Scoring High: Analysis and Prediction of Viewer Behavior and
Engagement in the Context of 2018 FIFA WC Live Streaming

Nikolas Wehner*

nikolas.wehner@uni-wuerzburg.de

Bruno Gardlo
bruno.gardlo@ait.ac.at

Michael Seufert”

michael.seufert@uni-wuerzburg.de

Pedro Casas
pedro.casas@ait.ac.at

Sebastian Egger-Lampl

sebastian.egger-lampl@ait.ac.at

Raimund Schatz
raimund.schatz@ait.ac.at

AIT Austrian Institute of Technology
Vienna, Austria

ABSTRACT

Large-scale events pose severe challenges to live video streaming
service providers, who need to cope with high, peaking viewer num-
bers and the resulting fluctuating resource demands, keeping high
levels of Quality of Experience (QoE) to avoid end-user frustration
and churn. In this paper, we analyze a unique dataset consisting of
more than a million 2018 FIFA World Cup mobile live streaming
sessions, collected at a large national public broadcaster. Different
from previous work, we analyze QoE and user engagement as well
as their interaction, in dependency to specific soccer match events,
which have the potential to trigger flash crowds during a match.
Flash crowds are a particular challenge to video service providers,
since they cause sudden load peaks and consequently, the likelihood
of quality problems. We further exploit the data to model viewer
engagement over the course of a soccer match, and show that client
counts follow very similar patterns of change across all matches.
We believe that the analysis as well as the resulting models are valu-
able sources of insight for service providers, equipping them with
tools for customer-centric resource and capacity management.
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1 INTRODUCTION

Live and on-demand video streaming services are exhibiting re-
markable growth in terms of popularity and adoption rates. This
development is illustrated best by a four-fold global video traf-
fic increase between 2015 and 2020 as forecasted by Cisco, with
video constituting 82 % of consumer Internet traffic by 2020 [4].
Understanding user engagement as well as the causes and the im-
pact of quality degradation in video streaming services is of prime
relevance to content and service providers, who have to run and
maintain a complex content delivery infrastructure, providing high
levels of Quality of Experience (QoE) to the audience. To this end,
large-scale collection and analysis of quality and viewer engage-
ment data have become key ingredients for video streaming quality
monitoring and related scientific research [5]. Also, proactive scal-
ing of infrastructure capacity based on system load predictions has
become a cornerstone of QoE management in this domain [3, 30].

In this context, streaming of [ive events in real-time poses ex-
ceptional requirements for QoE management, not only because
of the need to minimize playout latency, but also because of high
peak loads and levels of strain caused by unexpected surges in user
activity and viewer fluctuations (flash crowds) [33]. In particular,
streaming of sport events such as soccer matches represents a major
challenge, due to the high emotional involvement of the audience,
the importance of key events such as goals and penalties, and the
resulting risk of disappointing and frustrating viewers due to qual-
ity problems occurring in critical moments of peak attention. While
QoE and user engagement in the context of video streaming have
been fairly well studied in lab and field settings (e.g., [5, 16]), re-
search work investigating and modeling QoFE and user engagement
in the context of streaming large-scale sport events is still rare (cf.
[10, 33]), particularly when it comes to analyzing and modeling the
impact of match events and flash crowd phenomena.

In this paper, we investigate viewer behavior and engagement
in the context of live online video streaming of soccer matches.
The specific context is the 2018 FIFA Soccer World Cup, which is
one of the most popular broadcasted sport events worldwide. We
collect and analyze a unique, large-scale dataset with more than 1.3
million live video streaming sessions, consisting of multiple quality
metrics monitored at the mobile devices of viewers watching FIFA
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WC football matches. Measurements are collected for users of a live
IPTV streaming service provided by a national public broadcaster.

The first goal of the study is to obtain a deeper understanding of
the interplay between match events, quality, and user behavior, and
quantify key relationships therein. The second goal is to reliably
forecast levels of viewer engagement, to enable better capacity
management and consequently, better QoE of live video streaming
of soccer events, specially in the context of flash crowds. To address
these goals, we structure the study around the following research
questions:

RQ1: What is the impact of key match events (e.g. goals) on user

engagement and QoE?
RQ2: To which extent do QoE and user engagement correlate with
each other in the context of soccer live streaming?
RQ3: How accurately can user engagement over the course of a
soccer match be predicted using machine-learning models?

Answering these questions is far from trivial, specially due to the
complexities associated to the identification of causal relationships,
and the usual pitfalls when mixing up correlation and causality.
Indeed, how to proper discover and analyze causal relationships in
data captured in the wild are open research questions. We therefore
followed standard recommendations and paid special attention to
the different steps involved in the statistical analysis of the data, to
avoid common pitfalls and biased conclusions.

The remainder of the paper is structured as follows: after a dis-
cussion on background and related work, we describe the technical
setup and methodology used on the measurement campaign (Sec-
tion 3). A description and characterization of the collected data is
presented in Section 4. Section 5 reports the results of the analysis,
targeting the first two research questions. In Section 6 we introduce
a model to predict user engagement over time, and evaluate its
applicability to load management. Finally, we discuss conclusions
and provide an outlook on future work.

2 BACKGROUND AND RELATED WORK

In this section, we discuss video QoE in general, followed by a sur-
vey of related work for analyzing video QoE and user engagement
in the field and in particular for large events.

QoE for HTTP adaptive video streaming (ABR/HAS) is a well-
investigated research topic [26]. The main QoE influence factors
include stalling or re-buffering events [8, 13, 24, 34], initial playback
delay [7, 12], and quality adaptation [14, 18, 22, 23, 31, 32]. Stalling
has certainly the strongest negative impact on QoE, and while
viewers can better cope with quality changes and playback delays,
they are key metrics to understand overall video QoE.

The impact of QoE on user engagement and the prediction of
user engagement are also widely investigated research topics [5, 9,
17, 28, 29]. These studies show that especially the visual quality and
stalling strongly impact the abandonment rate. Regarding mobile
streaming, mobile users tend to have lower user engagement than
non-mobile users. Further, mobile users with cellular access usually
abort their streams even faster than users with WiFi [19].

QoE for live and video on demand (VoD) streaming is also a
widely investigated research topic. In [20], authors conduct a be-
havior study for live and VoD IPTV. Their findings include that the
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average viewing time for VoD is significantly longer than that for
live services, and that video quality does not play such a big role
for live streaming compared to VoD. In [5], authors analyze VoD
and live streaming with respect to user engagement on user and
video level. They show that the stalling ratio is the most important
metric at the view-level, and that initial delays are critical for user
engagement. The impact of video stream quality on viewer behavior
is studied in [16]. The study concludes that users tend to quit the
startup of the video playback if the startup delay exceeds 2 seconds.

However, only a few papers so far analyze live streaming for
large-scale events, in particular for sports events. The studies re-
ported in [10], [2], [1], [6], and [33] come closest to our work, as
they also address specific aspects of our paper, but in a slightly dif-
ferent manner. In [10], authors analyzed video streaming data of a
major South American content provider for the 2014 FIFA WC. They
correlate the usual QoE quality indicators with the session dura-
tion, and show that in the context of world cup matches, especially
bitrate degradation and frequent stalling events negatively impact
the session duration. The authors of [1, 2] use a quasi-experimental
framework to investigate the causal impact of QoE on user en-
gagement for live streams of the 87th Academy Awards. They also
show that the stalling rate and the average bitrate impact the user
engagement the strongest. Finally, the study reported in [6] also
focuses on the analysis and impact of video streaming for large
sport events — the Super Bowl 2013, but here for the specific case
of cellular network performance. Their findings include that the
uplink configuration plays a key role in the performance of the
video streaming.

Flash crowds for large-scale events are investigated in [33],
where the authors analyze live and VoD streams of the 2008 Bei-
jing Olympics. They reveal that the observed flash crowds, in this
context a specific competition, focus mainly on Chinese athletes
winning a gold medal. This indicates that the location in which the
content is consumed plays an important role when considering flash
crowds for worldwide sports events, due to the attachments of the
audience to national teams or athletes. Other research investigating
the relationship between QoE and flash crowds for video streaming
can be found in [11], [25], [15], [21]. However, the impact of flash
crowds on video QoE is a sparsely researched topic in general, and
in particular in the context of sports events.

To the best of our knowledge, no research on the interaction be-
tween QoF and user engagement in dependency to content-driven
flash crowd events has been done so far. Based on the 2018 FIFA
WC matches, we treat specific soccer match events, e.g., goals, as
potential flash crowd triggering events, and investigate the impact
of these events on user engagement and QoE. Additionally, we are
the first to model user engagement for large-scale soccer events
over the course of a match, which offers a valuable tool and source
of insights to service providers in terms of resource provisioning.

3 METHODOLOGY

To investigate the relationships between match events, quality, and
user engagement during live soccer event streaming, we performed
two types of data collection activities: streaming playback monitor-
ing, and extraction of relevant match events.



3.1 QoE and player actions monitoring

The data collection was done through a custom video stream-
ing analytics platform (https://www.ait.ac.at/loesungen/experience-
tools/qoestream/) used by the public broadcaster for large scale
quality monitoring. At the client-side, the different metrics and
player events were extracted from the video player provided by the
broadcaster, gathered on session and clip-view level. For practical
reasons, we focused in particular on the iOS version of the player,
which uses the native AVPlayer API to report video metrics. The
collected data was properly anonymized, centralized in an analytics
platform, and properly curated for further analysis.

3.2 Match event extraction

To obtain a complete picture of the live streaming experience and
user engagement during the soccer matches, as well as to assess
the nature and importance of a specific moment of a match, it is
necessary to know which kind of match event (goal, kick-off, etc.)
happened at which point in time. We extracted the relevant match
information and the match events from the live blogs of the official
FIFA website. We used Selenium to automatically open the live
blogs in Chrome, then scroll the blogs to the bottom of the site to
guarantee that all events are loaded, and finally iterate through all
the blog entries to extract the match events and the correspond-
ing timestamps. The types of match events were characterized by
the FIFA with a numerical identifier. Along with the identifier, a
description of the event was provided which specified the event,
e.g., which player of which team had scored. The monitored match
events included the goals, bookings, the start and end of halftime,
penalties, and others. We excluded Video Assistant Referee (VAR)
events since the blog entries did not contain timestamps for these
events. We performed the extraction for all matches and ended
up with around 1200 match events distributed over all 64 matches.
However, in this work, we focus mainly on the halftime and goal
events, and hence consider only 316 events for the analysis.

4 DATASET CHARACTERISTICS

The 2018 FIFA WC took place in Russia from June 14 to July 15,
with a total of 64 matches played. Of these, only 56 matches were
broadcasted by the national service provider due to the fact that the
last matches in the group stage were played in parallel, and only
one match could be broadcasted at once. Two of the 56 monitored
matches did not contain a sufficient number of views and were
thus removed from the dataset. Further, we removed sessions with
more than 15 stalling events or with an initial delay higher than
20 seconds. In both cases, this corresponds approximately to the
99% percentile of the data. Sessions with an unusual length were
also filtered out. After the filtering, 54 matches with 1,325,479 live
sessions remained for the study.

Figure 1a depicts the distributions of the most relevant QoE
Key Quality Indicators (KQIs), including initial playback delay, the
video bitrate, the number of bitrate changes, the number of stalling
events, and the average stalling length, for all the sessions. The
x-axis represents the unit values and the corresponding unit for
each metric can be found in the legend, e.g., the unit for the initial
delay is seconds, while the unit for bitrate changes is the number
only. The y-axis denotes the CDF of the observed metric. For 70%
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Figure 1: Distributions of QoE KQIs (left) and session dura-
tions by platform (right).

of the sessions, the initial delay is below 2.5 seconds, and below
10 seconds for 90% of the sessions. For the bitrate distribution, six
steps can be seen, corresponding to the different quality levels of
the streams. The majority of sessions show a bitrate of around
1.09 Mbps, which is also the median. The most prevalent bitrates
besides 1.09 Mbps are around 0.64 Mbps and 2.15 Mbps. Only a
small share shows very low or very high bitrates. The distributions
for the number of bitrate changes and the number of stalling events
show that the majority of the sessions did not experience bitrate
changes or stalling events. Nevertheless, there are sessions with
one, two, and three stalling events, with a decreasing occurrence,
respectively. The average stalling length is highly distributed, from
slightly above 0 to 10 seconds, while only a small share of the
streams shows stalling events with an average length higher than
10 seconds. The mean average stalling length is around 6 seconds,
while the median is around 5 seconds. All in all, our results show
that the broadcaster provided a stable streaming experience with
short waiting times, few interruptions, and a low bitrate fluctuation.

The distributions of the session duration, grouped by the used
end device and the network access type, are depicted in Figure 1b.
The blue lines represent the network access types, WiFi and cel-
lular access, which includes 2G, 3G, and 4G. The red dashed lines
represent the used end device type, smartphone or tablet. The dis-
tributions for cellular and smartphone overlap, as cellular access
had been used mostly by smartphones. In general, sessions played
out on a smartphone show a much shorter session duration (mean
of 10 minutes) compared to sessions played out on tablets (mean of
26 minutes). When comparing WiFi and cellular access, sessions
in WiFi are longer on average (mean of 19 minutes) than sessions
watched with cellular access (mean of 10 minutes). These differ-
ences suggest that tablet users are more prone to watch matches
more attentively, while smartphone users tend to just peek and
check for specific events. Further, users at home usually watch a
match in a more comfortable situation, using WiFi and devices with
larger screens, e.g. tablets. More than 90% of our tablet users also
used WiFi. On the other hand, people on the road usually have to
use the inconvenient way of cellular access and small handheld
devices. These usage contexts are also mirrored in the data.

The relative number of session starts, i.e., arrivals, and session
ends, i.e., departures, during the course of a world cup match aver-
aged over all matches are shown in Figure 2. The y-axis presents the
arrivals and departures, respectively, in an interval of one minute,
whereby the number is normalized for each match by the maximum
number of arrivals and departures observed for the corresponding
match, respectively. The arrival and departure behaviors are mostly
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Figure 2: Arrivals and departures during a match averaged
over all matches. The x-axis denotes the match time.

as expected. Shortly before the start of a match, the arrivals increase
strongly. After the match start, new arrivals decrease at a steady
pace, until a second burst occurs with the start of the second half-
time. At the end of the match, arrivals decrease strongly. In contrast,
departures stay at a similarly low level during the match, except for
two strong bursts, happening at the end of the first halftime and
the end of the match. Interestingly, most users stop the stream at
the end of the first halftime and start a new stream as soon as the
second half starts.

5 INTERPLAY BETWEEN EVENTS, USER
ENGAGEMENT, AND QOE

We now focus on questions RQ1 and RQ2, and thus, investigate the
interplay between match events, user engagement, and QoE.

In general, the relationship between events, user engagement,
and QoF can be described with a uni-directional chain. Match events
can solely impact user engagement, which in turn can influence the
QoE. The opposite direction is clearly not valid, since user engage-
ment can not impact match events. However, QoE can for itself also
impact user engagement, as demonstrated in the literature [27] and
in the common practice.

For a more precise definition of the time before and after an event
- let us say a goal for example, a multi-window concept is applied to
the data. Figure 3 shows a sketch of this concept, where A represents
the time window before the specific event, and B represents the time
window after the event took place — indicated by the red bold line.
Window C serves for the analysis of the interaction between user
engagement and QoE KQIs, which is performed later in Section 5.3.
The length of the windows is described by different interval sizes,
which we use to define the analysis boundaries. Indeed, we consider
multiple intervals for the analysis, since we can only guess how
much time has to pass until the impact on the audience is visible.
The used intervals are 30, 60, 120, and 180 seconds. The upper
boundary of 180 seconds has been chosen because we could observe
that goal events affected the user engagement up until 165 seconds
after the goal occurred. This is further described in Section 6.1. For
each window, we compute the mean values of the target metrics,
which correspond either to the user engagement metrics, or to the
QoE KQIs. All the investigated metrics are listed in Table 1. We
take four specific metrics reflecting user engagement, related to
the start and end of a video streaming session. These include: the
session start ratio, the session end ratio, and the average elapsed
times between started/ended sessions, respectively.

After the calculation of the metrics for all relevant events, we
perform a paired t-test to check for any differences between the
user engagement metrics on the A and B windows. Note that the
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Figure 3: Multi-window concept for analyzing QoE and en-
gagement before (A) and after (B, C) a match event.

assumptions of normality and homogeneity hold. To compensate for
the multiple comparisons, we apply the Bonferroni-Holm correction
on the obtained p-values of the t-tests.

To validate that any differences are not by chance, we use ran-
domly sampled timestamps from periods without events to check
whether the match events were actually responsible for influenc-
ing the user engagement metrics. For a valid comparison with the
match events, our sample size equals the number of considered
match events (316). For the validation, we perform independent t-
tests which compare the differences between the A and B windows
for the relevant events, and the differences between the A and B
windows for the sampled baseline of non-event periods. Again, we
adjust the p-values with the Bonferroni-Holm correction. Similar
to [16] we assume causality here, because we rule out other possible
influences, as we work only in the context of the events. In addition,
we average the considered metrics over multiple matches consider-
ing the same events for all matches, which further helps in filtering
out and averaging erratic correlations not linked to causality.

Our analysis is limited to the most frequently occurring events,
including goal, start half, and end half. Other events of interest
include penalties and yellow/red cards; however, we chose to omit
them for this analysis due to the relatively small sample size. Note
also that we excluded five matches that resulted in extra times and
penalty shootouts from the analysis, since they present significant
outliers in terms of user engagement at the end of a match as
compared to the rest of the matches.

5.1 Impact of match events on engagement

To study the impact of events on user engagement, we compute the
change of user engagement metrics (cf. Table 1) before and after an
event occurred (cf. Fig. 3, windows A and B).

Figure 4 shows the t-test results for the impact of the goal events
on user engagement. Figure 4a considers solely goal events with a
scoring difference of one or zero goals, i.e., exciting matches, while
Figure 4b considers solely goal events with a scoring difference
of two or more goals, i.e., mostly already decided matches. The
goal-scoring difference can serve as an approximate indicator for
the match excitement, which very likely influences the viewing
behavior of the audience. To avoid complexity, we do not take
the current match time into account, which could for sure play
an important role in terms of excitement. The x-axis denotes the
different user engagement metrics, the y-axis denotes the used
window interval size. Heatmap tiles are colored according to the ob-
tained p-value of the corrected t-tests, whereby tiles with a darker
blue state a lower p-value and tiles with a brighter blue state a
higher p-value. Tiles with p-values below the significance level of



Table 1: Metrics along with unit, abbreviation, and description used for the impact analysis.

Group Metric Unit  Abbreviation Description
Session Start Ratio % SR Ratio between started sessions and active sessions
User Engagement Session Start Inter-arrival Time  ms SI Average elapsed time between started sessions
628 Session End Ratio % ER Ratio between ended sessions and active sessions

Session End Inter-arrival Time ms EI Average elapsed time between ended sessions

Initial Delay s D The average initial delay

Bitrate kbps BR The average played out bitrate

0. s umber of Bitrate Changes e average number of bitrate changes
E KQI Number of Bitrate Chang # BC Th g ber of bitrate chang
Number of Stalling Events # SE The average number of stalling events
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(a) Goal events with a scoring
difference of zero or one.

(b) Goal events with a scoring
difference of two or higher.

Figure 4: Impact of different goal event types on user engage-
ment metrics (columns). Each tile contains the respective
t-test statistic. Red tiles mark significant differences, hatch
patterns indicate significant deviation of the respective met-
ric from the event-free baseline.

5% are colored in red. Numeric values within tiles represent the
t-test statistic. When an independent t-test results in a corrected
p-value below 5%, then the corresponding tile is overlaid with a
hatch pattern. This means that the metric values for the time pe-
riods containing the event are significantly different compared to
the baseline periods without match events. Hence, for red tiles,
the hatch overlay suggests that the found differences are actually
caused by the event, since the presence/non-presence of an event
is the only difference here. In contrast, hatched blue/white tiles
represent metric/window-duration combinations for which a sig-
nificant average metric difference before vs. after the event was not
detected, but still, the respective metric averages deviate signifi-
cantly from the event-free baseline. Since these cases are typically
located next to hatched red tiles, we assume that in fact the event
has a relevant impact, but the window size is too small or too large
to detect temporal change.

Our results suggest that exciting matches (characterized by teams
goal counts being to each other) cause stronger audience interest
and thus an increase in the arrivals, which is observed from the
increased session start ratio and the decreased session start inter-
arrival times. In contrast, this session starting behavior is not visible
for matches with a higher scoring difference, for which the winner
is already more certain. While this result is expected, it confirms
that the match situation is crucial for the streaming behavior of the
crowd, and that goals in an exciting match can cause a growth of the
audience in only a few minutes. When considering the session end-
ing behavior, both scenarios exhibit a similar user engagement and
validation pattern. Besides the analysis of goal events, the kickoff
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(b) Final whistle events.

Figure 5: Impact of different event types on QoE KOQIs
(columns). Each tile contains the respective t-test statistic.
Red tiles mark significant A/B differences, hatch patterns in-
dicate significant deviation of the respective metric (ID, etc.)
from the baseline.

event and the final whistle event proved to be the events with the
strongest impact on the user engagement, while the first halftime
end and second halftime start showed slightly weaker effects. This
result is also not surprising, especially when considering the arrival
and departure patterns depicted in Figure 2.

5.2 Impact of match events on QoE

We follow the same analysis to study the impact of an event on the
QoE KQIs, using the specific KQIs listed in Table 1.

The analysis revealed that especially the kickoff event, i.e., the
start of the match, and the final whistle, i.e., the end of the match,
strongly impact the QoE KQIs for the intervals of 120 and 180
seconds. This comes as expected, since a high number of users
start or leave the streaming at the match begin or match end, us-
ing/releasing available network and system resources. For example,
we observed that after the kickoff event, the bitrate decreases for
more than 35 kbps on average, and that the number of stalling
events increases approximately 2-3% when relating it to the mean
stalling number of 0.54. This applies for all intervals, but the results
are only significant and validated for the interval of 180 seconds
(cf. Figure 5a). In contrast, in the context of the final whistle, an in-
crease of the bitrate and a decrease of the number of bitrate changes,
the number of stalling events, and the average stalling length is
observed (cf. Figure 5b). Only the bitrate and the number of bitrate
changes revealed to be significant and validated. In general, this
indicates that an interval size of 120 to 180 seconds is required to
see any effects caused by an event.



We can also observe that the actual halftime events do not nearly
impact the QoE KQIs as strongly as the kickoff and the final whistle
event. Further, goal events showed no significant impact on the
QoE KOQIs. This applies also when additionally considering the
goal-scoring differences of the matches, i.e., the excitement of the
matches. Finally, the initial delay showed no significant increase or
decrease for any of the events.

As a conclusion regarding RQ1, we can say that the impact
on the user engagement varies in dependency of the match event
type, but we could observe an impact for all the considered events.
Regarding QOoE, results showed that the QoE is influenced only
by those match events that start, interrupt, or end a match, and
that goals play a negligible role. Furthermore, our results show
that a match event’s impact seems to be visible within one to three
minutes after its occurrence.

5.3 Interplay between engagement and QoE

In this section, we address RQ2. To analyze the interaction between
user engagement and QoE, we quantify how changes of the QoE
KQIs or changes of the user engagement metrics at an earlier time
impact the QoE KQIs or user engagement metrics in a subsequent
interval. In particular, we compute trends of source metrics between
the A and B windows, and assess the subsequent, possibly causally
connected trends of a target metric in the B and C windows (cf.
Figure 3). For all scenarios, we consider both an increase and a de-
crease of the source metric from window A to B, and investigate the
resulting trend of the target metric from window B to C. We do so
by computing correlations between the differences of the windows
A-B and the differences of the windows B-C with the Spearman’s
rank-order correlation coefficient (SROCC). As before, multiple
window sizes and the same metrics are considered. Additionally,
we account for the impact of match events by randomly sampling
from appropriate timestamps, such that the timestamp between
windows A and B is either a certain match event (dependent) or a
random timestamp (independent of match events).

If a match event happened between windows A and B, results
show low to moderate correlations between +0.3 to +0.5. The find-
ings include that reduced arrivals after a goal are correlated with a
reduced number of stalling events (0.41) and shorter stalling lengths
(0.36). This can happen, e.g., if the crowd loses its interest in the
match due to a deciding goal, and thus, the load decreases, which
causes the subsequent QoE improvement. Another QoE improve-
ment in terms of bitrate is correlated with halftime end events (0.35)
where again the load decreases due to many users dropping out
of the stream. In contrast, QoE degradations are correlated with
halftime start events, i.e., when the load suddenly peaks due to
many users tuning in, which results in longer initial delays (0.52).

When analyzing the impact of the QoE KQIs on the user engage-
ment in the context of the match events, no remarkable findings
were identified. This is likely caused by the fact that users who
start a stream after a match event are not aware of the QoE, so
it is not reasonable to investigate correlations with arrivals. For
departures after match events, we neither observed any remarkable
impacts, which suggests that QoE KQIs do not additionally motivate
or preclude that users drop out of the stream after a match event.

Next, we consider the interactions independent of events, i.e.,
using randomly sampled timestamps between windows A and B.
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Regarding the impact of user engagement on QoE, we observe that
a higher load caused by many arriving users is correlated to longer
waiting times with respect to both initial delay (0.40) and stalling
events (0.51), and thus, QoE degradations. On the other hand, fewer
arrivals correlate with QoE improvements, which are represented
by higher bitrates (0.45) and a lower number of bitrate changes
(0.47). The analysis of the impact of QoE KQIs on user engagement
shows that a lower bitrate is correlated with more users dropping
out (0.43). As expected, the dropout rate is decreased when less
stalling events occur (0.41) and subsequently, the average stalling
length also decreases (0.49). These findings are in line with related
work and again emphasize the impact of stalling and video quality
on the dropout rate. Note that all these results were obtained again
with the 120 and 180 second intervals.

As a conclusion regarding RQ2, we can state that the observed
correlations for the event-independent analysis are mainly in line
with earlier findings, even though in a weaker form. In contrast, for
the event-dependent analysis, we could not observe any impact of
the QoE on user engagement, but only that user engagement can
affect the QoE. Thus, we observed different interaction patterns
for both analyses, which shows that match events can impact both,
user engagement and QoE.

6 USER ENGAGEMENT PREDICTION

In this section, we target RQ3 by developing a quantitative model
that predicts the user count (and thus: system load) over the course
of a match. A model of the current user count over the course of a
match provides two benefits to streaming service providers. First,
it allows to detect significant deviations from typical user behavior
patterns, useful for locating failures and bottlenecks limiting the
number of concurrent streams. In foresight, it allows predicting
future load, which is helpful for planning and adjusting the capacity
of the streaming system. In addition, for the research in this paper,
it allows investigating the correlations between match events and
user access behavior. For example, it could be analyzed whether
after a goal has been scored, one also has to expect significant de-
viations from normal access behavior patterns, e.g. in terms of an
increased number of clients accessing the live stream. We therefore
developed two models for this purpose. The general model aims
at characterizing the typical user count over the course of a soc-
cer match; the prediction model aims at predicting the future user
counts, based on the general model and historical user count data
available at a given point in time during a match.

6.1 General model

To model the user count over time, we inspected all monitored
matches manually. Here, a generic pattern was detected, which is
depicted in Figure 6a. The figure shows the progress of the relative
user counts over the match time, averaged over all matches, as a
dashed red line. It can be observed that especially the end of the
match, but also the end of the first half, are the phases in which
most users concurrently access the stream. At the beginning of
each half, the user count increases quickly, but the increase slows
down towards the end of the half. In the halftime, a fast and large
dropout of users occurs, which saturates quickly.
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Figure 6: Fundamental engagement/load model and exam-
ple for user count predictions. The x-axis denotes the match
time, the y-axis denotes the user count, relative to the max-
imum observed user count for a match.

This generic pattern confirms that a match can be naturally
divided into three phases, namely, the first half, the half-time, and
the second half. Note that the opening and final match and the five
matches with extra time had to be excluded for this analysis, due to
highly different loads. The first half can be typically characterized
by a logarithmic increase (green solid line), and the user count u at
time ¢ is modeled with three parameters: u(t) = ay -log(b1 +1) +cy.
The half-time shows an exponential decrease (blue solid line), which
is also modeled with three parameters: u(t) = ay - exp(bz - t) + c3.
Finally, the second half follows the same logarithmic trend as the
first half (black solid line), and thus, the user count is described
with the same kind of model: u(t) = a3 -log(bs +1) +c3. For the rest
of the monitored matches of the world cup, the user count could
be fitted very well with this three-phases model, reaching always
a coefficient of determination R? above 0.921, and a relative mean
absolute error below 3.24%.

To investigate if a goal causes a significant deviation from normal
access behavior patterns, we further investigated the deviation of
the actual user count and the modeled user count. We found that the
average deviation is positive, which means that the user count after
a goal is larger than explained by the general model. Moreover, this
average deviation shows first an increase from 0% to the maximum
of 2% at 93s after the goal, and then a decrease until around 165s
after the goal, where it stabilizes at a slightly positive level of around
0.05%. This deviation can be well fitted with a parabolic function in
the range of 0 to 180s after the goal. This also validates our use of
the selected window sizes in the previous analyses. If the parabolic
function is added to the general model after each goal, the fitting
of the load improves. However, for the matches with goals, the
mean improvement of R? is 0.0004, and the mean reduction of the
relative mean absolute error is 0.02%. This shows that applying the
goal correction only gives a very marginal improvement. Thus, in
the remainder of this work, only the general three-phases model is
used, which already shows highly accurate fitting performance.

6.2 Prediction model

In general, streaming providers are interested in estimating the
future development of user count (and consequently, system load)
while airing a given match. Thus, based on the presented general
model, we develop a model that relies on machine learning to
predict the future, final parameters of the model from the currently
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observed fitting parameters. For this purpose, the historical data
of observed user counts of a match are fitted in steps of 5 minutes,
and the parameters of the model are extracted. Note that only the
past and current model phases are considered. This means that, e.g.,
to fit the historical data of a match up to the 20th minute, only the
first phase of the model is used, while to fit the historical data of a
match up the 75th minute, all three phases are used.

Extracted features include the current match time, the final fit-
ting parameters of all already completely observed past model
phases, the current fitting parameters of the current model phase,
the goodness of the current fit in terms of R?, and the difference be-
tween the current parameters and the average parameters for that
phase (over all matches). Moreover, due to match-specific events
(e.g., injury time), the lengths of the three phases slightly varied
over the different matches. Thus, in addition, the best split time
after each already completely observed phase and the initial user
counts in each observed phase are stored as features. This means
that the number of features increases after each phase, because
more information is available, which can be considered final. For
example, at minute 20 of a match, only the initial user counts at the
beginning of the match and the current fitting parameters of the
first model phase are available. In contrast, at minute 75, final infor-
mation about the first two model phases are available, in addition
to the initial user counts and the current fitting parameters of the
third phase. The corresponding labels, i.e., the prediction targets,
are the final parameters of the current model phase, which would
be obtained after fitting the whole historical data of that phase.

The prediction model is trained on the extracted features for all
monitored matches, and uses three random forest (RF) regressors -
one for each phase - to predict the future, final model parameters
in each phase, in an iterative way. This takes into account the three
different numbers of features as discussed above. If the RF-predicted
behavior deviates too much from the actually fitted behavior (differ-
ence in R? larger than 0.1), the current fitting parameters are used
instead of the RF-predicted parameters, to mitigate the propagation
of poor predictions. The future behavior of the current phase is
then obtained and used as a starting point to predict the model pa-
rameters of the next phases. Average parameter values are used for
the yet unknown features in these models. This allows to chain the
trained random forest models, and eventually obtain a prediction
for the entire course of the match. To smooth the potential disconti-
nuities between the different phases of the model, a Savitzky-Golay
filter with a window length of 91 seconds and a polynomial order
of 1 is applied as a final post-processing step. The training was
implemented in scikit-learn, using 5-fold cross-validation on the
training set to optimize the hyperparameters of each random for-
est regressor; these include: the number of decision trees in the
forest, the maximum depth of the trees, and the split criterion. To
generate training and test sets, an "outer" 5-fold cross-validation is
performed, such that the set of all matches was divided into five
parts. Four parts of the matches were used for training the models,
and the performance was tested on the fifth part. The parts were
rotated five times, such that each part once served as the test set,
which means that for each match, a prediction could be obtained
from a model that was not trained on that match.
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Figure 7: Results of user count prediction model validation.
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data on) which the model was executed.

6.3 Evaluation of the prediction model

Figure 6b shows the exemplary prediction of the match Serbia vs
Switzerland after every 5 minutes. The prediction of the future user
counts are visualized as green lines with decreasing intensity of
the color, i.e., the first prediction at 5° has the most intense dark
green color, while the last prediction at 90’ has the least intense
light green color. The red line shows the actual user counts over
the course of the match, and the blue line is the final fitted model,
which is based on all observed data. The very first prediction after 5°
is already quite good, and overestimates the maximum user count
by less than 10%. Also, all other predictions approximate the real
user count very well for this match. The maximum relative error
of around 20% is observed for the prediction after 46’. Next, we
evaluate the performance of the prediction model over all matches.

Figure 7a shows the performance in terms of the mean absolute
error for predicted user counts over the future course of the match,
relative to the maximum user counts of each match. The last entry
(F) of the x-axis shows the performance of the final model, which
was fitted on all historical data, and serves as performance baseline.
The y-axis shows the box plots of the error distributions over all
matches. The plot shows that even the early predictions already
perform very well, and all show a median error below 20%. While
outliers of up to 100% are observed for the very first prediction,
outliers of at most 80% prediction errors can be observed for sub-
sequent predictions, e.g., at the first prediction on the second half.
Prediction errors become smaller as the match runs and more data
is available, with maximum errors below 15% from the 65th minute
onward, and median errors below 5%.

Figure 7b presents results on the error of the predicted maxi-
mal user counts, which is especially relevant for system capacity
planning. As expected, the variance of the error distribution over
the different matches becomes smaller for increasing time. The
median is close to 0, which shows that the prediction is very good.
In addition, the trained prediction model rather tends to overesti-
mate the maximum user counts, which is more advantageous than
underestimation for provisioning purposes. For some matches, the
early predictions overestimate the maximum count by up to 112%;
however, these extreme errors become smaller and also less likely
throughout the match. Latest from minute 55, the predictions yield
a very high accuracy for all matches, with only marginal errors.

To summarize, and as a conclusion regarding RQ3, we devel-
oped a model that can accurately predict the future user counts,
which represents highly valuable information for load and capacity

814

management of streaming providers. Already early predictions pro-
vided by the model, e.g., after the 5th minute of the match, can be
used to forecast the user counts over the whole course of the match
with very high accuracy. We also showed that the goal events had
only a minor impact on the user counts, but that the model’s accu-
racy could still be further improved when considering this impact,
albeit only marginally.

7 CONCLUSION

In this paper, we investigated the potential of specific match events
to act as a trigger for flash crowds, based on more than a million live
streams of the 2018 FIFA WC broadcasted by a large national public
IPTV provider. For this purpose, we analyzed the impact of match
events on user engagement and QoE, as well as their interplay in the
context of match events. We also compared measurements obtained
in the context of events with those obtained from event-free match
periods, to quantify the influence of the presence of events on user
engagement and QoE metrics.

Our results show that match events have significant impact on
user engagement (and in turn, QoE KQIs) and that the intensity of
the impact strongly depends on the type of match event. In addition,
we found that match events typically impact user engagement and
QoE within one to three minutes after their occurrence. Finally,
we developed a novel three-phases model, which describes user
engagement over the course of a soccer match with very high
accuracy. On top of this model, we developed a machine learning
based approach to predict the future number of concurrent users,
which enables streaming providers to forecast likely shape and
amplitude of system load over the course of a match already since
its very beginning.

Our analysis would have certainly benefited from including mea-
surement data obtained from additional client platforms beyond
iOS (Android, Web), as this would have enabled the development of
even more accurate models, as well as the comparative investigation
of quality and behavior patterns across client platforms. However,
such multi-platform data was not available to the authors in 2018 as
it is today. Regarding future work, we thus envisage repeating the
presented analysis and validate the proposed prediction model on
a larger scale, when the next soccer championship takes place. We
also aim to apply our analysis and modeling approach to data from
live streaming of other types of large sports events which are prone
to generate flash crowds (e.g., olympic games), to verify whether
our method is limited to soccer streaming or not. Finally, a large
scale analytics dataset collected from multiple platforms will also
enable deeper analysis of cause-and-effect relationships on behalf
of methods like quasi-experimental designs (cf. [16]), allowing the
isolation of single influencing factors in field data.

All in all, we believe that the conducted analysis as well as the
resulting models are valuable sources of insight to video streaming
service providers, empowering their network operation and man-
agement capabilities with tools enabling customer-centric resource
and capacity management.
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