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ABSTRACT
This paper addresses the problem of Quality of Experience
(QoE) monitoring for web browsing. In particular, the in-
ference of common Web QoE metrics such as Speed Index
(SI) is investigated. Based on a large dataset collected with
open web-measurement platforms on different device-types,
a unique feature set is designed and used to estimate the
RUMSI – an efficient approximation to SI, with machine-
learning based regression and classification approaches. Re-
sults indicate that it is possible to estimate the RUMSI ac-
curately, and that in particular, recurrent neural networks
are highly suitable for the task, as they capture the network
dynamics more precisely.
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1. INTRODUCTION
Nowadays, web browsing is the ubiquitous application

in the Internet. This is why the performance of the Web
severely influences the success of on-line services, with the
potential to affect company revenues or cause Internet Ser-
vice Provider (ISP) churning. The degree of annoyance or
frustration with a service can be described with the concept
of Quality of Experience (QoE) [1]. This concept exists also
for the Web and is mostly restricted to Web page loading
times. Literature proposes different metrics for modelling
Web QoE. Previous QoE models used Page Load Times
(PLT) [2] to approximate user satisfaction in Web brows-
ing. By now, it has been shown that metrics like SpeedIndex
(SI) [3] or Above-The-Fold (ATF) [4] capture QoE more ac-
curately, as they concentrate only on the browser’s viewport,
i.e., the visible part of the page. However, the computation
of the SI is an expensive process as it is based on the visual
progress and thus needs to process a video capture. There-
fore, additional metrics have been proposed, e.g., the Real
User Monitoring Speed Index (RUMSI) [5], which efficiently
approximates the SI by using resource timings.

In contrast to other services like video streaming, the com-
plexity of Web browsing arises with the multitude of con-
tacted servers, which are required for composing a website
with all its components. This may result in several network
flows which all contribute to or even determine the QoE of
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a website. However, as ISPs are also interested in providing
high quality services to their customers, they are forced to
perform Web QoE monitoring from their customers point
of view. Besides the mentioned complexity of the websites
themselves, the trend towards end-to-end encryption (e.g.,
HTTPS), makes the task of accurate QoE monitoring even
more difficult. As machine learning is a powerful tool, it is
deemed to provide successful solutions to the problem.

Based on a large dataset obtained with WebPageTest –
the default, open-source web performance analysis tool, this
work aims at accurately estimating Web QoE metrics from
encrypted network traffic, in particular the RUMSI, using
machine learning approaches. First, related work is dis-
cussed in Section 2. Then, the data collection process and
the subsequent extracted features are presented, before the
tested models for the RUMSI estimations are described in
Section 3. Besides standard machine learning models such as
random forest, a neural network regressor, recurrent neural
network (RNN) regressors, and RNN classifiers are tested.
Obtained results for both models-performance as well as
feature-importance analysis are discussed in Section 4, be-
fore Section 5 concludes this work.

2. RELATED WORK
Web QoE monitoring represents a complex problem, with

multiple studies in the literature. Da Hora et al. [4] con-
duct user studies to investigate the relationship between the
proposed Web QoE metrics in the literature and the actual
Web QoE. Further, they propose a more computationally
efficient approximation of ATF (AATF). They show that it
is possible to predict user QoE with supervised regression
models like Support Vector Machines, Random Forests, and
AdaBoost when using Web QoE metrics as features.

Song et al. [7] use LSTMs to predict the ATF for a website
load. However, for each website a single model is learnt and
only a few websites are tested in total. Thus, no general
model is created. Both aforementioned approaches are also
not suitable for Web QoE inference with encrypted network
traffic as they rely on application-layer measurements.

Trevisan et al. [8] propose PAIN, an unsupervised learn-
ing system able to monitor the performance of websites.
Based on passive flow-level and DNS measurements, PAIN
provides a real-time performance analysis.

Huet et al. [9] demonstrated that supervised learning can
be applied to predict the PLT and SI from encrypted pack-
ets. In particular, WebPageTest measurements to the top
500 Alexa websites are performed under different network
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conditions. Based on the accumulated bytes in 100ms in-
tervals, the SI is estimated with supervised techniques such
as Random Forest, XGB, and a 1D-CNN. This work is ex-
tended in [10], where several Web QoE metrics are estimated
using the cumulative byte progression on network layer as in-
put feature. They evaluate their model on different browsers
and under different conditions, and outline the problem of
model generalization, introduced by the highly variable and
dynamic nature of the Web. Finally, in [11] we have recently
investigated the same problem, extending previous work to
the mobile devices scenario. These papers are the closest to
this work. However, none of them investigate the suitabil-
ity and advantages of recurrent neural network approaches,
which is along with the evaluated feature set one of the main
contributions here.

3. METHODOLOGY

3.1 Data Collection
The data was collected with a custom measurement testbed

using WebpageTest (WPT). Three different devices, namely,
a smartphone (Google Pixel 2 XL), a tablet (Samsung Galaxy
Tab S5e), and a normal desktop computer, were used to load
the top 500 Alexa websites with Chrome. All three devices
were connected to the Internet through an additional com-
puter, which served as network emulator and on which the
network traces were captured as pcaps. With the WPT plat-
form, the measurements automatically extract about 90 dif-
ferent KPIs and Web QoE metrics such as PLT, SpeedIndex,
etc. as well as content characteristics of the visited pages.
The same pages were visited ten times for each device type,
using the same access network setups. In this work, approx.
60.000 runs with either no network shaping, 0.1% packet
loss, 0.5% packet loss, and 1% packet loss network shaping
are analyzed.

3.2 Feature Description
As websites usually perform many different requests to

different servers in short periods, a window-based approach
is chosen for feature generation to model the website load-
ing process more accurately. Therefore, the network traffic
is split into windows of 100ms, as this is supposed to pro-
vide a reasonable real-time temporal granularity. In addi-
tion to the features of each window, dynamic session-based
features are computed, which comprise all the previous win-
dows and where the last window contains the final session-
based features. For both window- and session-based fea-
tures, the bytes, the packets, the packet inter-arrival times,
and the throughput are extracted and distribution statistics
like mean, max, sum, etc. are computed for each metric. As-
suming that the client exchanges most network traffic with a
few servers only, the top three IP addresses within a window
and over the course of a session are extracted. IP addresses
are also included in the feature set and are represented with
integers. To accommodate for multiple IP addresses origi-
nating from the same subnet, the top IP addresses are com-
puted for varying subnet configurations. For this purpose,
subnet masks of /24, /16, /8, are considered. Using only
the top IP addresses would potentially help in reducing the
feature set and the amount of required computation time.
Again, the distribution statistics of bytes, packets, packet
inter-arrival times, and throughput are computed for both
window and session for each subnet. All features are com-

puted for the upload link, for the download link, and for
both directions. In addition to the presented features, the
bi-directional features also contain distribution statistics of
the flows and the DNS requests for each window as well
as the cumulative distribution statistics of the flows, DNS
requests, and established connections for the sessions.

The ground truth of the Web QoE metrics is provided by
WPT. To use these metrics also for time series classifica-
tion tasks, an additional metric is introduced, which maps
the state of the QoE metrics to a binary variable, where 0
indicates that the website or the QoE metric, respectively,
is not yet loaded and 1 indicates a full load. These binary
metrics are generated in alignment with the other features
for each window, so in an interval of 100ms. For this work,
the evaluation concentrates on RUMSI and binary RUMSI
only. The final feature set consists of 1975 network features.
Note that only sessions with a RUMSI lower than 10 seconds
were used, i.e., a maximum of 100 windows are generated
per session.

3.3 Implemented Models

3.3.1 Standard Regressors
The standard ML models k-nearest neighbors (KNN), de-

cision tree (DT), random forest (RF), and extreme gradient
boost (XGB) are implemented with scikit-learn. Note that
other models were tested too, but for the sake of brevity,
only the results for the KNN and the tree methods are dis-
played as they also outperformed the other algorithms. For
each model, 80% of the data are assigned to the training set
and 20% of the data to the test set and the data is min-max-
normalized. Further, a 5-fold grid search is performed to
tune the models’ hyperparameters with respect to the mean
squared error (MSE). These standard regressors ignore the
window-based features and take only the final session-based
features into account.

3.3.2 Deep Neural Network Regressor
In addition to the traditional models, a neural network

regressor is implemented. For training of the neural network,
the data is split into a training set, validation set, and test
set, where the shares of the data for the sets are 60%, 20%,
and 20%. The architecture of the neural network consists
of three hidden layers with 1024 neurons each followed by a
dropout layer with a rate of 20%. All hidden layers use tanh
as activation function. The output layer uses a single node
for the estimated RUMSI and has no activation function.
The number of nodes in the input layer correspond to the
input feature dimension. As before, this regressor also relies
only on the final session-based features.

3.3.3 Recurrent Neural Network Regressor
Next, the recurrent neural network regression approaches

are described. For the recurrent architectures, two different
recurrent layers are tested. In particular, the Long-Short
Term Memory (LSTM) [12] and the Gated Recurrent Unit
(GRU) [13] are tested as recurrent layers for the networks.
Besides the internal performance differences, the architec-
tures for the LSTM and GRU models are identical.

The regression model uses four hidden layers, where the
first three hidden layer resemble the recurrent layer with
1024, 512, and 256 neurons each using the sigmoid activation
function and where the final hidden layer resembles a dense
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Figure 1: Model benchmarking – regression models.

layer with 256 neurons and again the sigmoid activation
function. The output layer consists of a dense layer with
a single unit and no activation function and corresponds to
the final regressed value. The input shape corresponds to
the number of slots used to create the time series, i.e., here
100 time steps, and the number of features.

In contrast to the other regression models, this model
takes both the window-based features and the current session-
based features per window into account.

3.3.4 Recurrent Neural Network Classifier
The recurrent classifier is supposed to estimate in each

window whether the RUMSI has already loaded or not. This
results in |windows| binary predictions, which can after-
wards be used to approximate the absolute RUMSI value.
On one hand, this simplifies the task to learn. On the other
hand, an additional bias of up to T −1 milliseconds is intro-
duced, when using the start of a window as boundary and
with T equal to the interval size of the window.

Again, both LSTM and GRU are tested as recurrent lay-
ers. The classification model consists of three hidden re-
current layers, which correspond to a recurrent layer with
1024, 512, and 256 neurons. The output layer consists of
a dense layer with two neurons, where one neuron corre-
sponds to not loaded (0) and the other neuron corresponds
to loaded (1). These two neurons are further activated with
the softmax function. Again, the input shape corresponds
to the number of windows and the number of features. As
with the recurrent regressor, both window-based features
and session-based features are used as input features.

4. EVALUATION
The model-performance evaluation is conducted next, firstly

by benchmarking all models together, and then by further
digging deeper into the performance of the recurrent models.
To shed light on the impact of the proposed input features,
a feature importance analysis is also conducted.

4.1 Benchmarking

4.1.1 All Models
For the benchmarking, all models use the same set of fea-

tures. The regression models thereby rely solely on the final
session-based features.

For all deep learning models, the well-known Adam op-
timizer is used and the loss is calculated with the MSE for
regression tasks and with the cross-entropy for the binary
classification task. A batch size of 256 and a maximum
of 500 epochs are used for learning. Additionally, an early
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Figure 2: Model benchmarking – recurrent models.

stopping mechanism with a patience of 50 is implemented
and the best model, i.e., the model with the lowest observed
loss, is stored. The hyperparameters of all models are opti-
mized with grid search or systematic trial and error so that
the models are still comparable, e.g., with respect to the
number of neurons.

Figure 1 shows the CDFs for the results of the standard
supervised models, the DNN, and the LSTM regressor. The
x-axis denotes the estimation error in seconds, the y-axis
the fraction of website loads observing the corresponding
error. It can be seen that the worst performance is shown
by the KNN (orange) with a median absolute error (mAE)
of 0.49, followed by the DNN (green) with a mAE of 0.41.
Neglecting the LSTM (light blue), the ensemble methods RF
(red, mAE: 0.35) and XGB (brown, mAE: 0.34) show the
best performance as their error is most of the time below 1s.
However, the LSTM regression model shows by far the best
performance with respect to mAE (0.20) and MAE (0.42).

4.1.2 Recurrent Models
A comparison between the error CDFs of the recurrent

models and approaches is presented in Figure 2. Again,
the x-axis denotes the error in seconds, and the y-axis the
fraction of websites.

Architectures with LSTM layers are depicted with light
blue lines, while dark blue lines belong to GRU architec-
tures. Results for the regression approaches are depicted
as dashed lines (R), the classification error relative to the
true RUMSI as dotted lines (CB), and the classification er-
ror relative to the specified window interval sizes (C) as solid
lines. The lines for C thus show the actual prediction results
of the classification approach without considering the bias
described above.

It can be observed that the classification approach out-
performs the regression approach for both recurrent layers
significantly. While the median absolute error (mAE) for
the regression approaches is around 0.29 (LSTM) and 0.30
(GRU), the mAE for the true classification error is 0.19
(LSTM) and 0.20 (GRU). Further, the introduced bias is
clearly visible, but even with this bias the results for the
classification approach are better.

An additional benefit of the classification approach is the
fact that in the field, it is not necessary to wait until the
whole page was loaded and all session-based features can be
computed, Instead it is possible to predict the full load of
a QoE metric in real-time, here with a 100ms delay. As a
consequence, the QoE monitoring provides predictions and
insights much faster.

With respect to the recurrent layers, it is visible that the
LSTM layers offered slightly better results than the GRU
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MSE [s] MAE [s] mAE [s]
GRU LSTM GRU LSTM GRU LSTM

A 0.82 0.87 0.52 0.51 0.25 0.20
WT 1.03 0.93 0.58 0.53 0.27 0.24
ST 0.90 0.84 0.50 0.49 0.20 0.19
W 0.94 0.96 0.55 0.54 0.26 0.23
S 1.00 0.87 0.55 0.52 0.24 0.23
TOPW 1.01 0.87 0.61 0.51 0.32 0.22
TOPS 1.00 0.90 0.57 0.53 0.26 0.25

Table 1: Feature subset analysis of classification approach.

layers. However, these results do not guarantee the superi-
ority of LSTMs over GRUs for the suitability of Web QoE
monitoring as only a small dataset is analyzed here.

Further, sessions of the three types of devices have not
been distinguished. Still, it would be possible to show that
a differentiation between PC and mobile devices would in-
crease the performance as the data revealed slightly different
network behavior between these device types.

4.2 Feature Importance Analysis
For the feature importance analysis, different subsets of

features were trained and tested. One subset contained all
features (A), another subset all windows and the correspond-
ing top IPs (WT), and another subset all session-based fea-
tures and the corresponding top IPs (ST). Further, only the
windows without top IPs (W) and only the session-based
features without top IPs (S) were considered. Finally, only
the top IP window-based (TOPW) and the top IP session-
based features (TOPS) were evaluated.

Table 1 illustrates the obtained results in terms of MSE,
MAE, and mAE per recurrent layer and feature subset for
the classification approach only. It is visible that the subsets
including the session-based features perform mostly better
than the window-based subsets. Relying only on the statis-
tics for the top IPs also results in a low MSE, MAE and
mAE. However, the best results are obtained with an LSTM
and the session-based features including the top IPs.

An additional feature importance analysis with RF and
XGB revealed that the features incorporating the duration
of the network traffic account for the highest impact. This
includes an approximation of the added up packet inter-
arrival times as well as the number of observed non-empty
windows.

5. CONCLUSION
In this paper, the suitability of different machine learn-

ing models for estimating the RUMSI in encrypted network
traffic was investigated. A unique feature set was presented
and fed into different machine learning models. It was shown
that recurrent neural networks outperform traditional ma-
chine learning models and also simple neural networks with
respect to several error metrics. This indicates that recur-
rent neural networks capture the dynamics of network traffic
more efficiently. By using a window-based binary classifica-
tion approach, the results could be even further improved
compared to traditional regression approaches. An addi-
tional benefit of the recurrent modelling is the fact that this
approach allows faster monitoring insights, as the model re-
turns predictions for the 100ms feature windows directly,

instead of having to wait for the end of the web page load
to compute the required features.

The feature analysis further revealed that it is possible
to already estimate the RUMSI accurately when using only
the top three IP addresses and their corresponding sub-nets.
Further, it could be observed that the duration of the net-
work traffic and the packet inter-arrival times seem to be
good indicators for the RUMSI estimation.

The evaluation was limited in terms of sample size. To
conceive more generalizable models, a more in-depth analy-
sis with a much larger dataset is performed in future work.
In addition, only the RUMSI has been analyzed in this work.
Future work includes hence also the monitoring of addi-
tional Web QoE metrics such as PLT and ATF. Finally,
more sophisticated methods like recurrent neural networks
with attention mechanism, temporal convolutional networks
(TCN), or even recurrent graph neural networks are tested
in the future to improve the monitoring performance.
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