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Abstract—Education Service Providers (ESPs) play a crucial
role in the digitization of education as they equip students and
teachers with reliable devices and provide high quality Internet
access at schools. This paper investigates four months worth of
continuous measurements conducted by an ESP using a large-
scale, passive, in-device Quality of Experience (QoE) monitoring
system deployed into a nationwide network of education-purpose
devices. These measurements cover more than 800 education
centers and about 4000 devices, used both in schools and at home.
Using this rich dataset, we present an exhaustive characterization
of the browsing behavior, and a quantification of the web and
video QoE in this educational context. Web QoE results showed a
better performance for school Wi-Fi networks compared to home
connections, suggesting that several issues may arise for ESPs
due to the increasing relevance of home-schooling caused by the
COVID-19 pandemic.

                                                  
                                              

I. INTRODUCTION

Nowadays, the Internet-supported educational paradigm has

become a reality, with students and teachers remotely access-

ing to digital contents and online platforms, which transform

the overall learning experience. In this context, the role of

Education Service Providers (ESPs) is indispensable, working

with the national education systems to help them implement

comprehensive reforms towards digitization. While ESPs are

not the same all over the world, they typically take care of

at least two essential services: deliver devices for students

and teachers (either laptops or tablets) and provide Wi-Fi

Internet access at schools. Thus, like Internet Service Providers

(ISPs), ESPs need Quality of Experience (QoE) monitoring to

analyze their services performance, as any degradation would

impact on the quality of education. An advantage of the ESPs

over ISPs, to face the lack-of-visibility problems that network

monitoring has, is that they have access to the users devices to

deploy application-layer QoE monitoring systems, providing an

augmented degree of visibility into the activity, behavior, and

performance of different applications.

In collaboration with Plan Ceibal [1], a major ESP which

leads a nationwide one-to-one computing program in Uruguay,

we implemented and deployed a passive web QoE monitoring

system directly within the end-devices. We collected measure-

ments from more than 800 education centers and about 4000

devices from teachers and students, who may use them both in

schools and at home. At schools, the QoE would depend on two

factors managed by the ESPs, the device and the Wi-Fi Internet

access. On the other hand, when the users are at home, they may

still use the devices provided by the ESP, but in that case they

rely on their own Internet connection. While the present study

was prior to the COVID-19 outbreak, the results of the analysis

for the latter case are very important for the current situation,

due to the increased relevance of home-schooling during the

pandemic.

A first study focusing on passive QoE monitoring in ESP

networks has been presented by us in [2], which was to the

best of our knowledge the first ESP study of its kind in general.

This work extends our previous work by elaborating in more

detail on the characteristics of web sessions in school and home

networks. Further, the monitored web and video QoE influence

factors enable a network-wise QoE comparison. Web QoE was

higher in schools than at homes, which can be explained by

the high-end Wi-Fi infrastructure at schools, compared to the

poorer quality of unplanned home networks. This fact raises

an alert for the ESP and the education system in the new

educational context given by the COVID-19 pandemic.

This work is therefore structured as follows. Section II de-

scribes related works on QoE and QoE monitoring. Section III

presents the implemented monitoring system and describes the

dataset. The characteristics of the monitored web sessions are

analyzed in Section IV, before the characteristics of QoE influ-

ence factors are investigated in Section V. Finally, Section VI

concludes and outlines future works.

II. RELATED WORK

Quality of Experience (QoE) of a multimedia system is in-

fluenced by context, user, system, and content level factors [3].

With respect to system factors of web browsing, response times

were identified as the most important QoE factor [4]. Thus, the

first web QoE models were based on page load time (PLT), e.g.,

[5]. Subsequently, refined approaches were proposed which are

based on the time until the visible portion of a web page has

been fully loaded [6].                          

                                                                                                 
                                                                                                                                                 



For video QoE, most works on (adaptive) video streaming

agree that initial delay, stalling, and quality adaptation are

the most dominant QoE factors [7]. Stalling, i.e., playback

interruptions due to buffer depletion, is considered the worst

QoE degradation [8], and should be avoided. Furthermore,

video streams should be played out with high visual quality

[9]. In contrast, initial delay impacts the QoE only slightly [5].

The monitoring of QoE-relevant KPIs has been widely ad-

dressed in the literature, normally focused on fixed networks

and considering in-network or network side measurements.

In [10], authors provide an overview on QoE-based network

monitoring approaches and their associated challenges.

Regarding in-network measurements, several works have

been investigating video QoE, such as [11], [12], which are

based on deep packet inspection (DPI). However, the wide

adoption of end-to-end encryption has turned previous DPI-

based approaches unreliable or even unfeasible, which moti-

vated a surge of papers focusing on the analysis of in-network

measurements through machine learning (ML) models. For

example, in [13]–[16], authors apply different machine learning

approaches to estimate the QoE or QoE-relevant metrics by

extracting features from the network. Some of these works ex-

clusively focus on video streaming, where they train ML models

on simple features from the stream of encrypted packets, such

as packet times, packet sizes, or throughput. Also for ML-based

QoE monitoring of web browsing, first approaches have been

proposed, such as [17].

The complementary approach is in-device application mea-

surements, which was investigated in several works. For exam-

ple, [18] followed this approach for YouTube QoE monitoring,

relying on in-browser tools to directly collect KPIs such as

playback delay, stalling events, or video resolution. YoMoApp

[19], [20] passively measures QoE-relevant features of YouTube

in smartphones.

The advantage of application-side monitoring is that it pro-

vides accurate measurements for QoE assessment, as these can

be directly observed, without the need of additional estimation

or mapping approaches. However, only rarely devices and

applications can be accessed for such kind of monitoring.

This is why the presented QoE monitoring of a nationwide

educational service provider brings valuable insights into web

browsing and its QoE.

III. METHODOLOGY

The passive QoE monitoring system is based on a Chrome

browser plugin, as this is the most popular browser worldwide

- and in particular in Uruguay, with a share of more than

80% according to [21]. The plugin generates an anonymized

user ID and collects for every web page accesed the browsing

timestamp, the URL, and page load timing information. If

a video element is embedded, the plugin will periodically

record the video streaming progress every 250ms (e.g., current

playtime, buffer, player state, video resolution, video id, screen

resolution, advertisement clips) in a YoMoApp-style log [19],

[20], [22]. Finally, the plugin process the video logs to compact

the streaming information and extracts the QoE metrics for each

TABLE I: Distribution of the web browsing and video QoE

measurements when devices are used at schools.
Web QoE Video QoE

Schools Records Schools Records

Elementary and
Primary Schools

497
(61%)

429,576
(52%)

444
(65%)

95,496
(62%)

Secondary
Schools

208
(26%)

284,347
(34%)

163
(24%)

42,441
(27.6%)

Technical
Schools

86
(11%)

109,993
(13%)

61
(9%)

14,991
(10%)

Teacher Training
Centers

18
(2%)

6,156
(1%)

12
(2%)

596
(0.4%)

video (e.g., initial delay, stalling events, resolution changes).

The QoE measurements for both web browsing and video are

sent to a centralized server, which stores them in a database.

The QoE monitoring system was deployed in a real-world

educational scenario, installing the described plugin in the

laptops handed over to teachers and students by Plan Ceibal [1],

who used them both in schools and at homes. The users gave

their consent to collect the anonymized data from their devices,

which was handled according to the Uruguayan and European

privacy protection legislation. The measurements were collected

during the last four months of 2019, which corresponds to the

end of the school year in Uruguay, and also the time of greatest

network usage at schools [23], [24]. The web browsing QoE

dataset has 5,641,034 records corresponding to 3,887 unique

devices, while the dataset for video QoE has 678,549 records

from 3,258 unique devices. As expected, most of the users

with web navigation data also have video data (90%), given

the current popularity of such content.

The data was collected from 84,772 different IP addresses, of

which only 818 (1%) correspond to schools, but they account

for almost 15% of the records in the dataset (the distribution is

shown in Table I). All schools have high-end Wi-Fi Internet

access and the backbone is an ISP broadband optical fiber

connection. With respect to the geographic distribution, the

dataset includes information from the 19 different provinces

of Uruguay. Most of them are concentrated in the two largest

ones (Montevideo and Canelones) which together have 43% of

the schools and 42% of the QoE records.

The rest of the IP addresses correspond to residential ser-

vices, and were analyzed via reverse lookups. The majority

of the IPs (85%) are fixed services from the public ISP (who

has the monopoly on wired connections), while 14% are from

mobile services of the three major operators in the country,

and the remaining 1% correspond to other services. For other

networks that do not correspond to schools, we can only know

if the backbone is fixed or mobile, but we do not know if the

devices connect to the Internet using Ethernet or Wi-Fi, but

we assume that most of them use the latter, as it is actually

the most common access technology at homes. It is worth to

mention that we do not have any data of other devices usage

(e.g. smartphones), neither in schools nor at homes.

The dataset collected for video playback QoE includes in-

formation from 65.531 different IP addresses, of which only

685 (1%) are from schools. The total number of video QoE

records corresponding to Plan Ceibal sites is 153,935 (almost

                                                                                                 
                                                                                                                                                 



(a) Per hour of day. (b) Per day of week.

Fig. 1: Temporal aspects of browsing.

(a) Session duration. (b) Session inter-arrival times.

Fig. 2: Web session characterization.

7% of the total). Repeating the same analysis done for the web

browsing dataset, we find similar results for the distribution

of data among schools, which is also presented in Table I.

Concerning the geographic distribution, in this case Montevideo

and Canelones account for 292 schools with 63,477 records

(41%), while the rest of the country totals 393 schools with

90,458 records (59%). We shall recall that in all cases, for

both web browsing and video, the devices that collected the

data were the laptops provided by Plan Ceibal to students and

teachers, so all the analysis carried out in our study corresponds

to the same type of device.

IV. CHARACTERISTICS OF WEB SESSIONS

The temporal aspects of browsing are depicted in Figure 1.

To help the interpretation of the results, it is worth to note that

schools in Uruguay typically have a regular part-time schedule

(from 8am to 12am or from 1pm to 5pm), while some schools

have full-time schedules (from 10am to 5pm). Figure 1a shows

the amount of page visits per hour of day overall (blue), as

well as split into pages accessed from school networks (orange)

and home networks (violet). In this case, two phases can be

detected, namely, the time from 7am to 7pm, in which the

school networks are utilized, and the time from 7pm to 7am, in

which basically no pages are accessed from school networks.

In the first phase, the school networks see an increasing amount

of page visits during the morning with the peak between 9am

and 10am (i.e., about halfway through the morning shift), then

a drop during midday, an afternoon peak at 2pm (i.e., at the

middle of the afternoon shift), and a gradual decrease of page

visits towards the end of the phase. On the other hand, the

amount of page visits at homes is strictly increasing from 6am

to 2pm, where it saturates until the end of the phase.

In the second phase starting from 7pm, the amount of page

visits further increases to a peak at 9pm before it declines

during the night hours towards the minimum at 5am. Figure 1a

also shows as dashed lines how many of the pages delivered

video content, i.e., web pages from which a video was actually

streamed and played out in the browser. It can be seen that only

few videos were streamed from school networks, which shows

that Internet videos are not very widely used for education

or entertainment in breaks. In home networks, the amount of

page visits for video streaming follows the general trend and

accounts for up to one third of the page visits.

Regarding the day of the week, Figure 1b also shows two

phases. The first phase is from Monday to Friday, in which

page visits from school networks stay on the same level with

a low level of video streaming in school networks. In the

same time range, page visits from home networks slightly

drop from Monday to Wednesday, and then increase towards

Friday. The second phase corresponds to the weekend, in which

almost no pages are accessed from school networks. However,

a high number of page visits and also slightly increased video

streaming can be observed from home networks. It has to be

noted that these browsing patterns do not generalize to all users

and all devices, but it has to be kept in mind that the educational

laptops, which monitor the QoE, are mostly used by students

and teachers. This is why some general activity patterns of

students and teachers, e.g., no school during weekends or

decreasing activity in school networks in the afternoon, can

be found in Figure 1. Nevertheless, it can be observed that,

with respect to browsing, the educational laptops were mostly

used outside of schools.

It has to be noted that no significant differences could

be observed in terms of user behavior between the laptop

usage in home networks with fixed or mobile backbone. Thus,

throughout this paper, we just focus on the differences between

school and home networks.

For the analysis of web sessions, the single page visits have

to be mapped to sessions first. As proposed in literature [25]–

[27], a 30 minutes threshold as think-time is used. This means

that a web session ends if a user does not request a new web

page within 30 minutes after the last web page request. This

classification approach results in 209,020 different sessions by

3,887 users in total, so every user initiated around 53 sessions

on average. Figure 2a analyzes the observed session duration,

which is computed as the time between the first webpage

request and the unload of the last webpage of a session. The

x-axis shows the duration in minutes and the y-axis indicates

the value of the CDF. The distribution of the session duration in

school networks is depicted as dashed orange line, and ranges

from a few seconds up to a few hours. To exclude some extreme

outliers, the 95th percentile, which corresponds to 4.5 hours, is

investigated. Except for the ca. 10% sessions with very short

duration, an almost uniform distribution of the duration can be

observed up to the 60th percentile, i.e., up to 45 minutes, which

is the typical duration of a school lesson. Afterwards, the CDF

shows a slight bend and flattens for larger session durations.

When comparing sessions in home networks (solid violet), it

can be seen that sessions at schools (dashed orange) show a

generally shorter duration, which could be due to time limited

                                                                                                 
                                                                                                                                                 



TABLE II: Top domains per network with their total traffic share in percentage.

Network 1st Domain 2nd Domain 3rd Domain 4th Domain 5th Domain

School Google (19.11%) PortafolioDocente (12.89%) Alumnos.Sea (7.33%) Ceibal.Schoology (5.82%) YouTube (4.43%)
Home Google (19.26%) YouTube (11.85%) Facebook (4.56%) Instagram (3.36%) Ceibal.Edu (2.86%)

usage of the educational laptops during classes.

Figure 2b shows the corresponding CDFs of the inter-arrival

time of sessions, i.e., the time between two consecutive session

starts. The CDF for the home networks grows very fast up to

the median at 119 minutes, after which the CDFs flatten. For

sessions in school networks, the median is at 159 minutes and

in the following region between 300 and 600 minutes the CDF

flattens more strongly than for the home network. The reason

is that such breaks between sessions are not very common for

students and teachers. Instead, very often long breaks occur

between the end of school and the start of school at the next

day, which are in the range of 600 and 1380 minutes. This

can be seen from the CDF, which shows an almost linear

increase in this region. Breaks of shortly below one day (1440

minutes) are more frequent and indicate regularities in the

student or teacher’s schedule, and larger breaks up to three

days (4320 minutes) can also be observed. These are mostly

due to weekends, when there are no classes.

With respect to the number of page loads issued by a user,

the analysis revealed that slightly more page loads are issued

over school networks. This might be a side effect of the low

amount of video streaming or it might be due to explorative

tasks in class (e.g., information search and reading). However,

a similar stay duration on the single pages for both networks

could be observed. This finding is not surprising, given the fact

that the behavior of the same set of users was monitored in all

networks. Thus, our results suggest that the browsing behavior

of users is independent of the used access network.

It is worth to note that the educational laptops were not

only used for school activities, but could be freely used by

students and teachers. Table II lists the top domains per

network and their total traffic share. Thus, the most popular

websites in schools were the search engine Google (19%),

PortafolioDocente (13%), which is an administrative tool

for teachers, and Alumnos.Sea (7%), which is a learning

assessment system. In the home networks, we also observe that

Google is the most frequent visited domain. Further, we ob-

serve that social networks are more popular showing YouTube,

Facebook, and Instagram in the top five domains. More-

over, the appearance of Ceibal.Edu (main webpage of Plan

Ceibal) shows that students and teachers also access educational

resources outside of schools, e.g., to study/work from home,

and the appearance of Hestia.Mides (0.6%), which is a

website of the Uruguayan social development ministry related

with support programs for low-income families, in the top 20

domains shows that also parents of the school children use the

educational laptops.

Table III presents the parameters a, b, c of simple exponential

(f(x) = a·exp(−b·x)+c) or logarithmic (f(x) = a·log(b+x)+
c) fittings for the observed characteristics of web sessions. The

Fig. 3: Page load time distribution.

high coefficient of determination R2 indicates that the goodness

of the fits is very high, i.e., the fittings accurately resemble

the observed data. These fittings can be used to simulate or

emulate realistic browsing on laptops in future research works.

Note again that the fittings for home networks include observed

web sessions from home networks with both fixed and mobile

backbone, as they only showed very small differences.

To sum up, web sessions in school networks behave dif-

ferently because of the different context of browsing and

institutional peculiarities, such as time-limited school lessons.

We analyzed these characteristics and provided models, which

can be used to simulate or emulate realistic web sessions in

home and school networks in network management studies.

V. CHARACTERISTICS OF QOE INFLUENCE FACTORS

Next, the monitored QoE influence factors are investigated in

detail to evaluate the network performance of school networks,

and compare it to home access networks. Figure 3 analyzes the

observed page load times during the study with respect to the

used network. It includes the CDF of the page load times of the

school network (dashed orange) as well as the CDF for home

networks (solid violet). Note that the CDFs include the page

load times of all sub-pages of a domain.

The school CDF shows an almost uniform distribution of

the PLTs until around 3.4s, which corresponds to 68% of the

page loads. The mean and median PLT of the school networks

are 4.6s and 2.2s, respectively. In contrast to the school CDF,

the CDF for the home networks exhibit significantly higher

PLTs. In particular, the home networks show a significant worse

performance than the school networks, with a mean PLT of

6.8s and a median of 3.6s. Note that the mix of browsed pages

is rather different between school and home networks since

much more videos are watched in home networks. However,

the general trend is confirmed when comparing only the same

content. For example, the average PLT of Google, which is

the most popular website in both networks, is 3.03s in school

networks, but slightly higher in home networks with an average

PLT of 3.45s. A possible reason to explain this difference is that

the Wi-Fi access at schools corresponds to a planned network

with high-end equipment, while at homes the Wi-Fi is usually

                                                                                                 
                                                                                                                                                 



TABLE III: Fittings of the characteristic distributions of web sessions in school networks and in home networks.

Metric Fitting Function Param. - School R
2 - School Param. - Home R

2 - Home

Session Duration EXP [a=-0.963, b=0.020, c=1.015] 0.998 [a=-0.958, b=0.016, c=1.019] 0.998
Page Load Count EXP [a=-1.018, b=0.055, c=0.978] 0.998 [a=-0.936, b=0.071, c=0.946] 0.994
Page Stay Duration LOG [a=0.165, b=-0.696, c=0.052] 0.963 [a=0.154, b=-0.674, c=0.066] 0.972

(a) Time characteristics. (b) Streaming events.

(c) Stalling ratio. (d) Average video resolution.

Fig. 4: Video streaming characterization.

of poorer quality and without planning (e.g., consumer-grade

WiFi routers, no channel and Tx power management to reduce

interference between neighboring APs). Additionally, users

might have bandwidth-limited data plans for Internet access.

When splitting the residential services into networks with fixed

and mobile backbone, it could be observed that networks with

mobile backbone gave slightly worse page load times, which

was expected due to the technology characteristics. However,

these differences were marginal.

The monitored video streamings are characterized in Fig-

ure 4. The distributions for the playback length of the watched

videos, the length of the initial delay, and the total stalling

length are depicted in Figure 4a as CDFs for both networks.

Note that the x-axis denotes the time in seconds. The distribu-

tion belonging to the school networks is depicted as a dashed

line, while the home network distribution is denoted with a

solid line. The video playback length (blue) ranges from a few

seconds up to around 30 minutes. Streaming sessions in home

networks last on average 1.5 minutes longer than streaming

sessions in school networks. Around 91% of the streaming

sessions lasted for less than 15 minutes in home networks,

while in school networks 95% of the sessions lasted less than

15 minutes. This can be explained by the fact that the majority

of videos has been watched on YouTube, i.e., mostly short clips.

The CDFs for the length of the initial delay (orange) show

that around 76% of the users experienced an initial delay of less

than 2 seconds, which can be considered excellent. In general,

the length of the initial delay never exceeded 8 seconds and

no difference between the access networks could be observed.

Most of the users never experienced waiting times caused by

stalling (green) in both networks. In general, the distributions

for both networks look very similar, whereby the stalling events

in home networks last approx. 0.18s longer than in school

networks.

Figure 4b presents the number of stalling events and the

number of quality changes (orange) observed within the videos

for both networks. With respect to stalling events, it can be

observed that video streaming in school networks resulted in

less stalling events than in home networks. For home networks,

71% of the video streamings suffered no stalling event, while

this applies to approx. 75% of the school network users. This

trend is also visible for one or more stalling events. The CDFs

for the number of quality changes show a very similar behavior.

In around 80% of the videos no quality change was observed

and only 3% of users experienced two or more quality changes.

The CDF for the stalling ratio in the video streamings with

stalling is shown in Figure 4c. For a majority of views, the

stalling ratio is close to 0 for both CDFs, which indicates that

stalling disturbed the corresponding users usually only shortly.

Interestingly, the stalling ratio is generally lower with home

network access due to higher video playback length.

Finally, Figure 4d displays the CDFs for the played out

video qualities in school networks and home networks. The

x-axis depicts the average resolution of the video in pixels.

Most videos were played out in 360p, 480p, or 720p, while

only a small share of videos used a resolution of 144p and

240p. Further, full HD videos were played out in approx.

7% of the cases. This applies to both networks. Compared to

home networks, the amount of played out 360p videos is much

higher in school networks. On the other hand, the share of

HD videos is larger in home networks. The obtained video

streaming characteristics match the findings of other works

analyzing mobile YouTube QoE, e.g., [20], [28]. Compared to

mobile YouTube QoE, the number of stalling events and quality

changes are similar for fixed YouTube QoE. However, the mean

played out resolutions are much higher for fixed networks.

All in all, our analysis of QoE influence factors suggested

that the school networks provided a better performance for both

web browsing and video streaming.

VI. CONCLUSION AND OUTLOOK

The increasing amount of Internet-supported education re-

quires reliable devices and high quality Internet access for

successful learning experiences. Therefore, Education Service

Providers (ESPs) play a crucial role and are expected to

guarantee a high QoE for teachers and students. A nationwide

QoE measurement campaign was conducted in collaboration

with a major Uruguayan ESP, in which more than 800 schools

                                                                                                 
                                                                                                                                                 



and about 4000 devices were monitored. All monitored devices

were equipped with a browser plugin which allowed the moni-

toring of user behavior and key performance indicators (KPIs)

of web browsing and video streaming.

The monitored data showed that the Internet usage from

school networks is very different compared to the activity at

homes. Browsing sessions in schools were slightly shorter,

which could be due to the time limitation of lessons, and

showed longer and more regular inter-arrival times, which could

be influenced by the routine time spent in schools and the

class schedule. Also, the number of accessed pages during

a session and the mix of browsed pages showed differences.

The majority of the monitored videos were watched at home,

whereby the type of content differed from school networks.

In school networks most videos were watched with YouTube,

while at home other service providers like Netflix were used. In

addition to the characterization, models were provided, which

can be used to simulate or emulate realistic web sessions in

home and school networks in network management studies.

The QoE influence factors were investigated and it was found

that school networks provided a better performance for web

browsing. This did not come as a surprise, since schools Wi-

Fi infrastructure corresponds to planned networks with high-

end equipment, while at homes the Wi-Fi is usually of poorer

quality and without planning. In future work, the relationship

between QoE and user behavior will be further investigated.

However, different metrics and dedicated studies will be needed

to investigate this relationship in full detail. Moreover, as the

bring your own device (BYOD) effect has increased a lot during

the last years, methods will have to be developed to estimate the

QoE of users with their own devices. Additionally, models will

be required to estimate the QoE across devices, i.e., when two

or more devices are used in parallel, e.g., educational laptop

and personal smartphone.
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