
High Performance Network Metadata Extraction
Using P4 for ML-based Intrusion Detection Systems

Nicholas Gray, Katharina Dietz, Michael Seufert, Tobias Hossfeld
University of Würzburg

Würzburg, Germany

{nicholas.gray, katharina.dietz, michael.seufert, tobias.hossfeld}@uni-wuerzburg.de

Abstract—Today’s communication networks process an increas-
ing amount of trafc, while simultaneously providing services to
a larger and more diverse quantity of devices. This enhances the
complexity of the network and imposes a larger attack space,
impacting network management and security efforts. Deployed
hardware middle-boxes, likerewalls and Intrusion Detection
Systems (IDSs) often lack theexibility to adapt to this dynamic
environment, which Network Function Virtualization (NFV) ad-
dresses by implementing these services in software. Yet, this may
impose a bottleneck, due to the absence of hardware acceleration.
To mitigate this drawback, the functionality can be ofoaded to
programmable hardware, using P4. In this work we implement
an IDS, capable of operating in core and backbone networks up
to100Gbps. This is achieved by using the hardware acceleration
of P4-enabled Intel© TonoTM switches for high performance
metadata extraction, in order to train an ML-based detection
engine. The system is evaluated regarding its throughput and
obtainable aggregation levels as well as its accuracy for detecting
a variety of network attacks.

Index Terms—P4, Machine Learning, Intrusion Detection,
High Performance Networking, Data Plane Development Kit
(DPDK), Network Function Virtualization (NFV)

I. INTRODUCTION

Driven by the expanding impact of recent trends like IoT,

Industry 4.0 and 5G, modern communication networks are

subject to an everlasting increase of network trafc and number

of connected devices as well as a larger variety of supported

applications [1]. Therefore, the overall complexity is augmented

and network management and security have to be constantly

adapted, as the sophistication and amount of cyber attacks

against these systems is on the rise [2].

To cope with the dynamics of these threats, proprietary

hardware-based defenses, i.e.,rewalls, are transformed to

software-based solutions to provide a higher degree ofexibility

and to ease their deployments within cloud environments.

Furthermore, additional defensive barriers are established and

aggregated to form Security Information and Event Manage-

ment (SIEM) systems to assist in the process of anomaly

and zero day detection. Advances in theelds of Articial

Intelligence (AI) and Machine Learning (ML) have further

evolved these system by enhancing the accuracy and their

ability of identifying prior unknown attacks.

Yet, in contrast to their hardware-based counterparts, which

rely on Application-Specic Integrated Circuits (ASIC) for

fast packet processing, software-based solutions may impose a

bottleneck [3] on to the network. This is especially the case for

high bandwidth core and backbone networks, as every single

packet needs to be inspected to provide an adequate degree of

protection. To tackle this challenge, a possible solution is to

incorporate Software-dened Networking (SDN) to ofoad

the functionality to programmable networking devices. In

this context, the network programming language P4 and its

supporting platforms like the Intel© TonoTM are gaining an

increased popularity. An experimental approach called In-band

Network Telemetry (INT) [4], [5] already incorporates P4

for network monitoring purposes, by using the programmable

switch for metadata extraction and aggregation.

This raises the question if P4 can be as well applied to

security related systems, hence providing the scalability needed

for an ML-based Intrusion Detection System (IDS), which is

deployable in high bandwidth networks.

The contribution of this work is a) the design and imple-

mentation of an IDS using programmable switches as hardware

accelerators, b) an in-depth evaluation regarding the achievable

throughput and metadata aggregation of each component in

high bandwidth networks up to 100Gbps and c) a comparison

of the derived ML detection model to the IDS Suricata [6].

This work is structured as follows. Section II and III give

an introduction to the relevant background and establish an

overview of the related work, respectively. In Section IV the

system design and technical limitations of the P4-enabled hard-

ware are detailed. After specifying the testbed and measurement

parameters in Section V, the evaluation results of the system

are given in Section VI. A summary and outlook to future

work is described in Section VII.

II. BACKGROUND

In this section we provide the required background to the

concepts and technologies used within this work.

Traditionally, telecommunication service providers (TSP)

deployed specialized and proprietary middleboxes within the

data path of their networks to implement load balancers or

rewalls [7]. This resulted in increasing capital expenditures

(CAPEX) and operational expenditures (OPEX), as higher

trafc demands had to be met.

Network Function Virtualization (NFV) tries to mitigate these

negative effects by deploying network functions as software-

Fig. 1: Simplied P4 abstract forwarding model.

based solutions on Commodity-Off-the-Shelf (COTS) hardware,

hence providing a higherexibility by accelerated development

cycles and decreased costs.

Yet, relying on COTS servers, NFV induces a high overhead

on per packet operations, due to the lack of specialization. As

this results in performance impairments, more sophisticated

packet processing technologies have emerged to address these

issues [8]. For example, the Linux kernel has been optimized in

regards to its interrupt moderation capabilities and frameworks

like the Data Plane Development Kit (DPDK) bypass the

networking stack of the operating system to provide direct

access to the network interface card (NIC).

Another solution is to ofoad the functionality to pro-

grammable switching hardware. In this context, the program-

ming language Programming Protocol-Independent Packet

Processor (P4) [9] has gained increased interest within the

research community. It provides domain specic programming

constructs, which are optimized and streamline the development.

As P4 aims to be deployed on programmable switching chips

it species the processing architecture as depicted in Figure 1.

Here, each incoming packet is subject to a processing

pipeline. In therst step the packet is parsed according to the

header denitions and the order is specied by a parse graph. As

these denitions are adjustable by the programmer, P4 enables

the development of new protocols from scratch beginning with

the data link layer. Then, the extracted information is matched

against a set of tables, which dene and apply specic actions

to the packet, e.g., port selection or modications. Whereas

the actions and matchelds need to be specied at compile

time, their entries can be altered and congured at run time

via an interface to the control plane. Subsequently the packet

is transferred to the buffer and queuing module. Before the

packet is emitted through the selected port, it is once again

subject to a set of egressmatch & action tables, which are

similar to those of the ingress.

The Intel© TonoTM chip is based on the Protocol-

Independent Switch Architecture (PISA) [10] and is one

compliant implementation of the aforementioned architecture.

PISA augments the reference architecture by implementing a

packet replication engine and trafc manager within the buffer

and queuing module as well as providing a parser before

and a deparser after the ingress and egressmatch & action

tables. Whereas therst augmentation enables the ability to

clone and recirculate packets, the second adaptation allows for

resource sharing. In addition, the architecture provides access to

Static Random-Access Memory (SRAM) and Ternary Content

Addressable Memory (TCAM) as well as certain arithmetic

operations within its Match-Action Units (MAUs).

As the sophistication of attacks against computer networks

is rising, a singlerewall is no longer a sufcient protection.

Hence, additional systems such as Intrusion Detection Systems

(IDS) are deployed. Sharing the common goal of detecting

and logging a myriad of attacks, different implementations

and categories of these systems exist [11], [12]. As the IDS

is required to inspect the communication it can either be

deployed on every host (HIDS) or in a central location within

the network (NIDS), which has the advantage of being able to

correlate attacks across multiple devices. An IDS can be further

classied by the employed detection mechanism, e.g., signature

or anomaly based. In contrast to signature based detection

mechanisms, anomaly based solutions are able to identify

previously unseen attacks. This category has largely beneted

from the recent advances in theelds of Articial Intelligence

(AI) and Machine Learning (ML). Especially, supervised

learning algorithms, i.e., decision-tree based algorithms have

proven to provide viable classier models. At last, frameworks

like Scikit-learn [13] make these algorithms available to a

broad community of developers.

In this work, we leverage these recent developments and

investigate the applicability of softwarized network functions

for NIDSs in today’s high speed networks. For this, we

implement a NIDS, which relies on a programmable P4 switch

for feature extraction, on DPDK for feature collection and

Scikit-learn for ML-based anomaly detection, and evaluate its

performance in a 100Gbps testbed.

III. RELATED WORK

In this section we detail the related work and describe

similarities and differences to our approach.

Several performance evaluations of efcient packet process-

ing technologies have been conducted, as they are key elements

affecting the performance of an IDS [11]. In [14] the signature-

based IDSes Suricata and Snort are evaluated, showing that

their performance decreases with increasing load as these

systems rely heavily on the available CPU resources. In [15]

an anomaly-based IDS is proposed, which uses pre-aggregated

Netow data in order to handle trafc up to 1Gbps. A similar

approach is discussed in [16] which evaluates different machine

learning algorithms against 18 features. The authors conclude

that decision-tree algorithms produce among the best results

and that the applied packet processing technology is the limiting

performance factor. In this work, we compare the detection

accuracy of our anomaly-based IDS against the state-of-the-

art IDS Suricata. In contrast to the presented anomaly-based

IDSes, we evaluate our system with speeds up to 100Gbps

and use P4-enabled switches to extract and pre-aggregate 31

ow-based features.

The impact of specialized programmable hardware to in-

crease the packet processing performance is investigated in [17]

and in [18] using Field Programmable Gate Arrays (FPGAs)

and Graphics Processing Units (GPUs), respectively. Although

enhancing the performance of NFV solutions, bottlenecks may

occur while transferring the data to and from the NIC. To

mitigate this effect FPGA-based SmartNICs provide a direct

network connector, which is wired to the processing units. The

authors of [19] propose a framework which enables the shared

usage of a SmartNIC across several NFV solutions with speeds

up to 200Mpps. Focusing rather on the accessibility than the

performance gains of SmartNICs, [20] ports eXpress Data

Path (XDP) programs to the platform. Another approach to

decrease the steep learning curve of FPGA-based SmartNICS

is taken by [21], in which a P4 compiler is introduced for the

NetFPGA SUME platform. For the IDS solution presented in

this work, we incorporate the the Intel© TonoTM platform

as packet processing accelerator, since it provides direct P4

support and is able to process100Gbps.

The use of P4-enabled switches for monitoring purposes

is demonstrated by the In-band Network Telementry (INT)

framework [5]. The main goal of the framework is to extract

metadata from the switch, e.g., queue utilization orow

counters. The extracted information is then added as header

to the packet and may be processed by an external instance.

Following this approach, [22] and [23] implement a heavy

hitter detection, which is able to operate at line rates up

to 100Gpbs. In a security related context, mechanisms for

detecting Distributed Denial of Service (DDoS) attacks by

employing P4-enabled switches are presented in [24], [25]. A

more complete approach is taken by P4ID [26], which compiles

stateless intrusion detection rules directly to a P4-enabled

switch, while redirecting a certain amount of packets perow

for stateful inspection to an IDS, hence reducing the overall

load on this system. The aspect of aggregatingow-based

data is shown in [27], which utilizes hash collisions during

the recording of statistics as trigger to export the collected

metadata. In contrast to INT, we emit the extracted data out-of-

band via a dedicated port due to security considerations. Yet,

we employ a similar metadata extraction technique, which is

combined with the aforementioned aggregation mechanisms. At

last we aim for implementing a full IDS, capable of detecting

a wider variety of attacks instead of focusing solely on DDoS.

Whereas the goal of reducing the load on the decision making

instance of the IDS is shared between P4ID and this work, we

focus on reducing it by simply forwarding the relevant and

aggregated features instead of the full packets.

IV. SYSTEM DESIGN & LIMITATIONS

In the following, we detail the system design of the proposed

IDS solution and provide insights into the details of the

implementation. Furthermore, we discuss the applied solutions

to limitations imposed by the targeted P4 platform.

System Design. The goal of the proposed NIDS is to provide

a high detection accuracy for a broad range of network attacks

by inspecting each packet in high bandwidth networks. An

Fig. 2: Overview of the proposed NIDS.

overview of the system components and their interconnections

is depicted in Figure 2.

The system consists of four main modules, e.g., the Con-

troller, Receiver, Detection and Switch Application, which

are publicly available1. To achieve the required performance,

the system ofoads the main functionality to the P4-enabled

Switch Application, which is the central building block of

the data plane. In contrast to other southbound interfaces

such as OpenFlow, P4 supports the denition of custom and

state-dependent counters, which enable the collection and

aggregation of the required metadata. In addition, the Switch

Application is congured to emit this data on triggered events

via a dedicated port to the Receiver Application, which is

located on the control plane within a separated management

network for improved security. For every packet sent to the

switch by a host, the Switch Application performs the actions

as described in Figure 3.

Atrst the packet is parsed and forwarded to the specic

egress port according to a dynamic forwarding table, populated

by a simple learning switch. Currently, the application supports

headers adhering to the Ethernet protocol, Internet Protocol

(IP), Transmission Control Protocol (TCP) and User Datagram

Protocol (UDP). In the next step a copy of the packet is

created and re-inserted to the processing pipeline. Whereas

the original packet is emitted to the specied egress port,

the copy is further processed. After creating a hash using

a Cyclic Redundancy Check (CRC) algorithm based on the

packet’s 5-tuple to determine the respective storage registers,

the Switch Application checks if the packet is still part of the

previousow. In this case, the registers are updated and the

copy of the packet is discarded. Whenever a hash collision

occurs, the storedow is exported, which allows for a trade-off

regarding the required memory and the permitted aging ofows.

Hence, the recorded metadata of the previousow is copied to

temporary registers and the original registers are re-initialized.

At last, a metadata packet is created by overwriting the payload

of the copy with the data of the temporary registers and by

modifying its destination to sent it to the Receiver Application.

In addition, its protocol number is set to 253, which is reserved

for experimental purposes by RFC 3692 [28], thus enabling

easier identication of metadata packets within the network. As

the metadata packet is a valid IP packet it may be forwarded by

common switches until it reaches the Receiver Application. In

its current state the Switch Application is capable of extracting

1https://github.com/lsinfo3/P4FeatureExtraction_HPSR2021

Category

Counters IP TCP/UDP Packet Size TCP RX Wndow Size TCP Control Flags Timestamps Interarrival Time

NrOfPackets*
FlowDuration*
BytesPerSecond*
PacketsPerSecond*

SrcAddr*
DstAddr*

SrcPort*
DstPort*

Cumulative*
Minimum
Maximum
Average*
Standard Deviation*

Minimum
Maximum

NrOfCWR
NrOfECE
NrOfURG
NrOfACK*
NrOfPSH
NrOfRST*
NrOfSYN*
NrOfFIN*

FirstPacket
LastPacket

Cumulative
Minimum
Maximum
Average*
Standard Deviation
LastValue

TABLE I: Extract-able metadata features and applied subset marked by ”*”.

Fig. 3: Programow of the Switch Application.

a total of 31 uniqueow-based features, which are summarized

in Table I.

As the export of the metadata can only be triggered directly

by the Switch Application upon the reception of an incoming

packet and is bound to the matchingow, further mechanisms

to initiate an export are needed to guarantee a complete and

constant stream of data to the Receiver Application. This task

is accomplished by the Controller Application, which utilizes

the Apache Thrift API of the TonoTM platform to read the

contents of all registers in regular intervals. It is installed

on the x86-based host controller of the switch and polls the

registers every 5 seconds. It then derives a list of expired

ows, which are dened by having their TCP FIN/RSTag

set or being inactive for at least 45 seconds. The Controller

Application then continues to create and send a metadata packet

adhering to the same format as described above, before clearing

the respective registers. In combination with the trigger-based

export done by the Switch Application, the system is able to

aggregate the metadata on a perow basis across multiple

packets, hence compressing the amount of metadata which

needs to be analyzed.

To enable a complete view of the network and to support

multiple Switch Applications, the Receiver Application func-

tions as a central data storage and processing entity. Deployed

as a network function within the management network, it

runs a DPDK-based application to collect the sent metadata

packets. Once a packet is received, the payload containing

the metadata is extracted and stored in pre-allocated static

data structures to prevent performance impairments due to

unnecessary memory operations. This is followed by the

computation of additional metadata values for each entry, which

are not possible to derive directly on the switch. This includes

all calculations containing multiplications and divisions with

two dynamic operands, e.g., for computing the averages and

standard deviations. Finally, the Receiver Application provides

an interrupt routine, which outputs the augmented metadata as

CSVle for further processing.

At last the ML-based Detection Application takes the CSV

le of the previous stage as input, hence implementing a

producer-consumer-pattern to determine if a given set ofows

is benign or malicious. To train the model the Tuesday capture

of the CICIDS2017 evaluation dataset [29] was used, as it

features realistic and complete traces, which are labeled on

a perow basis and a wide variety of attacks. The model is

based on the Random Forest Classier from scikit-learn, as

decision-tree based algorithms have proven to be successful,

and performs a pre-processing step on the input. This is done

to strip the input from certain features such as the IP address

to enable the classier to determine an attack based on its

intrinsic features instead of its origin. To evaluate the model

we split the data set into a training and validation subset with

a ratio of 75% and 25%, respectively. In addition, we applied

a random search algorithm to optimize the hyperparameters

of the model by performing a k-fold cross validation using 5

folds. The hyperparameters include the number and depth of

the random forests, the amount of features regarded in each

split and the quantity of samples in each leaf.

Limitations. Yet, during the implementation certain lim-

itations of the TonoTM platform had to be overcome. As

mentioned, the lack of time-based triggers to export arbitrary

registers made the Controller Application mandatory. Although

this approach solved the issue of exporting the complete record

ofow statistics, it imposes a drawback regarding the timeliness

of the data. This is due to the rather poor performance of the

only included client, written in Python combined with the

Apache Thrift API which averages at 3 seconds for a complete

read out of all registers. Hence, this results in a limitation of

the polling period of the Controller Application.

In addition, the TonoTM platform lacks the implementation

of certain features, which are dened by the P4 specication.

One of these missing features is the ability to truncate a

cloned packet. As the metadata is exported via a cloned packet

by overwriting its payload, larger packets than necessary are

created whenever the original payload exceeds the space needed

for the metadata, hence wasting bandwidth and computational

resources of the Receiver Application.

Finally, the limited hardware resources compose the main in-

hibiting factor. The TonoTM platform consists of 4 independent

pipelines operating in parallel and each having 12 subsequent

Match Action Units (MAUs). Each MAU has access to a 10Mbit

SRAM block, which is used to store stateful objects. Packet

Header Vectors (PHVs) are provided as a data structure to

store and process the header and metadataelds. Here, a total

of 4096bits are available, which are allocated by a block size

of 8, 16 and 32bits. In order to perform arithmetic operations,

each MAU may utilize up to 4 Stateful Arithmetic Logic Units

(SALUs), which are bound to the respective SRAM block. A

SALU may read a stateful object, compare it against a header

eld or a constant, perform an addition or subtraction as well

as store the result. This restricted set of operands is slightly

enhanced by the possibility to approximate multiplications

with a constant, squares and square roots by using predened

lookup tables. Due to memory constraints, as well as to the

limited amount of arithmetic operations to derive theow based

features, the extraction of all features within a single switch

is prevented. Therefore, it is required to limit the metadata

extraction to a subset of the implemented features, which was

selected based on a feature importance analysis.

Furthermore, the computation of more complex features

is outsourced to the Receiver Application. As a result the

applicability of the system is impaired, as the feature space

is limited, which may decrease the accuracy of the Detection

Application, while simultaneously increasing the computational

requirements of the Receiver Application.

Another side effect of the limited memory is that it increases

the load on the Receiver Application indirectly, as it favors

hash collisions for rising amounts of concurrentows, hence

resulting in more metadata packets being sent.

At last the TonoTM platform features 64bit timestamps with

a nanosecond precision, whereas the SALUs are only able to

operate on 32bit registers. Hence, to compute features like

the Inter Arrival Times (IATs), a system time is emulated by

right-shifting the lower 32bit by 10bit to create a 32bit time

stamp with microsecond precision, which overows every 71

minutes. This results on the one hand in a further reduction

of the available SALUs and on the other hand in erroneous

calculations for long lastingows.

V. TESTBED

To carry out the evaluation, a dedicated testbed was created,

which is described in the following. The overall design is in

accordance to Figure 2 and relies on a P4-enabled TonoTM

switch. The total switching capacity is specied at 6.5Tbps, fea-

turing 64 ports each having a maximum capacity of 100Gbps.

In addition, the chassis includes a host controller, which is

composed of a 8-core Intel Xenon CPU with 32GB of memory

running Ubuntu 18.04. Whereas the Switch Application is

directly deployed to the switch, the Controller Application is

98.0

98.5

99.0

99.5

(a) baseline (b) metadata extraction

T
h

ro
u

g
h

p
u

t
[G

b
it
/s

]

Metric

minimum

average

maximum

Fig. 4: Throughput of the switch for the baseline (a) and the

metadata extraction (b).

installed to the host controller of the switch. The switch is

connected to two servers, each equipped with a 10-core Intel

Xenon CPU, a Mellanox ConnectX-5 series NIC with two

100Gbps ports and 200GB of memory running Ubuntu 18.04.

The servers are used to generate/receive trafc as well as to run

the Receiver and Detection Application, respectively. For the

evaluation of Suricata, the Receiver and Detection Application

are replaced by Suricata and the switch is congured to mirror

the trafc. Suricata itself is run in the default conguration and

the attack specic sections of the Emerging Threats Open [30]

are applied as rule set. The trafc is generated by replaying the

Tuesday capture of the CICIDS2017 data set, which features

port scan, brute force as well as DoS and DDos attacks. The

capture consists of 11GB spread among 529918 ows and

11609136 packets. As TCPreplay [31] is unable to saturate

the 100Gbps link, the traces are replayed using the DPDK

Burst Replay [32] tool. The entire trace is replayed 10 times,

hence resulting in an approximate measurement duration of 90
seconds. To evaluate the impact on the computing resources the

servers are monitored by sysstat [33] during the experiments.

At last, each experiment is repeated 5 times to account for

statistical variances.

VI. EVALUATION

In this section we present the results regarding the achievable

throughput of the involved system components, the level of

obtained aggregation of the trafc as well as a comparison of

accuracy with respect to the Detection Application and Suricata.

Atrst the maximum throughput of the Switch Application is

examined and we evaluate if the metadata extraction negatively

affects the switching capabilities in comparison to a baseline

switching application. The results are summarized in Figure 4.

The y-axis displays the achieved throughput in Gbps and

the x-axis groups the minimum, average and maximum values

of the experiments by the baseline and metadata extraction,

respectively. The error bars for the average values denote the

95% condence intervals. As depicted, both groups are able

to operate at 99Gbps with slight variations as indicated by

the narrow scale of the y-axis, hence fullling their tasks

IDS Suricata Detection Application

Label TPR TNR FPR FNR TPR TNR FPR FNR

Benign 98.60% 91.79% 8.21% 1.40% 99.72% 99.85% 0.15% 0.28%
DDoS 2.25% 94.68% 5.32% 97.75% 99.81% 99.98% 0.02% 0.19%
Dos 93.14% 98.03% 1.97% 6.86% 99.62% 99.83% 0.17% 0.38%
Brute Force FTP 99.95% 97.94% 2.06% 0.05% 99.90% 99.99% 0.01% 0.10%
BruteForce SSH - - - - 99.59% 99.99% 0.01% 0.41%
Port Scan 0.14% 98.75% 1.25% 99.86 99.96% 99.94% 0.06% 0.04%
Weighted Average 84.13% 92.78% 7.22% 15.87% 99.74% 99.86% 0.14% 0.26%

TABLE II: Classication results based on the alerts emitted by Suricata and the Detection Application.

Register Length Number of Metadata Packets Trafc Volume

2^16 591329(5.05%) 146.23MB (1.40%)
2^14 693970(5.93%) 174.03MB (1.67%)
2^12 843427(7.20%) 214.15MB (2.05%)

TABLE III: Obtained trafc aggregation levels by the Switching

Application. Relative number relate to original data plane

trafc.

at nearly line rate. Furthermore, due to the narrow range

between the minimum and maximum values both systems

provide stable results and a performed t-test resulted in

no signicant difference between the baseline and metadata

extraction measurements.

As the level of trafc aggregation achieved by the Switching

Application is correlated to the amount of hash collisions, a

parameter study using varying register lengths is performed

to emulate the trade off of a higher feature granularity and

the supported amount of concurrentows. The results are

presented in Table III. Whereas therst column species the

available register space, the second and third column illustrate

the absolute and relative values of the number of metadata

packets and their size in respect to the original data plane trafc.

As expected the performance of the obtained trafc aggregation

decreases if less registers are used. However, in every case

a remarkable compression of the original trafc is achieved,

hence effectively reducing the load of the downstream system

components.

To determine the maximum throughput processable by

the Receiver Application, a trace of the generated metadata

packets is recorded and TCPreplay with increasing bandwidth

limitations is used to determine the point at which packet loss

occurs. Unfortunately, the performance of TCPreplay is limited

to 7Gbps for the given trace, which induced no packet loss

at the Receiver Application. Hence, a maximum bound could

not be determined, but taking the achieved aggregation levels

into account, the Receiver Application is well able to operate

without packet loss for the investigated scenario and does not

impose a bottleneck on to the system.

At last the accuracy of the Detection Application is compared

to the state-of-the-art IDS Suricata in Table II with regards to

the True Positive Rate (TPR), True Negative Rate (TNR), False

Positive Rate (FPR) and False Negative Rate (FNR) for the

investigated attack categories. As the amount of occurrences

varies between the attack categories, hence resulting in an

unbalanced data set, the last row addresses this by depicting

the weighted average across all attacks. Furthermore, the results

for SSH-based brute force attacks have been omitted for

Suricata, since the congured rule set featured no support

for this attack category. Whereas both systems show good

overall classication results, the Detection Application is able

to outperform Suricata in all metrics except for the TPR and

FNR regarding the brute force FTP attack category. This stems

from the fact, that Suricata classies theows on a shorter

time scale, ideally while they are still inight. In contrast,

the Detection Application operates on larger time frames,

hence having more information available. However, during

our investigation of Suricata signicant packet loss of 9%

occurred starting at data plane rates from 600Mbps, whereas

the Detection Application in combination with the Switch,

Controller and Receiver Application is capable to perform at

data plane rates up to 100Gbps without inducing any packet

loss, hence being applicable for bandwidth intense core and

backbone networks.

VII. CONCLUSION

Motivated by the increasing demand for network bandwidth

and the rising number of attacks on communication networks,

this work designed, implemented and evaluated an Intrusion

Detection System (IDS), which can be deployed in bandwidth

intense networks up to 100Gbps. To satisfy the high perfor-

mance demands imposed by the packet processing, the proposed

system utilizes a P4-enabled switch as hardware accelerator

to ofoad the extraction of metadata and to aggregate the

results. Thus, the load on the downstream systems is reduced,

which effectively prevents bottlenecks. The evaluation shows

that the extraction of metadata does not affect the capacity of

the switch and the application is able to reduce the amount

of generated metadata packets down to approximately 5%

in comparison to the original data stream. This enables the

other system components to process the high trafc demand

and the detection accuracy of the proposed system is able

to outperform the open source IDS Suricata with respect to

the obtained detection accuracy as well as with respect to

the achievable throughput. In future work, the model shall be

compared with other ML-based IDSs and the functionality may

be distributed throughout multiple switches to overcome the

limitations of insufcient memory and arithmetic operations

to support an enriched feature set.

Acknowledgment: This work has been performed in the framework of
the WINTERMUTE project, which is funded by the BMBF (Project ID
16KIS1129). The authors alone are responsible for the content of the paper.
The authors want to thank Fabian Biskup for his programming efforts.

REFERENCES

[1] Cisco. Cisco annual internet report (2018–2023).
(accessed 2021-03-01). [Online]. Available: https:
//www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/
annual-internet-report/white-paper-c11-741490.html

[2] Checkpoint. Security report 2020 | checkpoint. (accessed 2021-03-01).
[Online]. Available: https://www.checkpoint.com/downloads/resources/
cyber-security-report-2020.pdf

[3] Q. Hu, S.-Y. Yu, and M. R. Asghar, “Analysing performance issues of
open-source intrusion detection systems in high-speed networks,”Journal

of Information Security and Applications, vol. 51, 2020.

[4] C. Kim, A. Sivaraman, N. Katta, A. Bas, A. Dixit, and L. J. Wobker,
“In-band network telemetry via programmable dataplanes,” inACM

SIGCOMM, 2015.

[5] P4 Language Consortium on GitHub. INT Specication Version 2.0.
(accessed 2021-03-01). [Online]. Available: https://github.com/p4lang/
p4-applications/blob/master/docs/INT_v2_0.pdf

[6] Suricata project. Suricata IDS. (accessed 2021-03-01). [Online].
Available: https://suricata-ids.org

[7] R. Mijumbi, J. Serrat, J.-L. Gorricho, N. Bouten, F. De Turck, and
R. Boutaba, “Network function virtualization: State-of-the-art and
research challenges,”IEEE Communications surveys & tutorials, vol. 18,
no. 1, pp. 236–262, 2015.

[8] D. Cerović, V. Del Piccolo, A. Amamou, K. Haddadou, and G. Pujolle,
“Fast packet processing: A survey,”IEEE Communications Surveys &

Tutorials, vol. 20, no. 4, pp. 3645–3676, 2018.

[9] The P4 Language Consortium. P4 Language Specications. (accessed

2021-03-01). [Online]. Available: http://p4.org/specs/

[10] Intel Inc. Tono Series. (accessed 2021-03-01). [Online]. Avail-
able: https://www.intel.com/content/www/us/en/products/network-io/
programmable-ethernet-switch/tono-series/tono.html

[11] N. Sultana, N. Chilamkurti, W. Peng, and R. Alhadad, “Survey on
sdn based network intrusion detection system using machine learning
approaches,”Peer-to-Peer Networking and Applications, vol. 12, no. 2,
2019.

[12] A. Khraisat, I. Gondal, P. Vamplew, and J. Kamruzzaman, “Survey
of intrusion detection systems: techniques, datasets and challenges,”
Cybersecurity, vol. 2, no. 1, pp. 1–22, 2019.

[13] Scikit-learn project. Scikit-learn. (accessed 2021-03-01). [Online].
Available: https://scikit-learn.org/stable/

[14] T. Lukaseder, J. Fiedler, and F. Kargl, “Performance evaluation in high-
speed networks by the example of intrusion detection,”arXiv preprint

arXiv:1805.11407, 2018.

[15] S. Zhao, M. Chandrashekar, Y. Lee, and D. Medhi, “Real-time network
anomaly detection system using machine learning,” in2015 11th

International Conference on the Design of Reliable Communication

Networks (DRCN). IEEE, 2015.

[16] P. Sangkatsanee, N. Wattanapongsakorn, and C. Charnsripinyo, “Prac-
tical real-time intrusion detection using machine learning approaches,”
Computer Communications, vol. 34, no. 18, 2011.

[17] T. N. Thinh, T. T. Hieu, S. Kittitornkunet al., “A fpga-based deep
packet inspection engine for network intrusion detection system,” in
2012 9th International Conference on Electrical Engineering/Electronics,

Computer, Telecommunications and Information Technology. IEEE,
2012.

[18] Y. Go, M. A. Jamshed, Y. Moon, C. Hwang, and K. Park, “Apunet:
Revitalizing {GPU} as packet processing accelerator,” in14th {USENIX}
Symposium on Networked Systems Design and Implementation ({NSDI}
17), 2017, pp. 83–96.

[19] J. Li, Z. Sun, J. Yan, X. Yang, Y. Jiang, and W. Quan, “Drawerpipe: A
recongurable pipeline for network processing on fpga-based smartnic,”
Electronics, vol. 9, no. 1, p. 59, 2020.

[20] M. S. Brunella, G. Belocchi, M. Bonola, S. Pontarelli, G. Siracusano,
G. Bianchi, A. Cammarano, A. Palumbo, L. Petrucci, and R. Bifulco,
“hxdp: Efcient software packet processing on {FPGA} nics,” in14th

{USENIX} Symposium on Operating Systems Design and Implementation

({OSDI}20), 2020, pp. 973–990.

[21] S. Ibanez, G. Brebner, N. McKeown, and N. Zilberman, “The p4->
netfpga workow for line-rate packet processing,” inProceedings of

the 2019 ACM/SIGDA International Symposium on Field-Programmable

Gate Arrays, 2019, pp. 1–9.

[22] B. Turkovic, J. Oostenbrink, F. Kuipers, I. Keslassy, and A. Orda,
“Sequential zeroing: Online heavy-hitter detection on programmable
hardware,” in2020 IFIP Networking Conference (Networking). IEEE,
2020.

[23] V. Sivaraman, S. Narayana, O. Rottenstreich, S. Muthukrishnan, and
J. Rexford, “Heavy-hitter detection entirely in the data plane,” in
Proceedings of the Symposium on SDN Research, 2017.

[24] M. Dimolianis, A. Pavlidis, and V. Maglaris, “A multi-feature ddos
detection schema on p4 network hardware,” in2020 23rd Conference

on Innovation in Clouds, Internet and Networks and Workshops (ICIN).
IEEE, 2020.

[25] F. Musumeci, V. Ionata, F. Paolucci, F. Cugini, and M. Tornatore,
“Machine-learning-assisted ddos attack detection with p4 language,” in
ICC 2020-2020 IEEE International Conference on Communications

(ICC). IEEE, 2020.
[26] B. Lewis, M. Broadbent, and N. Race, “P4id: P4 enhanced intrusion

detection,” in2019 IEEE Conference on Network Function Virtualization

and Software Defined Networks (NFV-SDN), 2019.
[27] J. Sonchack, A. J. Aviv, E. Keller, and J. M. Smith, “Turboow:

Information richow record generation on commodity switches,” in
Proceedings of the Thirteenth EuroSys Conference, 2018.

[28] Internet Engineering Task Force. RFC 3692. (accessed 2021-03-01).
[Online]. Available: https://tools.ietf.org/html/rfc3692

[29] Canadian Institute for Cybersecurity. ISCX 2012 dataset. (accessed 2020-
09-01). [Online]. Available: https://www.unb.ca/cic/datasets/ids.html

[30] Emerging Threats. Emerging Threats rule documentation. (accessed
2021-03-01). [Online]. Available: https://doc.emergingthreats.net

[31]appnetaon GitHub. tcpreplay project. (accessed 2021-03-01). [Online].
Available: https://github.com/appneta/tcpreplay

[32] FraudBusteron GitHub. dpdk-burst-replay project. (accessed 2021-03-01).
[Online]. Available: https://github.com/FraudBuster/dpdk-burst-replay

[33] sysstaton GitHub. sysstat project. (accessed 2021-03-01). [Online].
Available: https://github.com/sysstat/sysstat

