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ABSTRACT: The number of solar power plants has increased in West Africa in recent years. Reliable reanalysis data
and short-term forecasting of solar irradiance from numerical weather prediction models could provide an economic
advantage for the planning and operation of solar power plants, especially in data-poor regions such as West Africa. This
study presents a detailed assessment of different shortwave (SW) radiation schemes from the Weather Research and
Forecasting (WRF) Model option Solar (WRF-Solar), with appropriate configurations for different atmospheric conditions
in Ghana and the southern part of Burkina Faso. We applied two 1-way nested domains (D1 5 15 km and D2 5 3 km) to
investigate four different SW schemes, namely, the Community Atmosphere Model, Dudhia, RRTMG, Goddard, and
RRTMG without aerosol and with aerosol inputs (RRTMG_AERO). The simulation results were validated using hourly
measurements from different automatic weather stations established in the study region in recent years. The results show
that the RRTMG_AERO_D01 generally outperforms the other SW radiation schemes to simulate global horizontal irradi-
ance under all-sky condition [RMSE 5 235 W m22 (19%); MAE 5 172 W m22 (14%)] and also under cloudy skies. More-
over, RRTMG_AERO_D01 shows the best performance on a seasonal scale. Both the RRTMG_AERO and Dudhia
experiments indicate a good performance under clear skies. However, the sensitivity study of different SW radiation
schemes in the WRF-Solar model suggests that RRTMG_AERO gives better results. Therefore, it is recommended that it
be used for solar irradiance forecasts over Ghana and the southern part of Burkina Faso.
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1. Introduction

The generation of electricity from solar radiation has in-
creased worldwide in recent decades. According to the Interna-
tional Energy Agency (IEA), solar photovoltaic (PV) electricity
generation is the technology with the largest absolute growth
rates in electricity generation among renewable energy technol-
ogies (IEA 2018). Furthermore, the affordability and availabil-
ity of solar PV technology could be an opportunity for many
developing countries in subtropical and tropical regions like
West Africa to expand their electricity generation to better
meet the electricity needs of their populations.

West African countries are still struggling with electricity
security, and renewable energies like solar PV technologies
can help improve electricity supply. For instance, Ghana has a
total installed capacity of 4399 MW, mainly from hydropower
(1580 MW) and thermal power plants (2796 MW), while energy
generated from solar and wind is still negligible (22.5 MW).
Like many other West African countries, Ghana has an esti-
mated access electricity of more than 80%, but about

1.2 million households still live without electricity (U.S.
Agency for International Development 2020). Despite pro-
gress in electricity supply in recent decades, West African
countries still face electricity shortages. This situation con-
tributed to a 2% loss of annual GDP in Ghana for the year
2014 (Kumi 2017). To overcome these problems, Ghana, for
example, intends to scale up the share of renewable energy
to 10% by 2030, and solar energy technologies could con-
tribute significantly to achieving this goal. Grid-integrated
PV systems and stand-alone PV hybrid systems could im-
prove electricity security in the country. However, for the
expansion of solar PV technologies, accurate information
on solar resources is needed to better quantify and forecast
the potentials in this challenging region. The Energy-Self-
Sufficiency for Health Facilities in Ghana (ENERSHELF)
project aims to use solar radiation forecasts and reanalysis
to improve the operation of PV hybrid systems in Ghana.

The estimation of solar energy yields requires reliable in-
formation on solar irradiance at specific locations. In situ data
from weather stations are the most accurate source for this
purpose. However, the network of weather stations in Africa
is sparsely distributed (Dike et al. 2018). For this reason, in
data-poor regions, information from numerical weather pre-
diction (NWP) models, satellite-based datasets, and reanalysis
data is often used to derive spatially homogeneous solar radia-
tion data for a geographical region of interest (Sawadogo et al.
2020; Neher et al. 2019). Reliable solar radiation estimation

Denotes content that is immediately available upon publica-
tion as open access.

Corresponding author: Windmanagda Sawadogo, windmanagda.
sawadogo@geo.uni-augsburg.de

DOI: 10.1175/JAMC-D-22-0186.1

Ó 2023 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding
reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

S AWADOGO E T A L . 835JULY 2023

Brought to you by UNIVERSITAETSBIBLIOTHEK AUGSBURG | Unauthenticated | Downloaded 09/04/23 08:36 AM UTC

https://orcid.org/0000-0001-7641-4179
https://orcid.org/0000-0002-8591-6231
https://orcid.org/0000-0002-4660-1165
https://orcid.org/0000-0002-1308-6742
https://orcid.org/0000-0002-2900-2179
https://orcid.org/0000-0003-1842-3805
https://orcid.org/0000-0003-0240-2401
https://orcid.org/0000-0001-9573-1743
https://orcid.org/0000-0001-7641-4179
https://orcid.org/0000-0002-8591-6231
https://orcid.org/0000-0002-4660-1165
https://orcid.org/0000-0002-1308-6742
https://orcid.org/0000-0002-2900-2179
https://orcid.org/0000-0003-1842-3805
https://orcid.org/0000-0003-0240-2401
https://orcid.org/0000-0001-9573-1743
mailto:windmanagda.sawadogo@geo.uni-augsburg.de
mailto:windmanagda.sawadogo@geo.uni-augsburg.de
http://www.ametsoc.org/PUBSReuseLicenses


from these approaches remains challenging due to the uncer-
tainties in aerosol optical depth (AOD; Neher et al. 2019) and
cloud optical properties resulting from uncertainties in cloud
microphysical properties in the model (Troccoli and Morcrette
2014). These uncertainties are associated with the specific al-
gorithms, cloud type, or shortwave (SW) radiation schemes
used in the NWP, satellite-based observation, and reanalysis
datasets (Lee et al. 2016; Quaas et al. 2009).

NWP simulations are used to assess the sensitivity of solar
radiation and other weather variables. State-of-the-art models
such as the Weather Research and Forecasting (WRF) Model
provide different types of parameterization schemes like
shortwave and longwave (LW) radiation schemes, and the
best scheme can be selected for a study region of interest. For
instance, Zempila et al. (2016) used four different WRF radi-
ation schemes [Dudhia, updated Rapid Radiative Transfer
Model for GCMs (RRTMG), updated Goddard, and the
Geophysical Fluid Dynamics Laboratory (GFDL)] to evalu-
ate the global horizontal irradiance (GHI) for Greece with
ground measurements. Their study showed that the Dudhia
scheme performed best under clear skies. Chen et al. (2017)
also showed that the Dudhia scheme performed better when
simulating GHI over Xinjiang in China under clear skies. The
RRTMG scheme in the WRF Model shows a good perfor-
mance in simulating GHI and direct normal irradiance (DNI)
when aerosol inputs are supplied, but the authors suggest that
the Dudhia scheme better reproduces the solar radiation com-
ponents under clear skies (Ruiz-Arias et al. 2013).

In recent years, the WRF Model has been further devel-
oped for solar energy applications. This WRF version is called
WRF-Solar. The WRF-Solar model is built upon the WRF
Model developed by the National Center for Atmospheric
Research (NCAR) and was designed for solar energy applica-
tions (Jiménez et al. 2016b). Compared with the standard
WRF Model, WRF-Solar provides reliable solar irradiance
forecasting with an improved representation of aerosol–radiation
feedbacks. WRF-Solar also accounts for cloud–aerosol feedbacks
and enables a fully coupled aerosol–cloud–radiation system with
time-varying aerosol inputs. Numerous studies have thoroughly
evaluated the WRF-Solar model for forecasting applications
(Yang et al. 2021; Balog et al. 2019; Kim et al. 2017). These
studies show that solar radiation forecasts with WRF-Solar can
contribute to better solar resource planning. For instance,
Sosa-Tinoco et al. (2022) used the WRF-Solar model to forecast
GHI in two power plants in Spain. The authors suggest that in-
cluding aerosols in the model improves the forecast by 10%.
Jiménez et al. (2022) also used the WRF-Solar model to evaluate
the performance of the GHI forecast over the contiguous United
States (CONUS). The model is also used for model development
(Cheng et al. 2022; Prasad and Kay 2020).

NWP models like WRF and its derivatives such as the
WRF Model coupled with chemistry (WRF-Chem) and the
WRF hydrological modeling system (WRF-Hydro) have been
frequently used for different purposes in West Africa but
have received less attention for solar energy applications. For
instance, Klein et al. (2015) used a WRF multiphysics ensem-
ble to analyze the effect of parameterization schemes on pre-
cipitation and West African monsoon features. Another study

investigated the influence of parameterization on precipita-
tion associated with the African easterly waves by combining
62 configuration physics of the WRF Model (Noble et al.
2014). Gbode et al. (2019) analyzed the effect of parameteriza-
tion of the WRF Model on precipitation and surface tempera-
ture with 27 different physics combinations during the monsoon
regime for the year 2017. Oluleye and Folorunsho (2019) used
WRF-Chem to investigate the impact of the African easterly jet
on dust transport over the region. Another WRF-Chem study
evaluated dust events in the Sahel region using station data
(Gueye and Jenkins 2019). WRF-Hydro has been used to simu-
late runoff and other hydrological variables in different catch-
ments in West Africa (Quenum et al. 2020; Naabil et al. 2017;
Arnault et al. 2016) and to evaluate different physics schemes
within the model (Arnault et al. 2021). These studies have fo-
cused almost exclusively on the sensitivity of parameterization
on the West African monsoon associated with its different driv-
ers and on the runoff and aerosol simulations in the region, but
not on solar radiation.

The objective of this study was to comprehensively evaluate
a state-of-the-art NWP model for solar energy applications
in West Africa. We use four different shortwave radiation
schemes from the latest version of WRF-Solar, including time-
varying aerosols. The motivation behind this approach is to
select the best shortwave radiation scheme for solar irradiance
forecasting in the region. Simulations are driven from reanaly-
sis information in high spatiotemporal resolution (31 km, 1 h),
focusing on Ghana and southern Burkina Faso. For the analy-
sis, we make use of subhourly GHI measurements from novel
networks of automatic weather stations (AWSs) established as
part of the West African Science Service Centre on Climate
Change and Adapted Land Use (WASCAL) program (Salack
et al. 2019; Bliefernicht et al. 2018) and by the Ghana
Meteorological Agency (GMet). This study is therefore one of
the first to use the information from these different AWS
networks.

The paper is organized as follows. Section 2 provides a brief
description of the WRF-Solar model, the modeling experi-
ments, and different datasets used in this study. Section 3 pre-
sents the results and discussion of the main evaluations of
GHI across different locations. Section 4 presents the conclu-
sion of the study.

2. Experiments, data, and methods

a. Model configuration and setup

We used WRF-Solar, version 4.2.1, with two 1-way nested
domains over West Africa for different configurations. The
outer domain (D1) extends from 58S to 308N and from 238W
to 238E with a spatial resolution of 15 km with 299 3 219 grid
points, while the inner domain (D2) covers an area from
18 to 14.58N and from 108W to 8.58E with a spatial resolution of
3 km with 6003 400 grid points (Fig. 1). The initial and lateral
boundary conditions (ILBC) were taken from the European
Centre for Medium-Range Weather Forecasts (ECMWF)
hourly ERA5 reanalysis data (Hersbach et al. 2020). The
model first simulates domain D1 with the ERA5 reanalysis
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as ILBC and then creates new output data (which are tempo-
rally and spatially interpolated) and serves as ILBC for do-
main D2 without feedback. Both domains cover the location
of the different AWSs used in this study (cf. Fig. 1 with Fig. 2).
For the WRF Preprocessing System (WPS), we used the land
use index and land use fraction from the 21-class Moderate
Resolution Imaging Spectroradiometer (MODIS) and the green
vegetation index from the Fraction of Photosynthetically Active
Radiation (FPAR). The GEODATA TOPO 10 M for the U.S.
Geological Survey (USGS) topography data were used to initial-
ize the land use in the model.

b. Modeling experiment

The model used 45 levels of terrain-following eta layers
from the surface (1000 hPa) to 50 hPa. For the physics param-
eterizations of the model, many factors are considered. Clouds
and aerosols are the largest areas of uncertainty in climate sim-
ulations, and high biases increase when coupled with different
radiation schemes (Thompson et al. 2016). The parameteriza-
tion of resolved clouds and precipitation in climate models is
done through the microphysics scheme. The WRF Model pro-
vides 21 microphysics schemes, each of which has its own
characteristics. Based on recent studies with the WRF-Solar
model, the Thompson microphysics scheme is preferred (Yang
et al. 2021; Prasad and Kay 2020; Jiménez et al. 2016b). This
scheme predicts the mixing ratios of the five hydrometeor clas-
ses (cloud water, rain, snow, graupel, and cloud ice) and the
number of concentrations of cloud. The effective radii of ice,
snow, and cloud water computed in the routine Thompson mi-
crophysics scheme are subsequently passed to the radiation
scheme (Thompson et al. 2016).

The feedback from clouds to shortwave radiation is
done through the cumulus scheme. However, clouds are

underrepresented at the subgrid scale in many of these
schemes. The effects of unresolved clouds are important in so-
lar irradiance forecasting using the WRF-Solar model (Jiménez
et al. 2016a). To enhance the representation of unresolved
clouds, we chose Deng’s shallow cumulus parameterization
(Deng et al. 2014). In other words, we turned off the cumulus
scheme and used the shcu_physics 5 5 option in the WRF
namelist to account for the Deng scheme for D1 (15 km). How-
ever, at high resolution, the microphysics scheme is able to ex-
plicitly develop convection on the model grid without the
cumulus scheme. Nonetheless, a recent study by Jiménez et al.
(2022) has shown that using Deng’s shallow cumulus parame-
terization improves the solar irradiance forecasts even at high
resolution when the model is run in convection-permitting
mode over the CONUS domain. Therefore, we also enabled
the effect of unresolved clouds on the shortwave radiation for
D2 (3 km).

In addition, the call of the radiative parameterization is cru-
cial for the computational time. The Fast All-Sky Radiation
Model for Solar Applications (FARMS) shortens the com-
putational time by avoiding computing three-dimensional
heating rates and gives more accurate values for the solar
radiation components at each model time step compared with
the traditional radiative transfer model (Xie et al. 2016). In
this study, we used the GHI of FARMS in the WRF-Solar
model. Another physics scheme that is important for solar en-
ergy applications is the land surface model (LSM), as it ac-
counts for subgrid fluxes on the ground. The LSM simulates
the water and energy exchange between the land surface
model and the atmosphere and performs, therefore, the parti-
tioning between latent heat, sensible heat, and ground heat
fluxes. For better representation of land surface fluxes in the
model, we selected the Noah land surface model (Niu et al.
2011). The surface fluxes and cloud formation depend on the

FIG. 1. WRF domains scaled by the topography of the region. The black-outlined rectangle
shows the outer domain (D1) with a grid spacing of 15 km, whereas the red-outlined rectangle
shows the inner domain (D2) with a horizontal resolution of 3 km.
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structure of the planetary boundary layer (PBL). For this
study, the Mellor–Yamada–Nakanishi–Niino (MYNN) PBL
scheme was chosen because it improves the representation of
nonlocal mixing, subgrid-scale clouds, and turbulent interac-
tions with clouds, and is also coupled with radiation schemes
(Olson et al. 2019).

Five simulation experiments were performed with four dif-
ferent SW radiation schemes, namely, the Community Atmo-
sphere Model (CAM), the modified Goddard (GoddardM),
Dudhia, and the RRTMG in this study (Table 1). For the last
SW scheme, another experiment coupled with aerosol inputs
(RRTMG_AERO) was conducted. Each configuration used the
same physical schemes as mentioned above but differed in terms

of LW radiation schemes. However, for the RRTMG_AERO ex-
periment, we used the aerosol-aware Thompson microphysics
scheme to account for the direct effect of aerosols (Thompson
and Eidhammer 2014). To activate the effect of direct aerosol,
we used the method of Ruiz-Arias et al. (2014), where we pro-
vided the AOD 550 nm and the Ångström exponent (AE)
data from Copernicus Atmosphere Monitoring Service (CAMS)
datasets. The CAMS data were also used as aerosol input for
solar irradiance estimation in Spain with the WRF-Solar
model (Sosa-Tinoco et al. 2022). The data from CAMS were
bilinearly interpolated onto the grids of both domains.
Moreover, the process of assimilating aerosol in the WRF-
Solar model is similar to other climate models. Instead of

FIG. 2. Study area and location of the various AWSs used in this study. The red dots show the
GMet AWSs, and the blue dots indicate the WASCALAWSs. The black dots show the transna-
tional climate observation network installed by WASCAL in Ghana. The different AWS net-
works have been established in recent years. The colored zones on the map show the different
climate zones in the study area.
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being parameterized directly, the AOD is transferred through
the radiative transfer routine for each simulated grid cell and
updated 3-hourly. Each spectral band within the RRTMG
scheme (from 0.2 to 12.2 mm) is parameterized based on the
vertically integrated AOD and a reference aerosol type. Using
reference aerosol types and relative humidity, the WRFModel
calculates the aerosol single scattering albedo (SSA) and aero-
sol asymmetry parameters (ASY; Ruiz-Arias et al. 2014). The
simulation period is from 1 December 2018 to 31 December
2019, and the entire month of December 2018 was used for the
spinup. The GHI from the simulations is given in hourly in-
stantaneous values.

c. Data

1) STUDY AREA

This study uses ground measurement data in Ghana and
some parts of Burkina Faso (Fig. 2) for comparison of model
output. The observation networks are located in different cli-
matic zones and can be classified into three main zones: the
coastal, the forest, and the savannah zone (Bessah et al. 2022).
The coastal and the forest zones are characterized by a mean an-
nual rainfall of between 1000 and 1600 mm within 7–10 months,
while the savannah zone receives a mean annual rainfall be-
tween 700 and 1200 mm within 5–7 months (Bliefernicht et al.
2019, 2018; Nicholson 1981). The savannah region is also charac-
terized by a pronounced dry season (from November to
April), whereas the coastal and forest zones are character-
ized by a much longer rainy season and a bimodal rainfall
regime, especially along the coast. In the coastal and forest
zones, total cloud cover can be up to 50% in the dry season
and about 80%–100% in the wet season. In the savannah
area, total cloud cover is much lower in the dry season (25%–

30%) and higher in the rainy season (70%–80%; Nicholson
et al. 2018). Additionally, the region experiences aerosol par-
ticles from the Saharan desert and also from biomass burning
during the December–February season, also called the Har-
mattan period.

2) GROUND DATA

We used GHI data collected from two different meteoro-
logical networks established by WASCAL and partner insti-
tutions in this region (Fig. 2; Salack et al. 2019; Bliefernicht
et al. 2018). In addition, GHI data collected from an AWS

network operated by GMet were used. The different AWSs
are handled and maintained by WASCAL and GMet. The
Tabou, Nebou, Oualem, Nabugubelle, Doninga, and Gwosi
stations are part of the meteorological network operated un-
der the WASCAL hydrometeorological observatory estab-
lished in this region from 2012 to 2014 (Bliefernicht et al.
2018), whereas the remaining WASCAL stations (Manga,
Kpandai, Ejura, and Kpando) belong to a new transnational
climate observation network that was set up in 10 West African
countries starting from December 2017 (Salack et al. 2019).
GMet’s AWS network was established in 2018. The solar radia-
tion sensors are usually cleaned and checked twice a month to
avoid dust accumulation. However, this cannot be guaranteed
for all sites and periods as many sites are not permanently
manned and some of them are located in remote areas, and be-
cause of other constraints. Moreover, fieldwork is organized
on different sites to recalibrate or replace the sensors if
they are defective. More details on the data collected by
WASCAL’s meteorological networks and the quality assur-
ances applied can be found in Salack et al. (2019) and in
Bliefernicht et al. (2018). Because of the different AWS net-
works, GHI is recorded at different time steps (5, 10, and
15 min) at different locations (see Table 2). GHI data used
in this study were measured at 20 locations from AWSs
(Fig. 2). The study area includes three stations from the
southern part of Burkina Faso and 17 stations from Ghana
distributed throughout the country.

For this study, hourly instantaneous values of GHI were con-
sidered to match the WRF output simulation with a time slice
from 1 January 2019 to 31 December 2019. Missing hourly in-
stantaneous values of GHI are replaced by the interpolated
value of GHI within the 30 min, assuming that the value of
GHI does not deviate significantly during this period. How-
ever, data gap filling was only performed for small data gaps by
performing a temporal infilling using the nearest observations,
assuming that the value of GHI does not differ significantly
within this period. For larger data gaps, no infilling was per-
formed. The number of missing values in Table 2 shows that
most time series are complete. Thus, we assume that the cur-
rent applied infilling techniques had only a minor impact on
the model performance. According to Batista and Monard
(2003), a ratio of missing values of less than 1% has no impact
on the applied performance measures, while a ratio of more
than 5% requires the application of a data gap filling technique.

TABLE 1. Overview of the parameterization schemes used for the different WRF-Solar configurations. In total, five simulation
experiments with different SW radiation schemes were performed, as listed; the RRTMG_AERO experiment takes into the account
the effect on aerosols.

Physics CAM Dudhia GoddardM RRTMG RRTMG_AERO

Radiation SW CAM Dudhia Goddard RRTMG RRTMG 1 aerosols
Radiation LW CAM RRTMG Goddard RRTMG RRTMG
Microphysics Thompson Aerosol-aware Thompson
Land surface Noah land surface model
Planetary boundary layer MYNN
Shallow cumulus Deng cumulus
FARMS Activated
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In this study, no data gaps were filled to maintain the integrity
of the data for better model evaluation.

3) ERA5 REANALYSIS DATA

ERA5 is the fifth-generation of ECMWF reanalysis data
with a horizontal grid spacing of;31 km and 37 pressure
levels from 1000 (surface) to 1 hPa (Hersbach et al. 2020);
it has superseded ERA-Interim reanalysis data. ERA5 is
built on a 4D-Var data assimilation using cycle 41r2 of the
Integrated Forecasting System (IFS). It covers the period
from 1950 to the present. The ERA5 reanalysis data are
widely used for climate and related studies (Xia et al. 2022;
Dommo et al. 2022; Adeniyi 2020). We retrieved hourly
surface and atmospheric pressure data from 1 December
2018 to 31 December 2019 for ILBC of the WRF-Solar
model.

4) CAMS DATASETS

All the AOD 550 nm and AE data used in this study are
from the CAMS near-real-time global analysis and forecast
model. CAMS is operated by ECMWF, and over 60 satel-
lites are used to combine atmospheric composition informa-
tion with state-of-the-art atmospheric models to produce
quality-controlled information and data (Peuch et al. 2018;
Flemming et al. 2015). CAMS has a spatial resolution of
about 40 km, with 137 levels from the surface up to 0.1 hPa.
We retrieved 3-hourly total AOD at 469, 550, and 865 nm
within a time ranging from 1 December 2018 to 31 December
2019. Since CAMS does not provide AE data, AE is esti-
mated from the measurement of the optical thickness of an
AOD layer at two different wavelengths (we used AOD
469 and AOD 865 nm) using the equation of Schuster et al.
(2006):

AE 52

log
tl1
tl2

log
l1
l2

, (1)

where tl1
and tl2

are the total AOD at wavelength l1and l2,
respectively.

d. Methods

1) MODEL EVALUATION

The evaluation of the different experiments is achieved
by comparing the hourly instantaneous GHI values from the
WRF-Solar model and the in situ data. A nearest-neighbor
interpolation method is applied to extract the different loca-
tions in the simulation results that correspond to the same
geographical coordinates of the station. For the perfor-
mance of the different simulations versus observations, we
consider GHI from the observation when the solar zenith
angle (SZA) is ,808 to avoid early-morning and late-evening
errors in GHI due to measurement uncertainties (Flemming
et al. 2015) and also the seasonal effects of sunset and sun-
rise. In the region, SZA , 808 corresponds to an average of
0800 to 1700 UTC; the diurnal variation of GHI is analyzed
in this time window. We performed three types of analyses:
all-sky conditions, cloudy conditions, and clear-sky condi-
tions. In the case of all-sky conditions, the entire observa-
tional data are used for the model comparison. In the second
and third analyses, the observational data are grouped into
different categories based on the clearness index (Kt) to
determine cloudy and clear-sky day composite. Kt is de-
fined as the ratio of the global solar irradiance measured at

TABLE 2. List of the AWSs with their number of missing data, time resolution, and their source and the average solar radiation for
the study period (1 Jan–31 Dec 2019). The value in the parentheses of the column of the number of missing values indicates the ratio
of missing values of different AWSs.

Station No. of missing values Institution Time resolution (min) Avg mean (W m22)

Bongo Soe 4 (0.05%) WASCAL 5 153.61
Doninga 258 (2.95%) 207.54
Gwosi 0 (0.00%) 215.32
Nabugubelle 0 (0.00%) 217.4
Nebou 0 (0.00%) 228.55
Oualem 1 (0.01%) 218.45
Tabou 740 (8.45%) 213.72
Ejura 385 (4.39%) WASCAL–GMet 10 186.32
Kpandai 0 (0.00%) 181.21
Kpando 329 (3.76%) 180.78
Manga 0 (0.00%) 214.57
Tuna 364 (4.16%) 198.82
Abetifi 0 (0.00%) GMet 15 195.93
Ada 0 (0.00%) 204.17
Akosombo 0 (0.00%) 193.83
Akuse 0 (0.00%) 184.85
Axim 0 (0.00%) 184.85
Sefwi Bekwai 0 (0.00%) 173.87
Tarkwa 0 (0.00%) 153.1
Tema 0 (0.00%) 198.82
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ground-level GHI to the top of the atmosphere extraterrestrial
radiation (G0):

Kt 5 GHI/G0: (2)

The daily extraterrestrial radiation G0 (MJ m22 day21) is ob-
tained using the following equation (Allen et al. 1998):

G0 5
24(60)

p
GSCdr[vs sin(u) sin(d) 1 cos(u) cos(d) sin(vs)],

(3)

where GSC is the solar constant (50.0820 MJ m22 min21), dr
is the inverse relative distance for Earth–Sun (rad), vs is the
sunset hour angle (rad), u is the latitude of the location (rad),
and d is the solar declination (rad).

The values of the clearness index used to define cloudy and
clear skies vary according to location. Cloudy and clear-sky
conditions are given when 0.12 # Kt , 0.35 and Kt $ 0.6,
respectively, following other studies done in West Africa
(Okogbue et al. 2009; Kuye and Jagtap 1992). The daily mean
GHI is computed by averaging the instantaneous GHI when
there are no missing values of GHI within a day. In addition,
an algorithm is used to find all days that fall under the crite-
ria of “cloudy sky” and “clear sky” for different AWS sites,
and for each class, an average diurnal cycle of GHI is com-
puted. Independently from the observations, the same cal-
culations are done for the simulated data to obtain the
different sky conditions for five WRF-Solar experiments at
different locations.

2) QUALITY CONTROL OF THE OBSERVATION DATA

The main purpose of the quality control of the observations
within this study is to remove all samples that are outside the
normal range of GHI. This is done using the physically possi-
ble limit [Eq. (4)] and the extremely rare limit [Eq. (5)] of
GHI from the guidelines of the Baseline Surface Radiation
Network (BSRN; BSRN 2021) as follows:

24 W m22 , GHI , I01:5 cos cos(SZA)1:2
1 100 W m22 and (4)

22 W m22 , GHI , I01:5 cos cos(SZA)1:2 1 50 W m22,

(5)

where I0 the solar constant. After the evaluation of the
20 stations, 1473 measurement values were flagged by the
BSRN limits. However, some samples passed the test even
though the sensor on site always measured low GHI due to
calibration or defective sensors. For this reason, a second
quality control was performed by computing the daily clear-
ness index. If the number of clear-sky conditions (Ncs;
Kt $ 0.6) for a year was not appropriate, we discarded the
station. At the end of this scan, Bongo Soe (Ncs 5 0) from
the WASCAL network and Tarkwa (Ncs 5 6) from the
GMet network were removed from the AWS network for
further analysis.

3) PERFORMANCE MEASURES

The performance of the WRF-Solar model is evaluated in
terms of different measures to address specific performance
attributes like skill and accuracy (Wilks 2011). To estimate
the average accuracy of the WRF simulations, we used the
mean absolute error (MAE):

MAE 5
1
n
∑
n

i51
(|Pi 2 Oi|), (6)

and its normalized measure (nMAE):

nMAE 5
MAE

max(O) 2 min(O)
[ ]

3 100, (7)

where Pi is the simulation value, Oi is the observation data at
time step I, and n is the number of data points used for compari-
son; max(O) and min(O) are the maximum and minimum value
of the observations. In addition, further accuracy measures are
computed, namely, the root-mean-square error (RMSE):

RMSE 5

������������������
∑
n

i51

(Pi 2 Oi)2
n

√
, (8)

and the normalized RMSE (nRMSE):

nRMSE 5
RMSE

max(O) 2 min(O)
[ ]

3 100: (9)

Like the mean-square error (MSE), the RMSE and MAE
are two of the most frequently used scores for evaluation of
numerical simulations and predictions (Neill and Hashemi
2018). Since the calculation of the MAE is based on absolute
deviations, the MAE is a more robust measure compared
with MSE. Moreover, in the case of RMSE and MAE, the
physical units remain the same as the target variable for
the model comparison, which is watts per meter squared for
this study. Thus, the interpretations of the error values of the
MAE and RMSE are much easier compared with the MSE.

In addition, the degree of linear dependence between simu-
lation and observation is measured by computing the Pear-
son’s correlation as follows:

R 5

∑
n

i51
(Oi 2 O)(Pi 2 P)�����������������������������������

∑
n

i51
(Oi 2 O)2 ∑

n

i51
(Pi 2 P)2

√ , (10)

whereO and P are the mean value of the observation and sim-
ulation, respectively. We also computed the index of agree-
ment (IOA) to assess the performance of the WRF-Solar
output (Legates and McCabe 2013):

IOA 5 1 2

∑
n

i51
(Pi 2 Oi)

∑
n

i51
(|Pi 2 O||Oi 2 O|)2

: (11)
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In contrast to the aforementioned performance measures, R
and IOA are both skill scores and are therefore comparing
the quality of the WRF-Solar simulations against a low-skill
reference simulation.

3. Results and discussion

Assessment of WRF-Solar simulations

1) SCATTERPLOT

Most simulations show a good estimate of GHI for the
18 stations for the all-sky conditions (Fig. 3). The scatterplots
show two major clusters, around 200 and 800 W m22. More-
over, the scatterplots are not symmetrical, and the major core
values are on the left side of the diagonal (line: 1:1 line). In
other words, the simulations tend to overestimate the ob-
served values of GHI. The inner domains perform slightly
better than the outer domains in terms of RMSE, MAE,
R, and IOA irrespective of their simulation, except for
RRTMG_AERO, where domain D1 performs better than
domain D2. For instance, RRTMG_D01 indicates a value of
RMSE of 266 W m22 (21.71%), MAE5 204 W m22 (16.62%),
R 5 0.6, and IOA 5 0.69, whereas RRTMG_D02 has an
RMSE value of 259 W m22 (21.14%), MAE 5 198 W m22

(16.16%), R5 0.61, and IOA5 0.7. In general, the high resolu-
tion improves the estimation of GHI over the region. This is
consistent with previous studies where the authors showed that
high-resolution simulations improve the estimation of GHI us-
ing the WRF-Solar model (Sosa-Tinoco et al. 2022; Gueymard
and Jimenez 2018).

Dudhia_D02 has the lowest performance, while RRTMG_
AERO_D01 has the highest performance with the following
values: RMSE: 234 W m22 (19.1%); MAE: 172 W m22

(14.04%); and IOA: 0.73. Our results are also comparable to

some results in other regions (Verbois et al. 2018; Zempila
et al. 2016). For example, Verbois et al. (2018) found an
RMSE of 242 W m22 for hourly solar irradiance in day-ahead
forecasting in Singapore with the WRF-Solar model. In addi-
tion, there is a large deviation of 20–30 W m22 in terms of
RMSE between RRTMG and RRTMG_AERO in both do-
mains. This shows that the WRF-Solar model coupled with
aerosol input improves the estimated GHI over the region be-
cause aerosol absorbs and scatters incoming solar beam. This
was also highlighted by Jiménez et al. (2016b), who showed
that including aerosol in the WRF-Solar simulation improves
the estimate of GHI by 5%–28%.

Despite the good performance of RRTMG_AERO_D01,
the high value of RMSE shows that the model is struggling to
estimate the GHI over the study area. This could be due to
the low amount of cumulus clouds in the model (Ruiz-Arias
et al. 2016). In addition, the development of low-level clouds
in West Africa, especially in the southern part, is still not well
parameterized in climate models in terms of cloud amount
and frequency (Hannak et al. 2017; Knippertz et al. 2011).
Danso et al. (2020) have shown that the low-level clouds at-
tenuate incoming solar radiation and about 49% and 44% is
lost at the surface in the Guinea and Sahel, respectively. An-
other reason could also be related to the representation of
aerosol–cloud–radiation feedback in the model, or biases in
aerosol input (Cheng et al. 2022). The bias could also be re-
lated to the 3D radiative effect, which leads to overshooting
of GHI, or too high values of the solar zenith angle generated
by the model.

2) SPATIAL DISTRIBUTION

Figures 4 and 5 show the spatial nRMSE and nMAE val-
ues, respectively, in relation to the model performance at dif-
ferent stations. High nMAE and nRMSE values are located

FIG. 3. Density plot of hourly values of GHI from different WRF-Solar simulations and domains (Wm22) vs observation for 18 stations
(W m22) using Gaussian kernels with values normalized to 0–1. The dashed gray line exhibits the 1:1 line. RMSE (W m22), R, IOA, and
MAE (W m22) indicate the root-mean-square error, the Pearson’s correlation, the index of agreement, and the mean bias error, respec-
tively, and the nRMSE (%) and nMAE (%) indicate the normalized root-mean-square error and the normalized mean bias error,
respectively.
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in the southern part, while low nMAE and nRMSE values are
found in the northern part. Additionally, the high resolution
[inner domain (D2)] of the different simulations reduces the
values of nRMSE and nMAE compared with their outer do-
main (D1), except for that of RRTMG_AERO. In general,
RRTMG_AERO_D01 exhibits the lowest values of nRMSE
and nMAE for all the stations. Our results suggest that the
biases are lower in cloud-free areas (Savannah region) and
higher in cloudy areas (Guinea region). The discrepancy
between the two areas could be attributed to the shallow
cumulus parameterization and/or cloud properties in the
WRF-Solar model. Pedruzo-Bagazgoitia et al. (2019) have
shown that the shallow cumulus parameterization used in the
WRF-Solar model (Deng et al. 2014) has difficulty reproducing
the main features that clouds exert on the surface–atmosphere
system because the scheme produces clouds that are too
dense, cloud bases that too high, and abrupt formation of a
second cloud layer that is too high. In addition, the timing of
the started shallow updrafts to the transition to deep convec-
tion could be missed by the shallow convection scheme in the
region. These could also have an effect on the absorption,
scattering, or reflection of the incoming SW radiation by the
clouds. The shallow convection parameterization has been ac-
knowledged as one of the main challenges among NWP mod-
els, even at a high-resolution scale (Hong and Dudhia 2012).

3) SEASONAL PERFORMANCE

The seasonal performance of WRF-Solar GHI with respect
to ground measurements is displayed in Fig. 6. Most simu-
lations exhibit high median values of nRMSE during the
June–August (JJA) season (rainy season), which are typically
associated with considerable high nMAE. Both metrics are
similar but differ in terms of magnitude. This is in line with
the findings of Sawadogo et al. (2022), who showed that a
high deviation of the hourly estimated GHI occurred during
the JJA season. The large deviation could be related to the
increase in relative humidity, which, in turn, leads to high
cloud cover and frequent thunderstorm activities, aerosol loads,
and deep and shallow convection during the rainy season
(Akinsanola and Ogunjobi 2017; Sylla et al. 2016). Moreover,
the high median values of nRMSE and nMAE observed in
this study could also be explained by 3D cloud effects, cloud
inhomogeneities, or optical properties of the clouds, which are
not reproduced in detail in the WRF-Solar model during the
rainy season. The RRTMG_AERO followed by the RRTMG
experiment indicates the best performance in the JJA season.
The SON season also shows high median nRMSE and nMAE
of most simulations with high variability. The high variability
is due to the fact that the northern and southern parts of the
studied area lag behind the rain by one and/or two months.
Low values of nRMSE and nMAE occur in the DJF season,

FIG. 4. Spatial distribution of the nRMSE of hourly solar irradiance over the studied domain. The first row represents the outer domain
D1, and the second row represents the inner domain D2. Each column indicates the different experiments used in the WRF-Solar model.
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with a high variability. The low nRMSE and nMAE could be
due to the cloudless conditions in the region. RRTMG_AERO
shows a large improvement over the other simulations of
about 5%–10% in terms of nMAE. This result shows that
considering time-varying aerosol in the RRTMG SW radi-
ation scheme of WRF-Solar can improve the simulation of
GHI even during the Harmattan period in the region. Overall,
the RRTMG_AERO experiment shows the best performance
in all seasons.

4) DIURNAL VARIATION

For the diurnal cycle, three AWSs with no missing values
are chosen for comparison with WRF-Solar. The three AWSs
are in the three climate zones of the study area: Ada (coastal
zone), Akosombo (forest zone), and Nebou (savannah zone).

(i) All sky

The average diurnal pattern of GHI varies for different lo-
cations under all-sky conditions (Fig. 7). Most simulations fall
within the 95% confidence interval of the measurement for
the three climate zones. The minimum average value occurs
in the coastal zone (Ada), while the maximum occurs in the
savannah zone (Nebou), and the maximum of GHI occurs
around noon when the solar zenith angle of the sun reaches
its minimum. The average maximum value during this period
of the observation is about 700 (Ada and Akosombo) and

750 (Nebou) W m22. Furthermore, the performance of differ-
ent experiments depends on the climate zone. In the coastal
zone, the experiments CAM_D01 and GoddardM_D01 are
able to capture the peak of the observation. The simulations
with aerosol input (RRTMG_AERO) underestimate the
average diurnal variation of the observation and therefore
miss capturing the peak of the diurnal variation with a large
bias (RRTMG_AERO_D02). RRTMG_AERO also under-
estimates the peak of GHI in the forest zone (Akosombo),
whereas RRTMG captures the peak of the GHI well. This
bias could be a result of persistent stratiform low-level clouds
in the early afternoon hours that have been formed during
nighttime (Schrage and Fink 2012; Knippertz et al. 2011); the
stratiform low-level clouds have a significant impact on the
surface radiation in the southern part of West Africa (Hill
et al. 2018). This suggests that the RRTMG_AERO simula-
tions produce more clouds compared with reality or that the
feedback between aerosol and clouds is not well represented
along the coastal and forest zones. However, in the savannah
zone (Nebou), RRTMG_AERO mimics the average diurnal
cycle well and captures the peak of the GHI, whereas the
other experiment shows an overestimation.

(ii) Cloudy sky

Figure 8 exhibits the average diurnal variation of GHI,
which was determined for cloudy-days composite for different

FIG. 5. As in Fig. 4, but for the nMAE.
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stations. All experiments are not able to mimic well the pat-
tern of diurnal variation of GHI. The number of days that
occur under cloudy-days composite varies from station to
station. Akosombo (located in the forest zone) indicates the
highest number of days (59), while Nebou (northern part of
the study) shows the lowest value (24). The performance of
the different experiments differs for each station. All experi-
ments show an overestimation of the daily course of GHI in
all stations. For instance, while the maximum value of GHI of
the observation is below 400 W m22, some experiments show
a value of more than 600 W m22, especially in Nebou. This
could be due to the fact that the WRF-Solar produces fewer

clouds than it should when the sky is cloudy. This leads to a
similar conclusion to Gueymard and Jimenez’s (2018) finding
that the WRF-Solar model is not able to reproduce cloud-
enhanced situations. However, RRTMG_AERO shows less
bias in the diurnal average variation of GHI in Akosombo
and Nebou. A similar result was obtained in Shagaya, Kuwait,
where WRF-Solar, configured with an RRTMG SW radiation
scheme forced with aerosols failed to capture the observed
GHI under cloudy-day conditions (Gueymard and Jimenez
2018). This could be related to the feedback from aerosols
and clouds, which could be a factor explaining the discrepan-
cies between RRTMG_AREO and the observations. The

FIG. 7. Annual average diurnal variation of WRF-Solar simulations and observation of the GHI at different stations for 2019. The gray
shaded curve indicates the 95% confidence interval of the measurement.

FIG. 6. Seasonal performance of simulated GHI for the different WRF-Solar configurations, showing the spread of the (a) nRMSE and
(b) nMAE for the 18 stations.
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temporal resolution does not allow us to simulate a small vari-
ability of clouds, which could also be a factor for the biases on
cloudy days. This region is known as a challenging region in
terms of weather, and climate models fail to accurately depict
the low- and middle-level cloudiness, where these types of
clouds are abundant and frequent (Hannak et al. 2017). More-
over, the bias could be also related to the fact that the clouds
produced in the model do not appear at the right place at the
right time. In summary, the interaction between clouds and
aerosols over the West Africa region needs to be improved.
The shallow cumulus parameterization also needs to be im-
proved to enhance the representation of clouds in the model.

(iii) Clear sky

Under clear-sky day composites, the performance of the
WRF-Solar simulations also varies at the different sites (Fig. 9).
Most simulations are able to capture the average diurnal varia-
tion of the GHI with notable biases. The performance of the
different experiments also differs between the southern and
northern parts of the study area. More clear-sky day composites

(183) are in the northern part than in the southern part. In the
southern part (coastal and forest zones), all the experiments un-
derestimate the daily course of GHI, while in the northern part,
some of them overestimate the values of GHI. RRTMG_AERO
captures well the observed average diurnal variation of the GHI
in Nebou; they even partially overlap. The good performance of
RRTMG_AERO in Nebou could be due to a good interaction
between aerosol and radiation. This suggests that including the
direct effect of aerosol in the WRF-Solar model could better re-
flect the diurnal variation of GHI in cloud-free areas. However,
in the southern part, RRTMG_AERO does not perform well,
whereas Dudhia_D01 shows the best pattern compared with
other simulations. The poor performance of the different experi-
ments in the southern part could be related to the fact that fewer
days with clear-sky conditions are produced in the simulations
than in reality, while in the northern part, some simulations pro-
duce more clear-sky days. The poor performance of RRTMG_
AERO in Figs. 9a and 9b can also be attributed to two factors: a
bias of the aerosol data from CAMS and/or the type of aerosol
simulated. Regarding the first factor, CAMS can introduce a bias

FIG. 8. Average diurnal variation of different WRF-Solar configurations and observation of the GHI at different stations under cloudy
conditions. The Nb_days indicates the number of times that a cloudy day occurs.

FIG. 9. As in Fig. 8, but under clear-sky conditions.
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into the AOD retrieval due to a lack of clear-sky conditions in
cloudy areas (Flamant et al. 2018). For instance, a bias in the
AOD of CAMS was observed throughout the year in compari-
son with AERONET data in southern Ghana (Koforidua)
(figure not shown). This is consistent with Léon et al. (2021),
who also showed a bias of AOD data in the forest zone in
Ghana. The second factor could be related to high levels of
aerosols in the coastal and forest zones, where biomass burn-
ing is the main source of aerosols during the dry season
(Flamant et al. 2018). The increased AOD levels lead to
greater absorption of GHI. This is consistent with the finding
of Liu et al. (2022) that high AOD loading in the model can
reduce GHI due to enhanced aerosol scattering effects. The
underestimation of diurnal cycle of the RRTMG_AERO sug-
gests that it is necessary to improve the feedback between
aerosol and radiation under clear skies, especially when the ra-
diative transfer routine experiences high AOD loading.

Table 3 highlights the error metrics of different simulations
for the whole of 2019, aggregated for the 18 stations under
clear-sky, cloudy, and all-sky conditions. Most simulations
perform better under clear skies than under cloudy skies.
Take the example of the Dudhia_D01 experiment, where
IOA 5 0.81, R 5 0.82, RMSE 5 176 W m22 (15.17%), and
MAE 5 134 W m22 (11.59%) in clear sky, and these values
are tied to IOA 5 0.42, R 5 0.40, RMSE 5 411 W m22

(38.16%), and MAE 5 340 W m22 (31.59%) in cloudy sky.
Our results are consistent with previous studies in which the
WRF or WRF-Solar model performs well in clear-sky condi-
tions (Gueymard and Jimenez 2018; Gamarro et al. 2019; Kim
et al. 2017). Our study suggests that RRTMG_AERO per-
forms better in terms of RMSE and MAE compared with
other simulations when simulating GHI under cloudy and

all-sky atmospheric conditions over the studied domain. Under
clear skies, RRTMG_AERO and the Dudhia experiment show
the best performance; however, RRTMG_AERO performs best
with respect to MAE. The poor performance of Dudhia in all-
sky condtions is related to its performance under cloudy skies.
The inclusion of aerosol in the RRTMG experiment improves
the performance in simulating GHI under all atmospheric condi-
tions, which is in line with the results of Ruiz-Arias et al. (2013).
Despite the good performance of RRTMG_AERO, the discrep-
ancy with observations in terms of RMSE and MAE remains
high. This could be attributed either to the bias of the input
aerosol (Inness et al. 2019) or to the scheme used to simulate
aerosol dynamics in terms of scattering and absorption of the in-
coming solar radiation in the WRF-Solar model, which is not
suitable for this domain.

The accuracy of estimating GHI using the WRF-Solar
model is affected by large compensating biases on clear
and cloudy days. During cloudy-sky conditions, the GHI is
strongly overestimated, while a low underestimation occurs
during clear-sky conditions. The compensating biases arise
from the inability of the model to accurately simulate clouds
and aerosols. To enhance the accuracy of the GHI simulations
using WRF-Solar, it is crucial to improve the parameteriza-
tion of the Deng shallow convection scheme for the West
Africa region. The assimilation of AOD in the radiative trans-
fer model should be improved to reduce the biases of the
GHI estimation under clear skies. This can lead to more accu-
rate and reliable GHI, which is essential for solar energy ap-
plication. Additionally, the underestimation of fractional
cloud cover in deterministic model runs can result in a high
bias of GHI under cloudy skies, as suggested by Ruiz-Arias
et al. (2016) and Lara-Fanego et al. (2012). However, when

TABLE 3. Error metrics of different WRF-Solar experiments and atmospheric conditions on the GHI of the aggregated 18 stations.

D1 D2

CAM Dudhia RRTMG RRTMG_AERO GoddardM CAM Dudhia RRTMG RRTMG_AERO GoddardM

Cloudy sky
RMSE 359 411 351 303 390 348 374 346 305 357
nRMSE 33.33 38.16 32.13 28.13 36.21 32.31 34.73 32.13 28.32 33.15
R 0.37 0.40 0.38 0.37 0.39 0.36 0.39 0.38 0.38 0.40
MAE 284 340 275 239 3145 273 298 269 237 280
nMAE 26.38 31.59 25.57 22.15 29.22 25.27 27.71 24.95 22.04 26.03
IOA 0.46 0.42 0.47 0.52 0.44 0.47 0.45 0.47 0.52 0.46

Clear sky
RMSE 200 176 205 183 184 192 188 199 195 191
nRMSE 17.24 15.17 17.67 15.78 15.86 16.55 16.21 17.16 16.81 16.47
R 0.75 0.82 0.73 0.76 0.78 0.76 0.78 0.74 0.74 0.76
MAE 147 134 148 122 138 143 141 147 130 143
nMAE 12.64 11.59 12.73 10.50 11.90 12.30 12.18 12.28 11.23 12.37
IOA 0.77 0.81 0.76 0.79 0.79 0.78 0.79 0.77 0.77 0.78

All sky
RMSE 276 285 266 234 276 266 275 259 238 263
nRMSE 22.53 23.27 21.71 19.10 22.53 21.71 22.45 21.14 19.43 21.47
R 0.60 0.64 0.60 0.63 0.62 0.61 0.62 0.61 0.61 0.62
MAE 214 224 204 172 214 206 214 182 175 202
nMAE 17.48 18.32 16.62 14.04 17.50 16.79 17.43 16.16 14.29 16.45
IOA 0.68 0.67 0.69 0.73 0.68 0.69 0.68 0.70 0.73 0.70
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relying on a single model run to estimate GHI, any uncertain-
ties can be not quantified. To solve this problem, an ensemble
approach can be used to quantify uncertainties and to provide
a more robust GHI estimation than a single deterministic
model run. This approach is particularly useful for operators
of solar power plants to quantify GHI uncertainties in the
planning and management of electricity generation.

4. Summary and conclusions

In this study, the sensitivity of four SW radiation schemes
(CAM, Dudhia, RRTMG, and New Goddard SW schemes)
of the WRF-Solar model was investigated for the first time fo-
cusing on Ghana and southern Burkina Faso. The WRF-solar
simulations were done for 2019 using two 1-way nested do-
mains, where the outer domain had a spatial resolution of
15 km, and the inner domain had a resolution of 3 km. For
the RRTMG scheme, we carried out two different experi-
ments: one without providing aerosol information and one
with aerosol inputs (RRTMG_AERO). For the model com-
parison, we used observed GHI in hourly resolution from
18 novel automatic weather stations from different networks
established over the past years by WASCAL and GMet in
this region. The stations’ data were quality controlled using
rigorous methods and criteria to identify and remove suspi-
cious data. The evaluation of the WRF-Solar with the 18 sta-
tions was done for different weather conditions (all sky, clear
sky, and cloudy) and different climatological regions (i.e.,
Guinean zone and Sudan savannah). The results of the study
can be summarized as follows:

• The quality control of the observations showed that both
data sources are quite good for evaluating the WRF-Solar
model.

• Most simulations provide a relatively good estimation of
the GHI observations for the 18 stations under all-sky
conditions, with the general outcome that the RRTMG_
AERO performs best.

• There is a clear north–south gradient of the model perfor-
mance visible for all schemes, with lower model accuracies in
terms of nRMSE and nMAE in the southern part (Guinean
zone).

• The evaluation of the WRF solar simulations for different
seasons leads to similar performance tendencies for the dif-
ferent radiation schemes. Lower values of nRMSE and
nMAE occur during the DJF season, while higher nRMSE
and nMAE values are obtained for the JJA season. The
RRTMG_AERO experiment generally performs best for
the different seasons.

• Most simulations mimic well the average diurnal variation
of the observation at the different stations under all-sky
conditions. The RRTMG_AERO reduces the biases under
all-sky conditions, especially in the northern part.

In summary, the study showed that the WRF-Solar model
coupled with aerosol input and the RRTMG SW scheme im-
proves the simulation of GHI over the region. Despite the
good performance of RRTMG_AERO under different sky
conditions, the biases of the model are still high. It is therefore

challenging for the model to simulate GHI under these con-
ditions for the West Africa region. Consequently, further ad-
aptation and model development of WRF-Solar is needed for
this region, such as a further advancement of the parameteriza-
tion schemes for deep and shallow convection to better simulate
local unresolved clouds. In addition, future studies should focus
on the improvement of feedback mechanisms between aerosol
and clouds at a subgrid scale. Following the results of the study,
direct normal irradiance (DNI) could also be evaluated and the
forecast of GHI for 2–3 days ahead over the West African re-
gion could be investigated. Another study could also assess the
GHI of WRF-Solar in convection-permitting simulation and
the Deng shallow cumulus scheme at high resolution in the re-
gion. Given the uncertainties in estimating GHI, the use of the
WRF-Solar ensemble prediction system (EPS) model could
bring significant benefits to the region. To evaluate the perfor-
mance gain of WRF-Solar EPS, a comparison of the two models
(WRF-Solar and WRF-Solar EPS) needs to be done in future
investigations. Moreover, the robustness of the configuration
needs to be addressed in future studies. Despite these chal-
lenges, the results of this study provide an important benchmark
for finding a suitable WRF-Solar model configuration for solar
energy forecasts in West Africa. The current study provides im-
portant insight into the quality of WRF-Solar simulations and
shows how suitable SW radiation schemes are for West Africa
for solar energy applications like GHI forecasting and long-
term GHI reconstruction.

Acknowledgments. The authors thank WASCAL and GMet
for providing their station data. We are also grateful to the
ECMWF for the ERA5 reanalysis and the CAMS datasets for
producing the aerosol data. The authors thank the anonymous
reviewers for their comments and suggestions. This research is
part of the project ENERSHELF (https://enershelf.de/), which is
funded by the German Federal Ministry of Education and Re-
search (BMBF) as part of the CLIENT II program (funding ref-
erence: 03SF0567D). It is additionally funded partly by the
WASCAL CONCERT Project (funding reference: 01LG2089A;
BMBF). The open-access publication of this article was sup-
ported by the DFG-sponsored Open Access Fund of the Uni-
versity of Augsburg.

Data availability statement. Automatic weather station data
collected by WASCAL and GMet are not publicly available,
and we do not have the right to share it with third parties. Data
requests can be sent to WASCAL and GMet via the following
email addresses: secretariat_cc@wascal.org and client@meteo.
gov.gh. ECMWF data are freely available online [https://
climate.copernicus.eu/climate-reanalysis (ERA5); https://apps.
ecmwf.int/datasets/data/cams-nrealtime (CAMS)].

REFERENCES

Adeniyi, M. O., 2020: Simulating the influence of doubled CO2 on
the water budget over West Africa using RegCM4.7. Meteor.
Hydrol. Water Manage., 8, 12–19, https://doi.org/10.26491/
mhwm/125198.

J OURNAL OF AP P L I ED METEOROLOGY AND CL IMATOLOGY VOLUME 62848

Brought to you by UNIVERSITAETSBIBLIOTHEK AUGSBURG | Unauthenticated | Downloaded 09/04/23 08:36 AM UTC

https://enershelf.de/
mailto:secretariat_cc@wascal.org
mailto:client@meteo.gov.gh
mailto:client@meteo.gov.gh
https://climate.copernicus.eu/climate-reanalysis
https://climate.copernicus.eu/climate-reanalysis
https://apps.ecmwf.int/datasets/data/cams-nrealtime
https://apps.ecmwf.int/datasets/data/cams-nrealtime
https://doi.org/10.26491/mhwm/125198
https://doi.org/10.26491/mhwm/125198


Akinsanola, A. A., and K. O. Ogunjobi, 2017: Evaluation of pre-
sent-day rainfall simulations over West Africa in CORDEX
regional climate models. Environ. Earth Sci., 76, 366, https://
doi.org/10.1007/s12665-017-6691-9.

Allen, R. G., L. S. Pereira, D. Raes, and M. Smith, 1998: Crop
evapotranspiration}Guidelines for computing crop water re-
quirements. FAO Irrigation and Drainage Paper 56, 300 pp.,
https://www.fao.org/3/x0490e/x0490e00.htm.

Arnault, J., R. Knoche, J. Wei, and H. Kunstmann, 2016: Evapo-
ration tagging and atmospheric water budget analysis with
WRF: A regional precipitation recycling study for West Africa.
Water Resour. Res., 52, 1544–1567, https://doi.org/10.1002/
2015WR017704.

}}, and Coauthors, 2021: Lateral terrestrial water flow contribu-
tion to summer precipitation at continental scale}A compar-
ison between Europe and West Africa with WRF-Hydro-tag
ensembles. Hydrol. Processes, 35, e14183, https://doi.org/10.
1002/hyp.14183.

Balog, I., Z. Podrascanin, F. Spinelli, G. Caputo, R. Siviero, and
A. Benedetti, 2019: Hourly forecast of solar radiation up to
48h with two runs of weather research forecast model over
Italy. AIP Conf. Proc., 2126, 190004, https://doi.org/10.1063/1.
5117701.

Batista, G. E., and M. C. Monard, 2003: An analysis of four miss-
ing data treatment methods for supervised learning. Appl.
Artif. Intell., 17, 519–533, https://doi.org/10.1080/713827181.

Bessah, E., and Coauthors, 2022: Climatic zoning of Ghana using
selected meteorological variables for the period 1976–2018.
Meteor. Appl., 29, e2049, https://doi.org/10.1002/met.2049.

Bliefernicht, J., and Coauthors, 2018: The WASCAL hydrometeo-
rological observatory in the Sudan savanna of Burkina Faso
and Ghana. Vadose Zone J., 17, 1–20, https://doi.org/10.2136/
vzj2018.03.0065.

}}, M. Waongo, S. Salack, J. Seidel, P. Laux, and H. Kunstmann,
2019: Quality and value of seasonal precipitation forecasts is-
sued by the West African regional climate outlook forum. J.
Appl. Meteor. Climatol., 58, 621–642, https://doi.org/10.1175/
JAMC-D-18-0066.1.

BSRN, 2021: Baseline Surface Radiation Network. World Radia-
tion Monitoring Center, https://bsrn.awi.de/.

Chen, W.-D., F. Cui, H. Zhou, H. Ding, and D.-X. Li, 2017: Im-
pacts of different radiation schemes on the prediction of solar
radiation and photovoltaic power. Atmos. Oceanic Sci. Lett.,
10, 446–451, https://doi.org/10.1080/16742834.2017.1394780.

Cheng, X., D. Ye, Y. Shen, D. Li, and J. Feng, 2022: Studies on
the improvement of modelled solar radiation and the attenua-
tion effect of aerosol using the WRF-Solar model with satellite-
based AOD data over north China. Renewable Energy, 196,
358–365, https://doi.org/10.1016/j.renene.2022.06.141.

Danso, D. K., S. Anquetin, A. Diedhiou, K. Kouadio, and A. T.
Kobea, 2020: Daytime low-level clouds in West Africa}
Occurrence, associated drivers, and shortwave radiation
attenuation. Earth Syst. Dyn., 11, 1133–1152, https://doi.org/10.
5194/esd-11-1133-2020.

Deng, A., B. Gaudet, J. Dudhia, and K. Alapaty, 2014: Implemen-
tation and evaluation of a new shallow convection scheme in
WRF. 26th Conf. on Weather Analysis and Forecasting/22nd
Conf. on Numerical Weather Prediction, Atlanta, GA, Amer.
Meteor. Soc., 12.5, https://ams.confex.com/ams/94Annual/
webprogram/Manuscript/Paper236925/12%205_22nd_NWP_
Conf_Deng_ExtendedAbstract.pdf.

Dike, V. N., and Coauthors, 2018: Obstacles facing Africa’s young
climate scientists. Nat. Climate Change, 8, 447–449, https://
doi.org/10.1038/s41558-018-0178-x.

Dommo, A., D. A. Vondou, N. Philippon, R. Eastman, V. Moron,
and N. Aloysius, 2022: The ERA5’s diurnal cycle of low-level
clouds over western central Africa during June–September:
Dynamic and thermodynamic processes. Atmos. Res., 280,
106426, https://doi.org/10.1016/j.atmosres.2022.106426.

Flamant, C., and Coauthors, 2018: The Dynamics–Aerosol–
Chemistry–Cloud Interactions in West Africa Field Campaign:
Overview and research highlights. Bull. Amer. Meteor. Soc., 99,
83–104, https://doi.org/10.1175/BAMS-D-16-0256.1.

Flemming, J., and Coauthors, 2015: Tropospheric chemistry in the
integrated forecasting system of ECMWF. Geosci. Model
Dev., 8, 975–1003, https://doi.org/10.5194/gmd-8-975-2015.

Gamarro, H., J. E. Gonzalez, and L. E. Ortiz, 2019: On the assess-
ment of a numerical weather prediction model for solar pho-
tovoltaic power forecasts in cities. J. Energy Resour. Technol.,
141, 061203, https://doi.org/10.1115/1.4042972.

Gbode, I. E., J. Dudhia, K. O. Ogunjobi, and V. O. Ajayi, 2019:
Sensitivity of different physics schemes in the WRF Model
during a West African monsoon regime. Theor. Appl. Clima-
tol., 136, 733–751, https://doi.org/10.1007/s00704-018-2538-x.

Gueye, M., and G. S. Jenkins, 2019: Investigating the sensitivity of
the WRF-Chem horizontal grid spacing on PM10 concentra-
tion during 2012 over West Africa. Atmos. Environ., 196,
152–163, https://doi.org/10.1016/j.atmosenv.2018.09.064.

Gueymard, C. A., and P. A. Jimenez, 2018: Validation of real-time
solar irradiance simulations over Kuwait using WRF-Solar.
12th Int. Conf. on Solar Energy for Buildings and Industry,
Rapperswil, Switzerland, International Solar Energy Society,
https://doi.org/10.18086/eurosun2018.09.14.

Hannak, L., P. Knippertz, A. H. Fink, A. Kniffka, and G. Pante,
2017: Why do global climate models struggle to represent low-
level clouds in the West African summer monsoon? J. Climate,
30, 1665–1687, https://doi.org/10.1175/JCLI-D-16-0451.1.

Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis.
Quart. J. Roy. Meteor. Soc., 146, 1999–2049, https://doi.org/10.
1002/qj.3803.

Hill, P. G., R. P. Allan, J. C. Chiu, A. Bodas-Salcedo, and P.
Knippertz, 2018: Quantifying the contribution of different
cloud types to the radiation budget in southern West Africa.
J. Climate, 31, 5273–5291, https://doi.org/10.1175/JCLI-D-17-
0586.1.

Hong, S.-Y., and J. Dudhia, 2012: Next-generation numerical
weather prediction: Bridging parameterization, explicit clouds,
and large eddies. Bull. Amer. Meteor. Soc., 93, ES6–ES9,
https://doi.org/10.1175/2011BAMS3224.1.

IEA, 2018: Recent trends in solar PV. https://www.iea.org/tcep/
power/renewables/solar/.

Inness, A., and Coauthors, 2019: The CAMS reanalysis of atmo-
spheric composition. Atmos. Chem. Phys., 19, 3515–3556,
https://doi.org/10.5194/acp-19-3515-2019.

Jiménez, P. A., S. Alessandrini, S. E. Haupt, A. Deng, B. Kosovic,
J. A. Lee, and L. Delle Monache, 2016a: The role of unre-
solved clouds on short-range global horizontal irradiance pre-
dictability. Mon. Wea. Rev., 144, 3099–3107, https://doi.org/10.
1175/MWR-D-16-0104.1.

}}, and Coauthors, 2016b: WRF-Solar: Description and clear-
sky assessment of an augmented NWP model for solar power
prediction. Bull. Amer. Meteor. Soc., 97, 1249–1264, https://
doi.org/10.1175/BAMS-D-14-00279.1.

S AWADOGO E T A L . 849JULY 2023

Brought to you by UNIVERSITAETSBIBLIOTHEK AUGSBURG | Unauthenticated | Downloaded 09/04/23 08:36 AM UTC

https://doi.org/10.1007/s12665-017-6691-9
https://doi.org/10.1007/s12665-017-6691-9
https://www.fao.org/3/x0490e/x0490e00.htm
https://doi.org/10.1002/2015WR017704
https://doi.org/10.1002/2015WR017704
https://doi.org/10.1002/hyp.14183
https://doi.org/10.1002/hyp.14183
https://doi.org/10.1063/1.5117701
https://doi.org/10.1063/1.5117701
https://doi.org/10.1080/713827181
https://doi.org/10.1002/met.2049
https://doi.org/10.2136/vzj2018.03.0065
https://doi.org/10.2136/vzj2018.03.0065
https://doi.org/10.1175/JAMC-D-18-0066.1
https://doi.org/10.1175/JAMC-D-18-0066.1
https://bsrn.awi.de/
https://doi.org/10.1080/16742834.2017.1394780
https://doi.org/10.1016/j.renene.2022.06.141
https://doi.org/10.5194/esd-11-1133-2020
https://doi.org/10.5194/esd-11-1133-2020
https://ams.confex.com/ams/94Annual/webprogram/Manuscript/Paper236925/12%205_22nd_NWP_Conf_Deng_ExtendedAbstract.pdf
https://ams.confex.com/ams/94Annual/webprogram/Manuscript/Paper236925/12%205_22nd_NWP_Conf_Deng_ExtendedAbstract.pdf
https://ams.confex.com/ams/94Annual/webprogram/Manuscript/Paper236925/12%205_22nd_NWP_Conf_Deng_ExtendedAbstract.pdf
https://doi.org/10.1038/s41558-018-0178-x
https://doi.org/10.1038/s41558-018-0178-x
https://doi.org/10.1016/j.atmosres.2022.106426
https://doi.org/10.1175/BAMS-D-16-0256.1
https://doi.org/10.5194/gmd-8-975-2015
https://doi.org/10.1115/1.4042972
https://doi.org/10.1007/s00704-018-2538-x
https://doi.org/10.1016/j.atmosenv.2018.09.064
https://doi.org/10.18086/eurosun2018.09.14
https://doi.org/10.1175/JCLI-D-16-0451.1
https://doi.org/10.1002/qj.3803
https://doi.org/10.1002/qj.3803
https://doi.org/10.1175/JCLI-D-17-0586.1
https://doi.org/10.1175/JCLI-D-17-0586.1
https://doi.org/10.1175/2011BAMS3224.1
https://www.iea.org/tcep/power/renewables/solar/
https://www.iea.org/tcep/power/renewables/solar/
https://doi.org/10.5194/acp-19-3515-2019
https://doi.org/10.1175/MWR-D-16-0104.1
https://doi.org/10.1175/MWR-D-16-0104.1
https://doi.org/10.1175/BAMS-D-14-00279.1
https://doi.org/10.1175/BAMS-D-14-00279.1


}}, J. Yang, J.-H. Kim, M. Sengupta, and J. Dudhia, 2022:
Assessing the WRF-Solar model performance using satellite-
derived irradiance from the National Solar Radiation Data-
base. J. Appl. Meteor. Climatol., 61, 129–142, https://doi.org/
10.1175/JAMC-D-21-0090.1.

Kim, J.-Y., C.-Y. Yun, C. K. Kim, Y.-H. Kang, H.-G. Kim, S.-N.
Lee, and S.-Y. Kim, 2017: Evaluation of WRF Model-derived
direct irradiance for solar thermal resource assessment over
South Korea. AIP Conf. Proc., 1850, 140013, https://doi.org/
10.1063/1.4984521.

Klein, C., D. Heinzeller, J. Bliefernicht, and H. Kunstmann, 2015:
Variability of West African monsoon patterns generated by a
WRF multi-physics ensemble. Climate Dyn., 45, 2733–2755,
https://doi.org/10.1007/s00382-015-2505-5.

Knippertz, P., A. H. Fink, R. Schuster, J. Trentmann, J. M. Schrage,
and C. Yorke, 2011: Ultra-low clouds over the southern West
African monsoon region. Geophys. Res. Lett., 38, L21808,
https://doi.org/10.1029/2011GL049278.

Kumi, E. N., 2017: The electricity situation in Ghana: Challenges
and opportunities. Center for Global Development Policy
Paper, 30 pp., https://www.cgdev.org/sites/default/files/electricity-
situation-ghana-challenges-and-opportunities.pdf.

Kuye, A., and S. S. Jagtap, 1992: Analysis of solar radiation data
for Port Harcourt, Nigeria. Sol. Energy, 49, 139–145, https://
doi.org/10.1016/0038-092X(92)90148-4.

Lara-Fanego, V., J. A. Ruiz-Arias, D. Pozo-Vázquez, F. J. Santos-
Alamillos, and J. Tovar-Pescador, 2012: Evaluation of the
WRF model solar irradiance forecasts in Andalusia (southern
Spain). Sol. Energy, 86, 2200–2217, https://doi.org/10.1016/j.
solener.2011.02.014.

Lee, L. A., C. L. Reddington, and K. S. Carslaw, 2016: On the re-
lationship between aerosol model uncertainty and radiative
forcing uncertainty. Proc. Natl. Acad. Sci. USA, 113, 5820–
5827, https://doi.org/10.1073/pnas.1507050113.

Legates, D. R., and G. J. McCabe, 2013: A refined index of model
performance: A rejoinder. Int. J. Climatol., 33, 1053–1056,
https://doi.org/10.1002/joc.3487.

Léon, J.-F., A. B. Akpo, M. Bedou, J. Djossou, M. Bodjrenou, V.
Yoboué, and C. Liousse, 2021: PM2.5 surface concentrations
in southern West African urban areas based on sun photome-
ter and satellite observations. Atmos. Chem. Phys., 21, 1815–
1834, https://doi.org/10.5194/acp-21-1815-2021.

Liu, Y., Y. Qian, S. Feng, L. K. Berg, T. W. Juliano, P. A. Jiménez,
and Y. Liu, 2022: Sensitivity of solar irradiance to model pa-
rameters in cloud and aerosol treatments of WRF-solar. Sol.
Energy, 233, 446–460, https://doi.org/10.1016/j.solener.2022.01.
061.

Naabil, E., B. L. Lamptey, J. Arnault, A. Olufayo, and H. Kunstmann,
2017: Water resources management using the WRF-Hydro
modelling system: Case-study of the Tono dam in West Africa. J.
Hydrol. Reg. Stud., 12, 196–209, https://doi.org/10.1016/j.ejrh.2017.
05.010.

Neher, I., T. Buchmann, S. Crewell, B. Pospichal, and S. Meilinger,
2019: Impact of atmospheric aerosols on solar power. Meteor.
Z., 28, 305–321, https://doi.org/10.1127/metz/2019/0969.

Neill, S. P., and M. R. Hashemi, 2018: Ocean modelling for re-
source characterization. Fundamentals of Ocean Renewable
Energy, S. P. Neill and M. R. Hashemi, Eds., Academic
Press, 193–235, https://doi.org/10.1016/B978-0-12-810448-4.
00008-2.

Nicholson, S. E., 1981: Rainfall and atmospheric circulation during
drought periods and wetter years in West Africa. Mon. Wea.

Rev., 109, 2191–2208, https://doi.org/10.1175/1520-0493(1981)
109,2191:RAACDD.2.0.CO;2.

}}, A. H. Fink, and C. Funk, 2018: Assessing recovery and
change in West Africa’s rainfall regime from a 161-year re-
cord. Int. J. Climatol., 38, 3770–3786, https://doi.org/10.1002/
joc.5530.

Niu, G.-Y., and Coauthors, 2011: The community Noah land sur-
face model with multiparameterization options (Noah-MP):
1. Model description and evaluation with local-scale measure-
ments. J. Geophys. Res., 116, D12109, https://doi.org/10.1029/
2010JD015139.

Noble, E., L. M. Druyan, and M. Fulakeza, 2014: The sensitivity
of WRF daily summertime simulations over West Africa to
alternative parameterizations. Part I: African wave circula-
tion. Mon. Wea. Rev., 142, 1588–1608, https://doi.org/10.1175/
MWR-D-13-00194.1.

Okogbue, E. C., J. A. Adedokun, and B. Holmgren, 2009: Hourly
and daily clearness index and diffuse fraction at a tropical sta-
tion, Ile-Ife, Nigeria. Int. J. Climatol., 29, 1035–1047, https://
doi.org/10.1002/joc.1849.

Olson, J. B., J. S. Kenyon, W. A. Angevine, J. M. Brown, M.
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