability metrics is the

uncertainty of users. Therefore, we systematically investigate

uncertainty and conduct a parameter sensitivity study on

σ. In the parameter sensitivity study, we assume that the

uncertainty of users depends on the service or application

under test. Hence, we assume that all users have the same

degree of uncertainty. Please note that the uncertainty of users

may generally be higher in a crowdsourced setting due to

remote test instructions compared to a laboratory study with

a dedicated test moderator.

For each combination of bias scenario and uncertainty

parameter, we simulated 1000 QoE experiments. In the fol-

lowing, we report average result scores of the simulated QoE

experiments and the investigated reliability metrics. Note that,

due to the high number of simulation runs, the confidence

intervals are very small, such that they are omitted from the

plots for better readability. The maximum confidence interval

width is 0.0023 across all metrics and scenarios.

V. DISCUSSION OF NUMERICAL RESULTS

We analyze the inter-rater reliability of the users using the

above introduced standard metrics, namely, average Spearman

correlation ρ̄, average Kendall correlation τ̄ , intraclass corre-

lation ICC(3, 1), Krippendorff’s α, Fleiss’ κ, as well as the

SOS parameter a. The scope of this study is to describe the

characteristics and behavior of these metrics for the simulated

QoE experiments. In particular, we are interested to understand

what is captured by the metrics and how sensitive they are

with respect to the input parameters. These include bias,

uncertainty, and fake users, as well as consistency across users.

The ultimate goal is to provide thresholds when a QoE study

can be considered to be reliable.

Figure 2 shows the main results of our analyses. Each of

the six subplot represents a single metric’s behavior in the

different bias scenarios and for different uncertainty. In the

following, we will elaborate on the main findings.

a) Bias: Comparing the investigated bias scenarios,

namely, no bias (blue), positive bias (green), and mixed bias

(orange), it can be seen from the overlapping curves that ρ̄,

τ̄ , and ICC(3, 1) do not reveal the bias, since these metrics

are quantifying the consistency of the user ratings, but do not

consider the absolute agreement. Only κ, α, and a have the

discriminative power to identify groups of biased users, since
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Fig. 2. Parameter sensitivity study on uncertainty σ. Comparison across metrics for fixed σ and different scenarios.

the corresponding curves are not overlapping. However, for α
and a, the metrics’ absolute differences are very low, and thus,

bias could easily be confused with a lower uncertainty. Also

for κ, the bias scenarios can only be well distinguished for

a very small uncertainty of users. In fact, literature suggests

κ > 0.61 [28] for substantial agreement, which we can

only obtain in a real QoE experiment if we have almost

deterministic user ratings, i.e., very confident users. Thus,

the practical usage of all analyzed metrics to identify bias

in crowdsourced QoE studies is rather limited.

b) Uncertainty: Regarding uncertainty, all subplots of

Figure 2 confirm that the metrics are able to capture the under-

lying uncertainty. We generally observe a negative trend, such

that the metrics’ values decrease for increasing uncertainty,

except for a, which follows an inverse trend. The ICC(3, 1),
κ, α, and a are more sensitive than other metrics as they utilize

wider range of the metric [0; 1].

c) Fake Users: When comparing the metrics for scenar-

ios with (pale colors) and without fake users (strong colors),

Figure 2 shows that ρ̄, τ̄ , ICC(3, 1), α, and a nicely separate

the scenarios with and without fake users. The best separation

can be achieved by ICC(3, 1) and α, which also avoid

overlapping metric values even for high uncertainties. Again,

ρ̄ is equally suited, but struggles from not fully utilizing the

metric range, while τ̄ and a already show overlapping values

for smaller uncertainties.

Comparing the behavior of the reliability metrics, the cor-

relations between all metrics are very high. Especially, ρ̄,

τ̄ , ICC(3, 1), and α reach correlations above 0.98, while

a shows negative correlations with absolute values above

0.96. This means that they capture similar properties of a

QoE experiment. Only Fleiss kappa shows lower correlations

ranging from 0.84 to 0.91, as it was designed for agreement

on nominal data, and thus, cannot capture consistent trends in

the ratings of participants on an ordinal rating scale.

d) Groups of Users: Beyond the parameter sensitivity

study on the uncertainty σ, we consider now different user

groups in terms of bias and uncertainty. Users are randomly as-

signed an uncertainty level with σ ∈ {0.25, 0.5, 0.75, 1., 1.25}
as well as a bias β ∈ {−0.5, 0,+0.5}. This scenario is referred

to as mixed bias + groups. For comparing the uncertainty

groups, we additionally investigate single uncertainty levels:

σ = 0.25 (min.), 0.75 (avg.), and 1.25 (max.).

The numerical results indicate that the analysis of the un-

certainty groups is not necessary. In fact, the scenario with the

average uncertainty (i.e., average over all uncertainty values of

the various groups) leads to almost the same absolute values

of the reliability metrics. Hence, the parameter sensitivity

study from above allows to derive conclusions with uncertainty

groups. Hence, our limitation of fixed uncertainty in the results

above in Figure 2 may be extended to user groups.

Fig. 3. User Groups: Mixed bias for different kind of uncertainity scenarios
including mixed groups of uncertainty.

To sum up, when considering the performance in all in-

vestigated scenarios, ρ̄, τ̄ , and ICC(3, 1) performed well

with respect to all criteria. They are unaffected by bias,

and are able to detect both high uncertainty, as well as the

presence of fake users. Moreover, as indicated by the very

41



high correlations, they all captured the same trends. Among

these three, ICC(3, 1) shows a slight advantage by utilizing

a wider range of values, however, ICC(3, 1) is limited to

experiments, in which all participants rate all stimuli. Note that

other ICC models exist for other experiment designs, in which

all/a subset of stimuli is rated by all/a subset of participants,

but these models were out of scope of this work.

Thus, also taking the ease of utilizing the average Spearman

correlation ρ̄ in almost all statistical software packages into

account, we recommend ρ̄ as inter-rater reliability metric

for QoE experiments in crowdsourcing. As a rule of thumb,

we propose that a QoE experiment with ρ̄ < 0.75 should

be revisited by researchers. Note that a low score does not

invalidate the QoE results, however, the reliability of the QoE

experiment might be severely affected by high uncertainty

among participants or the presence of fake users.

VI. CONCLUSION AND OUTLOOK

In this work, we simulated ratings of different user groups

and scenarios typical in crowdsourcing (different bias sce-

narios, uncertainties, and fake users) following the discrete

QNormal distribution according to the subject bias theory [10].

The results showed that both fake users and uncertainty could

be detected by standard reliability metrics, while the detection

of bias might not be possible in a realistic scenario. In

practice, ρ̄ is sufficient to evaluate inter-rater reliability in

terms of consistency, and we might even define thresholds,

e.g., ρ̄ < 0.75, for detecting the presence of high uncertainty

or fake users. Scoring low on this metric should be a strong

incentive for test moderators to revisit their test design. To fight

uncertainty, the test could be better explained, while reliability

checks should be implemented or adapted to filter out fake

users. This can help researchers to eventually improve the

reliability of results from crowdsourcing-based quality studies.

The simulation was required to create a ground of user

ratings in typical scenarios of QoE experiments in crowdsourc-

ing. However, our result should be consider preliminary and

more sophisticated simulation with less assumptions should

follow which ultimately leads to more realistic rating data.

Namely in future work, we will consider other distributions

for the underlying user ratings, different user groups and prob-

abilities for each group, as well as different QoE experiment

designs, e.g., experiments, in which participants only rate a

subset of all stimuli. Furthermore, we will extend our analysis

to other rating scales, such as continuous rating scales, and

corresponding metrics. Finally, we will apply our method

on real crowd-sourced datasets with and without embedded

quality control mechanism to demonstrate its usage.
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