
Features that Matter: Feature Selection for On-line

Stalling Prediction in Encrypted Video Streaming

Michael Seufert∗†, Pedro Casas∗, Nikolas Wehner∗, Li Gang‡, Kuang Li‡

∗AIT Austrian Institute of Technology GmbH, Vienna, Austria
†Now at: University of Würzburg, Würzburg, Germany

‡Huawei Technologies, Department of R&D, Shenzhen, P.R. China

michael.seufert@uni-wuerzburg.de, pedro.casas@ait.ac.at,

nikolas.wehner@ait.ac.at, lig619@huawei.com, kuangli@huawei.com

Abstract—Despite the vast literature and major developments
in HTTP adaptive video streaming (HAS) technology, stalling
events due to re-buffering still are by far the worst Quality
of Experience (QoE) degradation, and thus, represent a major
issue for ISPs. In this paper, we address the problem of real-
time QoE monitoring of HAS, focusing on the detection of re-
buffering events and QoE-relevant metrics, for the particular case
of YouTube. Given the wide adoption of end-to-end encryption,
we resort to machine learning models to predict these metrics
directly from the analysis of the encrypted traffic. The salient
feature of our approach ViCrypt is its ability to perform QoE
predictions in real-time, during the course of an ongoing YouTube
streaming session, relying on constant memory, stream-like inputs
continuously extracted from the encrypted stream of packets. We
show through empirical evaluations that ViCrypt can predict
the occurrence of re-buffering events with a time granularity as
small as one second with very high accuracy. By aggregating
independent predictions, ViCrypt is able to accurately estimate
per-video-session QoE-relevant metrics such as initial playback
delay, number of re-buffering events and stalling ratio. In this
situation, we investigate if a decent prediction performance can
also be reached by selecting reduced feature sets based on the
relevance of the features. Moreover, we explore the potential of
including recurrent features, namely, stalling predictions from
past time slots, to improve the prediction performance.

I. INTRODUCTION

Video streaming has become the most popular and most

demanding application of the Internet due to the high number

of requests, high bit rates of the video content and strict real-

time requirements of the video playback. Still, the delivered

streaming service has to meet the expectations of the end

users. To understand and eventually improve Internet services

like video streaming, content, application, and Internet service

providers are now more often relying on the concept of Quality

of Experience (QoE) to quantify the subjective experience and

satisfaction of their customers. The intensifying competition

among operators is forcing ISPs to integrate QoE into the

core of their network management systems, from network

monitoring and reporting to traffic engineering.

When it comes to video streaming performance, it is widely

accepted that the most severe QoE degradations are the inter-

ruptions of the playback or stalling, caused by re-buffering

events [1]–[3], and the waiting time until the start of the

playback. While these degradations have been partially miti-

gated by adapting the video bit rate to the network conditions,

e.g., HTTP Adaptive Streaming (HAS), re-buffering is still

the most annoying and prevalent QoE degradation [1], [4].

Previous studies have also shown that re-buffering is not only

detrimental for the overall user experience, but is also highly

correlated to viewer engagement. As a consequence, ISPs are

highly interested in solutions able to detect the occurrence

of such events as soon as they happen to take appropriate

countermeasures. In the QoE-aware traffic management cycle

[4], network operators continuously monitor the QoE of their

customers and apply network traffic management, such as

bandwidth shaping or re-routing, to avoid the stalling of video

streams or to relief users from ongoing re-bufferings. The trend

towards end-to-end encryption (e.g., HTTPS) has significantly

reduced the visibility of network operators on their customers’

traffic, making the monitoring process more challenging and

cumbersome. It is no longer possible to rely on Deep Packet

Inspection (DPI) based approaches to analyze the video data

contained in each packet to reconstruct the streaming process

and the video buffer [5]. The encrypted stream of packets only

offers very basic information about the streaming process, such

as packet sizes and inter-arrival times.

In this paper, we present ViCrypt, a machine-learning based

approach for monitoring QoE-relevant metrics in YouTube,

capable of predicting the occurrence of re-buffering events in

real-time from such basic features. To do so, ViCrypt analyzes

ongoing streaming sessions using fine grained time slots of 1 s

length. Multiple snapshot-like statistical features are computed

from the video traffic in a stream-based fashion with constant

memory consumption for these time slots independently. Addi-

tionally, two macro windows consisting of multiple time slots

are considered to capture trend and progression properties of

the streaming session. More precisely, ViCrypt considers a first

sliding window aggregating the last t time slots to compute

trend features, and a second sliding window aggregating all

past time slots since the start of the streaming session to

compute session-progression features. At the end of each time

slot, its features and the features of the corresponding macro

windows are fed into a random forest model, which predicts

whether the current time slot of 1 s contains stalling or not.

This is by now the finest granularity of real-time prediction. As

initial results promised a very good prediction results using all

extracted features [6], we will investigate in this paper if that

 688
 on Nove

high level can also be reached by considering only reduced

feature sets. At the same time, we identify, which features are

especially relevant for the accurate prediction of stalling in

independent time slots. As the independent stalling predictions

for each consecutive time slot of a streaming session can

be aggregated to obtain session-based QoE-relevant metrics,

including initial delay, the total number of stallings, and the

stalling ratio, i.e., the ratio between total stalling time and

total playback time, we will further investigate the potential of

including recurrent features, i.e., whether adding predictions of

past time slots as features can improve the prediction results.

The remainder of the paper is organized as follows. Sec. II

describes related work on QoE of HAS and QoE-based net-

work monitoring approaches. Sec. III describes ViCrypt, in-

troducing the concepts of time slots and sliding windows used

in this work and the computed features. Sec. IV explains how

the relevance of different features is explored. The prediction

performance of ViCrypt with different feature sets is evaluated

in Sec. V; finally, Sec. VI concludes this paper.

II. RELATED WORK

The most important results on Quality of Experience (QoE)

of HTTP adaptive streaming (HAS) were summarized in [1].

Also more recent publications confirmed the findings that

stalling, initial delay, and quality adaptation are the most dom-

inant QoE factors. Stalling, i.e., the playback interruptions due

to buffer depletion, is considered the worst QoE degradation

[2], [3]. This is why the real-time prediction of stalling is the

most important goal of this work. Moreover, the played out

video quality and the time on each quality layer also impact

the QoE [7], but they are out of focus of this work.

Several works focused on estimating stalling of video

streaming, which can be mapped to QoE, e.g., with the model

presented in [8]. [5], [9], [10] transferred the approach of [11]

and proposed an in-network system based on DPI to extract

downloaded playtimes. They could be used to estimate the

buffered playtime at the client, and thus, the corresponding

stalling events. Similar approaches were followed by [12],

which supported more video encodings and container formats,

and by [13], which predicted stalling in LTE networks. [14]

estimated stalling events based on the ratio of playback time

and download time, but needed the total size of the video for

real time estimation of stalling. Recently, a quality assessment

model for HAS was standardized (P.1203, [15]), which pre-

dicts the MOS from stream inspection.

The trend towards end-to-end encryption, which prevents

DPI-based approaches, has motivated a recent shift in QoE-

based network monitoring to using low-level network measure-

ments rather than relying on application-layer metrics. While

some approaches explicitly tackle the QoE of mobile apps,

including [16]–[18], there are also general approaches for

QoE analyses based on network-layer monitoring of encrypted

video streaming traffic. Authors in [19] evaluate machine

learning-based architectures that estimate YouTube QoE from

features derived from packet sizes, inter-arrival times, and

throughput measurements. A similar approach is presented

in [20], where authors rely on real cellular network mea-

surements to predict QoE factors for video streaming (e.g.,

played resolutions, stalling events), based on features such as

round-trip times, packet loss, and chunk sizes. Here, authors

also used machine learning for large-scale quality monitoring

and prediction. [21] focuses on the reconstruction of buffered

playtime at the video player side, as previously done in [9], but

for encrypted traffic. This is leveraged to estimate video QoE

metrics in [22]. [23], which is the most similar work, used

machine learning to predict initial delay, stalling, and video

quality from the network traffic in windows of 10 s based on

features derived from IP or TCP/UDP headers only.

Different from all these papers, our approach ViCrypt [6]

detects QoE degradations on encrypted video streaming traffic

in real-time by using a stream-like analysis approach. It

considers three windows (current, trend, session) with only a

minimal memory footprint, i.e., the windows store only a small

set of features, which can be computed with constant memory

consumption. The features are based on packet-level statistics

of the network traffic, and allow to accurately recognize

stalling of the streamed video within time slots of 1 s. This is

by now the finest granularity of real-time prediction. Finally,

with ViCrypt, the individual predictions of each time slot can

be aggregated to accurate stalling statistics on a session level.

III. THE VICRYPT APPROACH

The salient feature of ViCrypt is its ability to perform

predictions in real-time, during the course of an ongoing

YouTube streaming session. For doing so, a video streaming

session is subdivided into a sequence of consecutive, short-

duration time slots of fixed length. After a time slot has ended,

a binary stalling prediction is performed, indicating whether

stalling is present or not in this time slot. In this paper, ViCrypt

uses 1 s time slots, which provides a proper trade-off between

stalling detection delay and accuracy.

The stalling prediction for the current time slot can only

rely on features extracted from the traffic of the current or

past time slots. As there is a possibly large amount of previous

time slots, which would lead to a high memory consumption,

the past streaming information has to be compressed and

structured. For this, in addition to the current time slot, the

proposed system keeps track of only two additional windows,

namely, the trend window and the session window. The trend

window comprises t time slots, and thereby, contains all traffic

of the current slot and the t−1 most recent slots. In this work,

we use a trend window size of t = 3; thus, the trend window

contains the traffic of the current slot and the two previous

slots. The session window is a macro window, which covers

all traffic of the session so far, i.e., it includes the current and

all previous time slots. The features of each individual time

slot, trend window, and session window are computed in an

on-line fashion without the need to store information for each

packet, which significantly reduces the memory consumption

from linear to constant.

First, simple count-based features are computed from the

traffic observed in the time slot. These consist of the number

689

of total, uplink, and downlink packets, and the amount of

transferred bytes (total, uplink, downlink). The number and

byte volume of TCP and UDP packets are counted separately,

and the upload ratio, download ratio, TCP ratio, and UDP

ratio are computed from these counters for both number of

packets and amount of bytes. Next, time-based features are

computed. These include time from the start of a time slot

until the first packet, the time after the last packet until the

time slot end, and the burst duration, i.e., the time between

the first packet and the last packet of the slot. All features are

again computed for the total traffic, as well as for uplink and

downlink traffic. The average throughput of the slot (i.e., traffic

volume divided by slot length) and the burst throughput (i.e.,

traffic volume divided by burst duration) can be subsequently

derived for total, uplink, and downlink traffic. A covariance-

based algorithm1 is used to compute a linear regression for the

cumulative traffic volume over time in an on-line fashion. Two

regressions are performed for uplink and downlink traffic, and

the slope and intercept of the corresponding regression lines

are also added as features. Finally, several characteristics of

the traffic can be described by a distribution. An algorithm

is utilized, based on [24], which can compute the first four

moments of any distribution in an on-line fashion, i.e, the

mean, the variance, the skewness, and the kurtosis. This

algorithm was trivially augmented to additionally output the

standard deviation, the coefficient of variance, as well as the

minimal and the maximal values. These distribution-based

features are computed for the packet size and the inter-arrival

time between packets for both uplink and downlink traffic.

This results in a total of 69 basic features for the traffic of a

time slot. As mentioned above, two windows are additionally

considered for the feature extraction, namely, the trend and

the session windows, for which the same 69 basic features are

computed. Together with the ordinal sequence number of the

current time slot, which basically tracks the current stream

time, this sums up to 208 features, which are associated to

each 1 s length time slot. Note again that, as described, all

input features used by ViCrypt are computed with constant

memory, using a stream-like one-pass approach.

IV. EXPLORATION OF FEATURE RELEVANCE

The results for ViCrypt (see below) show that a high

prediction performance can be achieved when considering the

features of all three window types. Although all of the 208

features are computed with constant memory, this could still

result in a high computational effort for extracting features

for a huge number of streaming sessions in parallel. Thus,

in this work, we investigate if that high level can also be

reached by considering only reduced feature sets. At the same

time, we identify, which features are especially important for

the accurate prediction of stalling in independent time slots.

Moreover, we investigate the idea of a recurrent random forest

prediction. For this, previous prediction results are fed back

1https://stats.stackexchange.com/questions/23481/
are-there-algorithms-for-computing-running-linear-or-logistic-regression-param

(a) Distribution of QoE metrics. (b) Features ranked by IG.

Fig. 1: Characterization of the data set used for training and

testing ViCrypt.

as a feature for the prediction of stalling in the current slot.

In the following, we will first present the data set. Then, we

will describe the creation of the investigated feature sets and

the training of the model for the stalling prediction.

A. Data Set

For training and testing purposes, we generated a data set

consisting of 4,714 YouTube video sessions, streamed and

recorded over a period of several weeks in summer 2018 using

a Chrome browser automation tool. Additionally, we added

135 YouTube app video sessions from the recently published

open dataset [25], [26] to our data set. In each network

trace, both TCP- and QUIC-based YouTube video flows were

identified based on the domain name, and features were only

extracted for the combined flows of each session, discarding

all non-YouTube traffic. The ground truth, i.e., whether the

video was stalling or not, was obtained from a JavaScript-

based monitoring script [4], [27].

80% of the video sessions (randomly selected) were con-

sidered for training, and the remaining 20% were added to

the test set. This means 3,879 sessions were used for training,

and the test set consisted of 970 sessions. Fig. 1a shows the

stalling characteristics of the training set (solid lines) and

the test set (dashed lines) as cumulative distribution functions

(CDFs). The initial delay time, excluding page load time and

stalling during playback, is mostly small; 68% of the sessions

have an initial delay below 3 s. This is partially due to short

advertisement clips before some videos on YouTube, which

require few data to be downloaded and can start very fast.

However, some sessions faced serious initial delays of several

seconds, as the 95-percentile is 15.3 s and the 99-percentile

is 28.3 s. For stalling, excluding initial delay, the figure shows

that 72% of the sessions do not face stalling at all. If stalling is

present, the highest number of stalling events is 5, while the

total stalling time can be quite high, having a 95-percentile

of 6.4 s and a 99-percentile of 19.5 s. While these numbers

correspond to the training set, the shapes of the distributions

for training and test sets are similar, confirming that training

and test sets show the same characteristics.

The following steps were executed with the well-known

open source machine learning software Weka2. The training

2https://www.cs.waikato.ac.nz/ml/weka/

690

data consisted in total of 635,209 time slots. As the training

set contained much less slots with stalling (18.46%) than

slots without stalling, bootstrapping was applied. For this,

the training set was doubled and re-sampled in Weka by

drawing uniformly random with replacement from each class

to obtain balanced classes with 635,209 instances each. During

the preparation of the training set, the order of the slots was

randomized to avoid any serial-position effects during training.

B. Investigated Feature Sets

Five different feature sets are used throughout this work.

The first set (CTS feature set) is straightforward and uses all

208 extracted features of all three windows - current time slot,

trend window, and session window. The second feature set was

created based on domain knowledge using the information gain

(IG) of all features towards the class as a quantitative criterion

(CTS/IG feature set). Weka’s information gain ranking filter

was applied to the training set to obtain a list of all features

ordered by their respective information gain. After a manual

inspection of the list, an IG threshold of 0.05 was selected to

ensure that many subjectively relevant features were included.

97 features with an IG above the threshold were selected for

the second feature set.

Fig. 1b shows all features ranked by IG towards the clas-

sification target, i.e., stalling in the current time slot. Mainly

features of the session window have a high IG, the best being

session volume (0.445), session download volume (0.437),

number of session packets (0.422), number of session down-

load packets (0.416), and number of session upload packets

(0.393). The first features of the trend window appear on rank

59 (trend window download throughput, trend window down-

load volume) with IG 0.115, just before the first feature of the

current time slot (ordinal sequence number) with information

gain 0.109 on rank 63. The next most important features of

the current time slot are download volume (0.068), download

throughput (0.068), download throughput during burst (0.059),

and number of packets (0.058). After the threshold of 0.05,

the IGs further drops for many features of the trend window

and the current slot. The end of the ranking is occupied again

by several features of the session window, which are almost

constant with a very small IG, e.g., session’s time until first

packet, session’s minimum upload packet size, and session’s

minimum inter-arrival time of uplink/dowlink packets. The

whole IG feature set contains 11 features of the current time

slot, 25 features of the trend window, and 61 features of the

session window. A full list of all features and their IG can be

found in the appendix (cf. Table V).

The third feature set was based on a purely algorithmic fea-

ture selection using Weka’s CFS algorithm (CTS/CFS feature

set). It selects a small set of relevant features, which have

a high correlation to the stalling class but a low correlation

between each other. Only 18 features are included in this set,

which radically decreases the overhead for feature generation.

They include the ordinal sequence number, three features of

the trend window, and 14 features of the session window.

Finally, the idea of a recurrent random forest prediction

is investigated. For this, previous prediction results are fed

back as a feature for the prediction of stalling in the current

slot. In the first case, only the binary prediction result for the

previous slot is added as feature, i.e., whether the previous

time slot was predicted to be in class “stalling” or “no stalling”

(CTS+P feature set). Moreover, session level stalling metrics

can be computed by aggregating individual stalling predictions

in a sequence of consecutive slots of a session, which is

described in the next subsection. These metrics include the

initial delay, number of stalling events, duration of the current

stalling event, total stalling time, stalling ratio, and two binary

indicators whether the session is the initial delay phase or

in a stalling phase. For each slot, these seven metrics are

computed considering the whole past streaming session until

the current slot, and are also added as features. Thus, the

resulting CTS+PS feature set has a total of 216 features, eight

of which are based on previous predictions.

C. Stalling Prediction

For each feature set, a random forest model using 25

trees is trained on the training set. The random forest model

outperformed other models on the same classification task in

terms of accuracy and training speed, and the number of trees

was chosen to avoid overfitting of the model. The classification

accuracy of the model was computed on the test set.

First, the classification accuracy is evaluated per individual

time slot. This means, the results of the bare classification task

for any time slot of the test set will be reported. This situation

allows to obtain a real-time prediction for any video session,

which indicates if there is stalling in the current slot or not.

Finally, the classification accuracy is evaluated per session.

For this, individual and independent predictions of the se-

quence of time slots within a session are aggregated on the

session level. This allows to obtain stalling information for

the whole session, such as the initial delay, the number of

stalling events, and the total stalling time (excluding initial

delay), which can be converted into the stalling ratio (ratio of

total stalling time and total playback time). The trained model

predicts for each consecutive slot of the session if there is

stalling or not. The initial delay in seconds is given by the

number of slots (slot length is 1 s) at the start of the session,

for which the model predicted stalling. After the initial delay,

a stalling event is counted if two or more consecutive slots are

predicted as “stalling” to make the aggregated stalling metrics

more robust towards false predictions of individual time slots.

In this case, the number of consecutive slots with stalling is

added to the total stalling time in seconds. Thus, by simple

counting of slot predictions, this aggregation method allows

to obtain the initial delay, the number of stalling events, the

total stalling time, and the stalling ratio of the whole streaming

session. Note that the granularity of the initial delay and total

stalling time prediction is limited by the length of a time slot,

i.e., it is 1 s. However, this granularity should be sufficient for

most use cases.

691

TABLE I: Confusion matrix of slot prediction for CTS features

prediction → CTS features CTS/IG features CTS/CFS features
↓ actual class no stalling stalling no stalling stalling no stalling stalling

no stalling 130969 2424 130706 2687 131187 2206
stalling 5768 18010 5525 18253 7246 16532

TABLE II: Evaluation of slot prediction for CTS features

CTS features CTS/IG features CTS/CFS features
prec. recall F1 prec. recall F1 prec. recall F1

no stalling 0.958 0.982 0.970 0.959 0.980 0.970 0.948 0.983 0.965
stalling 0.881 0.757 0.815 0.872 0.768 0.816 0.882 0.695 0.778

weighted avg. 0.946 0.948 0.946 0.946 0.948 0.946 0.938 0.940 0.937

V. PERFORMANCE EVALUATION

In this section, we evaluate the stalling prediction perfor-

mance of the ViCrypt system for the investigated feature sets.

A. Real-time Prediction of Stalling

The real-time prediction of stalling assigns each of the time

slots to class “no stalling” or “stalling”. After training the

random forest models with the different feature sets, their

performances were checked on the test set, which contained

157,171 time slots.

In the following, the results of the full feature set CTS and

the reduced feature sets based on feature selection algorithms

are presented. The model using all features reached a very

high accuracy of 94.79%, which gives the best performance

overall. Also for the reduced features sets, the accuracy was

still very high, i.e., 94.78% for the CTS/IG feature set and

93.99% for the CTS/CFS feature set. This means that it is

possible to reach a high performance with a very small set

of features. Table I presents the confusion matrices with the

actual classes of the slots in the rows and the predicted

classes in the columns, and Table II gives detailed evaluation

results. These include precision (ratio of actual “stalling” slots

among all predicted “stalling” slots), recall (ratio of predicted

“stalling” slots among all actual “stalling” slots), and F1-

measure (harmonic mean of precision and recall). Note that

the definitions are analogously in terms of class “no stalling”,

and that the weighted average of these metrics was computed

from the per-class scores weighted by the number of instances

of each class. Prediction errors are generally higher for false

negatives. While prediction, recall, and F1-measure are very

high for class “no stalling”, the lower recall of class “stalling”

caused by the false negatives is visible. The lower values could

be attributed to the very unbalanced measurement data, which

only showed very little stalling, and would probably increase

after more measurements with very bad network conditions.

Still, the results for all models already show a very decent

performance in predicting stalling. However, the worse results

of the CTS/CFS feature set for stalling prediction indicate

that this feature set tends to become too small to accurately

describe the instances of the “stalling” class.

Next, the models with the full feature sets including recur-

rent features are evaluated. In the CTS+P feature set, only

TABLE III: Confusion matrix for CTS+P and CTS+PS

prediction → CTS+P CTS+PS
↓ actual class no stalling stalling no stalling stalling

no stalling 130884 2509 122992 10401
stalling 6475 17303 6699 17079

TABLE IV: Evaluation of prediction for CTS+P and CTS+PS

CTS+P CTS+PS
prec. recall F1 prec. recall F1

no stalling 0.953 0.981 0.967 0.948 0.922 0.935
stalling 0.873 0.728 0.794 0.622 0.718 0.666

weighted avg. 0.940 0.943 0.942 0.899 0.891 0.895

the stalling prediction for the previous slot is considered

additionally. After training the random forest model, it was

evaluated on the test set, while feeding back the actual

prediction of the previous slot as a feature. The first columns

of Table III show the corresponding confusion matrices, and

first columns of Table IV shows the detailed evaluation results.

The model reaches only an accuracy of 94.28% when using

the actual previous predictions, which is slightly lower than the

performance of the CTS model. If, in theory, perfect previous

predictions were available, the model could reach a very high

accuracy of 97.74% (F1-measures 0.987 for “stalling”, 0.923

for “no stalling”, and 0.977 for the weighted average). This

shows that propagated prediction errors from previous slots are

responsible for the deteriorated performance. For the CTS+PS

model, the situation even worsens. The actual performance

of 89.12% accuracy is significantly worse than the CTS and

CTS+P model, and shows a very high discrepancy from a

theoretical performance of 98.98% accuracy (F1-measures

0.994 for “stalling”, 0.966 for “no stalling”, and 0.990 for the

weighted average), which it could have achieved with perfect

previous predictions. Also, CTS+PS has much more false

positives than CTS+P. As both models with recurrent features

perform worse than the CTS model without recurrent features,

we can conclude that recurrent features are not beneficial for

the prediction. Instead, they propagate prediction errors to sub-

sequent time slots and thereby lower the overall performance.

This is quite surprising, as one would a-priori believe that

recurrent features would improve prediction performance, by

tracking transient effects. We therefore conclude that stalling

692

(a) Initial delay. (b) Number of stalling events.

(c) Total stalling time. (d) Stalling ratio.

Fig. 2: Prediction errors of session-based stalling metrics.

prediction for individual time slots is better realized by relying

exclusively on the snapshot, per-slot independent features.

B. Session-based Stalling Prediction

In the following, the results of the session-based QoE

prediction are presented. Individual predictions of consecutive

time slots are aggregated to obtain stalling metrics on a session

level, namely, initial delay, number of stalling events, total

stalling time, and stalling ratio. For the stalling prediction of

individual slots, the model with the full feature set (CTS)

is used. It is compared to the model with all recurrent

features (CTS+PS), which showed a very good performance

for session-based stalling prediction, even better than CTS+P.

This comes as a surprise given that CTS+PS had a worse

performance on the stalling prediction for individual slots.

Fig. 2 shows the prediction errors of the session-based

stalling prediction, i.e., the distribution of the difference be-

tween the predicted metric and the actual metric. Fig. 2a shows

the prediction error for the initial delay. The prediction error of

the CTS model is plotted in orange, the brown bars represent

the CTS+PS model. The initial delay of 39.48% of the sessions

can be predicted exactly for CTS. For 68.14% of the sessions,

the prediction error is 1 s or less, and for 81.03% it is at

most 2 s. As the prediction error is mostly positive, the model

tends to overestimate the actual initial delay. For CTS+PS, the

numbers are worse. The initial delay can be predicted exactly

for 34.98% of the sessions, with an error of 1 s or less for

55.93%, and with an error of 2 s or less for 65.94%.

Fig. 2b shows the distribution of the prediction error for

number of stalling events. No error occurs for 61.54% of

the sessions. For 24.85%, the number of stalling events was

underestimated. Here, CTS+PS performs better and can predict

the number of stalling events exactly for 69.48% of the ses-

sions. However, it underestimates for 29.28% of the sessions.

In contrast, when considering the prediction error of the total

stalling time in Fig. 2c, stalling duration can be predicted with

high accuracy. With CTS, for 58.93% of the sessions there is

no error, for 70.28% the error is 1 s or less, and for 82.56%

it is 3 s or less. CTS+PS performs better and has no error for

70.14%, an error of 1 s or less for 81.92%, and an error of 3 s

or less for 90.91% of the sessions.

Finally, Fig. 2d considers the prediction error for the stalling

ratio, i.e., the ratio of total stalling time and total playtime

of the video. Predicted stalling ratio is within ±0.05 of the

actual stalling ratio (difference in interval from -0.05 to 0.05)

for 88.54% of the sessions with CTS, and for 94.43% of

the sessions with CTS+PS. For the remaining sessions, CTS

tends to overestimate the stalling ratio, while CTS+PS rather

underestimates the stalling ratio.

The results show that it is possible to aggregate the indi-

vidual stalling predictions of consecutive time slots to obtain

stalling metrics on session level. The CTS model already

showed proper performance with sufficiently small prediction

errors. When considering the prediction errors of the number

of stalling events, total stalling time, and stalling ratio, the

CTS+PS model with recurrent features performed better than

CTS, although it showed a worse performance for individual,

per-slot stalling predictions. This suggests that, when aggre-

gating individual predictions on the session level, it can be

actually beneficial to consider recurrent features for the stalling

prediction of the consecutive slots. Only for initial delay, the

CTS model could outperform CTS+PS.

VI. CONCLUSION

We presented ViCrypt, a machine-learning based approach

for real-time prediction of QoE-relevant metrics with a fine

granularity of only 1 s and a high accuracy. It monitors the

encrypted video traffic in three windows (current slot, trend

window, session window), from which statistical features are

computed and updated with constant memory consumption.

By testing on a YouTube data set, we observed that the full

feature set (CTS) is not necessary for predicting re-buffering

occurrence in real-time, as a similar performance could be

reached with half of the features (CTS/IG). Here, especially

features of the session window proved to be relevant. However,

stalling prediction slowly suffers when more features are

excluded (CTS/CFS). Also adding recurrent features degraded

the stalling prediction of individual time slots.

We also showed how per-slot individual re-buffering pre-

dictions could be aggregated to predict stalling metrics at the

session level with low prediction errors. Surprisingly, recurrent

features could reduce the prediction error of session-level

QoE-relevant metrics (CTS+PS) when aggregating individual

stalling predictions. In future works, this effect has to be

investigated in more detail. Moreover, the system has to be

trained on more slots with stalling to improve performance.

Finally, as the approach is very general, it will be transferred

to other video streaming services, to predict other QoE factors,

such as the visual quality of the streaming, and to extend the

prediction to future time slots, which could be beneficial for

proactive QoE-aware traffic management.

693

REFERENCES

[1] M. Seufert, S. Egger, M. Slanina, T. Zinner, T. Hoßfeld, and P. Tran-
Gia, “A Survey on Quality of Experience of HTTP Adaptive Streaming,”
IEEE Communications Surveys & Tutorials, vol. 17, no. 1, pp. 469–492,
2015.

[2] D. Ghadiyaram, J. Pan, and A. C. Bovik, “A Time-varying Subjective
Quality Model for Mobile Streaming Videos with Stalling Events,” in
Proceedings of SPIE Applications of Digital Image Processing XXXVIII,
San Diego, CA, USA, 2015.

[3] K. Zeng, H. Yeganeh, and Z. Wang, “Quality-of-experience of Streaming
Video: Interactions between Presentation Quality and Playback Stalling,”
in Proceedings of the IEEE International Conference on Image Process-

ing (ICIP), Phoenix, AZ, USA, 2016.
[4] M. Seufert, “Quality of Experience and Access Network

Traffic Management of HTTP Adaptive Video Streaming,”
Doctoral Thesis, University of Würzburg, 2017. [Online].
Available: https://opus.bibliothek.uni-wuerzburg.de/files/15413/Seufert
Michael Thomas HTTP.pdf

[5] P. Casas, M. Seufert, and R. Schatz, “YOUQMON: A System for On-
line Monitoring of YouTube QoE in Operational 3G Networks,” ACM

SIGMETRICS Performance Evaluation Review, vol. 41, no. 2, pp. 44–
46, 2013.

[6] M. Seufert, P. Casas, N. Wehner, L. Gang, and K. Li, “Stream-
based Machine Learning for Real-time QoE Analysis of Encrypted
Video Streaming Traffic,” in 3rd International Workshop on Quality of

Experience Management, 2019.
[7] M. Seufert, T. Hoßfeld, and C. Sieber, “Impact of Intermediate Layer on

Quality of Experience of HTTP Adaptive Streaming,” in Proceedings of

the 11th International Conference on Network and Service Management

(CNSM), Barcelona, Spain, 2015.
[8] T. Hoßfeld, R. Schatz, M. Seufert, M. Hirth, T. Zinner, and P. Tran-Gia,

“Quantification of YouTube QoE via Crowdsourcing,” in Proceedings

of the International Workshop on Multimedia Quality of Experience -

Modeling, Evaluation, and Directions (MQoE), Dana Point, CA, USA,
2011.

[9] R. Schatz, T. Hoßfeld, and P. Casas, “Passive YouTube QoE Monitoring
for ISPs,” in Proceedings of the 2nd International Workshop on Future

Internet and Next Generation Networks (FINGNet), Palermo, Italy, 2012.
[10] P. Casas, R. Schatz, and T. Hoßfeld, “Monitoring YouTube QoE: Is Your

Mobile Network Delivering the Right Experience to Your Customers?”
in Proceedings of the IEEE Wireless Communications and Networking

Conference (WCNC), Shanghai, China, 2013.
[11] B. Staehle, M. Hirth, R. Pries, F. Wamser, and D. Staehle, “YoMo: A

YouTube Application Comfort Monitoring Tool,” in Proceedings of the

1st Workshop of Quality of Experience for Multimedia Content Sharing

(QoEMCS), Tampere, Finland, 2010.
[12] M. Eckert, T. M. Knoll, and F. Schlegel, “Advanced MOS Calculation

for Network Based QoE Estimation of TCP Streamed Video Services,”
in Proceedings of the 7th International Conference on Signal Processing

and Communication Systems (ICSPCS), Gold Coast, Australia, 2013.
[13] P. Ameigeiras, A. Azcona-Rivas, J. Navarro-Ortiz, J. J. Ramos-Munoz,

and J. M. Lopez-Soler, “A Simple Model for Predicting the Number
and Duration of Rebuffering Events for YouTube Flows,” IEEE Com-

munications Letters, vol. 16, no. 2, pp. 278–280, 2012.
[14] P. Szilágyi and C. Vulkán, “Network side Lightweight and Scalable

YouTube QoE Estimation,” in Proceedings of the IEEE International

Conference on Communications (ICC), London, UK, 2015.
[15] International Telecommunication Union, “ITU-T Recommendation

P.1203: Parametric Bitstream-based Quality Assessment of Progressive
Download and Adaptive Audiovisual Streaming Services over Reliable
Transport,” 2016. [Online]. Available: https://www.itu.int/rec/T-REC-P.
1203/en

[16] V. Aggarwal, E. Halepovic, J. Pang, S. Venkataraman, and H. Yan,
“Prometheus: Toward Quality-of-Experience Estimation for Mobile
Apps from Passive Network Measurements,” in Proceedings of the 15th

Workshop on Mobile Computing Systems and Applications (HotMobile),
Santa Barbara, CA, USA, 2014.

[17] P. Casas, M. Seufert, F. Wamser, B. Gardlo, A. Sackl, and R. Schatz,
“Next to You: Monitoring Quality of Experience in Cellular Networks
from the End-devices,” IEEE Transactions on Network and Service

Management, vol. 13, no. 2, pp. 181–196, 2016.
[18] P. Casas, A. D’Alconzo, F. Wamser, M. Seufert, B. Gardlo, A. Schwind,

P. Tran-Gia, and R. Schatz, “Predicting QoE in Cellular Networks using
Machine Learning and in-Smartphone Measurements,” in Proceedings of

the 9th International Conference on Quality of Multimedia Experience

(QoMEX), Erfurt, Germany, 2017.
[19] I. Orsolic, D. Pevec, M. Suznjevic, and L. Skorin-Kapov, “YouTube

QoE Estimation Based on the Analysis of Encrypted Network Traffic
Using Machine Learning,” in Proceedings of the 5th IEEE International

Workshop on Quality of Experience for Multimedia Communications

(QoEMC), Washington, DC, USA, 2016.
[20] G. Dimopoulos, I. Leontiadis, P. Barlet-Ros, and K. Papagiannaki,

“Measuring Video QoE from Encrypted Traffic,” in Proceedings of

the ACM Internet Measurement Conference (IMC), Santa Monica, CA,
USA, 2016.

[21] V. Krishnamoorthi, N. Carlsson, E. Halepovic, and E. Petajan, “Buffest:
Predicting buffer conditions and real-time requirements of http(s) adap-
tive streaming clients,” in Proceedings of the 8th ACM on Multimedia

Systems Conference (MMSys), Taipei, Taiwan, 2017.
[22] T. Mangla, E. Halepovic, M. Ammar, and E. Zegura, “emimic: Esti-

mating http-based video qoe metrics from encrypted network traffic,”
in TMA Conference 2018 - Network Traffic Measurement and Analysis

Conference, 2018.
[23] M. H. Mazhar and M. Z. Shafiq, “Real-time video quality of experience

monitoring for https and quic,” in IEEE INFOCOM 2018 - IEEE

Conference on Computer Communications, 2018.
[24] P. Pébay, “Formulas for Robust, One-Pass Parallel Computation of

Covariances and Arbitrary-Order Statistical Moments,” Sandia National
Laboratories, Tech. Rep., 2008.

[25] T. Karagkioules, D. Tsilimantos, S. Valentin, F. Wamser, B. Zeidler,
M. Seufert, F. Loh, and P. Tran-Gia, “A Public Dataset for YouTube’s
Mobile Streaming Client,” in Proceedings of the 2nd Workshop on

Mobile Network Measurement (MNM), Vienna, Austria, 2018.
[26] M. Seufert, B. Zeidler, F. Wamser, T. Karagkioules, D. Tsilimantos,

F. Loh, P. Tran-Gia, and S. Valentin, “A Wrapper for Automatic
Measurements with YouTube’s Native Android App,” in Proceedings of

the 2nd Network Traffic Measurement and Analysis Conference (TMA),
Vienna, Austria, 2018.

[27] F. Wamser, M. Seufert, P. Casas, R. Irmer, P. Tran-Gia, and R. Schatz,
“YoMoApp: a Tool for Analyzing QoE of YouTube HTTP Adaptive
Streaming in Mobile Networks,” in Proceedings of the European Confer-

ence on Networks and Communications (EuCNC), Paris, France, 2015.

APPENDIX

Table V presents the list of all features sorted by their

information gain towards class “stalling”, and indicates in

which of the reduced feature sets they were included. Prefix

letter ‘t’ indicates a feature of the trend window, prefix letter

‘s’ indicates a feature of the session window, the other features

are computed on the current time slot. Additionally, prefix

letters ‘d’ and ‘u’ indicate features for downlink and uplink

traffic, respectively.

694

TABLE V: List of features sorted by information gain towards class “stalling”

information
gain

name feature set

0.445414 s volume IG, CFS
0.436852 sd volume IG, CFS
0.421901 s num packets IG
0.415934 sd num packets IG
0.392734 su num packets IG
0.37201 sd packet size skew IG, CFS
0.369883 su packet size skew IG
0.366606 sd packet size cvar IG, CFS
0.366449 sd packet size kurt IG
0.364596 su packet size mean IG
0.362772 sd iat kurt IG, CFS
0.362404 su packet size kurt IG, CFS
0.36028 sd packet size mean IG
0.357725 sd iat skew IG, CFS
0.355849 sd packet size var IG
0.355849 sd packet size stddev IG
0.354076 sd volume ratio IG
0.354076 su volume ratio IG
0.348692 su packet size var IG
0.348683 su packet size stddev IG
0.345504 sd regression intcpt IG, CFS
0.344576 su volume IG
0.341763 sd burst throughput IG
0.336476 su iat kurt IG, CFS
0.331278 s burst duration IG
0.328932 s volume tcp IG
0.32738 su iat skew IG
0.320215 s burst throughput IG
0.319094 su burst duration IG
0.306033 sd regression slope IG
0.304495 sd iat mean IG
0.297394 sd burst duration IG
0.292278 su regression intcpt IG, CFS
0.291357 su iat mean IG
0.290869 su num packets ratio IG
0.290842 sd num packets ratio IG
0.283743 sd iat max IG
0.27512 sd iat stddev IG
0.268584 sd iat var IG
0.268054 su iat stddev IG
0.267332 sd iat cvar IG
0.266696 su iat max IG
0.264366 s throughput IG, CFS
0.263358 sd throughput IG, CFS
0.259922 su iat var IG
0.257448 su packet size cvar IG
0.239231 su iat cvar IG
0.216976 s num packets tcp ratio IG
0.216976 s num packets udp ratio IG
0.203673 s volume tcp ratio IG
0.203673 s volume udp ratio IG
0.192402 s volume udp IG
0.188676 su burst throughput IG
0.180672 s num packets tcp IG
0.178991 s num packets udp IG
0.156065 su throughput IG
0.151182 su regression slope IG
0.141154 su packet size max IG, CFS
0.1147 td volume IG
0.1147 td throughput IG
0.10937 t volume IG
0.10937 t throughput IG
0.108723 ordinal sequence number IG, CFS
0.104279 td burst throughput IG, CFS
0.101206 t burst throughput IG
0.098643 t num packets IG
0.095487 td num packets IG
0.09491 tu num packets IG
0.093312 t volume tcp IG, CFS
0.082858 t num packets tcp IG

information
gain

name feature set

0.070875 d throughput IG
0.070875 d volume IG
0.067616 volume IG
0.067616 throughput IG
0.067504 sd time after last packet IG
0.065118 tu packet size mean IG
0.062839 tu packet size stddev IG
0.062839 tu packet size var IG
0.059359 td volume ratio IG
0.059359 tu volume ratio IG
0.059044 d burst throughput IG
0.058235 tu packet size kurt IG
0.058018 packets IG
0.057303 s time after last packet IG
0.056921 u num packets IG
0.056885 tu packet size skew IG
0.056182 burst throughput IG
0.055997 td regression slope IG
0.055465 tu throughput IG
0.055465 tu volume IG
0.054434 tu packet size max IG
0.053616 td packet size mean IG
0.053234 td packet size skew IG
0.052582 d num packets IG
0.052532 volume tcp IG
0.052429 td packet size kurt IG
0.050595 su time after last packet IG
0.049489 td packet size cvar
0.048145 t volume udp
0.047044 td packet size stddev
0.047044 td packet size var
0.046475 tu iat mean
0.046467 td iat mean
0.043254 packets tcp
0.042758 tu packet size cvar
0.040324 t num packets udp
0.038509 u volume
0.038509 u throughput
0.037025 td num packets ratio
0.037025 tu num packets ratio
0.036336 volume udp
0.033925 t burst duration
0.033287 u packet size max
0.031948 sd packet size max
0.030887 td packet size min
0.030404 u iat mean
0.030395 u packet size mean
0.030206 td iat stddev
0.030201 td iat var
0.030051 tu burst duration
0.029879 tu iat stddev
0.02985 tu iat var
0.029392 td burst duration
0.029374 t num packets tcp ratio CFS
0.029374 t num packets udp ratio
0.029005 packets udp
0.028376 tu iat max
0.028296 t time until first packet
0.028226 d regression slope
0.0279 burst duration
0.027374 t volume tcp ratio
0.027374 t volume udp ratio
0.027118 tu burst throughput
0.02658 u packet size var
0.02658 u packet size stddev
0.025533 tu time until first packet
0.025499 u packet size kurt
0.024635 d volume ratio
0.024635 u volume ratio
0.02449 u packet size skew

information
gain

name feature set

0.023849 d burst duration
0.023735 d packet size mean
0.023654 u iat stddev
0.023478 u iat var
0.023054 u burst throughput
0.022819 u burst duration
0.022002 d iat mean
0.02192 d iat var
0.02189 u iat max
0.021875 d iat stddev
0.021664 tu packet size min
0.020924 d packet size skew
0.020446 td packet size max
0.020321 d num packets ratio
0.020321 u num packets ratio
0.020233 td time until first packet
0.020179 d packet size kurt
0.019905 d packet size cvar
0.019887 d packet size min
0.019689 td iat max
0.019135 u packet size min
0.017708 td iat kurt
0.017417 d packet size stddev
0.017417 d packet size var
0.016183 tu iat skew
0.015154 td regression intcpt
0.014949 u packet size cvar
0.014605 d iat max
0.013792 sd time until first packet
0.013619 packets tcp ratio
0.013619 packets udp ratio
0.013329 tu iat kurt
0.013144 tu regression intcpt
0.012993 tu iat cvar
0.012927 tu regression slope
0.012821 td iat cvar
0.012286 volume udp ratio
0.012286 volume tcp ratio
0.012104 td iat skew
0.011111 t time after last packet
0.009766 u iat min
0.009712 u regression slope
0.009594 d packet size max
0.009285 tu time after last packet
0.009176 td time after last packet
0.008269 u iat cvar
0.00826 time after last packet
0.00781 time until first packet
0.007713 u regression intcpt
0.007657 u time until first packet
0.006812 u time after last packet
0.006741 d time after last packet
0.006722 d iat kurt
0.006528 u iat skew
0.006521 d time until first packet
0.006388 u iat kurt
0.00631 tu iat min
0.005805 su time until first packet
0.004922 sd packet size min CFS
0.004626 d iat cvar
0.004466 d regression intcpt
0.003081 d iat skew
0.001196 d iat min
0.001016 td iat min
0.000805 su iat min
0.000753 sd iat min
0 su packet size min
0 s time until first packet

695

