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Abstract—Modern photogrammetric methods as well as laser
measurement systems make it easy to collect large 3D point clouds
that sample objects or environments. As the recorded point clouds
can be used to render computer-generated images and models,
they are of particular interest in the domains of geographical
and architectural engineering, as well as for computer graphics
(e.g., games or virtual reality). However, point clouds have a
huge storage demand, thus, point clouds shall be reduced by
removing some of the points. This will inevitably also reduce
the Quality of Experience (QoE) of media, which is rendered
from the reduced point clouds. In this work, the impact of two
different reduction methods on the QoE of rendered images is
investigated from two point of views, i.e., based on ratings from
both naive crowdworkers as well as point cloud experts.

                                                   
                                        

                                                                        

I. INTRODUCTION

A 3D point cloud is a set of 3D points, where each point has

additional attributes, such as reflectance or color. Point clouds

are generated from sensor data, i.e., from triangulation and

Time-of-Flight (ToF). Triangulation is the underlying principle

in stereo vision and structure-from-motion, where 3D points

are generated by matching corresponding image points. Also

sensors like the Microsoft Kinect (version 1) and other struc-

tured light scanners use triangulation. In contrast, ToF is often

used by laser scanners, which emit a light and measure the

reflection by either the phase shift of modulated light, or the

direct ToF of a pulse. There are ToF cameras such as Microsoft

Kinect (version 2) and LiDAR (light detection and ranging)

systems, which include a mechanism for steering the laser

over the object of interest. Sometimes, the mechanism includes

mobile vehicles or even drones and aircraft. In this case, one

talks about mobile or airborne mapping. The amount of data

such LiDAR systems acquire is huge. Typical measurement

rates in mobile or airborne measurement campaigns are in

the order of 100k to 1M points per second which need to be

stored, processed and visualized, i.e., users directly interact by

viewing renderings of the 3D point clouds.

The majority of the sensors work in a spherical way, i.e., the

measurement is done from a central source. It is important to

note, that this applies to triangulation based systems as well

as to ToF systems. The result is, that objects closer to the

sensor are measured with higher point densities than objects

further away. This fact implies a lot of potential for point cloud

reduction and compression.

The question arises how the different reduction methods are

influencing the user perceived quality of the 3D point clouds.

A commonly accepted definition of Quality of Experience

(QoE) in multimedia systems is provided in [1], which defines

QoE as the degree of delight or annoyance of the user of an

application or service. The definition highlights that QoE is

influenced by expectations with respect to the utility and/or

enjoyment of the application or service in the light of the

user’s personality and current state. For various multimedia

services like speech, images, video streaming or gaming, the

influence factors on QoE are investigated in literature with the

ultimate goal to provide QoE models for those applications.

Thereby, four different categories of influence factors are

distinguished, which are influence factors on context, user,

system, and content level [1]. In this 3D point cloud study,

content is explicitly addressed, since it may have significant

impact on QoE. To be more precise, for different types of

contents under the same system influence factors, users may

rate QoE differently, which has already been shown, e.g., for

gaming [2] or video streaming [3]. As a consequence, different

types of contents will be considered in our 3D point cloud QoE

study. Further, the user level was explicitly considered, which

includes psychological factors like expectations of the user,

aesthetic perception, recency effects, or the usage history of

the application. For this, our experiments were conducted with

naive crowdsourcing users as well as 3D point cloud experts.

This is especially interesting, as 3D point clouds cannot be

considered mainstream yet, so crowdworkers have little to no

previous experience with such kind of media.

To this end, a subjective user study was conducted with

crowdsourcing users as well as expert users on the QoE of im-

ages rendered from 3D point clouds, which were compressed

using two different point reduction techniques. Static images

are explicitly selected in the subjective tests to avoid additional

influences, e.g., due to the interactivity of users with current

3D point cloud applications. The subjects rated the quality of

the images on a 5-point Absolute Category Rating (ACR [4])

scale. In addition, the subjects were asked to provide double

stimulus difference ratings on a 5-point scale.

The main contribution of this work is the QoE analysis of

the 3D point cloud reduction methods, which are essential in

                                    

                                                                                                                                              



practice, especially when point clouds have to be efficiently

stored or transmitted over the internet, or –more importantly–

when viewed interactively using a 3D point cloud viewing

tool, which only renders a fixed number of 3D points within

a given framerate. All known 3D point cloud viewers reduce

the number of points to be displayed, thus performing com-

pression. First of all, the results show significant differences

in the QoE ratings between experts and naive users due to

the familiarity with point clouds, but also due to the aesthetic

appeal of the test stimuli. Furthermore, our results show a

strong impact of the contents on the QoE and interaction with

the reduction method. Those results are fundamental for future

studies, e.g., when using interactive 3D point cloud apps with

point reduction.

The remainder of this paper is structured as follows. Sec-

tion II provides background on 3D point cloud compression

techniques as well as QoE studies on 3D point clouds. Sec-

tion III presents the test stimuli, the crowdsourcing study and

the expert study. Section IV presents the QoE results in terms

of mean opinion scores as well as user rating distributions

for the different contents and reduction methods. Finally,

Section V concludes this paper.

II. BACKGROUND AND RELATED WORK

Driven by the huge amount of airborne laser scan data, the

American Society of Photogrammetry and Remote Sensing

(ASPRS) created a simple binary exchange format, namely

the LAS format [5]. The LAZ format, a compressor for LAS,

is a widely-used lossless, non-progressive, order-preserving

compressor for LiDAR measurements.

Some approaches for reduction of 3D point cloud employ

special data structures such as k-d trees [6], [7] and octrees
[8]–[11]. Both data structures are well-suited, since they also

support other tasks like nearest-neighbor search, which is often

needed for registration. Point clouds can be encoded with

images. For example, Neci et al. present a method that exploits

H.264 compression to reduce the size of the data stream from

sensors such as the Kinect [12]. Depending on the sensors,

the images might be panorama images [13], which store range

information as pixel values, forming so-called range images.

There is a one-to-one correspondence between range images

and the resulting 3D point clouds. The images can be down-

scaled, and thus, the point clouds are reduced. Additionally,

conventional image compression methods are applicable and in

case of lossy compression combined with filtering. There is a

reduction as well [13], especially in combination with resizing

the range image. The different compression schemes have an

impact on the 3D points [14], e.g., using the H.265/HEVC

video compression results showed good visual quality with

lossless video compression, while lossy compression intro-

duced additional noise in projection images.

Several works have focused on the QoE of (reduced) point

clouds. In [15], the quality of colored 3D point clouds under

different resolution and noise was evaluated in a subjective

study, but without reduction. The authors observed a linear

correlation between resolution and human perception, and

found that color had less impact than noise. The authors of

[16] developed a framework for design, implementation, and

evaluation of point cloud compression algorithms. In [17], a

performance assessment methodology and benchmark of point

cloud compression was presented based on the framework.

Although no subjective study was conducted, a subjective

testing procedure was proposed.

In [18], objective metrics and subjective feedback were

compared for several point clouds of smaller objects, including

point clouds altered by Gaussian noise and octree-pruned.

The authors further investigated the same problem in [19]

using augmented reality for the subjective survey. Also in

[20], subjective evaluation methods and objective measures

for point clouds were surveyed. Another specialized objective

quality metric was proposed in [21], which is based on a local

analysis of curvature.

In [22], the most similar work, also the quality of both an

octree-based and a projection-based method is investigated.

A cross-lab study was conducted on videos rendered from re-

duced point clouds. The authors conclude that projection-based

reduction is inferior to octree-based reduction. Unfortunately,

the authors used the projection-based reduction on datasets

that this reduction method is ill-suited for. Just as in [22],

here, the panorama reduction as a projection-based reduction

method was used from 3DTK [23]. But instead of applying it

on a fully registered scene with the scene center as the origin, it

was applied on each individual scan with the scanner position

as the origin, as this method was intended to be used.

III. METHODOLOGY

A. Test Stimuli

Given a large number of points from a laser scan, we pro-

pose to uniformly subsample the entire point cloud to reduce

the number of points. This is achieved by first binning the

point cloud in a regular 3D grid and then randomly selecting

a fixed number of points in each voxel. Both the number of

points and the side length of a voxel may be adjusted to allow

for many different point densities. An additional advantage of

the uniformity of the subsampling is that differences in density

caused by the data acquisition process are reduced. Surfaces

closer to the scanner are more densely sampled than surfaces

further away. Selecting a fixed number of points from each

voxel removes more points in voxels close to the scanner than

further from the scanner. Afterwards, the points are uniformly

distributed across the scanned object or environment.

The datasets were acquired using a Riegl VZ-400 terres-

trial laser scanner with around 15 to 20 million points per

individual 3D scan. The test stimuli “Chapel” and “Humans”

come from a scan of a small chapel. The complete dataset

is comprised of 11 individual scans with 194 million points

overall. The test stimuli “Church” and “Text” come from

a scan of a city center. The complete dataset is comprised

of 215 million points in 13 scans. Both datasets combine

multiple individual terrestrial scans into a larger dataset by

registering them using 3DTK into a coherent point cloud using

simultaneous localization and mapping (SLAM).

                                                                                                                                              



TABLE I: Comparison of Point Clouds and Reductions

Church/Text Church/Text Chapel/Humans Chapel/Humans
Reduction Data Size Points Data Size Points

Original 10,346 MB 215,652,400 11,375 MB 194,754,633
OCV4 1,587 MB 35,985,142 769 MB 16,075,352
OCV8 657 MB 14,913,197 345 MB 7,196,991
OCV30 93 MB 2,113,011 89 MB 1,851,189

R3600x1000 1,629 MB 34,228,877 1,383 MB 29,008,210
R2400x667 727 MB 15,288,306 619 MB 12,983,283
R1200x333 183 MB 3,846,119 156 MB 3,275,927

Fig. 1: Original test stimuli. Chapel (top-left), Church (top-

right), Human (bottom-left), Text (bottom-right)

Octree reduction was used on the dataset with different

voxel sizes and random subsampling of points per voxel.

The voxel sizes of 4, 8 and 30 cm were chosen, which

corresponds to the reductions OCV4, OCV8 and OCV30,

respectively. Projection-based panorama reduction was applied

to the datasets, such that the resulting dataset sizes would

roughly correspond to the Octree reduction. The reduction

names R3600x1000, R2400x667, and R1200x333 correspond

to a panorama size of 3600×1000, 2400×667 and 1200×333
pixels, respectively. The parameters were chosen to represent

a wide variety of reductions and were applied to diverse

perspectives, so that differences in more and less detailed data

can be seen. See Table I for a numerical comparison of the

different point clouds and reductions, and Figures 1 and 2 for

a visual comparison of the generated test-stimuli.

B. Crowdsourcing Study

The online test framework was set up based on jsPsych1,

which is a JavaScript library for running behavioral exper-

iments in a web browser. The framework was customized

to follow the best practices of crowdtesting [24], and thus,

included prior downloading of test content to the browser

cache to exclude network influences, monitoring of test exe-

cution, and reliability checks. The study was advertised on the

crowdsourcing platform Microworkers2 for the top performers

of the platform. The time consumption was roughly seven

minutes and the monetary compensation for participation was

US$ 0.25 upon completion of the test.

In the beginning, the participants were familiarized with the

study and the test content by presenting the instructions and

two exemplary images. One of the images was rendered from

an original point cloud, and the other image showed the same

1https://www.jspsych.org/ - Accessed: March 24, 2020.
2https://www.microworkers.com/ - Accessed: March 24, 2020.

Fig. 2: Reduced test stimuli for Chapel. OCV4 (top-left),

OCV8 (mid-left), OCV30 (bottom-left), R3600x1000 (top-

right), R2400x667 (mid-right), R1200x333 (bottom-right)

content, but was rendered from a reduced point cloud. The

participants were instructed to rate the difference in quality

between the subsequently presented original and the reduced

picture, and to not switch tabs or programs during the study.

Moreover, they were instructed to memorize a striking red

letter, which was included in the top right corner of each

picture and which served as a simple check whether the

participants had actually watched the presented image.

After the instructions, rendered pictures were shown to the

participants in blocks of four subsequent pages. Here, each

block represented one test condition. The first page contained

an image that was rendered from the original, uncompressed

point cloud, a button to continue to the next page, and a

small five second countdown. After the countdown expired, the

button was activated, and the users could continue to the rating

page, which asked the quality of the last picture on a 5-point

Absolute Category Rating (ACR) scale [4] (bad, poor, fair,

good, excellent). Additionally, the users had to specify the red

letter that was contained in the last image. The third page also

contained a single image, which had the same content as the

original image on the first page, but this time, it was rendered

from a reduced point cloud. After five seconds, the users could

again click the button and continue to the final rating page of

the block. On this page, the participants were asked to rate the

difference between the original and the reduced image on a

5-point ordinal scale (no difference, small difference, visible

difference, large difference, huge difference). Moreover, they

were required to rate the quality of the reduced image on the

5-point ACR scale and to submit the displayed letter.

Every participant watched and rated ten blocks, which were

randomly selected from the 28 test conditions in randomized

order. Afterwards, participants were asked for a textual feed-

back about the study and the verification code was displayed,

so that participants could earn the monetary compensation. In

total, 337 users participated in the crowdsourcing study. 24

users were excluded because they had left the study tab more

                                                                                                                                              



Fig. 3: Quality of unperturbed test stimuli (Original), i.e.,

images rendered from uncompressed point clouds

than four times, which was violating the task description, and

25 users were excluded because they had not recognized the

red letter correctly more than four times. This results in 288

reliable users (85.46%). Moreover, those ratings were filtered

out for which the tab was switched or the letter was incorrect.

This results in 2386 (63.29%) remaining ratings. This gives

on average 84.67 ratings per condition, having a minimum of

70 ratings and a maximum of 99 ratings per condition.

C. Expert Study
The same online study was advertised to a group of 45

manually selected point cloud experts, out of which 30 par-

ticipated. A single user was excluded due to the letters. This

results in 29 reliable users (96.67%). From the 290 ratings

that were given by the reliable participants, again, ratings were

filtered out for which the tab was switched or the letter was

incorrect. This results in 232 (77.33%) remaining ratings. This

gives on average 8.5 ratings per condition, having a minimum

of five ratings and a maximum of 15 ratings per condition.

IV. RESULTS

Before investigating the QoE of the images rendered from

reduced point clouds, the internal validity of the crowdsourc-

ing test is confirmed. First, it is evaluated whether repeated

ratings of the same content lead to the same rating distribution.

As the participants watched ten stimuli with four different

contents, the four images rendered from the original point

clouds were rated several times. The Mann-Whitney-U test

is used to compare the distributions as it can be applied to

the ordinal rating data [25]. No significant difference could be

found between the first and second rating of the same original

image having a p-value of p = 0.84. Further, as a consistency
check, one original image was presented also as a reduced

image, i.e., in this stimulus both the original and the reduced

image were the same image. Again, no significant difference

could be found (p = 0.40). Finally, fatigue effects were tested
by comparing the rating distributions of the workers for the

first two stimuli with the ratings of the last two stimuli. Again,

no difference could be found (p = 0.15), which shows that the
crowdsourcing study can be considered internally valid.

A. Differences between Naive Crowd and Experts
Figure 3 illustrates the overall quality of the test stimuli.

Therefore, the mean opinion score (MOS) of the ratings and

Fig. 4: Distributions of difference ratings

95% confidence intervals are shown for the unperturbed test

stimuli, i.e., the images rendered from the four uncompressed

point clouds. These images were already depicted in Figure 1

and will be referred to as “Original” in the remainder of

this paper. The plot already suggests that there are signif-

icant differences between both the contents and the group

of crowdworkers (yellow) and point cloud experts (brown).

This was confirmed by comparing the ratings distributions

for each content using the Kruskal-Wallis test [25], which

gave a p < 10−54. Moreover, the Mann-Whitney-U test

confirmed that the experts rated the quality of the original

images significantly better than the naive crowd (p < 10−38).

This still holds when considering not just the original images,

but all presented stimuli (p < 10−9). This is interesting

as it is quite unusual in crowdsourcing. The reason could

be that the point cloud experts are more familiar with the

kind of images, which were used as test stimuli. In contrast,

naive crowdworkers might find the unfamiliar images of the

(compressed) 3D point clouds unnatural and less aesthetic due

to the dark and grayscale style of the images, as was indicated

by some of their comments submitted at the end of the test.

This relationship of aesthetic perception and QoE is in line

with previous results for visual stimuli [26] and web QoE

[27], [28], which found a positive correlation between aesthetic

perception and QoE.

Figure 4 shows the distributions of the difference ratings

for each of the four contents, i.e., Chapel (top-left), Church

(top-right), Humans (bottom-left), and Text (bottom-right), as

a stacked bar plot. Here, the colors indicate the extent of the

difference between the original and the reduced images as

perceived by the participants on a five point scale, ranging

from no difference (dark green) to visible difference (yellow)

to huge difference (dark red). The x-axes show all test stimuli.

For each stimulus, two bars are displayed, which are separated

by a dashed line. The left bar shows the rating distribution

                                                                                                                                              



Fig. 5: Rating trends of crowd in terms of MOS.

of the crowd, while the right bar shows the corresponding

rating distribution of the experts. It can be seen that the expert

distribution is significantly shifted towards larger differences

for all reduced stimuli of Chapel (p < 10−3) and Humans

(p = 0.02). This is expected since experts are familiar with
point clouds, and thus, can more easily detect differences and

are more discriminating. However, this cannot be observed for

the reduced stimuli of Church (p = 0.15) and Text (p = 0.08),
which clearly shows that the visibility of differences between

original and reduced point clouds depends also on the content.

B. QoE Impact of Reduction Method

Figure 5 visualizes the general rating trends of the crowd.

It shows the different reduction conditions on the x-axis,

and the corresponding MOS and 95% confidence intervals

on the y-axis. Different colors indicate the contents, and the

reduction conditions of each method (Octree and Panorama)

are connected with a dotted line to identify the trends more

easily. It can be seen that the rating trends are generally

decreasing, which is expected as an increasing point cloud

reduction causes increasing quality degradation. However, the

trends of the Panorama method do not drop as much as the

trends of the Octree method. Moreover, the plot suggests that

there is a strong content dependency for the different reduction

levels. In the following, these hypotheses are investigated in

full detail based on the rating distributions of each stimulus.

Figure 6 shows these rating distributions for all stimuli as a

stacked bar plot. Similar to Figure 4, they are subdivided into

four subplots by content, i.e., Chapel (top-left), Church (top-

right), Humans (bottom-left), and Text (bottom-right), and for

each stimulus, two bars are separated by a dashed line, which

show both the rating distribution of the crowd (left) and the

experts (right). As was shown above, experts rated the quality

significantly better than the naive crowd, however, the general

trends are confirmed by the expert ratings, which can be seen

in Figure 6. Thus, as much more data was gathered from the

crowd, only these results will be evaluated and discussed.

The rating distributions of the crowd show that reductions

cause ratings to be shifted towards lower categories, which

can be confirmed by Kruskal-Wallis tests for both Octree

(p < 10−82) and Panorama (p < 10−24) method. Also

Fig. 6: Distributions of quality ratings

pairwise Mann-Whitney-U tests find significant differences

between all reduction conditions of each method, except

between the ratings of OCV4 and OCV8 (p = 0.08).
Looking at the Octree methods in detail for each content,

two pairs of contents can be observed. For both, Human and

Text only the first reduction from Original to OC4 reduces

the ratings, while the rating distributions of OC4, OC8, and

OC30 are not significantly different (p = 0.87 for Humans and
p = 0.053 for Text). In contrast, for Chapel, OCV4 is not rated
significantly worse than Original (p = 0.19), however, each
further reduction reduces the quality significantly. For Church,

there are no significant differences in the rating distributions

of Original, OC4, and OC8 (p = 0.83), and only OC30
shows significantly lower quality. The overall impression is

that already the first reduction level (OC4) visibly degrades

the quality of the images for most of the contents. While OC4

and OC8 are on a par, the final reduction of OCV30 can again

introduce another quality degradation.

For the Panorama method, again Chapel and Church

show similar rating behavior. For both contents, Original,

R3600x1000, and R2400x667 are rated similarly (p = 0.30
for Chapel and p = 0.23 for Church), and only R1200x333
has a significantly worse quality than all other reduction

conditions. For Humans, the Kruskal-Wallis test cannot reject

the hypothesis that all Original and all reduction conditions

are rated similarly (p = 0.17), and also the pairwise Mann-
Whitney-U tests only find a significantly lower ratings for

R1200x333 compared to Original (p = 0.02). Finally, for
Text, each reduction reduces the quality, except for the last.

Here, the rating distribution of R1200x333 is not significantly

worse than R2400x667 (p = 0.12). These results showed that,
in contrast to Octree, the first reduction level is mostly not

perceived as a quality degradation compared to the Original.

Also further reductions do not degrade the quality as severe

as with Octree.

                                                                                                                                              



When comparing Octree and Panorama directly over all

ratings, Octree images received significantly lower quality

ratings (p < 10−21), which can also be observed when

comparing the ratings within a quality level, i.e., OCV4 and

R3600x1000 (p < 10−7), OCV8 and R2400x667 (p < 10−5),

and OCV30 and R1200x333 (p < 10−10). However, again,

a strong content dependency can be observed. While Octree

is rated worse on every level for Human and Text, this is

not the case for Chapel and Church. Interestingly, for Church,

OCV8 is rated significantly better than R2400x667 (p = 0.04),
however, the quality difference is comparably small. For all

other levels of Chapel and Church, Octree and Panorama

were rated similarly, except for the most reduced level of

Chapel, i.e., OCV30 is significantly worse than R1200x333

(p < 10−6). To sum up, this shows that while the methods

can perform on a par for some contents, overall, Panorama

should be preferred as it results in equal or higher quality

ratings compared to Octree.

V. CONCLUSION

This paper investigated the impact of 3D point cloud re-

duction on the QoE of images, which were rendered from

these reduced point clouds. Therefore, a subjective study was

conducted online with both naive crowdworkers as well as

point cloud experts. After investigating the rating behavior

of the participants, the study could be considered to provide

internally valid ratings.

The results of the study showed that experts saw larger

differences between the original and the reduced point clouds,

which was expected as experts are more familiar with the

kind of images, which were used as test stimuli. However,

experts rated the quality of the images better than the crowd,

which is quite unusual in crowdsourcing. The reason could be

that naive crowdworkers found the unfamiliar images of the

(compressed) 3D point clouds unnatural and less aesthetic due

to the dark and grayscale style of the images, as was indicated

by some of their comments submitted at the end of the test.

For the Octree reduction method, it could be observed that

already the first reduction level visibly degraded the quality

of the images for most of the contents, and the final reduction

of OCV30 could again introduce another quality degradation.

In contrast, for the Panorama method, the first reduction level

was mostly not perceived as a quality degradation compared

to the original. Also further reductions did not degrade the

quality as severe as with Octree. For all evaluations, a strong

content dependency could be observed, which might be due to

the different visibility of artifacts. In future work, we plan to

integrate and evaluate the MPEG methods V-PCC and G-PCC.

The results of this paper are fundamental not only for

images, but also when presenting and watching other media

generated from reduced point clouds, such as videos, e.g.,

from the church dataset3, or interactive 3D point cloud apps.

However, the detailed impact of 3D point cloud reduction on

such media has to be investigated in future studies.

3https://youtu.be/DKNauiHKKhk - Accessed: March 24, 2020.
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