
ML-Assisted Latency Assignments in Time-Sensitive

Networking

Alexej Grigorjew, Michael Seufert, Nikolas Wehner, Jan Hofmann, Tobias Hoßfeld

University of Würzburg, Germany

{alexej.grigorjew | michael.seufert | nikolas.wehner | tobias.hossfeld}@uni-wuerzburg.de, mail@hofmannjan.com

Abstract—Recent developments in industrial automation and in-
vehicle communication have raised the requirements of real-time
networking. Bus systems that were traditionally deployed in these
fields cannot provide sufficient bandwidth and are now shifting
towards Ethernet for their real-time communication needs. In
this field, standardization efforts from the IEEE and the IETF
have developed new data plane mechanisms such as shapers
and schedulers, as well as control plane mechanisms such as
reservation protocols to support their new requirements. However,
their implementation and their optimal configuration remain an
important factor for their efficiency. This work presents a machine
learning framework that takes on the configuration task. Four
different models are trained for the configuration of per-hop
latency guarantees in a distributed resource reservation process
and compared with respect to their real-time traffic capacity. The
evaluation shows that all models provide good configurations for
the provided scenarios, but more importantly, they represent a
first step for a semi-automated configuration of parameters in
Time-Sensitive Networking.

I. INTRODUCTION

Traditionally, real-time networks in the fields of industrial

automation and in-vehicle communication are implemented by

using bus systems or proprietary systems based on Ethernet.

With careful admission control, it is possible to acquire latency

guarantees for streams with low data rates if they adhere to

typical periodic transmission patterns. However, with the recent

advancements in these fields, the demand for higher data rates is

increasing, while at the same time, more flexibility is required.

Latency requirements become more diverse, systems are more

dynamic with streams emerging and disappearing during run

time, and network operators wish to use the same network

infrastructure for both critical real-time traffic and bursty, non-

reserved best-effort traffic simultaneously.

With these requirements in mind, the IEEE Time-Sensitive

Networking (TSN) and the IETF Deterministic Networking

(DetNet) working groups are developing a series of standards to

support converged real-time networking with high data rates in

traditional networking devices such as Ethernet switches. These

standards include new shaping mechanisms, such as Credit-

Based Shaping (CBS) [1] and Time Aware Shaping (TAS) [2],

as well as advancements for admission control in the control

plane, such as the Stream Reservation Protocol [3] [4], the

Resource Reservation Protocol (RSVP-IntServ) [5], and the

Resource Allocation Protocol [6]. In the past, standardization

groups have published profiles [7] that describe how to apply

the standards for a specific use case, but their guarantees were

proven to be inaccurate [8]. More recent profiles are under

active development [9]–[12], but due to the increased demand

for dynamic operation, they cannot provide an efficient network

configuration for each situation. In general, the individual tools

are well established by now, but the understanding of their

optimal deployment and configuration remains an important

research topic for time-critical communication.

Contribution: This work presents a machine learning (ML)

framework for the configuration of real-time networks with

a distributed reservation process. It implements a heuristic

solution for an important optimization problem during real-time

network planning: how should delay guarantees be assigned

to queues such that the network utilization can be maxi-

mized? Therefore, multiple supervised learning and reinforce-

ment learning models have been created and evaluated against

an optimal brute force solution for two types of scenarios. The

evaluation shows that, in the considered scenarios, most ML

models attain roughly 90% of the brute force performance at

a much lower computation time. These results can provide

valuable input for the development of ML-assisted network

configuration in TSN.

The remainder of this work is structured as follows. Related

work regarding Time Sensitive Networking and machine learn-

ing for network configuration is covered in Section II. The

methodology used for resource reservation simulation, ground

truth generation, feature extraction, and ML model training is

described in Section III. Section IV presents the results of the

performance analysis of the ML-based heuristics in comparison

with the optimal configuration. Finally, Section V concludes the

paper and outlines future works.

II. RELATED WORK

A. Time Sensitive Networking

In order to meet real-time requirements and ensure a de-

terministic transmission behavior for time-sensitive traffic, the

IEEE 802.1 working group proposed a set of standards under

the term Time-Sensitive Networking (TSN [13]). TSN utilizes

the Precision Time Protocol (PTP [14]) which synchronizes

time information with sub-microsecond accuracy across all

network participants. This is a prerequisite for mechanisms like

the Time Aware Shaper (TAS [15]) which introduces timed

gates to each queue of a switch port. Mechanisms that do

not rely on time synchronization include Credit-Based Shaping

(CBS [16]) and Asynchronous Traffic Shaping (ATS [17] [18]),

which enable reshaping of traffic in per-priority and per-stream

granularity, respectively.

While each mechanism improves the latency guarantees of

the data plane, bounded latency can already be guaranteed with

Strict Priority Transmission Selection alone (SP [13]). Each

switch manages up to eight queues dedicated to frames of

different priority. SP does not require clock synchronization,

and in contrast to CBS and ATS, it is widely supported by

current hardware. SP was recently proven to provide determin-

istic guarantees even in a distributed plug-and-play reservation

process [19] without the need for shapers. This work initially

builds on the mechanism and attempts to configure the required

latency guarantee thresholds for maximum utilization.

In addition to shapers, TSN specifies complementary mech-

anisms for additional reliability (FRER [20]) and network

configuration. As this work is focused on distributed scenar-

ios, it relies on mechanisms such as the Stream Reservation

Protocol (SRP [3] [4]) or the new Resource Allocation Protocol

(RAP [21]). The information provided by these protocols can be

used by all switches to perform admission control and therefore

guarantee bounded latency.

B. ML for Network Configuration

Machine learning (ML) describes the process of algorithmic

learning from data. Due to its successful application to many

real world problems, the research community has started to

apply ML to the networking domain [22], where complex

problems occur, in particular, with respect to network operations

and management. While unsupervised learning is rarely used

for network configuration [23], there are a few approaches

which are based on supervised learning. Some of these works

predict relevant metrics, which can then be used for network

management. For example, [24] forecast traffic in order to pro-

vision virtual network functions, or [25] analyzed QoE factors

from encrypted video traffic, which can be used for QoE-aware

traffic management. Other works directly applied supervised

learning to predict a network configuration, such as [26], which

used a deep belief architecture to predict optimal routing paths.

[27] compared different supervised learning methods to predict

optimal locations of SDN controllers. The vast majority of

related works on ML-based network configuration resorts to

reinforcement learning (RL) [22], [28], as finding an optimal

network configuration by interacting with a dynamic network

environment nicely resembles the general problem statement of

reinforcement learning.

One of the first attempts to apply RL to dynamic networks

was proposed by [29] using the tabular Q-Learning algorithm

in order to optimize packet routing. [30] was one of the first to

apply Q-Learning to packet scheduling in routers. Both methods

use a basic environment with a small state-action space and

embed the RL module into the nodes of the switching network.

As a more modern approach, [31] proposed an adaptive routing

algorithm based on Q-Learning that took Quality of Service

(QoS) into consideration in the context of software-defined

networking (SDN). [32] proposed a routing algorithm based

on a Deep Q-Network (DQN) method that produced near-

optimal routing configuration and minimized end-to-end delay

in dynamic networks. [33] applied an Actor-Critic method to

congestion control where actions represented changes to the

traffic rate.

However, there are only few related works when it comes to

applying ML in the context of dynamic real-time networks with

deterministic guarantees. [34] employed a Markov chain Monte

Carlo method using ML for low-latency routing. Moreover, [35]

investigated the use of the k-nearest neighbors classification

algorithm for assessing schedulability in TSN. Finally, there

are conceptual works [36], [37] which envision ML for fault

detection or self-configuration of TSN networks in the future.

Our work provides a first step towards this vision by imple-

menting a concrete ML decision model for the configuration of

distributed TSN networks.

III. METHODOLOGY

The key problem that is addressed in this work is the configu-

ration of per-hop latency guarantees Cp for each real-time traffic

class p in the network. During the network’s operation, new

stream reservations toggle the admission control system. This

system computes the current latency bounds dp and compares

them to the configured guarantees Cp to decide whether or not

the new reservation can be accepted. The capacity N of the

network denotes the number of accepted stream reservations.

The task is to configure the latency guarantees Cp such that

the capacity N is maximized.

This section presents the latency bound computation (III-A),

the considered scenarios (III-B), the computation of the ground

truth (III-C), the used features (III-D), and the implementation

of supervised (III-E) and reinforcement learning (III-F).

A. Latency Bound Computation

The delay bound dp of traffic class p is computed as

explained in [19]:

dp ≤
∑
x∈Hp

bxzx(Cx, Cp)

r
+

∑
x∈Ep

bxzx(Cx, 0)

r
+max

x∈Lp

�̂x
r

(1)

Here, zx(Cx, Cp) is a function that returns the number of bursts

from stream x that increase the queuing delay for the observed

priority p. It depends on the configured guarantees C, on the

data rate rx of stream x, and on its path. The sets Hp, Ep, Lp

contain the streams from higher priorities, the same priority p,

and lower priorities respectively. The denominator r is the link

speed in bits/s, while bx is the burst size and �̂x the largest

frame size of stream x. For further details, refer to [19].

B. Framework and Scenarios for Configuration

In the following, a framework for simulating and configuring

basic industrial networks with different topologies is described.

The framework is initialized with a topology, a set of streams S ,

and a configuration C. The main task of the framework is

Controllers

Sensors

......

...

(a) Linear topology with multiple controllers.

C
o
n
t
r
o
ll
e
r

Sensors

Switch

Branches

...

...

...

...

... ...

(b) Tree topology with a single controller.

Fig. 1. Considered topologies for both training and evaluation.

to simulate the real-time communication between sensors and

controllers and to determine the actual network capacity N .

The capacity is defined as the number of streams s ∈ S that

can be added to the network under the current configuration C
without violating the end-to-end latency requirements of any

stream in the network.

The framework provides an interface that allows to adjust

the current configuration C and re-calculate the network ca-

pacity N under the new configuration C′. Networks studied in

this work are restricted to linear and tree topologies. A linear

network topology is built upon a number of m linearly arranged

switches. Each switch is connected to a controller and a number

of n sensors. Each sensor is communicating with a random

controller in the network. In contrast, tree topologies consist

of a single top switch with a single controller. Every sensor

communicates with this central controller, such that its link is

the determining point of the network capacity. Without loss of

generality, all links are 1Gbit/s. Examples for a linear and a

tree topology are depicted in Figure 1a and 1b, respectively.

The sensor-controller communication patterns are based on

five application stream profiles, which are specified in Table I.

Each profile includes a periodic transmission interval, an end-

to-end latency requirement for frames, a minimum and maxi-

mum frame size, and a burst value that is equal to the maximum

frame size. The properties of a stream s ∈ S are selected

uniformly distributed from one of the application profiles.

Note that the models do not rely on periodic transmission,

but the application profiles were chosen based on exemplary

application update cycles from industrial automation. The topol-

ogy layouts and sensor-controller communication patterns are

based on real world industrial networks, adapted for increased

network convergence as envisioned by TSN. They are primarily

based on typical PROFINET use cases that synchronize the

state of an industrial appliance periodically between sensors

and their corresponding controller. These controllers are not to

be confused with network controllers, they merely represent

end devices in the presented use case.

TABLE I
AVAILABLE APPLICATION PROFILES FOR THE STREAMS.

Transmission
Interval

Maximum
Latency

Minimum
Frame Size

Maximum
Frame Size

Profile 1 250 μs 250 μs 64 bytes 128bytes

Profile 2 500 μs 500 μs 128 bytes 256 bytes

Profile 3 1000 μs 1000 μs 256 bytes 512 bytes

Profile 4 2000 μs 2000 μs 512 bytes 1024bytes

Profile 5 4000 μs 4000 μs 1024bytes 1522bytes

No additional traffic shaping mechanism is used apart from

basic SP transmission selection. Without loss of generality, up

to four traffic classes are used for real-time traffic in these

scenarios, while the other classes are reserved for different

priorities of best-effort traffic. In general, it is possible to define

a separate latency guarantee per traffic class for each individual

egress port in the network, based on the respective load. In

this stage of the work, the configuration is limited to a global

configuration for all egress ports due to the implementation

of the ground truth generation algorithm. This limitation may

disappear in future versions of this work. The configuration

of the network is defined as a 4-tuple C = (C0, C1, C2, C3)
where Cp is the guaranteed maximum per-hop latency provided

by priority class p. C0 denotes the highest priority class with

the lowest guaranteed per-hop latency. The priority p(s) of a

stream s is given by the lowest priority class that satisfies the

per-hop requirement δh(s) at the respective hop h. If there is

no priority class that meets this requirement, s is not assigned

a priority and cannot be added to the network under the current

configuration.

As all ports are configured equally, the per-hop latency

requirement for s can be calculated with the maximum end-to-

end latency δ(s) and the number of hops h(s) on the stream’s

path: δh(s) = δ(s)/h(s).

C. Ground Truth Generation

During supervised learning and for the evaluation of the

model’s performance, it is important to know the ground truth

for all generated scenarios. As the task of the ML model is to

solve an optimization problem, the ground truth is given by the

optimal solution that allows the reservation process to accept

the maximum number of streams in the network.

Albeit not the same, the choice of latency guarantees Ci

is related to the bin packing problem where the cost function

of each individual item depends on the chosen bin and on its

latency configuration. Increasing an individual latency guaran-

tee Ci may increase the number of streams that can be accepted

for that traffic class, but it may also become too high for some

streams, causing them to shift towards the higher priority and

increase resource usage there. Additionally, in the advanced

version of this problem, different ports in the network may

be given different priorities in order to allow for a relaxed

configuration at bottlenecks, while compensating with tighter

latency guarantees in other parts of the network to achieve the

same end-to-end latency. In this work, the simple version of this

optimization problem is assumed where all egress ports share

the same latency guarantee configuration.

In general, this can be solved by an integer linear program

that includes constraints regarding path consistency, bandwidth

utilization, and maximum end-to-end latency. For each pair

of individual stream s and traffic class p, a binary vari-

able prio[s, p] ∈ {0, 1} indicates whether stream s belongs

to priority level p, with
∑ 3

p=0 prio[s, p] ≤ 1. In addition, a

bounded variable conf[p] ∈ R can be used for the latency

guarantee configuration. The term
∑ 3

p=0 prio[s, p] · conf[p] can

then be employed as the stream’s current delay in the latency

constraint. The goal is to maximize the number of successfully

placed streams, i.e., max
∑

s∈S

∑ 3
p=0 prio[s, p]. This formu-

lation has two major limitations: (1) It quickly reaches the

limits of available hardware resources during computation,

both regarding runtime and memory consumption. (2) In real

deployments, it may not be possible to choose whether or not

to accept a specific stream. Stream reservations are issued in

random order with no way to predict future reservations.

Therefore, for the current version of this work, the order of

stream reservations is fixed in each scenario. As each port is

configured equally, the per-hop latency requirement δh(s) can

be computed from each stream’s end-to-end requirement and

hop count: δh(s) = δ(s)/h(s). A brute force algorithm is ap-

plied that computes every possible choice P = {δh(s) | s ∈ S}
for individual per-hop guarantees Ci and tests every combina-

tion of these choices for the four considered priority levels. This

is equivalent to drawing four individual numbers out of |P|

possibilities, hence the algorithm must test
(
|P|
4

)
= |P|!

4!·(|P|−4)!
configurations. During each test, a simulation of consecutive

resource reservations for a given topology and a given list of

streams is conducted, and the configuration with the maximum

number of accepted streams is reported. This value is used as

ground truth for supervised learning, and for comparison during

performance evaluation of the ML-based solutions.

For 5 application profiles (Table I), up to 600 streams,

and a maximum path length of 7, the brute force algorithm

finds the optimal solution within at most a few minutes. The

algorithm scales polynomially with the number of streams, and

exponentially with the number of application profiles and the

maximum path length. Slightly increasing these values already

leads to several hours or days of execution time. The anticipated

industrial networks are expected to have higher path lengths and

more heterogeneous communication patterns. This is why an

efficient heuristic is necessary for large-scale decision making.

D. Static and Dynamic Features

Both the supervised learning and the reinforcement learning

models rely on a thorough set of features, representing as much

of the scenario as possible. The training and test scenarios are

comprised of a specific network topology and a set of streams,

which must be represented by a fixed-length vector of features.

This is a challenging task, as networks differ in size, and the

number of streams is not always the same. For this reason,

whenever there is a feature that refers to a specific switch,

port, stream, or anything with variable number of occurrence

in general, statistical properties of all such entities are used

instead. Each such characteristic is summarized by the follow-

ing properties: minimum, maximum, mean, standard deviation,

variance, coefficient of variation, skewness, and kurtosis. In ad-

dition, a probability density function of such properties can be

estimated by a histogram with 10-20 bins, which are carefully

chosen to include the majority of reasonable values considering

different scenarios for each property. The characteristics for the

static feature vector include 520 individual values:

(i) topology information: node degrees, betweenness central-

ity, closeness centrality,

(ii) stream quantities: number of streams, path lengths,

(iii) traffic specifications: data rates, frame sizes, bursts,

(iv) aggregated per-port data rates and bursts,

(v) the results of Eq. 1 for a hypothetical baseline configura-

tion with 20 priority levels, exponentially spaced between

100 ns and 128ms.

In particular, number (iv) refers to aggregated traffic volume

depending on the requested maximum latency, based on pre-

configured ranges. For example, the data rates of all streams

whose latency is within [250 μs, 500 μs] would be accumulated

for each port. Number (v) is a measure of load. A higher latency

bound in this hypothetical configuration indicates a higher load

for the latency range of the respective priority level.

Dynamic features for reinforcement learning. Reinforcement

learning models apply an iterative process and change the

current situation in the network via actions. These actions

include a slight increase or decrease of individual latency

guarantees. Based on the feedback from the environment, i.e.,

whether there could be more or less streams placed in the

network afterwards, these actions should push the configuration

towards the optimal value. As this is a dynamic scenario with

a varying situation, a few dynamic features are included to

support the decision process.

Dynamic features include the following characteristics re-

lated to the current situation:

(i) the result of the latency bound formula (Eq. 1) based on

the four currently selected guarantees C for each port and

each priority in the network,

(ii) for each priority, the number of streams that could suc-

cessfully be deployed,

(iii) the total number of successfully deployed streams,

(iv) the fraction of currently used bandwidth on each link,

(v) the amount of streams that cannot conduct stream reser-

vations because their latency requirements are higher than

the highest priority’s guarantee.

Those characteristics that are computed for each port in the

network (i and iv) are once again statistically summarized to

have a fixed width output for the feature vector.

E. Supervised Learning

1) Random Forest Classifier: The first supervised ML ap-

proach is a random forest classifier implemented in scikit-learn.

The generated ground truth is used to learn a representation,

which estimates the four priority classes by selecting one of

TABLE II
FINAL HYPERPARAMETERS FOR ALL METHODS.

Method Hyperparameters

Classification Features=All, Aggregator=Mean, Trees=30, Max. Tree Depth=10
Regression Layer1=1024, Layer2=1024, Layer3=1024, Batch Size=256
DQN Epochs=18, Episodes=50, Layer1=110, Layer2=99, Target Up-

date=450, Batch Size=250, α=0.0005, γ=0.8
Actor-Critic Epochs=16, Episodes=70, Layer1=96, Layer2=86, α=0.075, γ=0.88

20 pre-defined bins. These bins shall represent optimal latency

bounds and range evenly spaced from 0 to 1000 μs.
The data is split into 80% training samples and 20% test

samples. The four priority classes of the ground truth serve

as target classes. These target classes are balanced within the

training samples using bootstrapping and all data are scaled

between 0 and 1. The metric for evaluating the quality of

the model’s predictions is a custom accuracy metric, which

computes the accuracy between the four priority classes and the

four ground truth priority classes element-wise and returns the

minimum observed accuracy of all element-wise comparisons.

Finally, the hyperparameters are optimized using a grid search

and 3-fold cross-validation. The final tunable hyperparameters

for the random forest classification are shown in Table II

and include the dimensionality of the features (all 520 static

features), the number of trees in the forest (30), and the

maximum depth of the trees (10).

2) Neural Network Regressor: A neural network performing

a regression task is the second tested supervised ML approach.

Based on the input features, the neural network is supposed to

directly estimate the four priority classes.

For training of the neural network, the data is split into a

training set, validation set, and test set, where the shares of

the data for the sets are 60%, 20%, and 20%. Like before, no

feature selection is performed for this approach, so all 520 static

features are used, the target priority classes are balanced using

bootstrapping, and the features are normalized.

The architecture of the neural network consists of three

hidden layers with 1024 neurons each followed by a dropout

layer with a rate of 20%. All hidden layers use tanh as activation

function. The output layer uses four nodes, representing the

estimated priority classes, which are activated with the sigmoid

function. The number of nodes in the input layer correspond to

the input feature dimension. The neural network is implemented

with Keras and a Tensorflow backend.

The well-known Adam optimizer is used and the loss is

calculated with the mean squared error (MSE). The metrics

for evaluating the qualtiy of the model’s predictions are further

the mean absolute error (MAE), the mean absolute percentage

error (MAPE), and the cosine similarity. A batch size of

256 and a maximum of 1000 epochs are used for learning.

Additionally, an early stopping mechanism with a patience of

50 is implemented and the best model, i.e., the model with the

lowest observed loss, is stored.

F. Reinforcement Learning

1) Enviroment: Reinforcement Learning is expected to be an

appropriate method that approaches a decent configuration in

reasonable time. Therefore, this section proposes an interactive

environment built upon the framework that allows to apply

different RL methods to the problem.

The essential components of such an environment are the

action space, the state space, and the reward function. As the

objective is to identify an optimal configuration C∗, actions

represent adjustments to the configuration. The action space

is defined as A = (a0, a1, ..., a2c−1), where c is the number

of classes that are used by the framework. For every priority

class, the environment provides one action to increase and one

action to decrease the guaranteed per-hop latency of the class

by 10μs, respectively. To be precise, an action does not adjust

the absolute value, but rather the absolute distance between

class Ci and the next lower priority class Ci−1. This results

in an adjustment of ±10μs to the class Ci itself as well as

all higher priority classes. If the absolute distance between two

classes is less than 10μs, an action that would further decrease

the distance between both classes results in a no-op action. In

general, no-op actions are actions that are invalid in the current

state and therefore do not affect the environment.

Altogether, the state is represented by a vector of 76 selected

features from both the static and dynamic set. The static

features include topology-specifc features like the number of

sensors, controllers, and switches, and the network diameter.

Further, link-specific features like the mean link speed and

stream-specific features like the total number of streams in the

network are considered. In addition to these, a hypothetical

static example configuration with eight priorities is used to

compute bounds that represent the relative load of various

latency ranges between 25 μs and 10ms.

In contrast to the supervised ML approaches, RL allows

to incorporate dynamic features which are updated after each

action in the environment. The RL agent requires a reward

signal which allows the agent to learn the desired behavior.

Therefore, the reward function implements the optimization

objective which is to maximize the network capacity N .

Equation 2 defines a reward function that corresponds to the

percentage increase in capacity after adjusting the network

configuration, where |S| is the total number of streams and

Nt is the number of accepted streams after the t-th action.

rt =

{
Nt−Nt−1

|S| · 120 if Nt = |S|
Nt−Nt−1

|S| · 100 otherwise
(2)

If the agent can find an optimal configuration with Nt = |S|,
it is rewarded by an additional 20%. The environment provides

immediate rewards, the agent receives a reward signal after

every single action rather than at the end of an episode.

In RL, an episode of actions normally ends when a terminal

state is reached. But as the problem studied in this work is an

optimization problem, it is not trivial to determine if a state is

actually the terminal state with the best possible configuration

for a specific scenario. The terminal state is only obviously

optimal for the configuration Nt = |S|. For this reason, an

early stopping mechanism is applied, which prevents episodes

from continuing endlessly in case that it is impossible to reach

such an optimal terminal state.

At the beginning of an episode, framework and environment

are initialized with a topology and a set of streams S . The

initial configuration of the network is not chosen randomly,

but rather as a rough estimation of a configuration that would

match the given set of streams. This initial choice deserves

some consideration, because it can significantly speed up the

training process if there is already a reasonable initial network

configuration. For such a configuration, the actual occurring

per-hop latency requirements for all streams are consulted. Let

Δ = (δh(s) | s ∈ S) define an ordered list of all uniquely occur-

ring per-hop requirements. The initial network configuration C′
for p classes is then determined for class C0 by using the lowest

per-hop requirement of Δ, i.e., the first element of Δ, and for

the classes Ci=1...c−1 by using the floor(100 · i
c
) percentiles

of Δ. For c = 4 configured guarantees, the first element, the

25th percentile, the 50th percentile, and the 75th percentile of Δ
are chosen for the initial configuration.

Industrial networks are highly dynamic environments. Com-

munication varies in that endpoints exchange frames of different

sizes at different rates. Also, the structure and size of the

network can vary in that new connections are established

or new endpoints are added to the network. To account for

this, the agent is trained on a number of different network

topologies, and for each such topology, different sets of streams

are generated, each referred to as a scenario.

2) Deep Q-Network: The first applied RL method is the

Deep Q-Network (DQN), which also serves as a representative

for the group of off-policy learning methods. As an extension

to the well-studied Q-Learning method it has already been

successfully applied to various problems like video game con-

trol [38] or robotic control [39].

The input of the Q-Network corresponds to the state vec-

tor discussed above. The size of the input and output layer

correspond to the size of the state vector and the size of the

action space, respectively. ReLU activation is applied to the two

hidden layers and no activation is applied to the output layer.

This allows for negative output values, which is desirable for

the Q-Network as it approximates action-values. The values

estimate the cumulative future reward when taking an action

and represent the quality of the action.

According to [38], a target network should be used with an

architecture identical to the online network. The target network

is utilized to approximate the target value that is then used to

calculate the loss. The loss is computed with the mean squared

error (MSE). Based on the loss, an optimizer is used to compute

the gradient, which is then back-propagated through the target

network. The number of time steps after which the target

network is synchronized with the online network is regarded

as a tunable hyperparameter.

Methods like DQN require some exploration strategy like

ε-greedy. The idea is that, especially in early phases of the

training, the agent performs random actions with probability ε
in order to discover valuable state-action pairs. To account

for changing topologies and scenarios, the ε-greedy strategy

is adjusted so that exploration and exploitation are balanced

over all topologies and scenarios.

The hyperparameters are optimized using a fractional facto-

rial design [40]. The tunable parameters include the number of

epochs, the number of episodes, the learning rate, the discount

factor, the optimizer, the hidden nodes, the target update rate,

and the batch size. Table II presents the final value for each

hyperparameter. With a smaller number of input features, the

number of neurons per layer also needs to be decreased. In

contrast to the regression approach with more input features

and 1024 neurons per layer, the DQN layers contain only 110

and 99 neurons, respectively. The target network and the online

network are synchronized after 450 time steps.

3) Actor-Critic: The second RL method implemented in

this work is Actor-Critic, which serves as a representative for

the group of on-policy learning methods. A key difference to

the DQN implementation is the network architecture. While

DQN uses the Q-Network to approximate a single action-

value function, Actor-Critic utilizes both an actor network to

approximate a policy and a critic network that approximates a

state-value function. In general, the term actor-critic refers to

a group of algorithms and does not make an assumption about

the actual implementation of the actor and the critic.

This work implements Actor-Critic using a single shared

network for feature extraction and a split output layer for both

actor and critic. The approach is easy to implement, reduces

the number of trainable network parameters, and also ensures

better comparability since the network architecture resembles

that of DQN for the most part. Therefore, different results can

be attributed to the different methods of learning rather than

the different number of learnable parameters.

The size of the input layer, again, corresponds to the size of

the state vector. As with DQN, the network uses two hidden

layers. The output layer of the actor has a size equal to the

size of the action space while the output layer of the critic

has a fixed size of 1 and outputs a single state-value. ReLU

activation is applied to both hidden layers. The split output

layer, however, requires more consideration. For the critic

output layer, no activation is applied, because the output is

a state-value which can either be positive or negative based

on the expected cumulative reward. For the actor, however, the

output values correspond to a policy, which is a probability

distribution. For this reason, softmax activation is applied. This

ensures that output values are non-negative values within the

interval [0, 1] and that all output values sum up to 1. This

results in the desired probability distribution which represents

the current policy.

For the purpose of learning, a temporal-difference error is

calculated at each time step. The gradient is computed from

the sum of the actor loss and the critic loss and is then

back-propagated through the shared network. This results in

a simultaneous optimization of the policy and the accuracy of

the state-value.

Overall, the Actor-Critic method used in this work is more

0 10 20 30 40

Relative error [%]

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Classification

Regression

DQN

Actor-Critic

(a) Relative error CDF.

0 -200 201 -400 401+

Number of streams in the system

60

70

80

90

100

C
a
p
a
c
it

y
[%

]

Classification

Regression

DQN

Actor-Critic

(b) Relative maximum capacity.

Fig. 2. Results for linear topologies.

straightforward than the DQN method as it involves less imple-

mentation details and therefore introduces less tunable hyper-

parameters. The tunable hyperparameters involve the number

of epochs, the number of episodes, the neurons of the hidden

layers, and the learning rate. These hyperparameters are again

optimized using a fractional factorial design and the final values

can be seen in Table II. Compared to DQN, the Actor-Critic

network is slightly smaller with respect to the number of

neurons per layer. Further, the learning rate α is significantly

higher (0.075) and less epochs (16), but more episodes (70) are

required for training.

IV. RESULTS

This work utilizes two different data sets for training both

ML and RL models. The first one is a set of unique linear

network topologies with up to 10 switches and up to 50 sensors

per switch. The second data set includes unique tree topologies

with up to three branches, up to 10 switches per branch and

50 sensors per switch. In order to reduce computational cost,

topologies with more than 300 sensors are removed from both

data sets. As each sensor communicates with one controller

in a bidirectional manner, this makes for network topologies

with a maximum of 600 streams in the system. For evaluation,

400 scenarios are chosen from the linear set and the tree set,

respectively. It is assured that the test scenarios are not used

for training the models.

A. Linear Topology

First, the results for the scenarios with linear topologies

are presented. Figure 2a depicts a CDF for the differences of

the accepted number of streams of a model and the number

of accepted streams by the brute force algorithm for all test

scenarios and models, i.e., the relative error between the ground

truth and the model predictions is shown. The x-axis depicts

the error in percentage relative to the ground truth and the y-

axis denotes the fraction of scenarios observing such an error.

The light green line represents the results for the random forest

classifier and the dark green line shows the results for the neural

network regression. Further, the results for the DQN model and

for the Actor-Critic model are shown in light blue and dark

blue, respectively. It can be observed that the RL models are

able to place the same number of streams as the ground truth

for approx. 60% of the linear topology scenarios, while the

supervised learning techniques are only able to achieve this

for around 24% of the scenarios (classification). Further, the

Classification

Regression

DQN

Actor-Critic

0 10 20 30 40

Relative error [%]

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

(a) Relative error CDF.

0 -200 201 -400 401+

Number of streams in the system

60

70

80

90

100

C
a
p
a
c
it

y
[%

]

Classification

Regression

DQN

Actor-Critic

(b) Relative maximum capacity.

Fig. 3. Results for tree topologies.

maximum relative error is in particular for the RL methods

with approx. 14% (DQN) and 19% (Actor-Critic) low. Here,

the random forest classification provides the worst results as it

shows maximum relative errors of up to 40%. In general, these

results already indicate a superiority of reinforcement learning

methods over supervised techniques for TSN configuration.

To investigate the impact of the network size on the perfor-

mance of the RL and supervised models, Figure 2b illustrates

the performance of the models with respect to different network

sizes, here expressed by the number of streams in the system.

The figure presents the average percentage of placed streams

relative to the ground truth along with the 95% confidence

intervals in dependency of the number of streams in the system.

The x-axis, therefore, depicts the number of streams in the

system, while the y-axis shows the percentage of placed streams

relative to the ground truth, i.e., the network capacity. The bars

are colored according to the models and in alignment with

Figure 2a. The figure reveals that the RL methods are especially

effective for small scenarios with less than 200 streams in the

system. Here, the RL models perform identical to the brute

force algorithm and are able to place all streams. On the

other hand, the supervised techniques achieve only an average

network capacity of approx. 92%. For more than 200 streams

and less than 400 streams, the RL methods still outperform

the supervised techniques, however, they are no longer able

to provide the optimal results. Further, DQN starts to perform

slightly better than Actor-Critic, while the supervised tech-

niques perform similar to before. For more than 400 streams,

the performance of Actor-Critic drops significantly, while DQN

again shows the best performance of all models. The regression

and classification approaches perform similar, but slightly worse

compared to the smaller scenarios. Still, all presented models

are able to place more than 90% of the streams compared to

the ground truth even for the large scenarios.

When averaging the results over all linear topology scenarios,

it can be summarized that the DQN model provides the best

results with a 97.9% network capacity, followed by the Actor-

Critic model with 97.1%. The regression approach achieved a

network capacity of 94.5%, while the random forest classifier

could place only 92.8% of placeable streams.

B. Tree Topology

Next, the performance of the models is evaluated when

confronted with tree topologies. In contrast to linear topologies,

tree topologies contain a switch over which all traffic has to be

exchanged and which serves as a bottleneck in the network. The

reasonable configuration of this bottleneck switch complicates

the configuration task slightly.

Figure 3a resembles Figure 2a and shows the resulting error

CDFs for all models on the tree topology test set. It is visible

that all methods perform significantly worse for the tree topolo-

gies when compared to the results of the linear topologies. Now,

the RL models provide the optimal solution for approx. 25%

of the scenarios, while the supervised models can provide an

optimal solution for only 10% of the scenarios (classification)

or even less (regression). Further, the maximum relative errors

increased for most models. The lowest maximum relative error

is again shown by DQN with approx. 23%, followed by the

classification and regression approach with approx. 30% and

35%, respectively. The highest maximum relative error is this

time shown by Actor-Critic (38%).

As with the linear topologies, Figure 3b investigates the

impact of the network size on the the performance of the RL

and supervised models for the tree scenarios.

The figure reveals that the RL methods are especially effec-

tive for small scenarios with less than 200 streams. Here, the

RL models perform identical to the brute force algorithm and

are able to place all streams. On the other hand, the supervised

techniques achieve only an average network capacity of approx.

92%. For more than 200 streams and less than 400 streams,

the RL methods still outperform the supervised techniques.

However, they are no longer able to provide the optimal

results. With respect to the supervised models, it can be stated

that the random forest classifier outperformed the regression

approach notably for the medium and large networks, while the

performance for small networks can be considered similar. The

RL methods perform significantly better than the supervised

methods for small networks. The difference between RL and

supervised models gets smaller for medium-sized networks. As

with linear topologies, the performance of Actor-Critic drops

significantly below the performance of all the other models for

large networks. Here, the classification approach provides even

slightly better results than the DQN model.

Again, DQN outperforms all other models with an average

network capacity of 92.8%. In contrast to linear topologies,

the random forest classifier (90.8%), however, surpasses the

performance of the Actor-Critic model (89.3%) this time and

the worst results are shown by the neural network regressor

with an average network capacity of 87.4%.

C. Lessons Learnt

In summary, the presented results proved the successful

application of RL and supervised learning techniques to the

problem of SP configuration for linear and tree industrial

real-time networks. RL provided optimal results for small

linear networks and was able to outperform the supervised

ML models on small and medium-sized linear networks. For

linear networks, all models were able to provide capacities of

92%-97%. For the slightly more complex tree topologies, the

performance of all models dropped significantly. In particular,

the Actor-Critic model performed significantly worse on large

tree networks compared to the other models. The obtained

capacities in general ranged between 87% and 93%.

Nonetheless, Actor-Critic exhibited the advantage that the

model training took only 28% of the time required for the

training of the DQN model. This can be explained by the lack of

batch learning from memory for Actor-Critic. This advantage

makes Actor-Critic the more suitable model in the field. In

general, all models outperformed the brute force algorithm with

respect to the required configuration time significantly. Once

trained, the execution time of the ML heuristics is reduced to a

few seconds compared to multiple hours or days required for the

exhaustive algorithm. This emphasizes the fact that ML models

provide a more economic solution for TSN configuration.

Finally, the DQN model was able to outperform all other tested

methods on both the linear and tree test sets and thus proved to

be the best choice for dynamic SP configuration in linear and

tree networks.

V. CONCLUSION AND OUTLOOK

This paper presented a tool set for machine learning (ML)

assisted configuration of a real-time network with per-hop

latency guarantees. It applied four ML models to configure

the latency guarantee of each real-time traffic class such that

the number of accepted streams during resource reservation is

maximized. The training and evaluation scenarios include linear

and tree-like topologies, focusing on industrial scenarios with

sensor-controller communication patterns. The performance

comparison indicates an accuracy of roughly 90% for the

evaluated scenarios, with slightly better results obtained for the

linear topologies. These results show that the methodology is an

applicable approach towards efficient configuration of industrial

real-time networks.

The current implementation can be extended in various ways.

First, the training scenarios can be extended to include more

use cases and optimization targets. For example, the current sce-

narios maximize the total number of accepted streams, without

distinguishing the importance of individual streams, e.g., based

on their data rate. Second, the latency configuration can be

generalized further. Currently, each port is configured equally

for applicability reasons. This can be extended such that every

port receives its own configuration. In this case, streams cannot

be assigned to priorities automatically, and further decisions

must be made either during scenario definition or by the ML

model. Further, future work may include more TSN shapers and

take more decisions, such as selecting which shaper should be

used in the first place, and providing additional configuration

options for these mechanisms, such as idle slopes for the Credit-

Based Shaper. Finally, the feature set of the current ML model

assumes perfect knowledge of the later deployment. Oftentimes,

network topology and especially stream information is not fully

available during network planning, and decisions must be made

with rough estimates of expected loads. It could be challenging

to provide configuration guidelines without having specific sce-

narios in mind, especially regarding the reinforcement learning

approaches that rely on the environment’s feedback for their

decisions.

REFERENCES

[1] “IEEE Standard for Local and Metropolitan Area Networks – Virtual
Bridged Local Area Networks – Amendment: Forwarding and Queuing
Enhancements for Time-Sensitive Streams,” IEEE Std 802.1Qav-2010,
2010.

[2] “IEEE Standard for Local and Metropolitan Area Network – Bridges
and Bridged Networks – Amendment 25: Enhancements for Scheduled
Traffic,” IEEE Std 802.1Qbv-2015, 2015.

[3] “IEEE Standard for Local and metropolitan area networks – Bridges and
Bridged Networks – Amendment 14: Stream Reservation Protocol (SRP),”
IEEE Std 802.1Qat, 2010.

[4] “IEEE Standard for Local and metropolitan area networks – Bridges and
Bridged Networks – Amendment 31: Stream Reservation Protocol (SRP)
Enhancements and Performance Improvements,” IEEE Std 802.1Qcc,
2018.

[5] J. T. Wroclawski, “The Use of RSVP with IETF Integrated Services,” RFC
2210, Sep. 1997. [Online]. Available: https://rfc-editor.org/rfc/rfc2210.txt

[6] “IEEE Standard for Local and Metropolitan Area Networks – Bridges and
Bridged Networks – Amendment: Resource Allocation Protocol (RAP),”
IEEE Std P802.1Qdd, 2019.

[7] “IEEE Standard for Local and metropolitan area networks – Audio Video
Bridging (AVB) Systems,” IEEE Std 802.1BA-2011, pp. 1–45, 2011.

[8] C. Boiger, “Class A bridge latency calculations,” in IEEE 802 November

Plenary Meeting, 2010.

[9] “Time-Sensitive Networking Profile for Industrial Automation,” IEC/IEEE

60802/D1.2, 2020.

[10] “Time-Sensitive Networking for Fronthaul,” IEEE P802.1CM/D2.2, 2020.

[11] “Draft Standard for Local and Metropolitan Area Networks — Time-
Sensitive Networking Profile for Service Provider Networks,” IEEE

P802.1DF, 2020.

[12] “Draft Standard for Local and Metropolitan Area Networks — Time-
Sensitive Networking Profile for Automotive In-Vehicle Ethernet Com-
munications,” IEEE P802.1DG/D1.2, 2020.

[13] IEEE 802.1Q, “IEEE Standard for Local and Metropolitan Area Network
– Bridges and Bridged Networks,” IEEE Std 802.1Q-2018 (Revision of

IEEE Std 802.1Q-2014), 2018.

[14] IEEE 1588, “IEEE Standard for a Precision Clock Synchronization
Protocol for Networked Measurement and Control Systems,” IEEE Std

1588-2008 (Revision of IEEE Std 1588-2002), 2008.

[15] IEEE 802.1Qbv, “IEEE Standard for Local and Metropolitan Area Net-
works – Bridges and Bridged Networks – Amendment 25: Enhancements
for Scheduled Traffic,” IEEE Std 802.1Qbv-2015 (Amendment to IEEE

Std 802.1Q-2014)), 2016.

[16] IEEE 802.1Qav, “IEEE Standard for Local and Metropolitan Area
Networks – Virtual Bridged Local Area Networks – Amendment 12:
Forwarding and Queuing Enhancements for Time-Sensitive Streams,”
IEEE Std 802.1Qav-2009 (Amendment to IEEE Std 802.1Q-2005), 2009.

[17] IEEE 802.1Qcr, “IEEE Draft Standard for Local and Metropolitan Area
Networks – Bridges and Bridged Networks – Amendment: Asynchronous
Traffic Shaping,” IEEE P802.1Qcr/D2.1, February 2020, 2020.

[18] J. Specht and S. Samii, “Urgency-Based Scheduler for Time-Sensitive
Switched Ethernet Networks,” in 2016 28th Euromicro Conference on

Real-Time Systems (ECRTS), 2016, pp. 75–85.

[19] A. Grigorjew, F. Metzger, T. Hoßfeld, J. Specht, F.-J. Götz, F. Chen,
and J. Schmitt, “Bounded latency with bridge-local stream reservation
and strict priority queuing,” in 2020 11th International Conference on

Networks of the Future (NoF). IEEE, 2020.

[20] IEEE 802.1CB, “IEEE Standard for Local and Metropolitan Area Net-
works – Frame Replication and Elimination for Reliability,” IEEE Std

802.1CB-2017, 2017.

[21] IEEE 802.1Qdd, “IEEE Standard for Local and Metropolitan Area
Networks – Bridges and Bridged Networks – Amendment: Resource
Allocation Protocol,” 2018.

[22] R. Boutaba, M. A. Salahuddin, N. Limam, S. Ayoubi, N. Shahriar,
F. Estrada-Solano, and O. M. Caicedo, “A Comprehensive Survey on
Machine Learning for Networking: Evolution, Applications and Research
Opportunities,” Journal of Internet Services and Applications, vol. 9,
no. 1, p. 16, 2018.

[23] M. Usama, J. Qadir, A. Raza, H. Arif, K.-L. A. Yau, Y. Elkhatib,
A. Hussain, and A. Al-Fuqaha, “Unsupervised Machine Learning for
Networking: Techniques, Applications and Research Challenges,” IEEE

Access, vol. 7, pp. 65 579–65 615, 2019.

[24] A. Scalingi, F. Esposito, W. Muhammad, and A. Pescapé, “Scalable
Provisioning of Virtual Network Functions via Supervised Learning,” in
2019 IEEE Conference on Network Softwarization (NetSoft). IEEE, 2019,
pp. 423–431.

[25] M. Seufert, P. Casas, N. Wehner, L. Gang, and K. Li, “Stream-based
Machine Learning for Real-time QoE Analysis of Encrypted Video
Streaming Traffic,” in 2019 22nd Conference on Innovation in Clouds,

Internet and Networks and Workshops (ICIN). IEEE, 2019, pp. 76–81.
[26] B. Mao, Z. M. Fadlullah, F. Tang, N. Kato, O. Akashi, T. Inoue, and

K. Mizutani, “Routing or Computing? The Paradigm Shift towards Intel-
ligent Computer Network Packet Transmission based on Deep Learning,”
IEEE Transactions on Computers, vol. 66, no. 11, pp. 1946–1960, 2017.

[27] M. He, P. Kalmbach, A. Blenk, W. Kellerer, and S. Schmid, “Algorithm-
data Driven Optimization of Adaptive Communication Networks,” in
2017 IEEE 25th International Conference on Network Protocols (ICNP).
IEEE, 2017, pp. 1–6.

[28] N. C. Luong, D. T. Hoang, S. Gong, D. Niyato, P. Wang, Y.-C. Liang,
and D. I. Kim, “Applications of Deep Reinforcement Learning in Com-
munications and Networking: A Survey,” IEEE Communications Surveys

& Tutorials, vol. 21, no. 4, pp. 3133–3174, 2019.
[29] J. A. Boyan and M. L. Littman, “Packet Routing in Dynamically Changing

Networks: A Reinforcement Learning Approach,” in Advances in Neural

Information Processing Systems 6, J. D. Cowan, G. Tesauro, and J. Al-
spector, Eds. Morgan-Kaufmann, 1994, pp. 671–678.

[30] H. Ferrá, K. Lau, C. Leckie, and A. Tang, “Applying Reinforcement
Learning to Packet Scheduling in Routers.” 01 2003, pp. 79–84.

[31] S. Lin, I. F. Akyildiz, P. Wang, and M. Luo, “QoS-Aware Adaptive
Routing in Multi-layer Hierarchical Software Defined Networks: A Rein-
forcement Learning Approach,” in 2016 IEEE International Conference

on Services Computing (SCC), 2016, pp. 25–33.
[32] G. Stampa, M. Arias, D. Sanchez-Charles, V. Muntés-Mulero, and

A. Cabellos, “A Deep-Reinforcement Learning Approach for Software-
Defined Networking Routing Optimization,” CoRR, vol. abs/1709.07080,
2017. [Online]. Available: http://arxiv.org/abs/1709.07080

[33] N. Jay, N. Rotman, B. Godfrey, M. Schapira, and A. Tamar, “A Deep
Reinforcement Learning Perspective on Internet Congestion Control,” in
Proceedings of the 36th International Conference on Machine Learning,
ser. Proceedings of Machine Learning Research, K. Chaudhuri and
R. Salakhutdinov, Eds., vol. 97. Long Beach, California, USA: PMLR,
09–15 Jun 2019, pp. 3050–3059.

[34] Y. Nakayama, D. Hisano, T. Kubo, T. Shimizu, H. Nakamura, J. Terada,
and A. Otaka, “Low-latency Routing for Fronthaul Network: A Monte
Carlo Machine Learning Approach,” in 2017 IEEE International Confer-

ence on Communications (ICC). IEEE, 2017, pp. 1–6.
[35] T. L. Mai, N. Navet, and J. Migge, “On the Use of Supervised Machine

Learning for Assessing Schedulability: Application to Ethernet TSN,” in
Proceedings of the 27th International Conference on Real-Time Networks

and Systems, 2019, pp. 143–153.
[36] M. Gutiérrez, A. Ademaj, W. Steiner, R. Dobrin, and S. Punnekkat, “Self-

configuration of IEEE 802.1 TSN Networks,” in 2017 22nd IEEE Inter-

national Conference on Emerging Technologies and Factory Automation

(ETFA). IEEE, 2017, pp. 1–8.
[37] N. Desai and S. Punnekkat, “Enhancing Fault Detection in Time Sensitive

Networks using Machine Learning,” in 2020 International Conference on

COMmunication Systems & NETworkS (COMSNETS). IEEE, 2020, pp.
714–719.

[38] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou,
D. Wierstra, and M. A. Riedmiller, “Playing Atari with Deep
Reinforcement Learning,” CoRR, vol. abs/1312.5602, 2013. [Online].
Available: http://arxiv.org/abs/1312.5602

[39] S. Gu, T. P. Lillicrap, I. Sutskever, and S. Levine, “Continuous Deep
Q-Learning with Model-based Acceleration,” CoRR, 2016. [Online].
Available: http://arxiv.org/abs/1603.00748

[40] R. Myers, D. Montgomery, and C. Anderson-Cook, Response Surface

Methodology: Process and Product Optimization Using Designed Exper-

iments, 01 2016, vol. 705.

