
Optimizing HAS for 360-Degree Videos
Christian Moldovan, Frank Loh, Michael Seufert and Tobias Hoßfeld

University of Würzburg, Chair of Communication Networks, Würzburg, Germany
{christian.moldovan, frank.loh, michael.seufert, tobias.hossfeld}@uni-wuerzburg.de

Abstract—In recent years, an increasing number of Internet-
based applications have been released that use virtual reality for
education, training, gaming, and various forms of entertainment.
When transmitting an omnidirectional 360◦ video over the Inter-
net, it consumes considerably more data compared to traditional
video streaming. To overcome the high network requirements
and still reach a high Quality of Experience, HTTP adaptive
streaming technology is considered for 360◦ video streaming. In
contrast to traditional streaming, the adaptation logic considers
not only the current network conditions, but also the viewport of
the user, i.e., which part of the 360◦ sphere the user is currently
focusing on. However, as the viewport of the user might change
anytime, the adaptation logic is required to accurately predict
the viewport in the next seconds of the playback to allow for an
efficient and smooth streaming with a high visual quality.

In this paper, we present novel linear programs that determine
the optimal visual quality, which is reachable in a given network
scenario using different approaches for viewport prediction. Our
results are an important contribution for designing adaptation
logics for 360◦ video streaming, which allow for efficient data
transmission in the network while reaching a high QoE in VR
applications.

I. INTRODUCTION

Video streaming is the predominant form of traffic in today’s
Internet [20]. In the last decade, demands, challenges, and
technologies for streaming have been changing tremendously.
Streaming is no longer sporadic but has reached mainstream,
with streaming content having evolved from short clips to
TV content or feature films. Moreover, streaming is not only
consumed at home, but to also in mobile scenarios, where
network conditions might heavily fluctuate. To account for such
fluctuations, HTTP Adaptive Streaming (HAS) was introduced.
It allows to download different segments of the video in
different qualities. Thus, the video can adapt to the current
network conditions to avoid stalling, i.e., playback interruptions
due to buffer underrun, which is the most severe degradation
of Quality of Experience (QoE) and a major threat to user
satisfaction [21].

Also, in the next years, the rise of streaming will continue.
One major reason for this are the upcoming use cases and
applications of virtual reality (VR), as VR requires streaming
of omnidirectional videos, or so called 360◦ video, which are
typically consumed on head mounted displays (HMDs). [19]
expects the compound annual growth rate of the VR market to
be 58.54% from 2018 to 2023. Moreover, the number of VR
users in the US already reached 22.5 million in 2017 (11.5
million users of HMDs) and is expected to grow up to 57.1
million (30.6 million users of HMDs) in 2021 [4]. From a

conceptional perspective, a 360◦ video can be regarded as a
spatial concatenation of several individual videos, so called
tiles, each showing a dedicated part of the 360◦ sphere. A
360◦ video stream is technically composed of many individual
video streams of tiles, such that every tile can be downloaded
and played out in an individual quality [17].

The usage of HAS technology for 360◦ videos is beneficial
for both end users, streaming providers, and network operators.
On the one hand, similar to classical HAS, the video stream
can adapt to the current network conditions and avoid stalling,
which is a major QoE degradation. On the other hand, streaming
providers and network operators can save resources on their
servers and in the network by reducing the bit rate – and
consequently the visual quality – of tiles, which are not in
the viewport or focus of the end user. This would allow to
serve more users with the same resources. However, there is a
trade-off, as streaming providers and network operators still
need to deliver the best possible streaming experience to their
end users. Thus, the adaptation logic, which decides on the
streamed quality of each tile, has to be well designed to address
this trade-off.

A straightforward approach to reduce the required resources
for 360◦ streaming is to consider the viewport of the user, i.e.,
which part of the 360◦ sphere the user is currently focusing on.
Tiles are streamed in the best possible quality only if they are
in the focus of the user, and in a reduced quality if they are
out of focus. If the viewport of the user would be known at
any time during the streaming, an optimal adaptation strategy
could then be obtained. In this paper, we define and solve this
optimization problem for omnidirectional videos in a given
network scenario by a linear program (LP). It can be used as a
benchmark tool that is helpful to evaluate adaptation strategies
for 360◦ videos.

In a practical use case, however, the viewport of the user
is not known in advance. Thus, it is necessary to predict the
viewport in the next seconds of the playback and rely on these
predictions for adaptation decisions. In this paper, we modify
the previously mentioned LP to consider the practical, but
possibly imperfect viewport prediction using three different
prediction approaches. Then, we compare the results with the
optimal solution as a benchmark and with the current state of
the art. Our results show that a simple statistics-based approach
performs best among all other tested methods in this scenario.

The reminder of this work is structured as follows. Section II
discusses background and related work. In Section III, the LP
for the optimal adaptation logic is presented. This benchmark
LP, which relies on perfect knowledge about the viewport, it

is extended to compute optimal adaptation strategies for three
practical, but possibly imperfect viewport prediction approaches.
In Section IV, we compare the results of the LPs. Finally,
Section V concludes the paper.

II. RELATED WORK ON 360◦ VIDEO STREAMING

A. Adaptive Video Streaming

Video streaming is based on a download of video data to a
video buffer and concurrent playback from that buffer. However,
if the throughput decreases below the video bit rate, the buffer
might deplete, which results in a playback interruption, also
called stalling or rebuffering. The introduction of HAS made
it possible to adjust the video bit rate to the currently available
downlink bandwidth in order to avoid stalling events. Therefore,
each video is available in different video bit rates, reached
by different encoding settings. Although stalling events are
the most severe degradation of the perceived user’s Quality of
Experience (QoE), also the initial delay before the playback
start and the visual quality of the video [21], [22] have to be
considered.

In addition to this temporal adaptation, the current video
encoding H265, which was introduced in 2013 [11], allows to
also spatially split a video into tiles and encode each tile with
a different bit rate [14]. Using this principle, regions of the
video that are of low interest can be downloaded in a lower
quality. This leads to an additional reduction of consumed data.

B. Linear Optimization of HAS

The first quadratic program that solved adaptive streaming
was presented in [13]. In a first step the optimal quality is
determined that is reachable without stalling. In a second step,
the number of quality switches is minimized while playing at
the optimal quality and while avoiding stalling. This program
was extended in [10] to include multiple viewers who watch
the same video at the same time. In [15], the program was
extended to optimize the QoE fairness for multiple viewers
who watch different videos asynchronously. In this paper, we
focus on the first step, that optimizes the quality, and extend
it for 360◦ videos.

C. 360◦ Video Streaming

Current video platforms always stream the whole video
in the same visual quality, although in the case of 360◦

videos only a small share of the total video, the so-called
viewport, is watched at any point in time by the user. To reduce
the data consumption of 360◦ video streaming, approaches
have been developed to predict which viewport the user
will watch. If the viewport can be predicted accurately, it
is sufficient to stream it in high visual quality while the
remaining tiles can be transmitted in a lower quality, as they
are less likely to be watched. However, an accurate viewport
prediction is only possible if the video consists of short video
segments [9], which leads to high segment overhead. A segment
length of 2 seconds is suggested in [18] as a good trade-off
between segment overhead and head movement prediction

accuracy. A description of the basic principles of adaptive tile-
based streaming of omnidirectional video services over HTTP,
available encoding options, and evaluations with respect to bit
rate overhead, bandwidth requirements, and quality aspects can
be found in [7]. To predict the performance of 360◦ videos
in terms of application layer QoS and QoE the authors of [3]
propose PERCEIVE, a method which uses machine learning
techniques.

D. Viewport Prediction

Several works relied on viewport prediction in the context
of 360◦ video streaming. The authors of [17] developed a
framework for 360◦ videos that uses 35% less data while
providing similar quality in slow viewport movement scenarios.
First viewport-adaptive streaming algorithms were presented
in [29] and [27]. The authors of [16] used a trajectory-
based approach which groups past users that have a similar
viewing trajectory and create a model of the viewport evolution
over time for the identified groups. This model is used at
prediction time for new users. The authors of [12] proposed
a heatmap-based model and a trajectory-based model for
viewport prediction. The authors showed that using other user’s
information increases the performance over only using the
current user’s information. A similar trajectory-based prediction
scheme and an adaptation algorithm for VR videos were
presented in [25]. In [2], it was suggested to investigate head
movement prediction extracted from the feedback of previous
users. A 360◦ head movement data set from 59 users was
provided in [1]. The authors of [26] used a probabilistic
model of viewport prediction to reduce side effects caused by
wrong head movement prediction. Their approach significantly
reduced stalling with small buffers. In addition, they provided
an optimization problem that minimizes quality distortions
and spatial quality variance. A first approach to using neural
networks for viewport prediction was presented in [5]. They
leveraged content- and sensor-related features for the prediction.
Their approach, that was tested in a user study, consumes
less bandwidth and has a shorter initial delay than other
approaches. In [28], a viewport prediction model was presented
that is based on a convolutional neural network (CNN). In
addition, they presented a trajectory prediction model which is
based on an RNN. The RNN was combined with a correlation
filter-based viewport tracker that adds content awareness to
increase the performance of the prediction. An approach that
relies on learning contextual bandits to predict the viewport
for 360◦ videos is presented in [8]. While other approaches
follow the behavior of the current user, the authors of [6]
believe that user behavior is hardly predictable and is mainly
correlated to moving objects in the video. With this idea in
mind, they develop a motion tracking algorithm that identifies
representative moving objects. The authors of [23] separated
video segments into two tiers: the basic whole video tier and
the viewport tier. The whole video tier can be downloaded
early and can be stored in the buffer while the viewport tier is
downloaded on demand to enhance the current viewport.

statistical
prediction

machine
learning

prediction

linear
extrapolation

• long term prediction
• buffer can grow large

• short term prediction
• buffer cannot grow large

previous users’
head movements

user’s recent
head movements

method

result

input

baseline
model

• optimal result

user’s future
head movements

Figure 1: Overview of the four approaches with input and
result. The baseline model only serves for comparison and is
not applicable for practical purposes since it requires exact
future knowledge.

III. OPTIMAL ADAPTATION FOR 360◦ VIDEOS

In this section, we first define a baseline linear program for
360◦ video streaming, i.e., tile-based video streaming. This
linear program computes the optimal adaptation strategy in
a given network scenario if the viewport of the user would
be known. As in practice the viewport cannot be known in
advance, we extend the baseline program to take into account
three approaches for viewport prediction. An overview of the
three approaches is given in Figure 1.

A. Baseline Linear Program for Optimal 360◦ Adaptation

In this problem, we download a set of n video segments
in order. Each segment consists of m spatial tiles. To have a
complete video, each tile of every segment must be downloaded
exactly once, compare Eq. (2). Each tile can be downloaded in
one of r resolutions or quality layers. The size in bytes of tile
s of segment i in resolution j is defined as Sijs. The quality
of a segment is defined by its value function wijs.

For each segment i there exists a deadline D2
i until which

it must be completely downloaded to allow seamless video
streaming without stalling. The first segment must be com-
pletely downloaded within the allowed initial delay D2

1 = T0.
The deadline of each consecutive segment i is defined as
D2

i = T0 + (i− 1) · τ, ∀i > 1, where τ is the duration of a
segment.

The data volume that can be downloaded between time D1
i

and D2
i is defined as V (D1

i , D
2
i). The sum of the volume of

any consecutively downloaded tiles must not be greater than the
available data volume until the last segments deadline, compare
Eq. (4). In omnidirectional videos, the user only sees a subset
of all tiles. Thus, we define the viewport Yi of a segment i
which includes all tiles of which at least one pixel is viewed
during the segment. For the objective function only the viewed
tiles are relevant. For the sake of simplification, we consider
each tile equally important, even if it is viewed briefly or
partially. The goal of the objective function (1) is to maximize
the sum of the quality of all viewed tiles of all video segments
while avoiding stalling. We formulate the corresponding binary
linear program as follows:

maximize

n∑
i=1

r∑
j=1

∑
s∈Yi

wijsxijs (1)

subject to

r∑
j=1

∑
s∈Yi

xijs = 1 (2)

∀i ∈ {1, . . . , n}
xijs ∈ {0, 1} (3)
∀i ∈ {1 . . . n}, j ∈ {1 . . . r}, s ∈ {1 . . .m}
k∑

i=1

r∑
j=1

∑
s∈Yi

Sijsxijs ≤ V (0, D2
i) (4)

∀k ∈ {1, . . . , n}

B. Optimal 360◦ Adaptation under Viewport Prediction

In a practical use case, the viewport of the user is not known
in advance. Thus, it is necessary to predict the viewport in the
next seconds of the playback and rely on these predictions for
adaptation decisions. Thus, we extend the baseline program
to take into account three approaches for viewport prediction,
which are also presented in Figure 1:
• a statistics-based approach that uses other users’ viewports

to determine the viewport probability for each tile during
each video segment,

• a linear extrapolation of the head movement trajectory of
the current user, and

• a deep neural network that trains with previous users’
head movement sequences during the same video before
being applied to the current user’s trajectory.

1) Statistical Long-Term Prediction: The first method as-
sumes that most users share a common interest in a subset of
all tiles during a segment. The idea is to download tiles in a
higher resolution if they are watched more frequently. Since
this method is independent of the current viewport, we can
download tiles early and fill the buffer. For this, we require
the frequency Pisu that a tile s of segment i is viewed by a
viewer u. We then determine the probability Pis = E[Pisu]
that a tile is viewed over all previous users. For any new user,
we use this probability P as a weight for the objective function.
Consequently, in the linear program, the input of the algorithm
changes as P and m have to be additionally considered, and
the objective function (1) must be replaced with (5):

maximize

n∑
i=1

r∑
j=1

m∑
s=1

Pisjxijs. (5)

2) Linear Extrapolation: For this method, we assume that
the head movement of viewers follows a linear trajectory over
a short period of time. We extrapolate the head rotations of
the three head rotation angles θ, ψ, φ, i.e., yaw, pitch and
roll. A prediction horizon of p ∈ {2, 3...10} seconds is used
to estimate the viewport during the next p seconds. While
a short prediction window leads to more accurate results, a
prediction window smaller than 2 s is not recommended since
the video must be split into shorter segments which leads to

𝐷𝑖
1

downloading segment 𝑖

𝐷𝑖
2

playing segment 𝑖

segment length 𝜏

time
prediction window

prediction

Figure 2: Sketch of the deadlines D1
i , D2

i and prediction
window in linear extrapolation and machine learning prediction.

worse encoding efficiency according to [9]. Therefore, we only
use p ≥ 2 for comparison with other methods.

However, if we base the download purely on live predictions,
tiles must be downloaded very late, and the buffer cannot be
filled for more than the prediction window p. This is expressed
through the point in time D1

i at which the prediction is done.
In Figure 2, we see that for any prediction window p and
segment length τ it is D1

i = D2
i + τ − p. We therefore have

to replace the viewport Y with the predicted viewport Y ∗ and
we add the point in time D1

i where the prediction occurs as
the earliest possible download time. Constraints (4) must be
replaced with the following constraint (6).

k∑
i=l

r∑
j=1

∑
s∈Y ∗

i

Sijsxijs ≤ V (D1
i , D

2
k) (6)

∀l ∈ {1, . . . , n},∀k ∈ {l, . . . , n}.

3) Machine Learning Prediction: In the following, we
assume that the head movement patterns of users are similar
for the same video and not necessarily linear. Nevertheless,
we can still rely on the same linear program that was used for
linear extrapolation described in Section III-B2.

To obtain a non-linear viewport prediction, we will rely
on machine learning to learn head movement patterns from
previous viewers and to predict them for the next viewer. For
this, we use a neural network that consists of a 4× 1000 input
layer, three hidden RNN layers with 256 neurons each and
a 4× 1000 output layer. The RNN uses a softsign activation
function. We experimented with many different configurations
for the RNN and used these since they returned the best results.
The input consists of the four parts q1, q2, q3, q4 that define
the quarternion that describes the head rotation as described
in [1]. To speed up the RNN, we quantize the head movement
traces of the users to the 1000 nearest values each.

During training, in each epoch we randomize the order in
which the training users are selected. Training is conducted for
2000 epochs for each combination of parameters. We tested a
prediction horizon of p ∈ {2, 3, ...10} seconds to estimate the
viewport during the next p seconds. Due to the same encoding
efficiency problem described in Section III-B2, we use p ≥ 2
for comparison with other methods.

The RNN returns a quarternion for each time step. From it
we determine the viewport Yi that the user is expected to view
during segment i. We also experimented with a CNN with an
LRU, but it performed worse than the RNN. Thus, we do not
investigate this approach further in this paper.

IV. PERFORMANCE EVALUATION OF VIEWPORT
PREDICTION

A. Performance Evaluation Methodology
For the evaluation, 51 head movement traces from [2] are

used for the viewport prediction. The head movement traces
start 40 s after the start of the video and are 70 s long. For
the evaluation we only consider these parts of the video. To
ensure that training and testing data is not correlated in the
neural network, we use the head movement traces from 40
users exclusively for training and eleven users for testing. For
the sake of comparability, we only used these eleven head
movement traces for all evaluations.

We implemented the optimization program in Gurobi in
Matlab. For the value function wijs, we chose the resolution j.
This means, we focus on maximizing the resolution. To create
a realistic streaming experience, we used the eight throughput
traces that were recorded according to [24], concatenated them
and used consecutive intervals of 100 seconds. This resulted in
eleven samples, one sample for each user of the testing group,
that is evaluated. We scaled down the throughput with a factor
of 0.05 so that a realistic adaptation scenario is obtained.

For our experiments, we downloaded the YouTube video
2OzlksZBTiA in eight resolutions: 144p, 240p, 360p, 480p,
720p, 1080p, 1440p, and 2160p. Using ffmpeg, we determined
the segment size in Bytes and the segment duration of 5.33 s
for each segment in each quality. We divided each segment
into three subsegments with a length of 1.78 s. This allows for
shorter deadlines to download the segments, which is necessary
for a short prediction horizon in the RNN and the extrapolation.
Furthermore, we partition each segment into 64 tiles (8x8) with
equal bit rate to allow for spatial adaptation.

In the following, performance evaluation results are given
considering this video, the head movement traces, and the
bandwidth traces as presented above. A one-to-one mapping
was used for the traces, i.e., the same bandwidth trace was
always used with the same head movement trace.

B. Comparison of Viewport Prediction Approaches
Figure 3 gives an overview of how the five methods perform,

that we compare in this study. For each user, the mean
resolution of the tiles in the viewport is calculated for each
approach. At the y-axis, the mean for all users is presented
while we use 95% confidence intervals. The same confidence
intervals are used all other figures. On the x-axis you can see
the prediction window. The highest reachable resolution lies
between 1080p and 1440p on average, shown by the blue line
as baseline. The current YouTube approach (green) of naively
downloading the whole video in the same quality can only
reach an average resolution of slightly above 480p on average.
If we determine a probabilistic viewport using the viewing
behavior of other users (red), we can reach a resolution between
720p and 1080p on average, which is in the middle between
the optimal and the current approach. The independence of the
prediction window is a large advantage of this approach since
it allows a large buffer. This helps to avoid stalling and keep
a steady resolution if the network is unstable.

2 3 4 5 6 7 8 9 10

prediction window for extrapolation and RNN [s]

240

360

480

720

1080

1440
a
v
e
ra

g
e
 v

e
rt

ic
a
l
re

s
o
lu

ti
o
n
 [
p
]

perfect knowledge

statistics-based viewport

linear extrapolation

neural network

download all tiles

Figure 3: Impact of the prediction window size on mean quality
over all users. Blue, red and green curves do not depend on
prediction and are only given for comparison.

The neural network approach performs worst in this case.
For a prediction window up to 4 s, the confidence intervals
overlap with the current YouTube performance (green). Thus,
no statistically significant difference can be detected. For larger
prediction windows the performance becomes even worse.
Comparing the linear extrapolation approach with the neural
network approach, for a prediction window of 2 s, the linear
extrapolation performs better. However, even in this best case,
it is only on a par with the probabilistic viewport approach.
But since the segment size must be smaller than the prediction
window, this can lead to a lot of overhead as concluded in [18].
For larger prediction windows also the performance drops,
and no statistically significant difference between the linear
extrapolation approach and the neural network approach can
be seen based on the 95% confidence interval.

To sum up, we conclude that the probabilistic viewport pre-
diction performs best if no perfect knowledge is available. Only
for a small prediction window of 2 s, the linear extrapolation is
on a par with the probabilistic viewport approach, but for larger
prediction windows the performance of linear extrapolation
and neural network decrease even below the naive baseline
(green). Since the playback resolution is only one factor for a
QoE analysis, in the following we focus on analyzing quality
variations during playback resulting in quality changes.

The average viewport approach (red) and downloading all
tiles in the same quality (green) show the smallest variance
of all methods. The two user-centric prediction methods,
extrapolation (yellow) and RNN (purple), have a high variance
which indicates many quality changes.

C. Live Viewport Prediction Performance

For a more detailed analysis of the live viewport prediction
performance, different prediction window sizes are compared
in this section. For the RNN and the linear extrapolation,
we regard a viewed tile as a positive and tile that is not

0 5 10

prediction window [s]

0.2

0.4

0.6

0.8

1

sensitivity

specificity

precision

accuracy

F1 score

(a) Extrapolation

0 5 10

prediction window [s]

0.2

0.4

0.6

0.8

1

(b) Neural network

Figure 4: Mean value of the classification functions for the
neural network and the extrapolation. The value of the y-axis
is described in the legend.

viewed as a negative. In Figure 4a and Figure 4b, we see
their classification functions. In both cases, we get a high
accuracy and a high specificity, even for larger prediction
windows, because during each segment, only a small subset
of all tiles is viewed. However, the sensitivity is very low for
large prediction windows. This means that the viewed tiles are
not correctly identified. Therefore, we also receive a low F1
score. The fact that our RNN is worse than the extrapolation,
indicates that this method should not be applied with such a
small data set.

D. Discussion

From the results of our performance evaluation, it can be seen
that the probabilistic viewport approach is the most successful.
On average, the quality of the video increases by almost
one layer while the mean variance of the quality stays the
same. However, in the optimal case, we could still improve the
average quality by more than one quality layer. Nevertheless,
the probabilistic approach has the great advantage that it is
not time constrained. This means that we can have a large
video buffer, whereas user-centric live prediction only allows
for a small buffer since we can only predict a few seconds
in advance. A large buffer helps to reduce the frequency of
stalling and quality switches. A disadvantage of this approach
is that we need to acquire the viewport of many users, in order
to apply it. A large enough group of malevolent users may
sabotage a video’s quality by viewing ’uninteresting’ tiles so
that other viewers would only download these tiles in high
quality.

The extrapolation approach with a prediction window of
up to two or three seconds performed better than the current
naive approach of YouTube to download all tiles in the same
quality. However, it has the disadvantage that the buffer is very
low, and a short segment size is required. On the positive side,
no additional user information is required. This makes it the
preferred method for 360◦ live streaming scenarios.

While the RNN did not reach good results, we believe that
there is potential for applying neural networks in viewport
prediction and further research with more samples may allow
for better results.

V. CONCLUSION

While the consumption of virtual reality videos is growing
at an explosive rate, the adaptive streaming technologies that
are currently employed are still inefficient. While several
approaches have recently emerged in literature, an optimal
solution to this problem does not yet exist. Thus, in this paper,
we presented a linear program to compute the optimal solution
for the adaptation in 360◦ video streaming under given network
conditions.

As in a practical application the viewport of the user is not
known, we also study optimal adaptation in case of viewport
prediction. Therefore, we considered three different viewport
prediction methods and evaluated their performance with the
help of modified linear programs. Our results showed that there
is potential to optimize the quality in 360◦ by a significant
margin compared to a naive approach, which just downloads
all segments and tiles in the same quality. We recommend
using a statistics-based adaptation when user viewports are
available, since this approach leads to the highest average
quality and the lowest variance. If live prediction is required,
e.g., in live streaming where no historical statistics about the
users’ viewports are available, linear extrapolation performed
best although it only worked well for a prediction window of
two seconds. The studied RNN-based approach, on the other
hand, did not give a sufficiently good streaming quality, and
has to be improved in future work. In future work, it also has
to be investigated how the QoE is affected when viewing tiles
in different resolutions to better understand the implications
of applying adaptive streaming technologies in 360◦ videos in
virtual reality applications.

ACKNOWLEDGEMENTS

This work was partly funded by Deutsche Forschungsge-
meinschaft under grant SDN App Aware (HO 4770/1–2).

REFERENCES

[1] X. Corbillon, F. De Simone, and G. Simon. 360-degree video head
movement dataset. In Proceedings of the 8th ACM on Multimedia
Systems Conference, pages 199–204. ACM, 2017.

[2] X. Corbillon, G. Simon, A. Devlic, and J. Chakareski. Viewport-adaptive
navigable 360-degree video delivery. In International Conference on
Communications (ICC), pages 1–7. IEEE, 2017.

[3] R. I. T. da Costa Filho, M. C. Luizelli, M. T. Vega, J. van der Hooft,
S. Petrangeli, T. Wauters, F. De Turck, and L. P. Gaspary. Predicting
the performance of virtual reality video streaming in mobile networks.
In Proceedings of the 9th ACM Multimedia Systems Conference, pages
270–283. ACM, 2018.

[4] eMarketer. Virtual and augmented reality users 2019.
https://www.emarketer.com/content/virtual-and-augmented-reality-
users-2019, 2019. Accessed: 2019-08-16.

[5] C.-L. Fan, J. Lee, W.-C. Lo, C.-Y. Huang, K.-T. Chen, and C.-H. Hsu.
Fixation prediction for 360 video streaming in head-mounted virtual
reality. In Proceedings of the 27th Workshop on Network and Operating
Systems Support for Digital Audio and Video, pages 67–72. ACM, 2017.

[6] X. Feng, V. Swaminathan, and S. Wei. Viewport prediction for live
360-degree mobile video streaming using user-content hybrid motion
tracking. Proceedings of the ACM on Interactive, Mobile, Wearable and
Ubiquitous Technologies, 3(2):43, 2019.

[7] M. Graf, C. Timmerer, and C. Mueller. Towards bandwidth efficient
adaptive streaming of omnidirectional video over HTTP: Design, imple-
mentation, and evaluation. In Proceedings of the 8th ACM on Multimedia
Systems Conference, pages 261–271. ACM, 2017.

[8] J. Heyse, M. T. Vega, F. De Backere, and F. De Turck. Contextual bandit
learning-based viewport prediction for 360 video. IEEE Virtual Reality
(VR), 2019.

[9] M. Hosseini and V. Swaminathan. Adaptive 360 VR video streaming:
Divide and conquer. In International Symposium on Multimedia (ISM),
pages 107–110. IEEE, 2016.

[10] T. Hossfeld, M. Seufert, C. Sieber, T. Zinner, and P. Tran-Gia. Identifying
QoE optimal adaptation of HTTP adaptive streaming based on subjective
studies. Computer Networks, 81:320–332, 2015.

[11] M. Inc. x265 HEVC encoder / H.265 video codec. http://x265.org/,
2013. Accessed: 2019-04-30.

[12] C. Li, W. Zhang, Y. Liu, and Y. Wang. Very long term field
of view prediction for 360-degree video streaming. arXiv preprint
arXiv:1902.01439, 2019.

[13] K. Miller, N. Corda, S. Argyropoulos, A. Raake, and A. Wolisz. Optimal
adaptation trajectories for block-request adaptive video streaming. In
Packet Video Workshop (PV), 20th International, pages 1–8. IEEE, 2013.

[14] K. Misra, A. Segall, M. Horowitz, S. Xu, A. Fuldseth, and M. Zhou.
An overview of tiles in hevc. IEEE journal of selected topics in signal
processing, 7(6):969–977, 2013.

[15] C. Moldovan, L. Skorin-Kapov, P. E. Heegaard, and T. Hoßfeld. Optimal
fairness and quality in video streaming with multiple users. In 30th
International Teletraffic Congress (ITC 30). IEEE, 2018.

[16] S. Petrangeli, G. Simon, and V. Swaminathan. Trajectory-based viewport
prediction for 360-degree virtual reality videos. In IEEE International
Conference on Artificial Intelligence and Virtual Reality (AIVR), pages
157–160. IEEE, 2018.

[17] S. Petrangeli, V. Swaminathan, M. Hosseini, and F. De Turck. An
HTTP/2-based adaptive streaming framework for 360 virtual reality
videos. In Proceedings of the 2017 ACM on Multimedia Conference,
pages 306–314. ACM, 2017.

[18] F. Qian, L. Ji, B. Han, and V. Gopalakrishnan. Optimizing 360 video
delivery over cellular networks. In Proceedings of the 5th Workshop
on All Things Cellular: Operations, Applications and Challenges, pages
1–6. ACM, 2016.

[19] O. Research. Global virtual reality market-segmented by prod-
uct type (hand-held devices, gesture-controlled devices, HMD),
VR technology, applications, and region-growth, trends, and fore-
cast (2018-2023). https://www.reuters.com/brandfeatures/venture-
capital/article?id=40919, 2018. Accessed: 2019-08-16.

[20] SANDVINE. Mobile internet phenomena report. Tech report, 2019.
[21] M. Seufert, S. Egger, M. Slanina, T. Zinner, T. Hoßfeld, and P. Tran-

Gia. A Survey on Quality of Experience of HTTP Adaptive Streaming.
Communications Surveys & Tutorials, 17(1):469–492, 2015.

[22] L. Skorin-Kapov, M. Varela, T. Hoßfeld, and K.-T. Chen. A survey of
emerging concepts and challenges for QoE management of multimedia
services. ACM Transactions on Multimedia Computing, Communications,
and Applications (TOMM), 14(2s):29, 2018.

[23] L. Sun, F. Duanmu, Y. Liu, Y. Wang, Y. Ye, H. Shi, and D. Dai. A two-
tier system for on-demand streaming of 360 degree video over dynamic
networks. IEEE Journal on Emerging and Selected Topics in Circuits
and Systems, 9(1):43–57, 2019.

[24] J. van der Hooft, S. Petrangeli, T. Wauters, R. Huysegems, P. R. Alface,
T. Bostoen, and F. De Turck. HTTP/2-based adaptive streaming of
HEVC video over 4G/LTE networks. IEEE Communications Letters,
20(11):2177–2180, 2016.

[25] J. van der Hooft, M. T. Vega, S. Petrangeli, T. Wauters, and F. De Turck.
Optimizing adaptive tile-based virtual reality video streaming. In
IFIP/IEEE Symposium on Integrated Network and Service Management
(IM), pages 381–387. IEEE, 2019.

[26] L. Xie, Z. Xu, Y. Ban, X. Zhang, and Z. Guo. 360probdash: Improving
QoE of 360 video streaming using tile-based HTTP adaptive streaming.
In Proceedings of the 25th ACM international conference on Multimedia,
pages 315–323. ACM, 2017.

[27] M. B. Yahia, Y. Le Louedec, G. Simon, and L. Nuaymi. Http/2-based
streaming solutions for tiled omnidirectional videos. In International
Symposium on Multimedia (ISM), pages 89–96. IEEE, 2018.

[28] Q. Yang, J. Zou, K. Tang, C. Li, and H. Xiong. Single and sequential
viewports prediction for 360-degree video streaming. In International
Symposium on Circuits and Systems (ISCAS), pages 1–5. IEEE, 2019.

[29] C. Zhou, Z. Li, and Y. Liu. A measurement study of oculus 360 degree
video streaming. In Proceedings of the 8th ACM on Multimedia Systems
Conference, pages 27–37. ACM, 2017.

