
How are your Apps Doing? QoE Inference and
Analysis in Mobile Devices

Nikolas Wehner∗, Michael Seufert∗, Joshua Schüler∗, Pedro Casas†, Tobias Hoßfeld∗
∗University of Würzburg, Würzburg, Germany

†AIT Austrian Institute of Technology, Vienna, Austria

Abstract—Web browsing has become the most important
application of the Internet for the end user. When it comes to
mobile devices, web services are mainly accessed through apps.
This paper tackles the problem of Web Quality of Experience
(QoE) in mobile devices, with a specific focus on apps QoE
monitoring and analysis, using in-network (encrypted) traffic
measurements. Measuring apps QoE is complex, not only from an
instrumentation point of view, but also from the heterogeneity
of user interactions which might realize substantially different
user experience. To this end, we conduct a feasibility study on
four specific and popular Android apps and their corresponding
web services. Our test automation framework emulates and
measures different user interactions commonly executed during
an app session, including the app startup, clicking, scrolling,
and searching. The resulting traffic is characterized on different
dimensions, and machine learning models are trained to identify
web services, apps, and user interactions, and to infer their
QoE. The proposed models can correctly identify the specific
web service and app in 86% of the cases and accurately
estimate the associated QoE with small errors. Our preliminary
study represents a first step towards an in-network, web QoE
monitoring solution for mobile-device apps.

I. INTRODUCTION

Quality of Experience (QoE) monitoring is an important
ingredient for the successful management of mobile networks.
It empowers network operators to track the delivery of online
services and to rapidly detect issues, which can negatively
affect the users’ experience. Thus, it allows to ensure a high
service quality and a high user satisfaction, while avoiding
user churn. In the last decades, web browsing has been one
of the users’ most popular Internet services. However, web
services have evolved in recent years. The majority of users
no longer utilizes web services on desktop or laptop PCs, but
mostly on smartphones. As reported in [1], smartphone traffic
is expected to exceed PC traffic soon, such that 44% of total
IP traffic is consumed and generated by smartphones, versus
only 19% generated by PCs, in 2022.

This traffic is mainly generated from smartphone appli-
cations (apps), which exist in a huge variety and for many
purposes, e.g., for news, social media, or web shops. As
smartphone applications are based on web technologies, they
rely on a composite of multiple multimedia components and
embedded services, which makes them different from other
services, such as video streaming or gaming. In fact, loading
a single web page today requires tens of flows to download the
various page resources, which are located in diverse servers

from different content providers. In this complex process, the
network plays a crucial role influencing users’ Web QoE. This
urges Internet Service Providers (ISPs) to deploy effective
QoE monitoring for web services in general, and for apps
in particular when considering mobile traffic, providing wide
visibility on meaningful Web QoE-related metrics such as
SpeedIndex (SI) [2]. However, metrics like SI require access to
the application layer, which is totally hidden from ISPs due to
the wide deployment of end-to-end network traffic encryption.
Different from our previous work [3], [4] – which focuses
exclusively on Web QoE for web browsing, this paper extends
previous work by specifically considering smartphone apps for
Web QoE monitoring and analysis, which account for a huge
share of the traffic in mobile networks.

Measuring (web) apps QoE in smartphones is far from
trivial, given all the complexities associated to the instrumenta-
tion of QoE measurement in such devices, e.g., lack of APIs
for measuring QoE-relevant metrics, a vast heterogeneity of
different apps, and others. In addition, capturing the QoE of
an app session requires to detect and analyze the different
types of user interaction which are taking place.

As a consequence, in this paper we take an explorative, first
step into the systematic analysis of apps QoE from an ISP
perspective, relying exclusively on the analysis of (encrypted)
network traffic. In particular, we report our experience on the
feasibility of a measurement and analysis approach to tackle
the task, focusing the study on a small set of representative
apps. While we cannot claim that our results are general to any
other type of mobile app, we believe that the steps taken in
the measurement and analysis of apps QoE are fully applicable
and reproducible to many others.

For the sake of this study, four popular Android apps and
their corresponding web services – i.e., the corresponding
websites, accessed through a mobile web browser – are
instrumented and measured under various network conditions,
using a novel app measurement framework. Different user
interactions are emulated and measured, including app startup,
clicking, scrolling, and searching, and the resulting traffic
is characterized and compared to their respective website
counterparts. We show that ML-based website fingerprinting
techniques are generally also applicable for apps, resulting in
accurate identification of apps/web services and interactions
based on simple features. Finally, using predefined Web QoE
models based on the SI [5] and ML-based estimation of the
SI, we are able to infer the Mean Opinion Score (MOS) for

 49

all app interactions.
The remainder of the paper is organized as follows. Sec-

tion II overviews the related work on Web QoE monitoring and
analysis, focusing particularly on smartphone apps. Section III
presents the app measurement framework and the obtained
dataset, while Section IV characterizes the selected smart-
phone applications and their traffic. A fingerprinting approach
to identify apps, web services, and user interactions from
the encrypted network traffic is outlined and evaluated in
Section V. Section VI presents and evaluates the ML-based
models for per-app and per-action SI inference, additionally
using mapping functions to obtain the associated MOS scores.
Finally, Section VII concludes this paper.

II. RELATED WORK

As QoE of web applications is strongly linked to web QoE,
loading times [6], [7] are an important factor to infer user
satisfaction, e.g, under ITU-T [8]. However, additional metrics
have been proposed for web QoE, such as Above the Fold
Time (AFT), i.e., the time until the visible portion of a web
page has been fully loaded, or SpeedIndex (SI) [2], which
considers the whole visual progress of the page loading by
processing a video capture of the screen. These metrics have
been also tested within traditional Web QoE models [5]. The
loading process is influenced not only by network quality
fluctuations [9]–[12], but also by usability [13], aesthetics [14],
as well as device type, i.e., desktop, smartphone, tablets [15].
Important to our study, these papers show that smartphones
and tablets have their own characteristics, not only regarding
screen sizes, but also in terms of content rendering and both
web and app designs.

Regarding the monitoring of QoE, several tools have been
proposed to measure network performance in cellular networks
and mobile devices, e.g., Mobiperf [16]. However, most re-
lated work requires application layer information, which is
problematic for ISPs as the rise of traffic encryption limits the
applicability of past approaches relying on DPI [17]. Thus,
approximations to metrics like SI have been proposed, such
as the Byte/Object-Index [18] and the Pain-Index [19], which
can be computed from packet- and flow-level measurements,
and thus, seamlessly operate with encrypted traffic. In [20],
authors proposed simple modeling approaches to map QoS
metrics of app traffic to app-specific QoE metrics.

A prerequisite for accurate Web QoE monitoring and man-
agement is to detect and classify the traffic of specific web
services and apps. Along some work considering fingerprint-
ing approaches for websites [21]–[23], previous studies have
particularly specialized on app fingerprinting. Taylor et al. [24]
have proposed AppScanner, which leverages statistical features
of packet sizes as input to a Support Vector Machine and a
Random Forest classifier. Relying on TCP stream based statis-
tical features, Petagna et al. [25] demonstrate that it is possible
to accurately identify apps in traffic anonymized through
Tor, and that web browsers play thereby a crucial role as
traffic patterns differentiate strongly between browser versions.
Finally, the authors of [26] have proposed DECANTeR, which

0 5 10 15 20
Time [s]

0.0

0.2

0.4

0.6

0.8

1.0

Pr
og

re
ss

cutoff point

Visual Progress
SI
Corrected SI

Fig. 1: Correction of the Speed Index.

builds real-time fingerprints from desktop apps exploiting the
headers of the HTTP messages.

III. APP MEASUREMENT FRAMEWORK & DATASET

To acquire a data set of network traffic and QoE metrics
of several apps in various network conditions, a custom test
bed based on the appium1 framework was built. The multi-
device test bed consists of an Android phone and an Android
Tablet, controlled by a host computer via the Android Debug
Bridge (adb)2, and connected to the Internet over a wireless
network, shaped using the Linux traffic control (tc). Appium
is a platform independent mobile app automation framework
and can be used to remotely control Android apps using the
Android-specific uiautomator3. Appium provides all common
user interactions like starting and stopping applications, click-
ing, and scrolling, as well as several helper functions like
finding layout elements or performing a screen capture of the
device display. The network traffic is captured using tcpdump.
As stated before, the SI is the QoE-relevant metric used in
the platform, as it can be computed using a screen capture,
independently of the underlying user interface technology.

Based on appium, a test automation framework was built
in Python, which allows the abstraction of user interactions
into distinct consecutive steps, each with a separate traffic
capture and screen capture. The framework configures the
underlying appium instance, provides app setup and teardown
functionality, clears data and cache at the beginning of the
test and optionally between steps, and configures network
traffic capturing and shaping as well as the screen capture.
All test parameters are detailed in Table I. The four selected
apps include Amazon Shopping, YouTube, Facebook, and
BBC News. Each app and each user interaction is tested 50
consecutive times for each of the 12 different network shaping
conditions, using both the smartphone and the tablet devices.
The app startup from a clean app state is tested for all four
apps; additionally, to analyse the impact and behavior of user
interactions, several activities like clicking on menu items,
searching, and scrolling were performed in the Amazon app.

The resulting data set contains a packet capture in pcap
format and a screen capture video. To compute the SI from the

1https://appium.io
2https://developer.android.com/studio/command-line/adb
3https://developer.android.com/training/testing/ui-automator

50

PARAMETER VALUES

Device Google Pixel 2XL (Android 10)
Samsung Galaxy Tab S5e (Android 9)

App Amazon Shopping, YouTube, Facebook, BBC News
Web amazon.com, youtube.com, facebook.com, bbc.com
Runs 50
Shaping None

Bandwidth: 10Mbit/s, 5Mbit/s, 2Mbit/s, 0.5Mbit/s
Packet loss: 0.1%, 1%, 10%

One way delay: 5ms, 12ms, 25ms, 50ms

TABLE I: Test parameters.

video, first the visual progress for each frame is determined.
The first frame is assumed to have 0% visual progress, while
the last frame is defined as 100% visual progress. The simi-
larity of frames is based on the alignment of their histograms.
Then, the SI is the integral above the visual progress curve as
shown in an exemplary way in Figure 1. Two app character-
istics observed in our tests inhibited the direct computation of
the SI. For one, some views contain animated advertisements,
which interfere with the visual progress detection. As these
instances were only found in a small portion of test steps, they
were manually corrected by ignoring the pixels containing the
advertisement when calculating the visual progress. Secondly,
a number of views contain slide shows, which also interfere
with the visual progress and result in a visual progress curve
increasing and decreasing in steps. As these slide shows were
a major part of the user interface, ignoring their pixels was
not an option. These steps were corrected by only computing
the SI to the start of the first plateau of the visual progress
function, where the plateau has a threshold length longer than
3 seconds as shown in Figure 1. This ignores the step-like
behavior from the periodically changing viewport due to slide
shows. In conclusion, each data point in our set is described
by the tuple {run id, net shaping, app, action}, and is labeled
by the associated SI value.

To compare the behavior of the apps and their website coun-
terparts, the landing pages of the four websites correspond-
ing to the apps – amazon.com, youtube.com, facebook.com,
bbc.com – were visited by the same devices over the same
network conditions, using the mobile Chrome browser. The
network traffic and the SI were captured in the same fashion
as for the apps.

IV. APP AND WEBSITE DATA CHARACTERIZATION

This section describes the characteristics of the measured
apps on network and application layer for app startups and
different app interactions. Additionally, the app measurements
are compared to the corresponding website measurements.

A. Comparison of App Startups

App startups are especially important for the analysis, as
they represent the initial step in every app session, and are
therefore generic to all apps. The characteristics of the app
startups are depicted in Figure 2. Considering the network
layer, Figure 2a shows the mean number of flows requested
by the app at startup when considering all twelve network

Tablet Pixel
Device

0

10

20

N
um

be
r o

f F
lo

w
s YouTube

Facebook
BBC
Amazon

(a) Number of flows.

Tablet Pixel
Device

10

100

1000

30000

Vo
lu

m
e

[K
B]

Download
Upload

YouTube
Facebook

BBC
Amazon

(b) Traffic volume.

N

L_0.1%
L_1%

L_10%
D_5ms

D_12ms

D_25ms

D_50ms

B_10Mb
B_5Mb

B_2Mb

B_0.5Mb

Condition

0

2

4

Sp
ee

d
In

de
x

[s
] YouTube

Facebook
BBC
Amazon

(c) Speed Index on Pixel.

N

L_0.1%
L_1%

L_10%
D_5ms

D_12ms

D_25ms

D_50ms

B_10Mb
B_5Mb

B_2Mb

B_0.5Mb

Condition

0

2

4

Sp
ee

d
In

de
x

[s
] YouTube

Facebook
BBC
Amazon

(d) Speed Index on Tablet.

Fig. 2: App startup characteristics.

shaping conditions, while the associated total downloaded and
total uploaded bytes per app startup are illustrated in Figure 2b.
Each bar represents the mean value of the metric, depicted
along with its 95% confidence interval. Bars in red represent
the YouTube app, bars in dark blue represent the Facebook
app, bars in green represent the BBC app, and bars in light blue
represent the Amazon app. Upload and download are further
distinguished by hatching in Figure 2b, where the hatched bars
correspond to the upload volume. Note further that the y-axis
depicts the volume in kilobytes on a logarithmic scale.

First of all, it can be observed that there are most of the
times visible differences between the app startups on the Pixel
and Tablet devices with respect to each metric. Considering
the number of flows, the YouTube and Amazon apps require
the most flows, while the Facebook app created only four
flows on both devices. The behavior of the Facebook app can
be attributed to the fact that only the login page, the first
impression one could get of the Facebook app when not having
an account or not knowing the service, was shown, i.e., no
user-specific social media content has been downloaded yet.
Interestingly, the BBC app and the YouTube app generated
significantly more flows on the Pixel device, while the Amazon
app generated a higher number of flows on the Tablet device.
This already indicates that there are significant differences in
the app behavior on different devices. When contemplating
the downloaded bytes for each app startup, there are again
strong differences between the devices, in particular for the
YouTube app. For the other apps, the differences between the
devices are smaller and the download volume is also always
below 1 MB. With respect to the upload volume, the Amazon
app and the YouTube app account for the most bytes. Again,
the difference between the devices is most significant for the
YouTube app, while the Amazon app behaves very similar
for the startup. The fact that the Amazon and YouTube apps
showed the highest data volumes is reasonable as these apps
are usually rich of media contents like images or videos,

51

which are downloaded during startup and where the content
is strongly tailored to the end-user, resulting also in higher
upload volumes. In contrast, the BBC app usually shows the
same content for all users at the startup.

To obtain an additional user-centric view of the app startups,
Figures 2c and 2d depict the observed mean SI for each
app startup along with the 95% confidence intervals, for both
smartphone and tablet. The x-axis denotes the shaping condi-
tion and the y-axis denotes the SI. For the shaping conditions,
the N represents no shaping, the L represents packet loss, the
D corresponds to the one-way packet delay, and the B stands
for a bandwidth limitation. Further, the appended value and the
appended unit of the tick labels specify the degree of shaping.
Similar to the network layer, strong differences between apps
on the various devices can be observed here too, e.g., the
SI for YouTube on the Pixel device is around 2 seconds,
while on Tablet the SI varies around 1.5 seconds. Surprisingly,
the startup SI values of some apps are basically constant
and independent of the network shaping condition. This is
mainly true for the app measurements on the Tablet device.
As the app cache is deleted manually before app startup,
this might indicate that there are some edge caches active,
which were out of control for the measurement framework.
Besides these exceptions, a more expected behavior can be
observed for the remaining cases. In particular, for the bad
network conditions with high packet loss (10%) and high one-
way delay (50 ms), the SI increases visibly (best visible for
the BBC app). Interestingly also is the fact that the strong
bandwidth limitations (0.5 MB) do not influence the SI as
strongly negative as expected. This indicates that the required
bandwidth for an app startup is rather low.

B. Comparison of User Interactions

Next, the characteristics of the interaction steps of the
Amazon app are described in detail. Following the characteri-
zation of the app startups, Figure 3 depicts the characteristics
of the individual interactions. This time, however, the bars
and error bars are colored according to the user interaction,
whereby orange represents clicking, gray corresponds to the
app startup (cf. Figure 2), dark red represents scrolling, and
red corresponds to searching.

It is visible that the user interactions click, startup, and
scroll show a similar number of flows, while the search
interaction results in a significantly lower number of flows.
This indicates that a search interaction is a more specific
request, addressing only a few servers, while startups, clicking,
and scrolling send more generic requests and thus have to
fetch contents from multiple servers. Further, the differences in
the download volumes of startups, clicking, and scrolling also
indicate that app content seems to be not loaded a priori, but
that content is only downloaded when requested, which comes
as expected. Interestingly though, the total upload volume
of an app startup and a scroll interaction are quite similar,
while a click interaction results in a significantly higher upload
volume. All in all, it can be stated that not the app startup,
but single app interactions are responsible for most network

Tablet Pixel
Device

0

5

10

15

20

N
um

be
r o

f F
lo

w
s Click

Startup
Scroll
Search

(a) Number of flows.

Tablet Pixel
Device

10

100

1000

30000

Vo
lu

m
e

[K
B]

Download
Upload

Click
Startup

Scroll
Search

(b) Traffic volume.

N

L_0.1%
L_1%

L_10%
D_5ms

D_12ms

D_25ms

D_50ms

B_10Mb
B_5Mb

B_2Mb

B_0.5Mb

Condition

0

2

4

Sp
ee

d
In

de
x

[s
] Startup

Click
Scroll
Search

(c) Speed Index.

Fig. 3: User interaction characteristics of the Amazon app.

traffic, which emphasizes the necessity of correctly identifying
app interactions from the network traffic.

Figure 3c depicts the observed SI for each interaction
with the Amazon app and for the different network shaping
conditions. Note that this time the runs of both devices
are aggregated. Almost all interactions show a stable SI,
independently of the applied network shaping condition. In
alignment with the amount of generated network traffic, the
search interaction with the least network traffic also results
in the lowest SI (around 0.5 seconds), directly followed by
scrolling. The click interaction and the app startups show a
similar, but significantly higher SI of more than 2 seconds,
indicating that clicking and app startups may have more impact
on the QoE.

C. Comparison to Website Loading

The clean startup of an app can be conceptually compared to
the non-cached loading of the associated website. Therefore,
the corresponding website loading measurements of an app
are characterized in Figure 4. On network layer, Figures 4a
and 4b reveal that there are basically no differences between
the devices with respect to the number of flows and the
observed traffic volume. Further, for all four apps, the traffic
volumes are slightly higher for the website requests compared
to the app startups, and the website requests result in many
more flows than the apps. This shows that website requests
and app requests differ strongly for the same application and
thus should be handled separately by network providers.

Regarding the SI in Figure 4c, the mean SI computed
over all conditions is slightly below 1 second, thus similar to
the corresponding app measurements. However, the negative
impact of the bad shaping conditions is clearly visible in this
case. In particular, when limiting the available bandwidth to
2 Mbps or lower, the SI increases significantly, especially
for BBC and YouTube. When analyzing the SI per device,

52

Tablet Pixel
Device

0

20

40

60
N

um
be

r o
f F

lo
w

s YouTube
Facebook

BBC
Amazon

(a) Number of flows.

Tablet Pixel
Device

10

100

1000

30000

Vo
lu

m
e

[K
B]

Download
Upload

YouTube
Facebook

BBC
Amazon

(b) Traffic volume.

N

L_0.1%
L_1%

L_10%
D_5ms

D_12ms

D_25ms

D_50ms

B_10Mb
B_5Mb

B_2Mb

B_0.5Mb

Condition

0.0

2.5

5.0

7.5

10.0

Sp
ee

d
In

de
x

[s
] YouTube

Facebook
BBC
Amazon

(c) Speed Index.

Fig. 4: Website characteristics.

it becomes visible that these low SI values are actually caused
by the Tablet device only, and that the SI for the Pixel device
barely changed for the majority of shaping conditions. As a
consequence and when considering the definition of the SI,
this might indicate that the screen size (and potentially other
hardware characteristics) is a relevant influence factor for Web
QoE when confronted with bad network conditions.

V. FINGERPRINTING

Next, a case study on the identification of apps, user
interactions, and web services is performed. Therefore, the
upload and download behavior of apps, interactions, and ser-
vices is investigated. The obtained findings are then deployed
for classifying apps, interactions, and services independently,
using supervised machine learning techniques.

A. Detection of Apps

In [23], authors propose a method called Deep Fingerprint-
ing for solving the problem of website fingerprinting in Tor
networks. It is based on the assumption that websites can
be distinguished by the sequence of the packets’ directions.
These sequences are fed as input to a 1D convolutional neural
network (CNN), which learns the characteristic patterns of a
website request.

Based on this idea, the packet direction sequences generated
by the app startups are illustrated in Figure 5a. Note that
only the first 50 packets are visualized, as this amount of
packets is sufficient to outline differences between apps and
websites. Note further that the patterns show the traffic of both
devices and all shaping conditions together, which results in
some visible variance within the runs for the same app. Each
app startup shows a unique traffic pattern, which supports the
fact that website fingerprinting methods can also be applied to
app fingerprinting. For example, the Facebook app shows the
most upload packets relative to the first few packets, while the
BBC and Amazon app show the most download packets at the

beginning. In general, the BBC app and the Amazon app show
a quite similar behavior for the first 20 to 30 packets, before the
BBC app starts generating a more regular consecutive upload
and download pattern compared to the Amazon app.

As proposed in [23], a 1D CNN could now be used to
identify the apps. However, as the dataset comprises only
four apps, a neural network would severely overfit. To avoid
this and for the sake of simplicity, a simple linear classifier
is taken for the identification of the app startups. As app
classification formulates a multi-class classification problem,
softmax regression is used here. The data is split into 80%
training data and 20% test data beforehand and 5-fold cross
validation is used for training. Using the number of download
packets for the whole run and for the first 50 packets, the
number of upload packets for the whole run and for the
first 50 packets, and the number of flows as features, an
accuracy of 93% is achieved. The corresponding confusion
matrix is depicted in Figure 6a, where each number indicates
the number of performed predictions. Most misclassifications
occurred for the Amazon and BBC apps, resulting in a F1
score of 85% for the Amazon app and a F1 score of 88% for
the BBC app. In contrast, almost all instances of the Facebook
app and the YouTube app are classified correctly. These
results show that even with a simple model and five features
only, a reasonable classification performance can be obtained.
However, for large scale app monitoring this approach will
probably not suffice.

B. Detection of User Interactions

The same scheme is now applied for the user interactions.
Figure 5b presents the observed sequences of packet direc-
tions for the individual interactions. Remember that only the
Amazon app is investigated here, so the startup is identical
to the Amazon pattern in Figure 5a. Again, there are obvious
differences in the patterns for each interaction. It can be seen
that scrolling results in the most regular pattern, while the
click interaction results in a much more irregular pattern.

Again, softmax regression and the same features as before
are leveraged for the interaction identification, resulting in an
accuracy of 93%. The resulting confusion matrix is shown in
Figure 6b. The identification of the startup interaction and the
search interaction hereby result in a F1 score of 96% and 94%,
respectively, while most misclassifications happen for the click
interaction (F1 score: 90%). These instances are mistaken for
scrolling or searching, which can be explained by the highly
variant traffic pattern of the click interactions observed before.

C. Detection of Services and corresponding Apps

Last but not least, the requested service and the correspond-
ing app, i.e., website request or app request, are discriminated
from the encrypted network traffic. The traffic patterns (first
50 packets) for the website measurements are depicted in
Figure 5c. The figure depicts a similar traffic pattern for
all websites, resulting in less visible differences between the
websites. This similarity can be attributed to the fact that the
TCP handshakes and the TLS handshakes for each website

53

(a) App startups. (b) User interactions. (c) Websites.

Fig. 5: Traffic patterns showing the observed sequences of upload and download packets.

Am
azo
n

BBC

Fac
ebo
ok

You
Tub
e

Predicted

Amazon

BBC

Facebook

YouTube

Tr
ue

197 32 1 5

19 191 8 6

1 0 247 2

0 0 1 244

0

50

100

150

200

Pr
ed
ic
tio
ns

(a) Identification of apps.

Clic
k

Scr
oll

Sea
rch

Sta
rtup

Predicted

Click

Scroll

Search

Startup

Tr
ue

214 25 22 1

18 194 1 0

2 0 252 3

1 0 1 215

0

50

100

150

200

250

Pr
ed
ic
tio
ns

(b) Identification of interactions.

Amazon (W
)

BBC (W
)

Facebook (W
)

YouTube (W
)

Amazon (A)
BBC (A)

Facebook (A)

YouTube (A)

Predicted

Amazon (W)

BBC (W)

Facebook (W)

YouTube (W)

Amazon (A)

BBC (A)

Facebook (A)

YouTube (A)

Tr
ue

177 1 3 9 1 8 36 0
1 245 0 2 0 0 0 1
9 0 215 4 0 0 20 0

31 0 2 168 0 3 0 19
0 0 2 0 218 15 0 0
6 0 50 11 18 158 1 0
4 0 7 0 0 0 216 1
0 0 2 0 0 0 1 239

0

50

100

150

200

Pr
ed

ic
tio

ns

(c) Identification of services and apps.

Fig. 6: Fingerprinting of apps, interactions, and services.

request are depicted here. When investigating more than the
first 50 packets, again differences between the websites can be
observed. This reveals that the services app and web already
differ in the way they setup their network connections.

To discriminate apps in dependency of the used service, the
same methodology is used as before. The resulting confusion
matrix is shown in Figure 6c, where a W represents the web
service, and an A represents the app service. The evaluation
resulted in an overall accuracy of 86%, where most misclassi-
fications happen for the BBC app (recall of 69%). In contrast,
the BBC website is correctly identified in almost all cases. All
in all, all services and apps can be identified with a precision
of at least 79% and a recall of at least 75% (except for the
BBC app).

VI. SPEED INDEX INFERENCE

The last goal of this work is the accurate inference of
the QoE of app startups, app interactions, and web requests
from encrypted network traffic. The findings regarding the
relationship between the SI and the Mean Opinion Score
(MOS) from [5] are hereby leveraged to map the SI to the
assumed QoE. The authors observed a logarithmic relationship
between the Byte Index (a proxy to the SI) and the 5-
point MOS scale ranging from 1 (bad) to 5 (excellent). Their
best model fitting f(t) = −0.4731 · ln(t) + 7.0813 for this
relationship is thus here used to compute the QoE from the
SI. The obtained MOS values are then fed as targets into
a well-known Decision Tree model. The number of flows,
the total download bytes, and the total upload bytes serve
as input features and the model is built to predict the QoE

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5
MOS Error

0.0

0.2

0.4

0.6

0.8

1.0
C

D
F

App
Interaction
Web

Fig. 7: QoE inference results.

(MOS score) as a regression task. Three different models with
different use cases are trained. In particular, one model for
the app startups, one model for the interaction steps, and one
model for the websites are trained separately. All data is split
into 80% training data and 20% test data and to find the
best configuration, 5-fold cross validation with respect to the
mean squared error is performed. The Decision Tree is further
regularized by setting the maximum depth of the tree to three.

Figure 7 depicts the results for the different models and use
cases in form of a CDF. The x-axis depicts the MOS inference
error and the y-axis depicts the corresponding fraction of
runs with an error equal or lower to x. It can be stated that
the inference error for the app startup QoE (solid light blue
line) is most of the time between -0.5 and 0.5, an acceptable
boundary with respect to the MOS scale. Further, the root
mean squared error (RMSE) is around 0.24 and the median
absolute error (mAE) is around 0.14, indicating good results
in general. Considering the QoE inference for the Amazon

54

app interactions (dotted line), it can be observed that the
obtained error is here slightly larger than for the app startup
model, resulting in a RMSE of 0.28 and a mAE of 0.16.
When investigating the interactions independently from each
other, these negative deviations can be traced back to the click
interaction and the scroll interaction in particular. In contrast,
the impact of the Amazon startup on the QoE inference seems
negligible. This finding suggests that the app interactions
besides the app startup complicate a reasonable QoE inference
severely. Finally, similar results as for the interactions are
obtained for the web measurements (dashed dark blue line)
with the RMSE being around 0.33 and the mAE being around
0.21. These findings indicate that the inference of app startups
is easier than for websites. One possible reason for this might
be the overhead for setting up the network connections (as
shown in Section V), potentially resulting in more noisy traffic.
However, this needs to be checked in a large scale study in
future work.

VII. CONCLUSION

This work measured four popular Android apps using a
novel app measurement framework and their corresponding
web pages under various network conditions. During the mea-
surement, different user interactions were emulated within the
apps, such as app startup, clicking, scrolling, and searching.
The measurements showed a strong difference between apps
on different devices, both due to different network layer
behavior and due to the influence of the screen size on
the SI. Similarly, we observed a strong difference in traffic
patterns between using a web service from an app or from
a browser, highlighting the importance of apps for a holistic
QoE assessment in mobile networks.

To identify services and infer Web QoE from the encrypted
stream of packets, we trained machine learning (ML) based
models on the measurement data. The discriminate traffic
patterns allowed to distinguish the apps and web services
with a very high accuracy and to estimate the app QoE
with small errors using simple features. In future work, these
results have to be confirmed in a large scale study using more
measurements of a larger set of applications from more mobile
devices and in more diverse network conditions.

REFERENCES

[1] Cisco, “Cisco Visual Networking Index: Forecast and Trends, 2017–
2022,” 2019.

[2] Google, “Speed index.” [Online]. Avail-
able: https://sites.google.com/a/webpagetest.org/docs/using-
webpagetest/metrics/speed-index

[3] N. Wehner, M. Seufert, J. Schuler, S. Wassermann, P. Casas, and
T. Hossfeld, “Improving web qoe monitoring for encrypted network
traffic through time series modeling,” SIGMETRICS Perform. Eval. Rev.,
vol. 48, no. 4, p. 3740, May 2021.

[4] S. Wassermann, P. Casas, Z. B. Houidi, A. Huet, M. Seufert, N. Wehner,
J. Schler, S. Cai, H. Shi, J. Xu, T. Hossfeld, and D. Rossi, “Are you
on mobile or desktop? on the impact of end-user device on web qoe
inference from encrypted traffic,” in 2020 16th International Conference
on Network and Service Management (CNSM), 2020, pp. 1–9.

[5] T. Hoßfeld, F. Metzger, and D. Rossi, “Speed Index: Relating the
Industrial Standard for User Perceived Web Performance to Web QoE,”
in Proceedings of the 10th International Conference on Quality of
Multimedia Experience (QoMEX), 2018.

[6] E. Ibarrola, I. Taboada, R. Ortega et al., “Web qoe evaluation in multi-
agent networks: Validation of itu-t g. 1030,” in 2009 Fifth International
Conference on Autonomic and Autonomous Systems. IEEE, pp. 289–
294.

[7] S. Egger, T. Hoßfeld, R. Schatz, and M. Fiedler, “Waiting Times in
Quality of Experience for Web Based Services,” in Proceedings of
the 4th International Workshop on Quality of Multimedia Experience
(QoMEX), Yarra Valley, Australia, 2012.

[8] International Telecommunication Union, “ITU-T Recommendation
G.1030 : Estimating End-to-end Performance in IP Networks for Data
Applicationss,” 2014.

[9] A. Sackl, P. Casas, R. Schatz, L. Janowski, and R. Irmer, “Quantifying
the impact of network bandwidth fluctuations and outages on web
qoe,” in 2015 Seventh International Workshop on Quality of Multimedia
Experience (QoMEX). IEEE, pp. 1–6.

[10] A. Saverimoutou, B. Mathieu, and S. Vaton, “A 6-month analysis of
factors impacting web browsing quality for QoE prediction,” Computer
Networks, vol. 164, p. 106905, 2019.

[11] A. S. Asrese, S. J. Eravuchira, V. Bajpai, P. Sarolahti, and J. Ott,
“Measuring web latency and rendering performance: Method, tools,
and longitudinal dataset,” IEEE Transactions on Network and Service
Management, vol. 16, no. 2, pp. 535–549, 2019.

[12] M. Rajiullah, A. Lutu, A. S. Khatouni, M.-R. Fida, M. Mellia, A. Brun-
strom, O. Alay, S. Alfredsson, and V. Mancuso, “Web experience in
mobile networks: Lessons from two million page visits,” in The World
Wide Web Conference, 2019, pp. 1532–1543.

[13] M. Varela, L. Skorin-Kapov, T. Mäki, and T. Hoßfeld, “Qoe in the web:
A dance of design and performance,” in 2015 Seventh International
Workshop on Quality of Multimedia Experience (QoMEX). IEEE, pp.
1–7.

[14] M. Varela, T. Mäki, L. Skorin-Kapov, and T. Hoßfeld, “Towards an
understanding of visual appeal in website design,” in 2013 Fifth In-
ternational Workshop on Quality of Multimedia Experience (QoMEX).
IEEE, pp. 70–75.

[15] S. Baraković and L. Skorin-Kapov, “Survey of research on quality of
experience modelling for web browsing,” vol. 2, no. 1, p. 6.

[16] “Mobiperf, Measuring Network Performance on Mobile Plat-
forms,” Accessed: January 11, 2016. [Online]. Available:
https://sites.google.com/site/mobiperfdev/home

[17] S. Ihm and V. S. Pai, “Towards understanding modern web traffic,”
in Proceedings of the 2011 ACM SIGCOMM conference on Internet
measurement conference. ACM, pp. 295–312.

[18] E. Bocchi, L. De Cicco, and D. Rossi, “Measuring the Quality of
Experience of Web Users,” vol. 46, no. 4.

[19] M. Trevisan, I. Drago, and M. Mellia, “PAIN: A Passive Web perfor-
mance indicator for ISPs,” vol. 149.

[20] A. Nikravesh, Q. A. Chen, S. Haseley, X. Zhu, G. Challen, and Z. M.
Mao, “Qoe inference and improvement without end-host control,” in
2018 IEEE/ACM Symposium on Edge Computing (SEC), pp. 43–57.

[21] T. T. Nguyen and G. Armitage, “A Survey of Techniques for Internet
Traffic Classification Using Machine Learning,” IEEE Communications
Surveys & Tutorials, vol. 10, no. 4, pp. 56–76, 2008.

[22] P. Velan, M. Čermák, P. Čeleda, and M. Drašar, “A survey of methods
for encrypted traffic classification and analysis,” International Journal
of Network Management, vol. 25, no. 5, pp. 355–374, 2015.

[23] P. Sirinam, M. Imani, M. Juarez, and M. Wright, “Deep fingerprinting:
Undermining website fingerprinting defenses with deep learning,” in
Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security, ser. CCS ’18. New York, NY, USA:
Association for Computing Machinery, 2018, p. 19281943.

[24] V. F. Taylor, R. Spolaor, M. Conti, and I. Martinovic, “Appscanner:
Automatic fingerprinting of smartphone apps from encrypted network
traffic,” in 2016 IEEE European Symposium on Security and Privacy
(EuroS&P). IEEE, 2016, pp. 439–454.

[25] E. Petagna, G. Laurenza, C. Ciccotelli, and L. Querzoni, “Peel the onion:
Recognition of android apps behind the tor network,” in International
Conference on Information Security Practice and Experience. Springer,
2019, pp. 95–112.

[26] R. Bortolameotti, T. van Ede, M. Caselli, M. H. Everts, P. Hartel,
R. Hofstede, W. Jonker, and A. Peter, “Decanter: Detection of anomalous
outbound http traffic by passive application fingerprinting,” in Proceed-
ings of the 33rd Annual computer security applications Conference,
2017, pp. 373–386.

55

