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Abstract—With Over-The-Top traffic being extensively en-
crypted end-to-end, network operators typically lack insight into
the performance of these services, as perceived by the end
users. Yet, such an insight is essential for employing QoE-aware
network management and potential alleviation of problems that
may originate in the network. There is a clear interest from
network operators to find ways to estimate service performance
in terms of Key Performance Indicators (KPIs) and Quality of
Experience (QoE). Over the last years, machine-learning–based
(ML) models have proven to be capable of inferring QoE/KPIs
from patterns in encrypted network traffic. The particular focus
has mostly been on adaptive video streaming services, considering
their share of the global network traffic. Those ML–based
models have typically been trained and tested on a single dataset
collected under specific conditions only. Going beyond related
work on the topic of QoE/KPI estimation, we collected two
large datasets related to YouTube streaming using the same
setup at two different locations in Europe and analyzed the
extent to which the differences in network characteristics and
location specifics influence the performance of such models.
This is of interest, as applicability of the models across diverse
networks would significantly reduce the needed extensiveness of
data collection typically required for ML–based approaches. In
this paper, we compare models trained and tested on a single
dataset/location (network-specific), models trained on the merged
dataset (general), and models trained on one dataset and tested
on the other dataset (cross-tested). The results show that the
performance of general models is comparable to that of network-
specific models, but cross-tests exhibit a considerable reduction
in performance. With the aim to understand and improve cross-
network applicability of the models in the future, the paper
also provides an investigation of underlying reasons for the
performance degradation.

I. INTRODUCTION

As the global number of mobile subscribers is expected
to reach 5.7 billion in 2023, which is 71% of global pop-
ulation [1], Quality of Experience (QoE) monitoring is an
important ingredient for the successful management of mobile
networks. It empowers network operators to track the delivery
of networked services and to rapidly detect issues which can
negatively affect the users’ experience. Thus, it allows to
ensure a high service quality and a high user satisfaction,
which avoids user churn in the competitive market. This has
resulted in extensive QoE–related research conducted over
the past decade, with the networking community increasingly
aiming to introduce QoE-awareness into network management

cycles [2]. In the last decade, video streaming has been one of
the users’ most popular Internet services in mobile networks.
According to [3], video accounted for 63% of mobile traffic
in 2019, and its share is expected to grow to 76% by 2025.

As end-to-end encrypted traffic over HTTPS becomes the
predominant type of video streaming traffic, it is becoming
increasingly challenging for network operators to monitor
service performance at the application level, which is crucial
when aiming to estimate end users’ QoE. A lot of effort has
been put into tackling the problem of inferring application-
level Key Performance Indicators (KPIs) and QoE from the
statistical features extracted from encrypted video streaming
traffic using machine learning (ML) approaches, e.g., [4], [5],
[6], [7]. The presented data-driven models already managed to
learn application behavior and the resulting QoE with a high
accuracy in tested lab scenarios. Nonetheless, such solutions
are currently far from deployment in operational networks.

The biggest challenge is that ML approaches require a
huge amount of training data, which necessitates extensive
network measurements. However, ground-truth information,
i.e., application-level KPIs available at the client that can be
used as labels, are not (easily) available for all video streaming
services. Moreover, as such measurements are time-consuming
and costly, they can only be conducted for specific scenarios,
i.e., specific video streaming services, devices, underlying
transport protocols, access technologies, network types, and
network conditions. Here, training too specific models might
limit the generality, as ML models assume the same distri-
bution of training and test data. Although the performance
on the training scenario could be better than for a general
model, applying the specific model to scenarios for which it
was not trained, i.e., cross-testing, could result in performance
degradation. To fight cross-testing performance degradation,
additional measurements need to be conducted in the new
scenario and ML models need to be retrained. This might
improve performance on the currently considered scenario,
but eventually could only reset the problem when the model
is to be applied to more scenarios. Therefore, a desirable
model would be general, such that it is cross-applicable to
many scenarios, although there might be a trade-off between
generality and performance.

In this work, we investigate the trade-off between cross-
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applicability of ML–based models and the video QoE estima-
tion performance for different networks. We conducted a set of
24000 video streaming measurements in a high speed optical
fiber campus network at the University of Würzburg, Germany
and in a cable broadband network offered by an ISP in Zagreb,
Croatia. In both locations, the same videos were streamed
under the same controlled network conditions, recording
application-level KPIs of the streamed videos, namely, initial
delay, stalling, average resolution, average bitrate, and mean
opinion score (MOS). We train general and network-specific
ML–based models, present baseline results of the models
for six KPI classification tasks, and provide an outlook to
approaches for future performance improvements. Thereby,
our work is the first to analyze the performance and discuss
the cross-applicability of the models for QoE estimation across
different networks.

This paper is structured as follows. Section II outlines
background and related work on ML–based QoE measure-
ments. Section III describes the measurement setup, the dataset
preparation, as well as the analysis procedure. We present
the baseline results for network-specific models and general
models, and investigate their cross-network applicability in
Section IV. Finally, Section V concludes this work and pro-
vides an outlook to future work.

II. BACKGROUND AND RELATED WORK

Network operators and communications researchers found
that the subjectively perceived experience with networked
applications is a major business factor, and thus, introduced the
concept of Quality of Experience (QoE) [8], [9]. In contrast
to the previously prevailing Quality of Service (QoS), it puts
the users and their perceived experience to the center of the
evaluation process [10]. Numerous QoE studies have been
conducted to investigate the impact of technical parameters
of systems and networks on the experience of end users.
The results of these studies can be considered by network
operators for network management to avoid QoE degradation
and improve the experience of end users with networked
applications [11], [12].

When it comes to QoE for HTTP adaptive video streaming
(HAS), which is one of the most prominent Internet services
today, the summary of key results is given in [13]. It was found
that initial delay, stalling, and quality adaptation are the most
dominant QoE factors. Stalling (or re-buffering), i.e., playback
interruption due to buffer depletion, is considered the worst
QoE degradation. Moreover, the played-out video quality and
the time spent on each quality layer also impact the QoE,
whereas the impact of initial delay is rather small. Recently,
QoE models for HAS were standardized in ITU-T Recomm.
P.1203 and P.1204 [14], [15], and are able to estimate the
MOS from stream inspection considering four different modes
of input information.

With HAS services predominantly using HTTPS in recent
years and traffic being encrypted end-to-end, approaches for
in-network QoE measurement relying on Deep Packet In-
spection (DPI) can no longer be used. Thus, ML methods

are employed to model the video traffic based on statistical
features with the goal to derive QoE information. Such an
approach was initially described in [4], where the authors
collected passive in-network measurements and leveraged ML
to obtain mappings between QoS and QoE for mobile video
applications. Going beyond just classifying QoE, [5] clas-
sified stalling, average video quality, and quality variations
from TCP-level traffic features using random forests. These
approaches, however, still required access to packet payloads,
at least in the model training phase. Later, approaches fully
applicable in the context of traffic encryption were developed.
In [16], [17], ML was applied to predict QoE of several
types of mobile apps (including video streaming) from net-
work parameters. For QoE/KPI estimation problem, tree-based
algorithms were found to perform well, such as in [18] for
video bitrate estimation and in [6], [19] for the estimation of
QoE and various KPIs.

While the listed papers addressed the QoE/KPI estimation
problem in a per-video manner, in the context of QoE-aware
network management, monitoring these metrics in shorter
intervals may be more valuable. In [20], YouTube QoE/KPIs
were classified in time slots of 10 s from features derived from
packet sizes, interarrival times, and throughput measurements.
Going for an even more fine-grained estimation, [7], [21]
estimated video resolution, average bitrate, and stalling from
encrypted video traffic in real-time within slots of 1 s by using
a stream-like analysis approach and IP-level packet features.

Besides relying on features that can easily be calculated
from the captured traffic traces, there are also approaches that
rely on the detection of typical HAS behavior. The approach
presented in [22] detects video chunks (segments) to addi-
tionally include chunk-based features, when the chunks are
identifiable. Features beyond traffic statistics have also been
investigated in [23], showing that minor context information
provided by streaming service providers willing to share it
could significantly improve the performance of in-network
QoE estimation models.

Apart from the sole definition of network traffic features,
QoE/KPI prediction targets, used measurement setups, and
ML procedures, there is a series of challenges yet to be
investigated. The performance of QoE/KPI estimation models
is greatly affected by playback–related user interactions, which
has been demonstrated in [24], stressing the need to include
such interactions in the model training phase. The actual
utilization of QoE/KPI estimation models in the network
has been briefly addressed in [25], [26], [27], but the exact
mapping of these models to network architectures and the
amount of resources required for their operation is still unclear.

Related work has barely scratched the surface of the prob-
lem of inherent dimensionality originating from the variety
of possible video streaming usage scenarios. The cross-testing
efforts described in [28], [19] were focused on the applicability
of YouTube QoE/KPI classification models trained in a lab set-
ting on data collected in an operational mobile network. Sim-
ilarly, models trained on data collected on Android platform
were cross-tested with data collected on iOS [28]. The paper
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reports limited cross-applicability capabilities, with models
demonstrating a decrease in performance. On the other hand,
the performance of general models, trained on the dataset
containing samples from both platforms is comparable to that
of models trained for a specific platform [29]. Similar con-
clusions, but focused on different services and not platforms,
have been found in [30]. The authors show that developing
well–performing general models is feasible if the training set
included data from all services. Applying the model trained
on Amazon, YouTube, and Twitch data to Netflix data resulted
in a significant drop in model performance. Regarding the
generalization efforts, interesting approaches can be found in
[31], [32], where the authors investigate challenges related to
model sharing and a transfer-learning approach which allows
local models to learn a generic base model for MOS, and then
consider additional features for location-specific QoE models.
However, both approaches rely on application-level KPIs and
do not consider estimating QoE from encrypted network
traffic. Our work further extends the investigation of cross-
testing, focusing on QoE/KPI estimation models applicable
in the context of encrypted traffic, and by considering model
performance across two different operational networks.

III. METHODOLOGY

A. Measurement setup

The measurements were conducted using a Java-based
framework similar to [33], [7]. The measurement framework
is able to automatically start a Chrome browser using the Se-
lenium browser automation tool1. The browser was configured
to log all HTTP requests to a file (-log-net-log) and
QUIC traffic was enabled (--enable-quic). Optionally,
the browser could also load and install a Chrome extension
during startup. For a single measurement run, the browser
creates a new and isolated browsing session independent of
browsing history or previously stored session or user data
(e.g., cookies), and accesses the YouTube main page. After
the page has fully loaded and occasional pop-ups have been
handled, the framework spawns a separate thread, which
captures the network traffic using tshark2. Next, the browser
accesses a single YouTube video page and injects a JavaScript-
based monitoring script [34], [35] into the webpage, which
periodically polls the current timestamp, the current video
playtime, buffered playtime, video resolution, and player state
every 250 ms. The video is then streamed for 180 s or until
the video end, and the application-layer information about
the streaming session is logged to a file. Afterwards, the
framework closes the browser and terminates the network
traffic capture, before a new measurement run can be started.

A list of 2000 YouTube IDs was selected according to
the popularity of the video content, such that the full range
of video popularity, ranging from below 100 views to over
billions of views, was represented in the list. The measure-
ments were conducted in a high speed optical fiber campus

1https://www.selenium.dev/
2https://www.wireshark.org/docs/man-pages/tshark.html

network at the University of Würzburg, Germany and in a
cable broadband network of an ISP in Zagreb, Croatia. In
both locations, the framework was installed on a laptop and a
Raspberry Pi 4 was used as a bridge to connect the laptop to
the network. The Raspberry Pi acted as a network emulator
and was able to limit the bandwidth using Linux traffic con-
trol (tc). Three different network conditions were emulated
in both locations, namely, no limitation, a fixed limitation
of 1 Mbps, as well as a stochastic limitation following an
exponential distribution with a mean of 1 Mbps. The whole
list of 2000 videos was measured both without and with
an ad blocking Chrome extension, in both locations, and in
all three network conditions, which results in a dataset of
24000 YouTube video sessions. The measurement runs were
conducted over five months from July to November 2020.

B. Dataset preparation

The recorded pcap network traces were parsed with a Java
parser based on Kaitai Struct3 and transformed into text-
based log files. These log files include all basic information
for each packet in a simple comma-separated values (CSV)
format, namely, timestamp, source IP, source port, destination
IP, destination port, and size. Moreover, DNS lookup responses
were extracted to obtain a mapping between IP addresses and
domain names, which could later be used to identify YouTube
video flows based on their characteristic googlevideo.com
domain name.

The feature extraction considered all traffic of YouTube
video flows between the start of the browsing to the video
web page until the closing of the browser. It collected basic
statistics from the traffic, such as packet count (both for
all packets and only for packets greater than 100 bytes,
thereby eliminating acknowledgements), byte count, and aver-
age throughput. Moreover, summary statistics (mean, variance,
standard deviation, coefficient of variation, skewness, kurtosis,
minimum, maximum) were computed for the distribution of
packet sizes (again, both for all packets and only for packets
greater than 100 bytes) and interarrival times, and for the
distribution of traffic volume in time slots of length 100 ms, 1 s,
as well as 10 s. All these features were computed separately
in both directions (dir.), i.e., for both uplink (ul) and downlink
(dl) traffic. In addition, the session duration and four downlink-
only features were added, namely, the average throughput in
the first 1 s, 5 s, and 10 s, and the active ratio, i.e., the share of
time spent downloading. This results in 109 features in total,
which are summarized in Table I.

The recorded application-level information allowed the
computation of application-level KPIs, which serve as labels.
These QoE metrics include the initial delay, the number and
duration of stalling events, the played-out video resolution,
and the number of quality changes. Moreover, the requested
video formats (itags) were extracted from the network log of
the browser, and the YouTube API was queried to obtain the
average bitrate of the downloaded video content. Eventually,

3https://kaitai.io/
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TABLE I: Overview of recorded data from stream of encrypted
packets and the derived features.

recorded data derived features

packet count (dir.: ul/dl; size: all/>100 B)
packet size volume (dir.: ul/dl), distribution (dir.: ul/dl; size: all/>100 B)
packet IAT distribution (dir.: ul/dl)
time slot volume distribution (dir.: ul/dl; slot length: 100 ms/1 s/10 s)
throughput avg. session throughput (dir.: ul/dl),

avg. start phase throughput (dir.: dl, phase length: 1 s/5 s/10 s)
duration session

TABLE II: Overview of classification targets per QoE metric
and respective split conditions.

QoE metric # split conditions

MOS 2 high (>3.5), low (≤3.5)
avg. resolution 3 high (≥700 p), mid (≥400 p ∧ <700 p), low (<400 p)
stalling 2 false (no stalling), true (contains stalling)
initial delay 2 short (<2 s), long (≥2 s)
initial delay 3 short (<2 s), mid (≥2 s ∧ <10 s), long (≥10 s)
avg. bitrate 2 high (≥500 kbps), low (<500 kbps)

all information was used to compute a Mean Opinon Score
(MOS) using the standardized ITU-T P.1203 QoE model [14].
As we resort to classification tasks, the KPIs were discretized
into classes, and those classes were used as labels during
the training of the machine learning models. Thus, the final
classification tasks are binary and ternary classification of
initial delay, binary classifications of average bitrate, MOS,
and whether the video contained stalling, as well as ternary
classification of average resolution. The overview of the
number and the definition of classes for each KPI is given
in Table II. The dataset used further on consists of samples
corresponding to each video being played, where each sample
is represented with calculated network traffic features and
ground-truth QoE/KPI classes.

C. Analysis procedure

To analyze how network characteristics and location-related
streaming service specifics influence in-network QoE/KPI
classification models, we evaluate three types of models:

1) Network-specific models - trained and tested on sepa-
rate splits of a dataset collected in the same network
(separate models for Würzburg and Zagreb data). The
performance of these models serves as a baseline for
comparison with other models.

2) General models - trained and tested on separate splits
of the merged dataset (one model for both Würzburg
and Zagreb data). General models may prove to be
more robust, and they simplify the model training,
deployment, and maintenance, as both locations can be
handled by the same models.

3) Cross-network applicable models - trained on a dataset
collected in one location and tested on data from the
other location (referred to as cross-test). The aim here
is to check whether trained models can be reused at new
locations, thus significantly reducing the data collection
efforts. Besides simply repeating the training procedure

Fig. 1: Distribution of samples across the datasets.

as it would be performed for network-specific models, in
the training of cross-network applicable models various
methods could be utilized to reduce the effect of network
differences.

In this analysis, we removed all the samples which included
the use of the ad blocking extension and the samples which
contained an advertisement. By doing so, we eliminate the
potential impact of different ad strategies enforced by YouTube
at different locations, and focus exclusively on heterogeneity
originating from the network. Following the elimination of
these samples, as well as samples containing NA values,
the considered datasets contained 2142 samples collected in
Würzburg (corresponding to 2142 videos being played) and
2661 samples collected in Zagreb. The samples contain cal-
culated network traffic features and are labeled with QoE/KPI
classes, as specified in Section III-B. The number of samples
in each class is shown in Figure 1 for both datasets. For most
classification targets, each class contains at least roughly 500
samples. The exception is stalling classification, where stalling
(re-buffering) events rarely occurred at any of the locations.

In the case of network-specific models, for each net-
work/location and for each target class, we first subsample
the classes with respect to the least populated class (i.e., if the
least populated class contains n samples, we randomly select
n samples from each of the remaining classes). The resulting
dataset is then randomly split into train and test sets (67% :
33%). Using the Sequential Feature Selection (SFS)4 method
on the train set, we select the 10 most relevant features to
be used in the model training step. Once relevant features are
selected, a model is trained on the train set using the Random
Forest (RF) algorithm with 10 trees and maximum depth of 5.
The choice of methods, algorithms, and parameters was made
based on related work [18], [21], [29], but future work may
include a systematic study of model performance with respect
to different methods and parameters being used. The models
are tested on the test set. We emphasize once again that the
models are trained separately for the two locations.

4http://rasbt.github.io/mlxtend
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The same procedure is applied for general models for each
target class, but on a merged dataset (i.e., containing samples
collected in both Würzburg and Zagreb). We split the merged
dataset into train and test sets, ran SFS on the train set, and
trained RF models using 10 SFS–selected features.

For cross-network applicability tests, we use a dataset
collected in one location as a train set and the dataset collected
in the other location as a test set. In the train set, we balance
out the number of samples across classes as described above,
while we keep the test set as is. Using SFS on the train set,
10 relevant features are selected and the RF model is trained.
The model is tested on a separate dataset, collected in the
other location. This is done for both combinations, with each
dataset acting once as train and once as test set, respectively.

IV. RESULTS

In this section, we present the results in terms of the
performance of trained models on the corresponding test set, as
defined in Section III-C. The classification performance report,
displaying model precision, recall, and accuracy, is given in
Table III. The rows of the table present results for different
KPIs, while the columns indicate the model type (network-
specific models for both locations, cross-tested models for both
combinations of train and test locations, and a general model).
The performance of the models is also visualized with an F-
measure heatmap in Figure 2. Further analysis of the results
is provided below, separately for each model type.

A. Network-specific models

As shown in Table III, the models for initial delay classifica-
tion perform significantly better than any of the other models,
with up to 99% accuracy. In particular, the identification of
short initial delays performs well. The analysis of the features
used by the models shows that the shape of initial bursts in
downlink traffic, associated with the initial buffering of video
content, is highly indicative of the initial delay duration. For
binary classification, downlink throughput in the first second
is the most important feature, while for ternary classification,
the feature selection algorithm chose throughput in a longer
period of 10 seconds. We also note that maxima of slotted data
amounts highly correlate with initial delays, as these maxima
typically occur at the beginning of the session, and in that
sense also describe initial bursts. Features describing these
maxima were seen to be employed by Zagreb network-specific
initial delay classification models.

MOS and resolution classification models greatly relied on
uplink packet length features. Most uplink packets in HAS are
acknowledgements. However, larger packets contain requests
for video segments and possibly feedback on streaming per-
formance. Looking into the features related to uplink packet
lengths, significant differences can be seen among the two
datasets, i.e., networks. Figure 3a shows the distribution of the
largest observed packets towards YouTube video servers across
all sessions for both datasets. It can be seen that the largest
uplink packet in Würzburg data is considerably larger for most
sessions, compared to those in Zagreb data. On the other

hand, the average uplink packet sizes (taking only packets
longer than 100 B into account) appear to be generally larger
in Zagreb data. These features were also found to be valuable
in the Würzburg network-specific stalling classification model,
while for Zagreb stalling classification model, we refrain from
making any conclusions due to severe class imbalance and
consequent poor model performance.

Both network-specific models for the estimation of average
video bitrate rely a lot on mean downlink packet interarrival
times. While video bitrates are known to correlate highly with
the amounts of downlink traffic, interarrival times can carry
the same amount of information for the prediction. The higher
the video encoding bitrate, the larger the video segments, and
consequently, more data needs to be downloaded, resulting
in more packets and shorter interarrivals. The distribution of
this feature for both datasets is given in Figure 3c, exhibiting
similar shape in both networks.

B. General models

The performance of general models is consistently compa-
rable to the performance of network-specific models for all
targets. The general initial delay classification models rely
on the throughput at the beginning of the session, while
average bitrate classification models employ data-amount and
interarrival-time features, as in the network-specific case.
Contrarily, the selection of features for MOS and resolution
classification is different. In the general models, downlink
traffic features were considered to be more important, as
opposed to network-specific MOS and resolution classification
models which used mostly uplink traffic features. We attribute
this to the differences in distributions of uplink features in
the two datasets (cf. Figures 3a and 3b), which makes these
features less relevant in the context of the merged dataset. We
again refrain from making any conclusions about the stalling
classification model, which shows misleadingly high accuracy
due to class imbalance.

C. Cross-network applicability

While general models inherently learn about the differences
among the datasets, and thus, exhibit performance similar to
that of network-specific models, cross-tested models perform
significantly worse for some KPIs. In case of initial delay clas-
sification, which largely depends on initial throughput features,
the performance is not reduced. The same goes for average
bitrate classification, which mostly relies on downloaded data
amounts and interarrival times. These features display similar
properties for the two datasets (cf. Figure 3c), and the high
cross-network performance for initial delay and bitrate classi-
fication may be attributed to the used features. On the other
hand, in MOS and resolution classification, the models are
based on uplink features that display certain dissimilarities in
their distributions for the two datasets (cf. Figures 3a and 3b).
This reflects on the cross-network performance of models,
making it clear that models trained on data collected in one
network may not be applicable in another network without any
intermediate intervention.
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TABLE III: QoE/KPI classification model performance report for network-specific, cross-tested, and general models.

Model type (datasets used for training and testing)
network-specific cross-tested general

Wue Zag Wue → Zag Zag → Wue merged dataset

MOS:

high/low

h:0.62 l:0.69 h:0.85 l:0.81 h:0.91 l:0.56 h:0.93 l:0.26 h:0.76 l:0.73 Precision

h:0.68 l:0.63 h:0.82 l:0.85 h:0.79 l:0.77 h:0.18 l:0.95 h:0.73 l:0.76 Recall

0.656 0.832 0.786 0.356 0.745 Accuracy

resolution:

high/mid/low

h:0.80 m:0.48 l:0.53 h:0.78 m:0.52 l:0.59 h:0.44 m:0.49 l:0.35 h:0.54 m:0.43 l:0.56 h:0.82 m:0.50 l:0.57 Precision

h:0.41 m:0.34 l:0.87 h:0.66 m:0.55 l:0.66 h:0.01 m:0.12 l:0.95 h:0.56 m:0.26 l:0.70 h:0.63 m:0.34 l:0.81 Recall

0.564 0.624 0.363 0.530 0.627 Accuracy

stalling:

True/False

t:0.54 f:0.78 t:0.44 f:0.00 t:0.82 f:0.77 t:0.01 f:0.98 t:0.07 f:0.96 Precision

t:0.79 f:0.52 t:1.00 f:0.00 t:0.76 f:0.83 t:0.57 f:0.39 t:0.71 f:0.45 Recall

0.634 0.444 0.393 0.460 0.786 Accuracy

initial delay:

short/long

s:1.00 l:0.97 s:0.98 l:1.00 s:0.94 l:0.99 s:1.00 l:0.99 s:0.99 l:0.99 Precision

s:0.97 l:1.00 s:1.00 l:0.98 s:0.99 l:0.97 s:0.98 l:1.00 s:0.99 l:0.98 Recall

0.986 0.990 0.976 0.991 0.988 Accuracy

initial delay:

short/mid/long

s:0.99 m:0.74 l:0.78 s:0.97 m:0.74 l:0.77 s:0.94 m:0.77 l:0.57 s:1.00 m:0.75 l:0.69 s:0.97 m:0.76 l:0.79 Precision

s:0.97 m:0.88 l:0.59 s:1.00 m:0.70 l:0.78 s:1.00 m:0.55 l:0.77 s:0.98 m:0.79 l:0.66 s:0.99 m:0.85 l:0.70 Recall

0.836 0.841 0.759 0.822 0.837 Accuracy

average bitrate:

high/low

h:0.81 l:0.65 h:0.86 l:0.73 h:0.85 l:0.66 h:0.74 l:0.59 h:0.81 l:0.70 Precision

h:0.62 l:0.83 h:0.69 l:0.88 h:0.69 l:0.83 h:0.67 l:0.66 h:0.81 l:0.70 Recall

0.714 0.785 0.747 0.670 0.755 Accuracy

Fig. 2: F-measure heatmap summarizing the performance of network-specific, general, and cross-tested models.

As a first step towards potentially improving the cross-
network performance of QoE/KPI classification models, we try
two different methods: 1) identify features whose distributions
vary across datasets and eliminate those during the model
training phase, and 2) enrich the train set with small portions of
data from the test location (and remove that particular portion
from the test set).

We test the applicability of methods commonly used in
dataset drift detection and handling when suspecting covariate
shift (shift in independent variables, i.e., features) [36], [37].
The main idea of shift identification is to merge the features
from both datasets and use the origin (dataset label) as a target
variable. If the features possess the ability to separate the
merged dataset and classify samples based on their dataset
origin, then the features’ distributions are shifted. We evaluate
one feature at a time in the prediction of the origin and record

the value of ROC-AUC for each feature. The greater the value,
the feature is better at distinguishing the origin of a sample,
and is thus drifting.

The top drifting features with scores above 0.8 according
to the ROC-AUC metric indicate differences in packet length
maximums (both uplink and downlink), but also differences
in amounts of uplink data and interarrivals of uplink packets.
We retrained the models, as described in Section III-C, with
drifting features eliminated prior to the feature selection step.
We focus on MOS and resolution classification, as these cross-
tests were affected by drifting features. However, as depicted
in Figure 4, our initial tests with dropping of drifting features
indicate that the shifts in the two datasets may be more com-
plex and that the two datasets may have completely distinct
relationships between the features and the target variables,
thus requiring the application of more complex drift handling
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(a) Maximum uplink packet length. (b) Average uplink packet length for pack-
ets larger than 100 B.

(c) Average downlink interarrival time.

Fig. 3: Distribution of values for selected features in both datasets.

Fig. 4: F-measure heatmap for cross-tested models with and without the elimination of drifting features, cross-tested models
for which the training set was enriched with data from the test location.

methods in future work.
In the other method, we moved certain amounts of samples

from the test set to the train set, thus adding data from the
test location to data collected at the train location. Concretely,
these amounts equaled to 10%, 20%, and 30% of the amount of
samples in the train set. The results are presented in Figure 4,
showing improved performance.

V. CONCLUSION AND OUTLOOK

The widespread adoption of end-to-end encryption in HAS
has resulted in a surge of research efforts aimed at estimating
application-level streaming performance from IP-level traffic
patterns. These efforts are generally focused on individual use
cases proving the potential of ML methods for estimating
QoE from encrypted traffic. However, diverse combinations of
used networks, end-devices, applications, protocols, etc., result
in distinctive patterns in video streaming traffic, potentially
requiring separate and specific models for each use case.

With the intention of reducing the complexity of QoE/KPI
estimation and offering more robust solutions, we train and
test general models (applicable for multiple networks), and
test the cross-network applicability of network-specific models
(trained on data collected in one network and tested on
another). The results show that the performance of general
models is comparable to the performance of models trained

and tested on data collected in a single network. In that sense,
it is possible to reduce the model training efforts and use a
single model in multiple environments.

Cross-applicable models would more significantly reduce
the needed efforts, focusing on easing the exhaustive data
collection, which is one of the key challenges of ML ap-
proaches. The results with respect to cross-tested models prove
that ML–based models may work well only for the specific
use cases they were trained for, while using trained models
for other use cases might lead to performance degradation
and is not recommended in practice. The results emphasize
the need for exploring more complex methods that would
potentially improve the cross-network performance of models.
As a possible way forward to addressing this challenge, in our
future work we plan to investigate methods from the domain
of deep learning and transfer learning [38], [39].
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