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Abstract—Web browsing is one of the key applications of the
Internet. In this paper, we address the problem of mobile Web
and App QoE monitoring from the Internet Service Provider
(ISP) perspective, relying on in-network, passive measurements.
Our study targets the analysis of Web and App QoE in mobile
devices, including mobile browsing in smartphones and tablets,
as well as mobile apps. As a proxy to Web QoE, we focus on the
analysis of the well-known Speed Index (SI) metric. Given the
wide adoption of end-to-end encryption, we resort to machine-
learning models to infer the SI of individual web page and app
loading sessions, using as input only packet level data. Empirical
evaluations on a large, multi mobile-device corpus of Web and
App QoE measurements for top popular websites and selected
apps demonstrate that the proposed solution can properly infer
the SI from in-network, encrypted-traffic measurements, relying
on learning-based models. Our study also reveals relevant net-
work and web page content characteristics impacting Web QoE
in mobile devices, providing a complete overview on the mobile
Web and App QoE assessment problem.

Index Terms—Web QoE; Mobile Devices; Apps; Speed Index;
Network Monitoring; Machine Learning; Encrypted Traffic.

I. INTRODUCTION

Web browsing is the most important Internet service for

the end user; in fact, most services and applications are

offered today through the web. The performance of a web

service as perceived by the end user can be measured by the

corresponding web browsing Quality of Experience, or Web

QoE; from a practical perspective, reliably measuring Web

QoE is challenging. Different from other specific services,

such as video streaming, web browsing is a mix of multimedia

contents and embedded services; loading a single web page

requires to download tens of contents from different servers

and content providers. In this complex process, the network

can significantly impact users’ experience, forcing ISPs to

deploy effective means to monitor their customers’ Web QoE.

The literature on Web QoE analysis is rife with objective

metrics capturing the performance of web pages, including

metrics such as Page Load Time (PLT), Speed Index (SI),

Above the Fold Time (AFT), First Input Delay (FID), etc.

However, all these metrics require access to the application

layer, which is hidden from the eyes of the ISP by the wide

deployment of end-to-end network traffic encryption. In [3],

[4], authors showed the potential of using Machine Learning

(ML) to infer Web QoE metrics from encrypted network

traffic, for the specific scenario of desktop web browsing.

By using page load controlled experiments, where network

data is simultaneously collected with ground-truth Web QoE

metrics such as SI, AFT, etc., their study built a labeled dataset

and trained supervised ML models to infer these QoE-related

metrics from network traffic features, computed on the stream

of collected bytes. In [1], we showed that the performance

of these ML models built on desktop measurements does

not generalize to mobile browsing, resulting in poor Web

QoE inference performance when applied to web browsing

in smartphones. Finally, in [2] we have recently introduced

a novel measurement framework to measure loading times in

apps, which can be used to extend the analysis of Web QoE

to those mobile apps where perceived waiting times determine

the experience of the end-user – e.g., different from video

streaming, where re-buffering and video quality are the key

to user experience. We would therefore refer to Web and App

QoE from now on, meaning the access of remote web contents

from browsers or mobile apps.

In this paper we follow a similar approach to [1], [2],

focusing the analysis on Web and App QoE in mobile devices

exclusively. Web and App QoE is paramount for mobile ISPs,

as the lion’s share of Internet-access devices is today smart-

phones, with nearly three quarters of the world population

using just their smartphones to access the Internet by 2025

[5]. Our contributions are as follows: (i) Data: we generate

a unique dataset of Web and App QoE measurements in

mobile devices, targeting the most popular websites in today’s

Internet, and a selected set of popular mobile apps. The dataset

includes both application-layer Web QoE metrics – such as SI,

as well as network traffic traces, for more than 40,000 web

and app loading sessions (i.e., the loading of a single browser

or app page). (ii) Models: leveraging these data, we present an

extensive benchmark comparing the performance of different

ML models to infer the SI of web browsing and app sessions

in mobile devices, considering models for web browsing in

smartphones, tablets, and for apps. (iii) Mobile Web QoE

insights: we characterize the contents and properties of the

targeted websites, unveiling how relevant network and web

page characteristics impact mobile Web QoE.

The remainder of the paper is organized as follows. Sec. II

overviews the related work on Web and App QoE monitoring

and analysis. Sec. III presents the data generation and overall

modeling/inference approach, including a characterization of

the generated datasets. In Sec. IV we introduce and evaluate

the proposed ML models for mobile Web QoE inference,

using as input features derived from the encrypted streams                              
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of network traffic. Inference assessment is extended to apps in

Sec. IV-C, including the evaluation of a single, consolidated

model for multi-device mobile Web and App QoE inference.

In Sec. V, we dig deeper into the web measurements to

understand the correlations and implications of different web

page content and network characteristics on mobile Web QoE.

Finally, Sec. VI concludes this paper.

II. RELATED WORK

First Web QoE models described in the literature were

based on plain Page Load Times (PLT) [6], [7], and are still

broadly used in the practice to infer user satisfaction in web-

browsing [8]. However, research in the field demonstrated that

PLT is not the most accurate proxy to user perception of

web page loading times, as the actual web content visible to

the user is usually displayed much earlier, because most web

pages often stretch beyond the browser’s viewport. Additional

in-browser metrics have been devised to better suit the page

display on the screen. An approach is the so-called Above the

Fold Time (AFT), i.e., the time until the visible portion of a

web page has been fully loaded, which has also been tested

in traditional Web QoE models [9]. Newer Web QoE metrics

have been proposed recently, such as the SI, which takes into

account the whole visual progress of the page loading, by

processing a video capture of the screen. Besides single metric

modeling, ML-based approaches have been presented [10],

[11] to model Web QoE from a combination of metrics.

Another direction in the literature proposes to understand

how external components influence Web QoE. In [12], [13],

the impact of network quality fluctuations and outages on user

Web QoE was studied. Other components besides network

quality influence Web QoE, linked to the specific web page

content – usability [14], aesthetics [15], etc., as well as device

type – desktop, smartphone, tablets [1], [16]. Important to our

study, these papers show that smartphones and tablets have

their own characteristics, not only regarding screen sizes but

also in terms of content rendering and web designs.

Most of these papers are based on the analysis of Web QoE

in lab, controlled environments. Others directly rely on in-

browser metrics as a proxy to Web QoE, conducting large-

scale active measurement campaigns. For example, the impact

of multiple features such as transport protocols, network

connections, visible portion, etc., on PLT and AFT is studied

in [17], based on a set of 244 million measurements collected

during 6 months for the top-10000 Alexa websites. Other

papers also measured the impact of similar features on PLT

and SI or AFT in different countries and different types of

network [18], including mobile networks [19].

While useful, most of prior work stays at the application-

level. This is problematic for ISPs, which have no direct

access to in-browser metrics, but only to network traf-

fic. In recent years, TLS encryption has even narrowed the

information that ISPs can collect from the network side, and

previous approaches based on DPI and HTTP traffic analysis

such as [20] are no longer applicable. Other papers [21], [22]

have developed metrics with high correlation to the SI metric,
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Fig. 1: Measurement platform for model calibration.

such as Byte/Object-Index [21] and Pain-Index [22], which

can be computed from packet- and flow-level measurements

statistics, thus seamlessly operating with encrypted traffic.

Still, such metrics are mostly informative, as they do not

provide an absolute estimation of the actual SI value, which is

the key for Web QoE analysis. Recent work [3], [4] takes a step

further to directly infer the SI metric, using ML techniques

mapping network (encrypted) traffic features to SI. In [1], we

complemented [3], [4] and showed that the performance of

previously proposed ML models built on desktop measure-

ments does not generalize to mobile browsing, resulting in

poor Web QoE inference performance when applied to web

browsing in smartphones.

In the specific case of mobile Web and App QoE monitor-

ing, there have been multiple papers using ML [23], [24], [25],

[26] or simple modeling approaches [27] to map application

layer metrics [25], [26] or network QoS metrics [23], [24], [27]

into QoE-related metrics. From these, [23], [24] are the closest

to our work, but either propose analysis approaches which are

no longer applicable due to traffic encryption [24], or do not

address the web browsing scenario [23]. Regarding App QoE

measurement technology, the task is far from trivial, given

all the complexities associated to the instrumentation of QoE

measurement in mobile devices e.g., lack of APIs for measur-

ing QoE-relevant metrics, lack of open measurement tools for

mobile, a vast heterogeneity of different apps, just to name a

few of them; in this direction, platforms presented in [27], [2],

[28] provide means to semi-automate App QoE measurement,

in a per-app instrumentation basis. Here we use our platform

[2] to study the QoE of four popular apps (Amazon, YouTube,

Facebook, and BBC News), splitting the analysis of each app

loading session into different user interactions, including the

starting of the app, clicking different in-app pages or links,

scrolling through the app screen, etc.

III. WEB AND APP QOE DATASETS & MODELING

The proposed solution to the mobile Web and App QoE

monitoring problem consists of training supervised ML models

to map network traffic features, extracted from the encrypted

network web-page traffic, into relevant Web QoE metrics. The

approach is data-driven, and thus needs datasets containing

both the collected traffic traces – the input, and the targeted

Web QoE metric – the ground truth. To fully control the
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(a) Web page bytes. (b) Web page resources. (c) Root domains. (d) DNS requests.

Fig. 2: Characterization of the web pages in terms of size, resources, and requested domains.

generation of such datasets, we conceived a measurement

platform and testbed based on multiple private instances of

WepPageTest (WPT) [30], a well-known and widely used

open-source web performance analysis tool. Different from

previous studies [17], [3], [4], [21], [18], [19], which have fo-

cused exclusively on desktop browsers and desktop devices (or

in some exceptional cases, browser-emulated mobile devices),

our measurement testbed consists of three different, non-

emulated types of devices, including smartphones, tablets, and

desktop (Chrome is used as browser), using WPT agents for

Android and Linux. Using WPT measurements, the platform

extracts about 90 different KPIs and Web QoE metrics from

independent web page loading sessions – such as PLT, SI,

AFT, Byte Index [21], Object Index, Time to Interactive (TTI),

etc., as well as content characteristics of the visited web pages.

From these metrics we selected the SI as target, which is today

one of the most accepted metrics reflecting Web QoE. Nev-

ertheless, the methodology applies to any other similar Web-

QoE metric. Network traffic is captured at an intermediate

monitoring device and stored as .pcap traces, which are post-

processed to extract the input features to the models. In this

paper we focus exclusively on the data generated in mobile

devices, including smartphones and tablets.

The testbed is extended to also run controlled tests on apps

through Appium (https://appium.io), a popular open source

test automation framework for automating native, hybrid and

mobile web apps. Using Appium, we built a test automation

framework which allows the analysis of independent user

interactions with a particular app, producing for each of

these actions a separate traffic capture trace and a screen

capture video, the latter used to automatically extract the

corresponding SI metric through frames’ analysis (see https:

//github.com/WPO-Foundation/visualmetrics).

Fig. 1 shows the components of the measurement platform.

Devices are connected to the open Internet through indepen-

dent network emulators, which allows for controllable network

access performance configurations in terms of bandwidth,

latency, packet loss, etc. This allows for heterogeneity in the

generated measurements. Configurations used in the study

include access downlink bandwidth up to 10 Mbps, packet

loss rates up to 10%, and RTTs up to 100ms.

Web browsing measurements target the top 500 websites

according to Alexa top sites list. The same web pages are

visited multiple times for each device type, under the same

access network setups. We do not consider the effect of
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(a) Smartphone. (b) Tablet.

Fig. 3: Shares of web page contents (bytes).

caching, thus all tests correspond to a first-view loading

session. In the case of web browsing, we collect the so-called

RUM SpeedIndex (RUMSI) metric [31], which is a passive

approximation to the SI, computed from the analysis of web

page resource timings. RUMSI provides the same information

as SI, but does not require screen capture at the end device.

Given that app measurement requires instrumentation for

each specific app, we selected four popular apps for the study,

including Amazon, YouTube, Facebook, and BBC News. The

main idea of this selection is to test different app technologies

– e.g., Facebook and YouTube are both native apps, BBC News

is a web app, and Amazon is a hybrid app, with different levels

of interactivity in terms of user actions. We tested different

kinds of interaction, including app startup (i.e., start the app,

and wait for the main page to load), page scrolling, search,

and menu items/links clicking; in all cases, the SI is measured

from the time of the action execution (0% visual progress), till

the completion of the resulting change in the screen (100%

visual progress). For simplicity, the app startup is tested for

all four apps, and the rest of the user interactions is only tested

for Amazon and BBC News. The resulting dataset consists of

more than 40,000 web page and app loading sessions.

Finally, for the sake of simplicity and to keep the scope of

the study, we assume that the monitoring system takes as input

network traffic from a single web or app session. In the case

of concurrent web sessions, we have conceived a classification

methodology similar to the one used in [22] to disentangle

them; the traffic filtering and classification is nevertheless out

of the scope of this paper.

A. Web Data Characterization

The list of top 500 Alexa web pages is very assorted in

terms of contents, and as we show next, there is a mild yet

visible impact in terms of web page characteristics and timing

performance regarding the type of mobile device being used.
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Fig. 4: Time performance of web loading sessions.

As expected, Fig. 2(a) shows that web pages in tablet devices

are slightly bigger than those in smartphones, with an average

page size of 2.4MB and 2.1MB, respectively. Figs. 2(b) and

2(c) further evidence the richness and complexity of the web

pages in terms of number of resources (images, java-script,

html, etc.) and external (root) domains, with more than 30%

of the web pages consisting of more than 100 resources, and

about 40% of the web pages contacting more than 10 different

domains. Fig. 2(d) shows that the number of different DNS

requests observed for a single page loading session can be as

high as 160, and for more than 50% of the web pages, it takes

more than 20 DNS requests to fetch the content. Again, tablet

web pages consist of a slightly higher number of resources,

requiring a higher number of requests.

Fig. 3 depicts the shares of web page bytes per content

type, and per device. Content is split in html, java-script,

CSS, image, font, video, and other content types. Images

and java-script contents make the most of the bytes, with

50% of the pages having a share of either images or java-

script above 40%. Tablet pages have a higher share of image

contents, whereas smartphone pages have more java-script.

Video contents are very limited, with a small share below 30%

and only present in about 10% of the pages.

Finally, in terms of performance, Fig. 4 depicts the distribu-

tion of three relevant Web QoE metrics for the different web

page loading sessions, discriminated by device type. These

include: the Time to First Paint (TTFP), which accounts for

the time at which the first object is painted on the browser, the

RUMSI, and the PLT. The Time to First Byte (TTFB) is also

added, as a timing reference. TTFB values are almost identical,

as they do not reflect the performance of the content rendering,

but rather the performance on the network/server side. TTFP

values are also very similar, but RUMSI values are higher for

tablet, and PLT are significantly higher, which is explained

by the fact that web pages have more contents/resources to

load in tablet (cf. Fig.2). Also interesting to note is how PLT

significantly overestimates the perceived loading time of the

contents, represented by the (RUM)SI metric.

B. App Data Characterization

To show the heterogeneity of samples generated by the app

tests, Fig. 5 presents the distribution of downloaded bytes

per app and device type, for all the tested user actions.

The first interesting observation is that the volume of traffic

generated by the Facebook app at startup is negligible, which

corresponds to the fact that no user account is associated to
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Fig. 5: Downloaded bytes per app, multiple actions.

this app, and that the app cache is cleared at the beginning

of each new startup test. In addition, while the YouTube and

BBC News apps generate significantly higher traffic volumes

in smartphone, the Amazon app produces slightly more traffic

in the tablet device, pointing to significant differences in app

behavior depending on the mobile device type.

In terms of loading performance, Fig. 6 reports the SI (a)

per app, (b) per device type, and (c-d) per user action for BBC

News and Amazon apps, respectively. Firstly, considering

the RUMSI values obtained for the web browsing test (cf.

Fig. 4), obtained app SI values are significantly lower, which

adds to the heterogeneity of the overall study. YouTube and

Amazon SI values are markedly higher, which is coherent with

the higher downloaded volumes of these apps. According to

Fig. 6(b), variations between devices are noticeable, especially

for lower SI values. Finally, regarding SI for specific user in-

teractions, Figs. 4(c-d) show bi-modal distributions for most of

the interactions – corresponding to the different device types,

as well as much higher SI variations for the Amazon app,

suggesting that identification of particular user interactions

might be relevant for the analysis.

C. Targets and Input Features

We treat the inference of the (RUM)SI metric as a regression

problem. To define input features, we follow the rationale

behind the computation of the SI metric itself, which con-

siders the whole progress of the page loading. We define

the Cumulative Bytes Downloaded features CBD(i)∆T , as

the (normalized) cumulative number of bytes downloaded

from the first collected byte at time t0 (TTFB) up to time

t = t0 + i × ∆T , with i = 1, . . . ,m. The CBD features

track the download progress of the page bytes, using a time

resolution ∆T . Fig. 7 depicts examples of CBD features

for different network configurations, using m = 100 and

∆T = 100ms. Pages loading faster have a CBD loading

curve rising sharper and arriving to full download earlier.

We take m = 100 samples, and consider three different

resolutions to compute features, using ∆T = 50ms, 100ms,

and 500ms, for a total of 300 CBD features. Using different

resolutions helps in capturing different phenomena in the

traffic downloading progress, and allows to track different

page load durations, in this case up to 5, 10, and 50 seconds,

respectively. We consider n = 11 additional input features,

related to the complete page loading session; these include: full

session duration (first to last packet), downlink/uplink session

duration (first to last packet in downlink/uplink direction), total
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Fig. 6: Time performance of app loading sessions, considering specific app, device, and user action.
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Fig. 7: Examples of CBD features, using ∆T = 100ms, and

different Access RTT (RTTA) network setups.

packets downlink/uplink/full, total bytes downlink/uplink/full,

and session mean throughput downlink/uplink. Fig. 8 depicts

the linear correlation between these input features and the

RUMSI metric, for the web tests. Correlation values are

slightly higher for smartphone, with stronger correlations ob-

served for CBD features between 5 seconds and 10 seconds,

as well as for session-duration features.

IV. MOBILE WEB AND APP QOE INFERENCE

Using the generated data and network traffic features, we

train multiple regression models to infer the (RUM)SI metric.

Given the identified differences between device types in terms

of page contents and loading performance, we first consider

the case of per device-type models, and then generalize to a

multi-device scenario, training single models on all devices

data. We then extend evaluations to include apps, and finally

test a single integrated model, tackling both web pages and

apps, for both device types. Results presented next corre-

spond to 5-fold cross validation, and models are parametrized

through grid-search.

A. Web QoE Inference per Device Type

Tab. I reports the RUMSI inference performance attained

by 9 different ML models, most of them based on decision

trees, for smartphone and tablet devices. These models include

single decision tree (DT), multiple types of ensembles using

different numbers of trees, such as randomized trees (ET),

random forest (RF), bagging trees, and boosting - including

XGB optimizations. The list is completed by a plain Bayesian

approach, and by the standard k nearest neighbors (kNN). We

assess performance using three standard performance metrics

for regression problems, including the absolute error (AE), the

relative error (RE), and the linear correlation (PLCC). We take

both mean (M) and median (m) values for the error metrics, to

filter out significantly large errors. Figs. 9(a), 9(b) additionally

depict the distribution of the inference errors.
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Fig. 8: Input features to RUMSI correlation.

model dev MAE-mAE (ms) MRE-mRE (%) PLCC

DT
S 1021 – 372 34 – 14 0.770

T 1082 – 298 31 – 11 0.731

ET10
S 788 – 354 28 – 13 0.859

T 804 – 314 25 – 11 0.867

RF10
S 813 – 383 29 – 14 0.856

T 867 – 357 27 – 12 0.852

RF100
S 764 – 360 27 – 13 0.876

T 815 – 334 26 – 12 0.866

Bagging
S 820 – 380 29 – 14 0.855

T 874 – 362 27 – 13 0.853

Boosting
S 1067 – 598 42 – 23 0.834

T 1206 – 642 43 – 24 0.813

Bayes
S 1245 – 668 48 – 26 0.749

T 1337 – 626 47 – 25 0.697

kNN
S 1205 – 639 46 – 23 0.724

T 1284 – 592 44 – 21 0.709

XGB
S 1068 – 601 42 – 23 0.831

T 1207 – 652 43 – 24 0.811

TABLE I: RUMSI inference performance using ML models

for (S)martphone and (T)ablet data.

RF100 achieves the best inference performance for both

smartphone and tablet, with a median absolute error of 360

ms/334 ms, and a median relative error around 13%. Absolute

inference errors are below 500ms for more than 60% of the

sessions, and more than 80% of the session RUMSI values are

inferred with an error below 1 second. Similar performance

is realized by smaller ensembles - e.g., RF10, ET10, and

bagging, using 10 instead of 100 trees. Given the training

speed improvements attained by the ET10 model, we take it

as the underlying model in subsequent evaluations.

As a reference to understand the implications of the

achieved errors in terms of user experience, the limits of hu-

man perception imply that we find it difficult to correctly order
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Fig. 9: RUMSI inference performance, using (a,b) per device models and (c) multi-device models.

model MAE-mAE (ms) MRE-mRE (%) PLCC

ET10 S→T 1139 – 510 36 – 18 0.778

ET10 T→S 1028 – 526 38 – 20 0.815

ET10 MD→MD 802 – 345 27 – 12 0.863

RF100 MD→MD 758 – 320 25 – 11 0.873

TABLE II: Inference for cross-device (S)martphone-(T)ablet

data, and Multi-Device (MD) data.

visual events separated by less than 30ms. Studies summarized

in the literature [29] additionally suggest that, depending

on the specific task, the minimum perceptual duration of a

perceivable stimulus lies between 25ms and 150ms. Therefore,

we could already hypothesize that the median error of 350ms

has a perceivable yet limited impact on the inference of the

user web browsing experience. Finally, using standardized

Web QoE (MOS) models for waiting times [6], we verified

that for more than 92% of the web page loading sessions,

the realized inference error does not result in a change to the

inferred QoE class, considering 3 QoE classes in a standard

5-ACR MOS scale [6] – excellent QoE (MOS > 4), good QoE

(3 < MOS < 4), and poor QoE (MOS < 3).

B. Cross and Multi-device Web QoE Inference

A question that poses regarding generalization of models

across different mobile device types is how would cross-device

models perform? We refer to cross-device models as those

trained for one specific device type, e.g., smartphone, and

applied to other device types, e.g., tablet. This is a critical

aspect in the practice, which has been generally neglected in

the literature [17], [3], [4], [21], [18], [19], where Web QoE

models have been tailored for desktop web browsing.

Tab. II reports the performance achieved by cross-device

models, using ET10 as underlying ML approach. We use

the notation S → T and T → S for a model trained

using exclusively smartphone/tablet measurements and tested

on tablet/smartphone measurements, respectively. There is a

strong performance degradation when applying cross-device

models, with median absolute errors close to doubling as

compared to per-device models. Absolute errors increase by

200ms to 300ms, and relative errors by about 10%. While we

do not report it in this paper, the performance degradation

when considering cross-device models between desktop and

mobile devices is significantly higher, again pointing to the

device (content) MAE-mAE (ms) MRE-mRE (%) PLCC

APPS 246 – 90 22.6 – 9.5 0.932

S (web) 751 – 349 25.2 – 13.5 0.861

T (web) 763 – 338 25.3 – 11.7 0.865

A 310 – 115 29.7 – 12.0 0.917

TABLE III: Apps QoE inference and integrated model.
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Fig. 10: (RUM)SI inference performance, using (a) apps model

and (b) integrated, multi-device, multi-contents model. ET10

is used as underlying model.

paramount need of considering multi-device measurements

to build robust and reliable Web QoE inference models,

applicable in the practice.

In this direction, Tab. II also reports the inference perfor-

mance achieved by multi-device (MD) models, using both

ET10 and RF100 as underlying ML approaches. A single MD

model is trained on data from both smartphone and tablet

devices. Results for MD models are almost identical to those

attained by per-device models, with a slight degradation for

smartphone and a slight improvement for tablet. This sug-

gests that proper inference generalization can be achieved by

considering sufficient device heterogeneity in the training step.

Similar conclusions are drawn when additionally considering

desktop measurements for MD models training.

C. Apps QoE Inference

The last step of the assessment considers the inference of

the SI values for app user interactions. Fig. 10(a) depicts the

distribution of inference errors obtained with an ET10 model,

trained on top of the complete apps dataset. The first row

of Tab. III summarizes the obtained results for this dataset.

The obtained performance is significantly better for apps than

the results so far obtained for web pages, achieving median

absolute errors (mAE) of less than 100ms, and with more
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Fig. 11: Application-layer metrics, web page content, and network-layer metrics correlated to RUMSI.

than 85% of the instances inferred with an AE below 500ms.

Fig. 10(a) also splits the obtained results per device type,

evidencing that a single model can properly address apps in

both device types. The main difference between web and app

datasets, and the corresponding inference performance, lies on

the different span of contents on each dataset: while the web

dataset targets 500 different web pages, the apps dataset covers

only four apps and 12 different user interactions, making it

easier for the model to provide more accurate predictions.

Finally, Fig. 10(b) reports the performance of an integrated,

multi-device and multi-content model for Web and App QoE

inference, built on top of a combined web and app measure-

ments dataset including the over 40,000 measurements gener-

ated in the study. Error distributions are presented separately

for the application of the integrated model on smartphone web

measurements – S (web), tablet web measurements – T (web),

and all-device/all-user-actions app measurements (A). Tab. III

summarizes the obtained results for this single, ET10 model.

Obtained results are consistent with both web and app results

presented so far, providing almost the same results as the MD

web model evaluated in Tab. II for web contents, and slightly

worse results for apps as compared to the ET10 model for

apps only (cf., first row of Tab. III).

Conclusion: multi-device and multi-app models can be

properly trained to tackle the Web and App QoE inference

problem from encrypted traffic, offering reliable monitoring

capabilities for ISPs.

V. MOBILE WEB QOE INSIGHTS

We devote the last part of the paper to dig deeper into the

interplays between web page contents, network, and Web QoE.

In particular, we shed light upon which characteristics from

both the content of the web pages and the network have a

stronger correlation to the RUMSI, and how some of them

impact Web QoE. We note that the insights here correspond to

an end-user point of view, from the single vantage point where

the measurements were collected. Fig. 11 shows the rank

correlation between (a) Web QoE-related metrics captured at

the browser (application layer), and (b) web page content

and network layer. As expected, there is a strong correlation

between RUMSI and all loading/timing metrics, including

TTFP, DOM, TTFB, PLT, the loading of last image and java-

script contents, and other progressive or integral-like metrics

such as Object/Image/Byte Index. Other timing metrics worth

mentioning are those related to readiness for page interactivity,

such as Time to Interactive (TTI) and time to First CPU Idle

(FCPU idle). Both reflect the time it takes for the page to be

actually usable and actionable by the end-user.

From the page content and network points of view, the more

flows, bytes, resources, connections, visited domains, and DNS

requests needed to load the page, the higher the RUMSI, and

thus the worse the Web QoE. The CDN metric reflects the

fraction of static contents retrieved from CDNs, and the more

static content is served from a CDN, the lower the RUMSI.

Similar – but much lower, negative correlations exist for the

effective download throughput - effTh (downloaded volume to

fully loaded time ratio), and the number of QUIC flows.

Fig. 12 depicts the impact that some of the flagged metrics

have on the RUMSI. Figs. 12(a) and 12(b) evidence how

strong is the impact of the number of resources to load (split

is done at the median number of resources, cf. Fig. 2(b))

and the fraction of static contents served from CDNs (split

is done at 50%). For example, whereas the average RUMSI

for pages with CDN>50% is 2.9 seconds, it is 5.5 seconds

for pages with CDN<50%. With a median effTh of 2Mbps,

Fig. 12(c) shows that loading sessions with a lower/higher

effTh correspond to an average RUMSI of 4.3/2.8 seconds.

Finally, Fig. 12(d) depicts the impact of the RTT set at the

access (RTTA). For the sake of completeness, we include

an additional set of measurements for RTTA = 200ms. The

most interesting observation is how the impact of RTT on the

RUMSI gets amplified due to the multiple exchanges to fully

download the contents, with an average RUMSI of 3.2/4.5

seconds when increasing RTTA from 20ms to 100ms, and an

average RUMSI of 7.2 seconds for RTTA = 200ms.

VI. CONCLUDING REMARKS

Mobile Web and App QoE monitoring and analysis are

complex tasks. By generating a large dataset of Web and App

QoE measurements for mobile devices, we have conceived
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Fig. 12: RUMSI dependence on network and web page content characteristics.

an ML-based approach capable to infer the (RUM)SI of

web browsing sessions and app user actions in smartphone

and tablet devices with low errors and cross-device, multi-

content generalization, using as input features derived from

(encrypted) network traffic. We have shown the paramount

impact of the device type used for web browsing on the

modeling and inference performance, putting into question

the applicability of previous approaches in the state of the

art, mostly targeting Web QoE for desktop browsing. The

extension of the Web QoE problem to consider mobile apps

opens the door to a broader perspective for the mobile QoE

monitoring and analysis problem, evidencing the complexity

faced by ISPs to tackle this monitoring problem. As an addi-

tional outcome, we have studied the relationships and impact

of multiple web page content and network characteristics on

mobile Web QoE, shedding light on important aspects of web

content and network characteristics impacting the experience

of the end users. As an overall conclusion, and different from

the state of the art on Web and App QoE monitoring and

analysis, this is the first paper directly inferring Web QoE

metrics such as (RUM)SI exclusively from in-network traffic

measurements for mobile devices, providing cross mobile

device-type and multi-content generalization.

Finally, while the problem of Web and App traffic identi-

fication and disentangling is out of the scope of this paper,

we acknowledge that we have conceived multiple techniques

addressing this problem, such that an end-to-end monitoring

solution could be deployed by an ISP in the practice.
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